
RTCWEB E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track June 5, 2012
Expires: December 7, 2012

RTCWEB Security Architecture
draft-ietf-rtcweb-security-arch-02

Abstract

 The Real-Time Communications on the Web (RTCWEB) working group is
 tasked with standardizing protocols for enabling real-time
 communications within user-agents using web technologies (e.g
 JavaScript). The major use cases for RTCWEB technology are real-time
 audio and/or video calls, Web conferencing, and direct data transfer.
 Unlike most conventional real-time systems (e.g., SIP-based soft
 phones) RTCWEB communications are directly controlled by some Web
 server, which poses new security challenges. For instance, a Web
 browser might expose a JavaScript API which allows a server to place
 a video call. Unrestricted access to such an API would allow any
 site which a user visited to "bug" a user's computer, capturing any
 activity which passed in front of their camera. [I-D.ietf-rtcweb-
 security] defines the RTCWEB threat model. This document defines an
 architecture which provides security within that threat model.

Legal

 THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN ARE PROVIDED ON
 AN "AS IS" BASIS AND THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST, AND THE INTERNET ENGINEERING TASK FORCE, DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Rescorla Expires December 7, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft RTCWEB Sec. Arch. June 2012

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 7, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Rescorla Expires December 7, 2012 [Page 2]

Internet-Draft RTCWEB Sec. Arch. June 2012

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Trust Model . 4
3.1. Authenticated Entities 5
3.2. Unauthenticated Entities 5

4. Overview . 6
4.1. Initial Signaling . 7
4.2. Media Consent Verification 9
4.3. DTLS Handshake . 10
4.4. Communications and Consent Freshness 10

5. Detailed Technical Description 10
5.1. Origin and Web Security Issues 10
5.2. Device Permissions Model 11
5.3. Communications Consent 12
5.4. IP Location Privacy 13
5.5. Communications Security 13
5.6. Web-Based Peer Authentication 15

6. Security Considerations 16
6.1. Communications Security 16
6.2. Privacy . 17
6.3. Denial of Service . 17

7. Acknowledgements . 18
8. References . 18
8.1. Normative References 18
8.2. Informative References 19

 Author's Address . 20

Rescorla Expires December 7, 2012 [Page 3]

Internet-Draft RTCWEB Sec. Arch. June 2012

1. Introduction

 The Real-Time Communications on the Web (RTCWEB) working group is
 tasked with standardizing protocols for real-time communications
 between Web browsers. The major use cases for RTCWEB technology are
 real-time audio and/or video calls, Web conferencing, and direct data
 transfer. Unlike most conventional real-time systems, (e.g., SIP-
 based[RFC3261] soft phones) RTCWEB communications are directly
 controlled by some Web server, as shown in Figure 1.

 +----------------+
 | |
 | Web Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTP / \ HTTP
 / \
 / \
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 | Browser |<---------->| Browser |
 | | | |
 +-----------+ +-----------+

 Figure 1: A simple RTCWEB system

 This system presents a number of new security challenges, which are
 analyzed in [I-D.ietf-rtcweb-security]. This document describes a
 security architecture for RTCWEB which addresses the threats and
 requirements described in that document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Trust Model

 The basic assumption of this architecture is that network resources
 exist in a hierarchy of trust, rooted in the browser, which serves as
 the user's TRUSTED COMPUTING BASE (TCB). Any security property which

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla Expires December 7, 2012 [Page 4]

Internet-Draft RTCWEB Sec. Arch. June 2012

 the user wishes to have enforced must be ultimately guaranteed by the
 browser (or transitively by some property the browser verifies).
 Conversely, if the browser is compromised, then no security
 guarantees are possible. Note that there are cases (e.g., Internet
 kiosks) where the user can't really trust the browser that much. In
 these cases, the level of security provided is limited by how much
 they trust the browser.

 Optimally, we would not rely on trust in any entities other than the
 browser. However, this is unfortunately not possible if we wish to
 have a functional system. Other network elements fall into two
 categories: those which can be authenticated by the browser and thus
 are partly trusted--though to the minimum extent necessary--and those
 which cannot be authenticated and thus are untrusted. This is a
 natural extension of the end-to-end principle.

3.1. Authenticated Entities

 There are two major classes of authenticated entities in the system:

 o Calling services: Web sites whose origin we can verify (optimally
 via HTTPS).
 o Other users: RTCWEB peers whose origin we can verify
 cryptographically (optimally via DTLS-SRTP).

 Note that merely being authenticated does not make these entities
 trusted. For instance, just because we can verify that

https://www.evil.org/ is owned by Dr. Evil does not mean that we can
 trust Dr. Evil to access our camera an microphone. However, it gives
 the user an opportunity to determine whether he wishes to trust Dr.
 Evil or not; after all, if he desires to contact Dr. Evil (perhaps to
 arrange for ransom payment), it's safe to temporarily give him access
 to the camera and microphone for the purpose of the call, but he
 doesn't want Dr. Evil to be able to access his camera and microphone
 other than during the call. The point here is that we must first
 identify other elements before we can determine whether and how much
 to trust them.

 It's also worth noting that there are settings where authentication
 is non-cryptographic, such as other machines behind a firewall.
 Naturally, the level of trust one can have in identities verified in
 this way depends on how strong the topology enforcement is.

3.2. Unauthenticated Entities

 Other than the above entities, we are not generally able to identify
 other network elements, thus we cannot trust them. This does not
 mean that it is not possible to have any interaction with them, but

https://www.evil.org/

Rescorla Expires December 7, 2012 [Page 5]

Internet-Draft RTCWEB Sec. Arch. June 2012

 it means that we must assume that they will behave maliciously and
 design a system which is secure even if they do so.

4. Overview

 This section describes a typical RTCWeb session and shows how the
 various security elements interact and what guarantees are provided
 to the user. The example in this section is a "best case" scenario
 in which we provide the maximal amount of user authentication and
 media privacy with the minimal level of trust in the calling service.
 Simpler versions with lower levels of security are also possible and
 are noted in the text where applicable. It's also important to
 recognize the tension between security (or performance) and privacy.
 The example shown here is aimed towards settings where we are more
 concerned about secure calling than about privacy, but as we shall
 see, there are settings where one might wish to make different
 tradeoffs--this architecture is still compatible with those settings.

 For the purposes of this example, we assume the topology shown in the
 figure below. This topology is derived from the topology shown in
 Figure 1, but separates Alice and Bob's identities from the process
 of signaling. Specifically, Alice and Bob have relationships with
 some Identity Provider (IdP) that supports a protocol such OpenID or
 BrowserID) that can be used to attest to their identity. This
 separation isn't particularly important in "closed world" cases where
 Alice and Bob are users on the same social network and have
 identities based on that network. However, there are important
 settings where that is not the case, such as federation (calls from
 one network to another) and calling on untrusted sites, such as where
 two users who have a relationship via a given social network want to
 call each other on another, untrusted, site, such as a poker site.

Rescorla Expires December 7, 2012 [Page 6]

Internet-Draft RTCWEB Sec. Arch. June 2012

 +----------------+
 | |
 | Signaling |
 | Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTPS / \ HTTPS
 / \
 / \
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 Alice | Browser |<---------->| Browser | Bob
 | | (DTLS-SRTP)| |
 +-----------+ +-----------+
 ^ ^--+ +--^ ^
 | | | |
 v | | v
 +-----------+ | | +-----------+
 | |<--------+ | | |
 | IdP | | | IdP |
 | | +------->| |
 +-----------+ +-----------+

 Figure 2: A call with IdP-based identity

4.1. Initial Signaling

 Alice and Bob are both users of a common calling service; they both
 have approved the calling service to make calls (we defer the
 discussion of device access permissions till later). They are both
 connected to the calling service via HTTPS and so know the origin
 with some level of confidence. They also have accounts with some
 identity provider. This sort of identity service is becoming
 increasingly common in the Web environment in technologies such
 (BrowserID, Federated Google Login, Facebook Connect, OAuth, OpenID,
 WebFinger), and is often provided as a side effect service of your
 ordinary accounts with some service. In this example, we show Alice
 and Bob using a separate identity service, though they may actually
 be using the same identity service as calling service or have no
 identity service at all.

 Alice is logged onto the calling service and decides to call Bob. She
 can see from the calling service that he is online and the calling
 service presents a JS UI in the form of a button next to Bob's name

Rescorla Expires December 7, 2012 [Page 7]

Internet-Draft RTCWEB Sec. Arch. June 2012

 which says "Call". Alice clicks the button, which initiates a JS
 callback that instantiates a PeerConnection object. This does not
 require a security check: JS from any origin is allowed to get this
 far.

 Once the PeerConnection is created, the calling service JS needs to
 set up some media. Because this is an audio/video call, it creates
 two MediaStreams, one connected to an audio input and one connected
 to a video input. At this point the first security check is
 required: untrusted origins are not allowed to access the camera and
 microphone. In this case, because Alice is a long-term user of the
 calling service, she has made a permissions grant (i.e., a setting in
 the browser) to allow the calling service to access her camera and
 microphone any time it wants. The browser checks this setting when
 the camera and microphone requests are made and thus allows them.

 In the current W3C API, once some streams have been added, Alice's
 browser + JS generates a signaling message The format of this data is
 currently undefined. It may be a complete message as defined by ROAP
 [I-D.jennings-rtcweb-signaling] or separate media description and
 transport messages as defined in [I-D.ietf-rtcweb-jsep] or may be
 assembled piecemeal by the JS. In either case, it will contain:

 o Media channel information
 o ICE candidates
 o A fingerprint attribute binding the communication to Alice's
 public key [RFC5763]

 [Note that it is currently unclear where JSEP will eventually put
 this information, in the SDP or in the transport info.] Prior to
 sending out the signaling message, the PeerConnection code contacts
 the identity service and obtains an assertion binding Alice's
 identity to her fingerprint. The exact details depend on the
 identity service (though as discussed in
 [I-D.rescorla-rtcweb-generic-idp] PeerConnection can be agnostic to
 them), but for now it's easiest to think of as a BrowserID assertion.
 The assertion may bind other information to the identity besides the
 fingerprint, but at minimum it needs to bind the fingerprint.

 This message is sent to the signaling server, e.g., by XMLHttpRequest
 [XmlHttpRequest] or by WebSockets [RFC6455] The signaling server
 processes the message from Alice's browser, determines that this is a
 call to Bob and sends a signaling message to Bob's browser (again,
 the format is currently undefined). The JS on Bob's browser
 processes it, and alerts Bob to the incoming call and to Alice's
 identity. In this case, Alice has provided an identity assertion and
 so Bob's browser contacts Alice's identity provider (again, this is
 done in a generic way so the browser has no specific knowledge of the

https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires December 7, 2012 [Page 8]

Internet-Draft RTCWEB Sec. Arch. June 2012

 IdP) to verity the assertion. This allows the browser to display a
 trusted element indicating that a call is coming in from Alice. If
 Alice is in Bob's address book, then this interface might also
 include her real name, a picture, etc. The calling site will also
 provide some user interface element (e.g., a button) to allow Bob to
 answer the call, though this is most likely not part of the trusted
 UI.

 If Bob agrees [I am ignoring early media for now], a PeerConnection
 is instantiated with the message from Alice's side. Then, a similar
 process occurs as on Alice's browser: Bob's browser verifies that
 the calling service is approved, the media streams are created, and a
 return signaling message containing media information, ICE
 candidates, and a fingerprint is sent back to Alice via the signaling
 service. If Bob has a relationship with an IdP, the message will
 also come with an identity assertion.

 At this point, Alice and Bob each know that the other party wants to
 have a secure call with them. Based purely on the interface provided
 by the signaling server, they know that the signaling server claims
 that the call is from Alice to Bob. Because the far end sent an
 identity assertion along with their message, they know that this is
 verifiable from the IdP as well. Of course, the call works perfectly
 well if either Alice or Bob doesn't have a relationship with an IdP;
 they just get a lower level of assurance. Moreover, Alice might wish
 to make an anonymous call through an anonymous calling site, in which
 case she would of course just not provide any identity assertion and
 the calling site would mask her identity from Bob.

4.2. Media Consent Verification

 As described in ([I-D.ietf-rtcweb-security]; Section 4.2) This
 proposal specifies that media consent verification be performed via
 ICE. Thus, Alice and Bob perform ICE checks with each other. At the
 completion of these checks, they are ready to send non-ICE data.

 At this point, Alice knows that (a) Bob (assuming he is verified via
 his IdP) or someone else who the signaling service is claiming is Bob
 is willing to exchange traffic with her and (b) that either Bob is at
 the IP address which she has verified via ICE or there is an attacker
 who is on-path to that IP address detouring the traffic. Note that
 it is not possible for an attacker who is on-path but not attached to
 the signaling service to spoof these checks because they do not have
 the ICE credentials. Bob's security guarantees with respect to Alice
 are the converse of this.

Rescorla Expires December 7, 2012 [Page 9]

Internet-Draft RTCWEB Sec. Arch. June 2012

4.3. DTLS Handshake

 Once the ICE checks have completed [more specifically, once some ICE
 checks have completed], Alice and Bob can set up a secure channel.
 This is performed via DTLS [RFC4347] (for the data channel) and DTLS-
 SRTP [RFC5763] for the media channel. Specifically, Alice and Bob
 perform a DTLS handshake on every channel which has been established
 by ICE. The total number of channels depends on the amount of
 muxing; in the most likely case we are using both RTP/RTCP mux and
 muxing multiple media streams on the same channel, in which case
 there is only one DTLS handshake. Once the DTLS handshake has
 completed, the keys are exported [RFC5705] and used to key SRTP for
 the media channels.

 At this point, Alice and Bob know that they share a set of secure
 data and/or media channels with keys which are not known to any
 third-party attacker. If Alice and Bob authenticated via their IdPs,
 then they also know that the signaling service is not attacking them.
 Even if they do not use an IdP, as long as they have minimal trust in
 the signaling service not to perform a man-in-the-middle attack, they
 know that their communications are secure against the signaling
 service as well.

4.4. Communications and Consent Freshness

 From a security perspective, everything from here on in is a little
 anticlimactic: Alice and Bob exchange data protected by the keys
 negotiated by DTLS. Because of the security guarantees discussed in
 the previous sections, they know that the communications are
 encrypted and authenticated.

 The one remaining security property we need to establish is "consent
 freshness", i.e., allowing Alice to verify that Bob is still prepared
 to receive her communications. ICE specifies periodic STUN
 keepalizes but only if media is not flowing. Because the consent
 issue is more difficult here, we require RTCWeb implementations to
 periodically send keepalives. If a keepalive fails and no new ICE
 channels can be established, then the session is terminated.

5. Detailed Technical Description

5.1. Origin and Web Security Issues

 The basic unit of permissions for RTCWEB is the origin [RFC6454].
 Because the security of the origin depends on being able to
 authenticate content from that origin, the origin can only be
 securely established if data is transferred over HTTPS [RFC2818].

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc2818

Rescorla Expires December 7, 2012 [Page 10]

Internet-Draft RTCWEB Sec. Arch. June 2012

 Thus, clients MUST treat HTTP and HTTPS origins as different
 permissions domains. [Note: this follows directly from the origin
 security model and is stated here merely for clarity.]

 Many web browsers currently forbid by default any active mixed
 content on HTTPS pages. I.e., when JS is loaded from an HTTP origin
 onto an HTTPS page, an error is displayed and the content is not
 executed unless the user overrides the error. Any browser which
 enforces such a policy will also not permit access to RTCWEB
 functionality from mixed content pages. It is RECOMMENDED that
 browsers which allow active mixed content nevertheless disable RTCWEB
 functionality in mixed content settings. [[OPEN ISSUE: Should this
 be a 2119 MUST? It's not clear what set of conditions would make
 this OK, other than that browser manufacturers have traditionally
 been permissive here here.]] Note that it is possible for a page
 which was not mixed content to become mixed content during the
 duration of the call. Implementations MAY choose to terminate the
 call or display a warning at that point, but it is also permissible
 to ignore this condition. This is a deliberate implementation
 complexity versus security tradeoff. [[OPEN ISSUE:: Should we be
 more aggressive about this?]]

5.2. Device Permissions Model

 Implementations MUST obtain explicit user consent prior to providing
 access to the camera and/or microphone. Implementations MUST at
 minimum support the following two permissions models:

 o Requests for one-time camera/microphone access.
 o Requests for permanent access.

 In addition, they SHOULD support requests for access to a single
 communicating peer. E.g., "Call customerservice@ford.com". Browsers
 servicing such requests SHOULD clearly indicate that identity to the
 user when asking for permission.

 API Requirement: The API MUST provide a mechanism for the requesting
 JS to indicate which of these forms of permissions it is
 requesting. This allows the client to know what sort of user
 interface experience to provide. In particular, browsers might
 display a non-invasive door hanger ("some features of this site
 may not work..." when asking for long-term permissions) but a more
 invasive UI ("here is your own video") for single-call
 permissions. The API MAY grant weaker permissions than the JS
 asked for if the user chooses to authorize only those permissions,
 but if it intends to grant stronger ones it SHOULD display the
 appropriate UI for those permissions and MUST clearly indicate
 what permissions are being requested.

Rescorla Expires December 7, 2012 [Page 11]

Internet-Draft RTCWEB Sec. Arch. June 2012

 API Requirement: The API MUST provide a mechanism for the requesting
 JS to relinquish the ability to see or modify the media (e.g., via
 MediaStream.record()). Combined with secure authentication of the
 communicating peer, this allows a user to be sure that the calling
 site is not accessing or modifying their conversion.

 UI Requirement: The UI MUST clearly indicate when the user's camera
 and microphone are in use. This indication MUST NOT be
 suppressable by the JS and MUST clearly indicate how to terminate
 a call, and provide a UI means to immediately stop camera/
 microphone input without the JS being able to prevent it.

 UI Requirement: If the UI indication of camera/microphone use are
 displayed in the browser such that minimizing the browser window
 would hide the indication, or the JS creating an overlapping
 window would hide the indication, then the browser SHOULD stop
 camera and microphone input. [Note: this may not be necessary in
 systems that are non-windows-based but that have good
 notifications support, such as phones.]

 Clients MAY permit the formation of data channels without any direct
 user approval. Because sites can always tunnel data through the
 server, further restrictions on the data channel do not provide any
 additional security. (though see Section 5.3 for a related issue).

 Implementations which support some form of direct user authentication
 SHOULD also provide a policy by which a user can authorize calls only
 to specific counterparties. Specifically, the implementation SHOULD
 provide the following interfaces/controls:

 o Allow future calls to this verified user.
 o Allow future calls to any verified user who is in my system
 address book (this only works with address book integration, of
 course).

 Implementations SHOULD also provide a different user interface
 indication when calls are in progress to users whose identities are
 directly verifiable. Section 5.5 provides more on this.

5.3. Communications Consent

 Browser client implementations of RTCWEB MUST implement ICE. Server
 gateway implementations which operate only at public IP addresses may
 implement ICE-Lite.

 Browser implementations MUST verify reachability via ICE prior to
 sending any non-ICE packets to a given destination. Implementations
 MUST NOT provide the ICE transaction ID to JavaScript during the

Rescorla Expires December 7, 2012 [Page 12]

Internet-Draft RTCWEB Sec. Arch. June 2012

 lifetime of the transaction (i.e., during the period when the ICE
 stack would accept a new response for that transaction). [Note:
 this document takes no position on the split between ICE in JS and
 ICE in the browser. The above text is written the way it is for
 editorial convenience and will be modified appropriately if the WG
 decides on ICE in the JS.]

 Implementations MUST send keepalives no less frequently than every 30
 seconds regardless of whether traffic is flowing or not. If a
 keepalive fails then the implementation MUST either attempt to find a
 new valid path via ICE or terminate media for that ICE component.
 Note that ICE [RFC5245]; Section 10 keepalives use STUN Binding
 Indications which are one-way and therefore not sufficient. Instead,
 the consent freshness mechanism [I-D.muthu-behave-consent-freshness]
 MUST be used.

5.4. IP Location Privacy

 A side effect of the default ICE behavior is that the peer learns
 one's IP address, which leaks large amounts of location information,
 especially for mobile devices. This has negative privacy
 consequences in some circumstances. The following two API
 requirements are intended to mitigate this issue:

 API Requirement: The API MUST provide a mechanism to suppress ICE
 negotiation (though perhaps to allow candidate gathering) until
 the user has decided to answer the call [note: determining when
 the call has been answered is a question for the JS.] This
 enables a user to prevent a peer from learning their IP address if
 they elect not to answer a call and also from learning whether the
 user is online.

 API Requirement: The API MUST provide a mechanism for the calling
 application to indicate that only TURN candidates are to be used.
 This prevents the peer from learning one's IP address at all. The
 API MUST provide a mechanism for the calling application to
 reconfigure an existing call to add non-TURN candidates. Taken
 together, these requirements allow ICE negotiation to start
 immediately on incoming call notification, thus reducing post-dial
 delay, but also to avoid disclosing the user's IP address until
 they have decided to answer.

5.5. Communications Security

 Implementations MUST implement DTLS [RFC4347] and DTLS-SRTP
 [RFC5763][RFC5764]. All data channels MUST be secured via DTLS.
 DTLS-SRTP MUST be offered for every media channel and MUST be the
 default; i.e., if an implementation receives an offer for DTLS-SRTP

https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5763

Rescorla Expires December 7, 2012 [Page 13]

Internet-Draft RTCWEB Sec. Arch. June 2012

 and SDES, DTLS-SRTP MUST be selected. Media traffic MUST NOT be sent
 over plain (unencrypted) RTP.

 [OPEN ISSUE: What should the settings be here? MUST?]
 Implementations MAY support SDES and RTP for media traffic for
 backward compatibility purposes.

 API Requirement: The API MUST provide a mechanism to indicate that a
 fresh DTLS key pair is to be generated for a specific call. This
 is intended to allow for unlinkability. Note that there are also
 settings where it is attractive to use the same keying material
 repeatedly, especially those with key continuity-based
 authentication.

 API Requirement: The API MUST provide a mechanism to indicate that a
 fresh DTLS key pair is to be generated for a specific call. This
 is intended to allow for unlinkability.

 API Requirement: When DTLS-SRTP is used, the API MUST NOT permit the
 JS to obtain the negotiated keying material. This requirement
 preserves the end-to-end security of the media.

 UI Requirements: A user-oriented client MUST provide an
 "inspector" interface which allows the user to determine the
 security characteristics of the media. [largely derived from
 [I-D.kaufman-rtcweb-security-ui]
 The following properties SHOULD be displayed "up-front" in the
 browser chrome, i.e., without requiring the user to ask for them:

 * A client MUST provide a user interface through which a user may
 determine the security characteristics for currently-displayed
 audio and video stream(s)
 * A client MUST provide a user interface through which a user may
 determine the security characteristics for transmissions of
 their microphone audio and camera video.
 * The "security characteristics" MUST include an indication as to
 whether the cryptographic keys were delivered out-of-band (from
 a server) or were generated as a result of a pairwise
 negotiation.
 * If the far endpoint was directly verified, either via a third-
 party verifiable X.509 certificate or via a Web IdP mechanism
 (see Section 5.6) the "security characteristics" MUST include
 the verified information.
 The following properties are more likely to require some "drill-
 down" from the user:

Rescorla Expires December 7, 2012 [Page 14]

Internet-Draft RTCWEB Sec. Arch. June 2012

 * The cryptographic algorithms in use (For example: "AES-CBC" or
 "Null Cipher".)
 * The "security characteristics" MUST indicate whether PFS is
 provided.
 * The "security characteristics" MUST include some mechanism to
 allow an out-of-band verification of the peer, such as a
 certificate fingerprint or an SAS.

5.6. Web-Based Peer Authentication

 In a number of cases, it is desirable for the endpoint (i.e., the
 browser) to be able to directly identity the endpoint on the other
 side without trusting only the signaling service to which they are
 connected. For instance, users may be making a call via a federated
 system where they wish to get direct authentication of the other
 side. Alternately, they may be making a call on a site which they
 minimally trust (such as a poker site) but to someone who has an
 identity on a site they do trust (such as a social network.)

 Recently, a number of Web-based identity technologies (OAuth,
 BrowserID, Facebook Connect), etc. have been developed. While the
 details vary, what these technologies share is that they have a Web-
 based (i.e., HTTP/HTTPS identity provider) which attests to your
 identity. For instance, if I have an account at example.org, I could
 use the example.org identity provider to prove to others that I was
 alice@example.org. The development of these technologies allows us
 to separate calling from identity provision: I could call you on
 Poker Galaxy but identify myself as alice@example.org.

 Whatever the underlying technology, the general principle is that the
 party which is being authenticated is NOT the signaling site but
 rather the user (and their browser). Similarly, the relying party is
 the browser and not the signaling site. Thus, the browser MUST
 securely generate the input to the IdP assertion process and MUST
 securely display the results of the verification process to the user
 in a way which cannot be imitated by the calling site.

 In order to make this work, we must standardize the following items:

 o The precise information from the signaling message that must be
 cryptographically bound to the user's identity. At minimum this
 MUST be the fingerprint, but we may choose to add other
 information as the signaling protocol firms up. This will be
 defined in a future version of this document.
 o The interface to the IdP. [I-D.rescorla-rtcweb-generic-idp]
 specifies a specific protocol mechanism which allows the use of
 any identity protocol without requiring specific further protocol

Rescorla Expires December 7, 2012 [Page 15]

Internet-Draft RTCWEB Sec. Arch. June 2012

 support in the browser.
 o The JavaScript interfaces which the calling application can use to
 specify the IdP to use to generate assertions and to discover what
 assertions were received. These interfaces should be defined in
 the W3C document.

6. Security Considerations

 Much of the security analysis of this problem is contained in
 [I-D.ietf-rtcweb-security] or in the discussion of the particular
 issues above. In order to avoid repetition, this section focuses on
 (a) residual threats that are not addressed by this document and (b)
 threats produced by failure/misbehavior of one of the components in
 the system.

6.1. Communications Security

 While this document favors DTLS-SRTP, it permits a variety of
 communications security mechanisms and thus the level of
 communications security actually provided varies considerably. Any
 pair of implementations which have multiple security mechanisms in
 common are subject to being downgraded to the weakest of those common
 mechanisms by any attacker who can modify the signaling traffic. If
 communications are over HTTP, this means any on-path attacker. If
 communications are over HTTPS, this means the signaling server.
 Implementations which wish to avoid downgrade attack should only
 offer the strongest available mechanism, which is DTLS/DTLS-SRTP.
 Note that the implication of this choice will be that interop to non-
 DTLS-SRTP devices will need to happen through gateways.

 Even if only DTLS/DTLS-SRTP are used, the signaling server can
 potentially mount a man-in-the-middle attack unless implementations
 have some mechanism for independently verifying keys. The UI
 requirements in Section 5.5 are designed to provide such a mechanism
 for motivated/security conscious users, but are not suitable for
 general use. The identity service mechanisms in Section 5.6 are more
 suitable for general use. Note, however, that a malicious signaling
 service can strip off any such identity assertions, though it cannot
 forge new ones. Note that all of the third-party security mechanisms
 available (whether X.509 certificates or a third-party IdP) rely on
 the security of the third party--this is of course also true of your
 connection to the Web site itself. Users who wish to assure
 themselves of security against a malicious identity provider MUST
 verify peer credentials directly, e.g., by checking the peer's
 fingerprint against a value delivered out of band.

Rescorla Expires December 7, 2012 [Page 16]

Internet-Draft RTCWEB Sec. Arch. June 2012

6.2. Privacy

 The requirements in this document are intended to allow:

 o Users to participate in calls without revealing their location.
 o Potential callees to avoid revealing their location and even
 presence status prior to agreeing to answer a call.

 However, these privacy protections come at a performance cost in
 terms of using TURN relays and, in the latter case, delaying ICE.
 Sites SHOULD make users aware of these tradeoffs.

 Note that the protections provided here assume a non-malicious
 calling service. As the calling service always knows the users
 status and (absent the use of a technology like Tor) their IP
 address, they can violate the users privacy at will. Users who wish
 privacy against the calling sites they are using must use separate
 privacy enhancing technologies such as Tor. Combined RTCWEB/Tor
 implementations SHOULD arrange to route the media as well as the
 signaling through Tor. [Currently this will produce very suboptimal
 performance.]

6.3. Denial of Service

 The consent mechanisms described in this document are intended to
 mitigate denial of service attacks in which an attacker uses clients
 to send large amounts of traffic to a victim without the consent of
 the victim. While these mechanisms are sufficient to protect victims
 who have not implemented RTCWEB at all, RTCWEB implementations need
 to be more careful.

 Consider the case of a call center which accepts calls via RTCWeb.
 An attacker proxies the call center's front-end and arranges for
 multiple clients to initiate calls to the call center. Note that
 this requires user consent in many cases but because the data channel
 does not need consent, he can use that directly. Since ICE will
 complete, browsers can then be induced to send large amounts of data
 to the victim call center if it supports the data channel at all.
 Preventing this attack requires that automated RTCWEB
 implemementations implement sensible flow control and have the
 ability to triage out (i.e., stop responding to ICE probes on) calls
 which are behaving badly, and especially to be prepared to remotely
 throttle the data channel in the absence of plausible audio and video
 (which the attacker cannot control).

 Another related attack is for the signaling service to swap the ICE
 candidates for the audio and video streams, thus forcing a browser to
 send video to the sink that the other victim expects will contain

Rescorla Expires December 7, 2012 [Page 17]

Internet-Draft RTCWEB Sec. Arch. June 2012

 audio (perhaps it is only expecting audio!) potentially causing
 overload. Muxing multiple media flows over a single transport makes
 it harder to individually suppress a single flow by denying ICE
 keepalives. Media-level (RTCP) mechanisms must be used in this case.

 Yet another attack, suggested by Magnus Westerlund, is for the
 attacker to cross-connect offers and answers as follows. It induces
 the victim to make a call and then uses its control of other users
 browsers to get them to attempt a call to someone. It then
 translates their offers into apparent answers to the victim, which
 looks like large-scale parallel forking. The victim still responds
 to ICE responses and now the browsers all try to send media to the
 victim. [[OPEN ISSUE: How do we address this?]]

 [TODO: Should we have a mechanism for verifying total expected
 bandwidth]

 Note that attacks based on confusing one end or the other about
 consent are possible primarily even in the face of the third-party
 identity mechanism as long as major parts of the signaling messages
 are not signed. On the other hand, signing the entire message
 severely restricts the capabilities of the calling application, so
 there are difficult tradeoffs here.

7. Acknowledgements

 Bernard Aboba, Harald Alvestrand, Dan Druta, Cullen Jennings, Hadriel
 Kaplan, Matthew Kaufman, Martin Thomson, Magnus Westerland.

8. References

8.1. Normative References

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for RTC-Web",

draft-ietf-rtcweb-security-02 (work in progress),
 March 2012.

 [I-D.muthu-behave-consent-freshness]
 Perumal, M., Wing, D., and H. Kaplan, "STUN Usage for
 Consent Freshness",

draft-muthu-behave-consent-freshness-00 (work in
 progress), March 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-02
https://datatracker.ietf.org/doc/html/draft-muthu-behave-consent-freshness-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla Expires December 7, 2012 [Page 18]

Internet-Draft RTCWEB Sec. Arch. June 2012

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

8.2. Informative References

 [I-D.ietf-rtcweb-jsep]
 Uberti, J. and C. Jennings, "Javascript Session
 Establishment Protocol", draft-ietf-rtcweb-jsep-00 (work
 in progress), March 2012.

 [I-D.jennings-rtcweb-signaling]
 Jennings, C., Rosenberg, J., and R. Jesup, "RTCWeb Offer/
 Answer Protocol (ROAP)",

draft-jennings-rtcweb-signaling-01 (work in progress),
 October 2011.

 [I-D.kaufman-rtcweb-security-ui]
 Kaufman, M., "Client Security User Interface Requirements
 for RTCWEB", draft-kaufman-rtcweb-security-ui-00 (work in
 progress), June 2011.

 [I-D.rescorla-rtcweb-generic-idp]
 Rescorla, E., "RTCWeb Generic Identity Provider
 Interface", draft-rescorla-rtcweb-generic-idp-00 (work in
 progress), January 2012.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-jsep-00
https://datatracker.ietf.org/doc/html/draft-jennings-rtcweb-signaling-01
https://datatracker.ietf.org/doc/html/draft-kaufman-rtcweb-security-ui-00
https://datatracker.ietf.org/doc/html/draft-rescorla-rtcweb-generic-idp-00
https://datatracker.ietf.org/doc/html/rfc3261

Rescorla Expires December 7, 2012 [Page 19]

Internet-Draft RTCWEB Sec. Arch. June 2012

 June 2002.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [XmlHttpRequest]
 van Kesteren, A., "XMLHttpRequest Level 2".

Author's Address

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires December 7, 2012 [Page 20]

