
RTC-Web E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track March 12, 2012
Expires: September 13, 2012

Security Considerations for RTC-Web
draft-ietf-rtcweb-security-02

Abstract

 The Real-Time Communications on the Web (RTC-Web) working group is
 tasked with standardizing protocols for real-time communications
 between Web browsers. The major use cases for RTC-Web technology are
 real-time audio and/or video calls, Web conferencing, and direct data
 transfer. Unlike most conventional real-time systems (e.g., SIP-
 based soft phones) RTC-Web communications are directly controlled by
 some Web server, which poses new security challenges. For instance,
 a Web browser might expose a JavaScript API which allows a server to
 place a video call. Unrestricted access to such an API would allow
 any site which a user visited to "bug" a user's computer, capturing
 any activity which passed in front of their camera. This document
 defines the RTC-Web threat model and defines an architecture which
 provides security within that threat model.

Legal

 THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN ARE PROVIDED ON
 AN "AS IS" BASIS AND THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST, AND THE INTERNET ENGINEERING TASK FORCE, DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Rescorla Expires September 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft RTC-Web Security March 2012

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Rescorla Expires September 13, 2012 [Page 2]

Internet-Draft RTC-Web Security March 2012

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. The Browser Threat Model 5
3.1. Access to Local Resources 6
3.2. Same Origin Policy . 6

 3.3. Bypassing SOP: CORS, WebSockets, and consent to
 communicate . 7

4. Security for RTC-Web Applications 7
4.1. Access to Local Devices 8
4.1.1. Calling Scenarios and User Expectations 8
4.1.1.1. Dedicated Calling Services 8
4.1.1.2. Calling the Site You're On 9
4.1.1.3. Calling to an Ad Target 9

4.1.2. Origin-Based Security 10
4.1.3. Security Properties of the Calling Page 11

4.2. Communications Consent Verification 12
4.2.1. ICE . 12
4.2.2. Masking . 13
4.2.3. Backward Compatibility 13
4.2.4. IP Location Privacy 14

4.3. Communications Security 14
4.3.1. Protecting Against Retrospective Compromise 15
4.3.2. Protecting Against During-Call Attack 16
4.3.2.1. Key Continuity 16
4.3.2.2. Short Authentication Strings 17
4.3.2.3. Third Party Identity 18

5. Security Considerations 18
6. Acknowledgements . 18
7. References . 19
7.1. Normative References 19
7.2. Informative References 19

 Author's Address . 21

Rescorla Expires September 13, 2012 [Page 3]

Internet-Draft RTC-Web Security March 2012

1. Introduction

 The Real-Time Communications on the Web (RTC-Web) working group is
 tasked with standardizing protocols for real-time communications
 between Web browsers. The major use cases for RTC-Web technology are
 real-time audio and/or video calls, Web conferencing, and direct data
 transfer. Unlike most conventional real-time systems, (e.g., SIP-
 based[RFC3261] soft phones) RTC-Web communications are directly
 controlled by some Web server. A simple case is shown below.

 +----------------+
 | |
 | Web Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTP / \ HTTP
 / \
 / \
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 | Browser |<---------->| Browser |
 | | | |
 +-----------+ +-----------+

 Figure 1: A simple RTC-Web system

 In the system shown in Figure 1, Alice and Bob both have RTC-Web
 enabled browsers and they visit some Web server which operates a
 calling service. Each of their browsers exposes standardized
 JavaScript calling APIs which are used by the Web server to set up a
 call between Alice and Bob. While this system is topologically
 similar to a conventional SIP-based system (with the Web server
 acting as the signaling service and browsers acting as softphones),
 control has moved to the central Web server; the browser simply
 provides API points that are used by the calling service. As with
 any Web application, the Web server can move logic between the server
 and JavaScript in the browser, but regardless of where the code is
 executing, it is ultimately under control of the server.

 It should be immediately apparent that this type of system poses new
 security challenges beyond those of a conventional VoIP system. In
 particular, it needs to contend with malicious calling services. For
 example, if the calling service can cause the browser to make a call
 at any time to any callee of its choice, then this facility can be

Rescorla Expires September 13, 2012 [Page 4]

Internet-Draft RTC-Web Security March 2012

 used to bug a user's computer without their knowledge, simply by
 placing a call to some recording service. More subtly, if the
 exposed APIs allow the server to instruct the browser to send
 arbitrary content, then they can be used to bypass firewalls or mount
 denial of service attacks. Any successful system will need to be
 resistant to this and other attacks.

 A companion document [I-D.ietf-rtcweb-security-arch] describes a
 security architecture intended to address the issues raised in this
 document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. The Browser Threat Model

 The security requirements for RTC-Web follow directly from the
 requirement that the browser's job is to protect the user. Huang et
 al. [huang-w2sp] summarize the core browser security guarantee as:

 Users can safely visit arbitrary web sites and execute scripts
 provided by those sites.

 It is important to realize that this includes sites hosting arbitrary
 malicious scripts. The motivation for this requirement is simple:
 it is trivial for attackers to divert users to sites of their choice.
 For instance, an attacker can purchase display advertisements which
 direct the user (either automatically or via user clicking) to their
 site, at which point the browser will execute the attacker's scripts.
 Thus, it is important that it be safe to view arbitrarily malicious
 pages. Of course, browsers inevitably have bugs which cause them to
 fall short of this goal, but any new RTC-Web functionality must be
 designed with the intent to meet this standard. The remainder of
 this section provides more background on the existing Web security
 model.

 In this model, then, the browser acts as a TRUSTED COMPUTING BASE
 (TCB) both from the user's perspective and to some extent from the
 server's. While HTML and JS provided by the server can cause the
 browser to execute a variety of actions, those scripts operate in a
 sandbox that isolates them both from the user's computer and from
 each other, as detailed below.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla Expires September 13, 2012 [Page 5]

Internet-Draft RTC-Web Security March 2012

 Conventionally, we refer to either WEB ATTACKERS, who are able to
 induce you to visit their sites but do not control the network, and
 NETWORK ATTACKERS, who are able to control your network. Network
 attackers correspond to the [RFC3552] "Internet Threat Model". In
 general, it is desirable to build a system which is secure against
 both kinds of attackers, but realistically many sites do not run
 HTTPS [RFC2818] and so our ability to defend against network
 attackers is necessarily somewhat limited. Most of the rest of this
 section is devoted to web attackers, with the assumption that
 protection against network attackers is provided by running HTTPS.

3.1. Access to Local Resources

 While the browser has access to local resources such as keying
 material, files, the camera and the microphone, it strictly limits or
 forbids web servers from accessing those same resources. For
 instance, while it is possible to produce an HTML form which will
 allow file upload, a script cannot do so without user consent and in
 fact cannot even suggest a specific file (e.g., /etc/passwd); the
 user must explicitly select the file and consent to its upload.
 [Note: in many cases browsers are explicitly designed to avoid
 dialogs with the semantics of "click here to screw yourself", as
 extensive research shows that users are prone to consent under such
 circumstances.]

 Similarly, while Flash SWFs can access the camera and microphone,
 they explicitly require that the user consent to that access. In
 addition, some resources simply cannot be accessed from the browser
 at all. For instance, there is no real way to run specific
 executables directly from a script (though the user can of course be
 induced to download executable files and run them).

3.2. Same Origin Policy

 Many other resources are accessible but isolated. For instance,
 while scripts are allowed to make HTTP requests via the
 XMLHttpRequest() API those requests are not allowed to be made to any
 server, but rather solely to the same ORIGIN from whence the script
 came.[RFC6454] (although CORS [CORS] and WebSockets [RFC6455]
 provides a escape hatch from this restriction, as described below.)
 This SAME ORIGIN POLICY (SOP) prevents server A from mounting attacks
 on server B via the user's browser, which protects both the user
 (e.g., from misuse of his credentials) and the server (e.g., from DoS
 attack).

 More generally, SOP forces scripts from each site to run in their
 own, isolated, sandboxes. While there are techniques to allow them
 to interact, those interactions generally must be mutually consensual

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires September 13, 2012 [Page 6]

Internet-Draft RTC-Web Security March 2012

 (by each site) and are limited to certain channels. For instance,
 multiple pages/browser panes from the same origin can read each
 other's JS variables, but pages from the different origins--or even
 iframes from different origins on the same page--cannot.

3.3. Bypassing SOP: CORS, WebSockets, and consent to communicate

 While SOP serves an important security function, it also makes it
 inconvenient to write certain classes of applications. In
 particular, mash-ups, in which a script from origin A uses resources
 from origin B, can only be achieved via a certain amount of hackery.
 The W3C Cross-Origin Resource Sharing (CORS) spec [CORS] is a
 response to this demand. In CORS, when a script from origin A
 executes what would otherwise be a forbidden cross-origin request,
 the browser instead contacts the target server to determine whether
 it is willing to allow cross-origin requests from A. If it is so
 willing, the browser then allows the request. This consent
 verification process is designed to safely allow cross-origin
 requests.

 While CORS is designed to allow cross-origin HTTP requests,
 WebSockets [RFC6455] allows cross-origin establishment of transparent
 channels. Once a WebSockets connection has been established from a
 script to a site, the script can exchange any traffic it likes
 without being required to frame it as a series of HTTP request/
 response transactions. As with CORS, a WebSockets transaction starts
 with a consent verification stage to avoid allowing scripts to simply
 send arbitrary data to another origin.

 While consent verification is conceptually simple--just do a
 handshake before you start exchanging the real data--experience has
 shown that designing a correct consent verification system is
 difficult. In particular, Huang et al. [huang-w2sp] have shown
 vulnerabilities in the existing Java and Flash consent verification
 techniques and in a simplified version of the WebSockets handshake.
 In particular, it is important to be wary of CROSS-PROTOCOL attacks
 in which the attacking script generates traffic which is acceptable
 to some non-Web protocol state machine. In order to resist this form
 of attack, WebSockets incorporates a masking technique intended to
 randomize the bits on the wire, thus making it more difficult to
 generate traffic which resembles a given protocol.

4. Security for RTC-Web Applications

https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires September 13, 2012 [Page 7]

Internet-Draft RTC-Web Security March 2012

4.1. Access to Local Devices

 As discussed in Section 1, allowing arbitrary sites to initiate calls
 violates the core Web security guarantee; without some access
 restrictions on local devices, any malicious site could simply bug a
 user. At minimum, then, it MUST NOT be possible for arbitrary sites
 to initiate calls to arbitrary locations without user consent. This
 immediately raises the question, however, of what should be the scope
 of user consent.

 For the rest of this discussion we assume that the user is somehow
 going to grant consent to some entity (e.g., a social networking
 site) to initiate a call on his behalf. This consent may be limited
 to a single call or may be a general consent. In order for the user
 to make an intelligent decision about whether to allow a call (and
 hence his camera and microphone input to be routed somewhere), he
 must understand either who is requesting access, where the media is
 going, or both. So, for instance, one might imagine that at the time
 access to camera and microphone is requested, the user is shown a
 dialog that says "site X has requested access to camera and
 microphone, yes or no" (though note that this type of in-flow
 interface violates one of the guidelines in Section 3). The user's
 decision will of course be based on his opinion of Site X. However,
 as discussed below, this is a complicated concept.

4.1.1. Calling Scenarios and User Expectations

 While a large number of possible calling scenarios are possible, the
 scenarios discussed in this section illustrate many of the
 difficulties of identifying the relevant scope of consent.

4.1.1.1. Dedicated Calling Services

 The first scenario we consider is a dedicated calling service. In
 this case, the user has a relationship with a calling site and
 repeatedly makes calls on it. It is likely that rather than having
 to give permission for each call that the user will want to give the
 calling service long-term access to the camera and microphone. This
 is a natural fit for a long-term consent mechanism (e.g., installing
 an app store "application" to indicate permission for the calling
 service.) A variant of the dedicated calling service is a gaming
 site (e.g., a poker site) which hosts a dedicated calling service to
 allow players to call each other.

 With any kind of service where the user may use the same service to
 talk to many different people, there is a question about whether the
 user can know who they are talking to. In general, this is difficult
 as most of the user interface is presented by the calling site.

Rescorla Expires September 13, 2012 [Page 8]

Internet-Draft RTC-Web Security March 2012

 However, communications security mechanisms can be used to give some
 assurance, as described in Section 4.3.2.

4.1.1.2. Calling the Site You're On

 Another simple scenario is calling the site you're actually visiting.
 The paradigmatic case here is the "click here to talk to a
 representative" windows that appear on many shopping sites. In this
 case, the user's expectation is that they are calling the site
 they're actually visiting. However, it is unlikely that they want to
 provide a general consent to such a site; just because I want some
 information on a car doesn't mean that I want the car manufacturer to
 be able to activate my microphone whenever they please. Thus, this
 suggests the need for a second consent mechanism where I only grant
 consent for the duration of a given call. As described in

Section 3.1, great care must be taken in the design of this interface
 to avoid the users just clicking through. Note also that the user
 interface chrome must clearly display elements showing that the call
 is continuing in order to avoid attacks where the calling site just
 leaves it up indefinitely but shows a Web UI that implies otherwise.

4.1.1.3. Calling to an Ad Target

 In both of the previous cases, the user has a direct relationship
 (though perhaps a transient one) with the target of the call.
 Moreover, in both cases he is actually visiting the site of the
 person he is being asked to trust. However, this is not always so.
 Consider the case where a user is a visiting a content site which
 hosts an advertisement with an invitation to call for more
 information. When the user clicks the ad, they are connected with
 the advertiser or their agent.

 The relationships here are far more complicated: the site the user
 is actually visiting has no direct relationship with the advertiser;
 they are just hosting ads from an ad network. The user has no
 relationship with the ad network, but desires one with the
 advertiser, at least for long enough to learn about their products.
 At minimum, then, whatever consent dialog is shown needs to allow the
 user to have some idea of the organization that they are actually
 calling.

 However, because the user also has some relationship with the hosting
 site, it is also arguable that the hosting site should be allowed to
 express an opinion (e.g., to be able to allow or forbid a call) since
 a bad experience with an advertiser reflect negatively on the hosting
 site [this idea was suggested by Adam Barth]. However, this
 obviously presents a privacy challenge, as sites which host
 advertisements often learn very little about whether individual users

Rescorla Expires September 13, 2012 [Page 9]

Internet-Draft RTC-Web Security March 2012

 clicked through to the ads, or even which ads were presented.

4.1.2. Origin-Based Security

 As discussed in Section 3.2, the basic unit of Web sandboxing is the
 origin, and so it is natural to scope consent to origin.
 Specifically, a script from origin A MUST only be allowed to initiate
 communications (and hence to access camera and microphone) if the
 user has specifically authorized access for that origin. It is of
 course technically possible to have coarser-scoped permissions, but
 because the Web model is scoped to origin, this creates a difficult
 mismatch.

 Arguably, origin is not fine-grained enough. Consider the situation
 where Alice visits a site and authorizes it to make a single call.
 If consent is expressed solely in terms of origin, then at any future
 visit to that site (including one induced via mash-up or ad network),
 the site can bug Alice's computer, use the computer to place bogus
 calls, etc. While in principle Alice could grant and then revoke the
 privilege, in practice privileges accumulate; if we are concerned
 about this attack, something else is needed. There are a number of
 potential countermeasures to this sort of issue.

 Individual Consent
 Ask the user for permission for each call.

 Callee-oriented Consent
 Only allow calls to a given user.

 Cryptographic Consent
 Only allow calls to a given set of peer keying material or to a
 cryptographically established identity.

 Unfortunately, none of these approaches is satisfactory for all
 cases. As discussed above, individual consent puts the user's
 approval in the UI flow for every call. Not only does this quickly
 become annoying but it can train the user to simply click "OK", at
 which point the consent becomes useless. Thus, while it may be
 necessary to have individual consent in some case, this is not a
 suitable solution for (for instance) the calling service case. Where
 necessary, in-flow user interfaces must be carefully designed to
 avoid the risk of the user blindly clicking through.

 The other two options are designed to restrict calls to a given
 target. Callee-oriented consent provided by the calling site not
 work well because a malicious site can claim that the user is calling
 any user of his choice. One fix for this is to tie calls to a
 cryptographically established identity. While not suitable for all

Rescorla Expires September 13, 2012 [Page 10]

Internet-Draft RTC-Web Security March 2012

 cases, this approach may be useful for some. If we consider the
 advertising case described in Section 4.1.1.3, it's not particularly
 convenient to require the advertiser to instantiate an iframe on the
 hosting site just to get permission; a more convenient approach is to
 cryptographically tie the advertiser's certificate to the
 communication directly. We're still tying permissions to origin
 here, but to the media origin (and-or destination) rather than to the
 Web origin. [I-D.ietf-rtcweb-security-arch] and
 [I-D.rescorla-rtcweb-generic-idp] describe mechanisms which
 facilitate this sort of consent.

 Another case where media-level cryptographic identity makes sense is
 when a user really does not trust the calling site. For instance, I
 might be worried that the calling service will attempt to bug my
 computer, but I also want to be able to conveniently call my friends.
 If consent is tied to particular communications endpoints, then my
 risk is limited. Naturally, it is somewhat challenging to design UI
 primitives which express this sort of policy.

4.1.3. Security Properties of the Calling Page

 Origin-based security is intended to secure against web attackers.
 However, we must also consider the case of network attackers.
 Consider the case where I have granted permission to a calling
 service by an origin that has the HTTP scheme, e.g.,
 http://calling-service.example.com. If I ever use my computer on an
 unsecured network (e.g., a hotspot or if my own home wireless network
 is insecure), and browse any HTTP site, then an attacker can bug my
 computer. The attack proceeds like this:

 1. I connect to http://anything.example.org/. Note that this site
 is unaffiliated with the calling service.
 2. The attacker modifies my HTTP connection to inject an IFRAME (or
 a redirect) to http://calling-service.example.com
 3. The attacker forges the response apparently
 http://calling-service.example.com/ to inject JS to initiate a
 call to himself.

 Note that this attack does not depend on the media being insecure.
 Because the call is to the attacker, it is also encrypted to him.
 Moreover, it need not be executed immediately; the attacker can
 "infect" the origin semi-permanently (e.g., with a web worker or a
 popunder) and thus be able to bug me long after I have left the
 infected network. This risk is created by allowing calls at all from
 a page fetched over HTTP.

 Even if calls are only possible from HTTPS sites, if the site embeds
 active content (e.g., JavaScript) that is fetched over HTTP or from

Rescorla Expires September 13, 2012 [Page 11]

Internet-Draft RTC-Web Security March 2012

 an untrusted site, because that JavaScript is executed in the
 security context of the page [finer-grained]. Thus, it is also
 dangerous to allow RTC-Web functionality from HTTPS origins that
 embed mixed content. Note: this issue is not restricted to PAGES
 which contain mixed content. If a page from a given origin ever
 loads mixed content then it is possible for a network attacker to
 infect the browser's notion of that origin semi-permanently.

4.2. Communications Consent Verification

 As discussed in Section 3.3, allowing web applications unrestricted
 network access via the browser introduces the risk of using the
 browser as an attack platform against machines which would not
 otherwise be accessible to the malicious site, for instance because
 they are topologically restricted (e.g., behind a firewall or NAT).
 In order to prevent this form of attack as well as cross-protocol
 attacks it is important to require that the target of traffic
 explicitly consent to receiving the traffic in question. Until that
 consent has been verified for a given endpoint, traffic other than
 the consent handshake MUST NOT be sent to that endpoint.

4.2.1. ICE

 Verifying receiver consent requires some sort of explicit handshake,
 but conveniently we already need one in order to do NAT hole-
 punching. ICE [RFC5245] includes a handshake designed to verify that
 the receiving element wishes to receive traffic from the sender. It
 is important to remember here that the site initiating ICE is
 presumed malicious; in order for the handshake to be secure the
 receiving element MUST demonstrate receipt/knowledge of some value
 not available to the site (thus preventing the site from forging
 responses). In order to achieve this objective with ICE, the STUN
 transaction IDs must be generated by the browser and MUST NOT be made
 available to the initiating script, even via a diagnostic interface.
 Verifying receiver consent also requires verifying the receiver wants
 to receive traffic from a particular sender, and at this time; for
 example a malicious site may simply attempt ICE to known servers that
 are using ICE for other sessions. ICE provides this verification as
 well, by using the STUN credentials as a form of per-session shared
 secret. Those credentials are known to the Web application, but
 would need to also be known and used by the STUN-receiving element to
 be useful.

 There also needs to be some mechanism for the browser to verify that
 the target of the traffic continues to wish to receive it.
 Obviously, some ICE-based mechanism will work here, but it has been
 observed that because ICE keepalives are indications, they will not
 work here, so some other mechanism is needed.

https://datatracker.ietf.org/doc/html/rfc5245

Rescorla Expires September 13, 2012 [Page 12]

Internet-Draft RTC-Web Security March 2012

4.2.2. Masking

 Once consent is verified, there still is some concern about
 misinterpretation attacks as described by Huang et al.[huang-w2sp].
 As long as communication is limited to UDP, then this risk is
 probably limited, thus masking is not required for UDP. I.e., once
 communications consent has been verified, it is most likely safe to
 allow the implementation to send arbitrary UDP traffic to the chosen
 destination, provided that the STUN keepalives continue to succeed.
 In particular, this is true for the data channel if DTLS is used
 because DTLS (with the anti-chosen plaintext mechanisms required by
 TLS 1.1) does not allow the attacker to generate predictable
 ciphertext. However, with TCP the risk of transparent proxies
 becomes much more severe. If TCP is to be used, then WebSockets
 style masking MUST be employed. [Note: current thinking in the
 RTCWEB WG is not to support TCP and to support SCTP over DTLS, thus
 removing the need for masking.]

4.2.3. Backward Compatibility

 A requirement to use ICE limits compatibility with legacy non-ICE
 clients. It seems unsafe to completely remove the requirement for
 some check. All proposed checks have the common feature that the
 browser sends some message to the candidate traffic recipient and
 refuses to send other traffic until that message has been replied to.
 The message/reply pair must be generated in such a way that an
 attacker who controls the Web application cannot forge them,
 generally by having the message contain some secret value that must
 be incorporated (e.g., echoed, hashed into, etc.). Non-ICE
 candidates for this role (in cases where the legacy endpoint has a
 public address) include:

 o STUN checks without using ICE (i.e., the non-RTC-web endpoint sets
 up a STUN responder.)
 o Use or RTCP as an implicit reachability check.

 In the RTCP approach, the RTC-Web endpoint is allowed to send a
 limited number of RTP packets prior to receiving consent. This
 allows a short window of attack. In addition, some legacy endpoints
 do not support RTCP, so this is a much more expensive solution for
 such endpoints, for which it would likely be easier to implement ICE.
 For these two reasons, an RTCP-based approach does not seem to
 address the security issue satisfactorily.

 In the STUN approach, the RTC-Web endpoint is able to verify that the
 recipient is running some kind of STUN endpoint but unless the STUN
 responder is integrated with the ICE username/password establishment
 system, the RTC-Web endpoint cannot verify that the recipient

Rescorla Expires September 13, 2012 [Page 13]

Internet-Draft RTC-Web Security March 2012

 consents to this particular call. This may be an issue if existing
 STUN servers are operated at addresses that are not able to handle
 bandwidth-based attacks. Thus, this approach does not seem
 satisfactory either.

 If the systems are tightly integrated (i.e., the STUN endpoint
 responds with responses authenticated with ICE credentials) then this
 issue does not exist. However, such a design is very close to an
 ICE-Lite implementation (indeed, arguably is one). An intermediate
 approach would be to have a STUN extension that indicated that one
 was responding to RTC-Web checks but not computing integrity checks
 based on the ICE credentials. This would allow the use of standalone
 STUN servers without the risk of confusing them with legacy STUN
 servers. If a non-ICE legacy solution is needed, then this is
 probably the best choice.

 Once initial consent is verified, we also need to verify continuing
 consent, in order to avoid attacks where two people briefly share an
 IP (e.g., behind a NAT in an Internet cafe) and the attacker arranges
 for a large, unstoppable, traffic flow to the network and then
 leaves. The appropriate technologies here are fairly similar to
 those for initial consent, though are perhaps weaker since the
 threats is less severe.

4.2.4. IP Location Privacy

 Note that as soon as the callee sends their ICE candidates, the
 callee learns the callee's IP addresses. The callee's server
 reflexive address reveals a lot of information about the callee's
 location. In order to avoid tracking, implementations may wish to
 suppress the start of ICE negotiation until the callee has answered.
 In addition, either side may wish to hide their location entirely by
 forcing all traffic through a TURN server.

4.3. Communications Security

 Finally, we consider a problem familiar from the SIP world:
 communications security. For obvious reasons, it MUST be possible
 for the communicating parties to establish a channel which is secure
 against both message recovery and message modification. (See
 [RFC5479] for more details.) This service must be provided for both
 data and voice/video. Ideally the same security mechanisms would be
 used for both types of content. Technology for providing this
 service (for instance, DTLS [RFC4347] and DTLS-SRTP [RFC5763]) is
 well understood. However, we must examine this technology to the
 RTC-Web context, where the threat model is somewhat different.

 In general, it is important to understand that unlike a conventional

https://datatracker.ietf.org/doc/html/rfc5479
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5763

Rescorla Expires September 13, 2012 [Page 14]

Internet-Draft RTC-Web Security March 2012

 SIP proxy, the calling service (i.e., the Web server) controls not
 only the channel between the communicating endpoints but also the
 application running on the user's browser. While in principle it is
 possible for the browser to cut the calling service out of the loop
 and directly present trusted information (and perhaps get consent),
 practice in modern browsers is to avoid this whenever possible. "In-
 flow" modal dialogs which require the user to consent to specific
 actions are particularly disfavored as human factors research
 indicates that unless they are made extremely invasive, users simply
 agree to them without actually consciously giving consent.
 [abarth-rtcweb]. Thus, nearly all the UI will necessarily be
 rendered by the browser but under control of the calling service.
 This likely includes the peer's identity information, which, after
 all, is only meaningful in the context of some calling service.

 This limitation does not mean that preventing attack by the calling
 service is completely hopeless. However, we need to distinguish
 between two classes of attack:

 Retrospective compromise of calling service.
 The calling service is is non-malicious during a call but
 subsequently is compromised and wishes to attack an older call.

 During-call attack by calling service.
 The calling service is compromised during the call it wishes to
 attack.

 Providing security against the former type of attack is practical
 using the techniques discussed in Section 4.3.1. However, it is
 extremely difficult to prevent a trusted but malicious calling
 service from actively attacking a user's calls, either by mounting a
 MITM attack or by diverting them entirely. (Note that this attack
 applies equally to a network attacker if communications to the
 calling service are not secured.) We discuss some potential
 approaches and why they are likely to be impractical in

Section 4.3.2.

4.3.1. Protecting Against Retrospective Compromise

 In a retrospective attack, the calling service was uncompromised
 during the call, but that an attacker subsequently wants to recover
 the content of the call. We assume that the attacker has access to
 the protected media stream as well as having full control of the
 calling service.

 If the calling service has access to the traffic keying material (as
 in SDES [RFC4568]), then retrospective attack is trivial. This form
 of attack is particularly serious in the Web context because it is

https://datatracker.ietf.org/doc/html/rfc4568

Rescorla Expires September 13, 2012 [Page 15]

Internet-Draft RTC-Web Security March 2012

 standard practice in Web services to run extensive logging and
 monitoring. Thus, it is highly likely that if the traffic key is
 part of any HTTP request it will be logged somewhere and thus subject
 to subsequent compromise. It is this consideration that makes an
 automatic, public key-based key exchange mechanism imperative for
 RTC-Web (this is a good idea for any communications security system)
 and this mechanism SHOULD provide perfect forward secrecy (PFS). The
 signaling channel/calling service can be used to authenticate this
 mechanism.

 In addition, the system MUST NOT provide any APIs to extract either
 long-term keying material or to directly access any stored traffic
 keys. Otherwise, an attacker who subsequently compromised the
 calling service might be able to use those APIs to recover the
 traffic keys and thus compromise the traffic.

4.3.2. Protecting Against During-Call Attack

 Protecting against attacks during a call is a more difficult
 proposition. Even if the calling service cannot directly access
 keying material (as recommended in the previous section), it can
 simply mount a man-in-the-middle attack on the connection, telling
 Alice that she is calling Bob and Bob that he is calling Alice, while
 in fact the calling service is acting as a calling bridge and
 capturing all the traffic. While in theory it is possible to
 construct techniques which protect against this form of attack, in
 practice these techniques all require far too much user intervention
 to be practical, given the user interface constraints described in
 [abarth-rtcweb].

4.3.2.1. Key Continuity

 One natural approach is to use "key continuity". While a malicious
 calling service can present any identity it chooses to the user, it
 cannot produce a private key that maps to a given public key. Thus,
 it is possible for the browser to note a given user's public key and
 generate an alarm whenever that user's key changes. SSH [RFC4251]
 uses a similar technique. (Note that the need to avoid explicit user
 consent on every call precludes the browser requiring an immediate
 manual check of the peer's key).

 Unfortunately, this sort of key continuity mechanism is far less
 useful in the RTC-Web context. First, much of the virtue of RTC-Web
 (and any Web application) is that it is not bound to particular piece
 of client software. Thus, it will be not only possible but routine
 for a user to use multiple browsers on different computers which will
 of course have different keying material (SACRED [RFC3760]
 notwithstanding.) Thus, users will frequently be alerted to key

https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc3760

Rescorla Expires September 13, 2012 [Page 16]

Internet-Draft RTC-Web Security March 2012

 mismatches which are in fact completely legitimate, with the result
 that they are trained to simply click through them. As it is known
 that users routinely will click through far more dire warnings
 [cranor-wolf], it seems extremely unlikely that any key continuity
 mechanism will be effective rather than simply annoying.

 Moreover, it is trivial to bypass even this kind of mechanism.
 Recall that unlike the case of SSH, the browser never directly gets
 the peer's identity from the user. Rather, it is provided by the
 calling service. Even enabling a mechanism of this type would
 require an API to allow the calling service to tell the browser "this
 is a call to user X". All the calling service needs to do to avoid
 triggering a key continuity warning is to tell the browser that "this
 is a call to user Y" where Y is close to X. Even if the user actually
 checks the other side's name (which all available evidence indicates
 is unlikely), this would require (a) the browser to trusted UI to
 provide the name and (b) the user to not be fooled by similar
 appearing names.

4.3.2.2. Short Authentication Strings

 ZRTP [RFC6189] uses a "short authentication string" (SAS) which is
 derived from the key agreement protocol. This SAS is designed to be
 read over the voice channel and if confirmed by both sides precludes
 MITM attack. The intention is that the SAS is used once and then key
 continuity (though a different mechanism from that discussed above)
 is used thereafter.

 Unfortunately, the SAS does not offer a practical solution to the
 problem of a compromised calling service. "Voice conversion"
 systems, which modify voice from one speaker to make it sound like
 another, are an active area of research. These systems are already
 good enough to fool both automatic recognition systems
 [farus-conversion] and humans [kain-conversion] in many cases, and
 are of course likely to improve in future, especially in an
 environment where the user just wants to get on with the phone call.
 Thus, even if SAS is effective today, it is likely not to be so for
 much longer. Moreover, it is possible for an attacker who controls
 the browser to allow the SAS to succeed and then simulate call
 failure and reconnect, trusting that the user will not notice that
 the "no SAS" indicator has been set (which seems likely).

 Even were SAS secure if used, it seems exceedingly unlikely that
 users will actually use it. As discussed above, the browser UI
 constraints preclude requiring the SAS exchange prior to completing
 the call and so it must be voluntary; at most the browser will
 provide some UI indicator that the SAS has not yet been checked.
 However, it it is well-known that when faced with optional mechanisms

https://datatracker.ietf.org/doc/html/rfc6189

Rescorla Expires September 13, 2012 [Page 17]

Internet-Draft RTC-Web Security March 2012

 such as fingerprints, users simply do not check them [whitten-johnny]
 Thus, it is highly unlikely that users will ever perform the SAS
 exchange.

 Once uses have checked the SAS once, key continuity is required to
 avoid them needing to check it on every call. However, this is
 problematic for reasons indicated in Section 4.3.2.1. In principle
 it is of course possible to render a different UI element to indicate
 that calls are using an unauthenticated set of keying material
 (recall that the attacker can just present a slightly different name
 so that the attack shows the same UI as a call to a new device or to
 someone you haven't called before) but as a practical matter, users
 simply ignore such indicators even in the rather more dire case of
 mixed content warnings.

4.3.2.3. Third Party Identity

 The conventional approach to providing communications identity has of
 course been to have some third party identity system (e.g., PKI) to
 authenticate the endpoints. Such mechanisms have proven to be too
 cumbersome for use by typical users (and nearly too cumbersome for
 administrators). However, a new generation of Web-based identity
 providers (BrowserID, Federated Google Login, Facebook Connect,
 OAuth, OpenID, WebFinger), has recently been developed and use Web
 technologies to provide lightweight (from the user's perspective)
 third-party authenticated transactions. It is possible (see
 [I-D.rescorla-rtcweb-generic-idp]) to use systems of this type to
 authenticate RTCWEB calls, linking them to existing user notions of
 identity (e.g., Facebook adjacencies). Calls which are authenticated
 in this fashion are naturally resistant even to active MITM attack by
 the calling site.

5. Security Considerations

 This entire document is about security.

6. Acknowledgements

 Bernard Aboba, Harald Alvestrand, Cullen Jennings, Hadriel Kaplan (S
 4.2.1), Matthew Kaufman, Magnus Westerland.

7. References

Rescorla Expires September 13, 2012 [Page 18]

Internet-Draft RTC-Web Security March 2012

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative References

 [CORS] van Kesteren, A., "Cross-Origin Resource Sharing".

 [I-D.ietf-rtcweb-security-arch]
 Rescorla, E., "RTCWEB Security Architecture",

draft-ietf-rtcweb-security-arch-00 (work in progress),
 January 2012.

 [I-D.kaufman-rtcweb-security-ui]
 Kaufman, M., "Client Security User Interface Requirements
 for RTCWEB", draft-kaufman-rtcweb-security-ui-00 (work in
 progress), June 2011.

 [I-D.rescorla-rtcweb-generic-idp]
 Rescorla, E., "RTCWEB Generic Identity Provider
 Interface", draft-rescorla-rtcweb-generic-idp-00 (work in
 progress), January 2012.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

 [RFC3760] Gustafson, D., Just, M., and M. Nystrom, "Securely
 Available Credentials (SACRED) - Credential Server
 Framework", RFC 3760, April 2004.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC4568] Andreasen, F., Baugher, M., and D. Wing, "Session
 Description Protocol (SDP) Security Descriptions for Media
 Streams", RFC 4568, July 2006.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-arch-00
https://datatracker.ietf.org/doc/html/draft-kaufman-rtcweb-security-ui-00
https://datatracker.ietf.org/doc/html/draft-rescorla-rtcweb-generic-idp-00
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3760
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4568

Rescorla Expires September 13, 2012 [Page 19]

Internet-Draft RTC-Web Security March 2012

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5479] Wing, D., Fries, S., Tschofenig, H., and F. Audet,
 "Requirements and Analysis of Media Security Management
 Protocols", RFC 5479, April 2009.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [RFC6189] Zimmermann, P., Johnston, A., and J. Callas, "ZRTP: Media
 Path Key Agreement for Unicast Secure RTP", RFC 6189,
 April 2011.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [abarth-rtcweb]
 Barth, A., "Prompting the user is security failure", RTC-
 Web Workshop.

 [cranor-wolf]
 Sunshine, J., Egelman, S., Almuhimedi, H., Atri, N., and
 L. cranor, "Crying Wolf: An Empirical Study of SSL Warning
 Effectiveness", Proceedings of the 18th USENIX Security
 Symposium, 2009.

 [farus-conversion]
 Farrus, M., Erro, D., and J. Hernando, "Speaker
 Recognition Robustness to Voice Conversion".

 [finer-grained]
 Barth, A. and C. Jackson, "Beware of Finer-Grained
 Origins", W2SP, 2008.

 [huang-w2sp]
 Huang, L-S., Chen, E., Barth, A., Rescorla, E., and C.
 Jackson, "Talking to Yourself for Fun and Profit", W2SP,
 2011.

 [kain-conversion]

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5479
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc6189
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires September 13, 2012 [Page 20]

Internet-Draft RTC-Web Security March 2012

 Kain, A. and M. Macon, "Design and Evaluation of a Voice
 Conversion Algorithm based on Spectral Envelope Mapping
 and Residual Prediction", Proceedings of ICASSP, May
 2001.

 [whitten-johnny]
 Whitten, A. and J. Tygar, "Why Johnny Can't Encrypt: A
 Usability Evaluation of PGP 5.0", Proceedings of the 8th
 USENIX Security Symposium, 1999.

Author's Address

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

Rescorla Expires September 13, 2012 [Page 21]

