
RTCWEB E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track October 22, 2012
Expires: April 25, 2013

RTCWEB Security Architecture
draft-ietf-rtcweb-security-arch-04

Abstract

 The Real-Time Communications on the Web (RTCWEB) working group is
 tasked with standardizing protocols for enabling real-time
 communications within user-agents using web technologies (e.g
 JavaScript). The major use cases for RTCWEB technology are real-time
 audio and/or video calls, Web conferencing, and direct data transfer.
 Unlike most conventional real-time systems (e.g., SIP-based soft
 phones) RTCWEB communications are directly controlled by some Web
 server, which poses new security challenges. For instance, a Web
 browser might expose a JavaScript API which allows a server to place
 a video call. Unrestricted access to such an API would allow any
 site which a user visited to "bug" a user's computer, capturing any
 activity which passed in front of their camera. [I-D.ietf-rtcweb-
 security] defines the RTCWEB threat model. This document defines an
 architecture which provides security within that threat model.

Legal

 THIS DOCUMENT AND THE INFORMATION CONTAINED THEREIN ARE PROVIDED ON
 AN "AS IS" BASIS AND THE CONTRIBUTOR, THE ORGANIZATION HE/SHE
 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE
 IETF TRUST, AND THE INTERNET ENGINEERING TASK FORCE, DISCLAIM ALL
 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE
 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

Rescorla Expires April 25, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft RTCWEB Sec. Arch. October 2012

 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Rescorla Expires April 25, 2013 [Page 2]

Internet-Draft RTCWEB Sec. Arch. October 2012

Table of Contents

1. Introduction . 5
2. Terminology . 5
3. Trust Model . 5
3.1. Authenticated Entities 6
3.2. Unauthenticated Entities 6

4. Overview . 7
4.1. Initial Signaling . 8
4.2. Media Consent Verification 10
4.3. DTLS Handshake . 11
4.4. Communications and Consent Freshness 11

5. Detailed Technical Description 11
5.1. Origin and Web Security Issues 11
5.2. Device Permissions Model 12
5.3. Communications Consent 14
5.4. IP Location Privacy 14
5.5. Communications Security 15
5.6. Web-Based Peer Authentication 16
5.6.1. Trust Relationships: IdPs, APs, and RPs 17
5.6.2. Overview of Operation 19

 5.6.3. Binding Identity Assertions to JSEP Offer/Answer
 Transactions . 20

5.6.3.1. Input to Assertion Generation Process 20
5.6.3.2. Carrying Identity Assertions 21

5.6.4. IdP Interaction Details 21
5.6.4.1. General Message Structure 21
5.6.4.2. IdP Proxy Setup 22

5.7. Security Considerations 27
5.7.1. Communications Security 27
5.7.2. Privacy . 28
5.7.3. Denial of Service 28
5.7.4. IdP Authentication Mechanism 29
5.7.4.1. PeerConnection Origin Check 29
5.7.4.2. IdP Well-known URI 30

 5.7.4.3. Privacy of IdP-generated identities and the
 hosting site 30

5.7.4.4. Security of Third-Party IdPs 30
5.7.4.5. Web Security Feature Interactions 30

6. Acknowledgements . 31
7. Changes since -03 . 31
8. Changes since -02 . 31
9. References . 32
9.1. Normative References 32
9.2. Informative References 32

Appendix A. Example IdP Bindings to Specific Protocols 33
A.1. BrowserID . 33
A.2. OAuth . 36

Rescorla Expires April 25, 2013 [Page 3]

Internet-Draft RTCWEB Sec. Arch. October 2012

 Author's Address . 37

Rescorla Expires April 25, 2013 [Page 4]

Internet-Draft RTCWEB Sec. Arch. October 2012

1. Introduction

 The Real-Time Communications on the Web (RTCWEB) working group is
 tasked with standardizing protocols for real-time communications
 between Web browsers. The major use cases for RTCWEB technology are
 real-time audio and/or video calls, Web conferencing, and direct data
 transfer. Unlike most conventional real-time systems, (e.g., SIP-
 based[RFC3261] soft phones) RTCWEB communications are directly
 controlled by some Web server, as shown in Figure 1.

 +----------------+
 | |
 | Web Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTP / \ HTTP
 / \
 / \
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 | Browser |<---------->| Browser |
 | | | |
 +-----------+ +-----------+

 Figure 1: A simple RTCWEB system

 This system presents a number of new security challenges, which are
 analyzed in [I-D.ietf-rtcweb-security]. This document describes a
 security architecture for RTCWEB which addresses the threats and
 requirements described in that document.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Trust Model

 The basic assumption of this architecture is that network resources
 exist in a hierarchy of trust, rooted in the browser, which serves as
 the user's TRUSTED COMPUTING BASE (TCB). Any security property which

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Rescorla Expires April 25, 2013 [Page 5]

Internet-Draft RTCWEB Sec. Arch. October 2012

 the user wishes to have enforced must be ultimately guaranteed by the
 browser (or transitively by some property the browser verifies).
 Conversely, if the browser is compromised, then no security
 guarantees are possible. Note that there are cases (e.g., Internet
 kiosks) where the user can't really trust the browser that much. In
 these cases, the level of security provided is limited by how much
 they trust the browser.

 Optimally, we would not rely on trust in any entities other than the
 browser. However, this is unfortunately not possible if we wish to
 have a functional system. Other network elements fall into two
 categories: those which can be authenticated by the browser and thus
 are partly trusted--though to the minimum extent necessary--and those
 which cannot be authenticated and thus are untrusted. This is a
 natural extension of the end-to-end principle.

3.1. Authenticated Entities

 There are two major classes of authenticated entities in the system:

 o Calling services: Web sites whose origin we can verify (in
 practice this means HTTPS).
 o Other users: RTCWEB peers whose origin we can verify
 cryptographically (optimally via DTLS-SRTP).

 Note that merely being authenticated does not make these entities
 trusted. For instance, just because we can verify that

https://www.evil.org/ is owned by Dr. Evil does not mean that we can
 trust Dr. Evil to access our camera and microphone. However, it
 gives the user an opportunity to determine whether he wishes to trust
 Dr. Evil or not; after all, if he desires to contact Dr. Evil
 (perhaps to arrange for ransom payment), it's safe to temporarily
 give him access to the camera and microphone for the purpose of the
 call, but he doesn't want Dr. Evil to be able to access his camera
 and microphone other than during the call. The point here is that we
 must first identify other elements before we can determine whether
 and how much to trust them.

 It's also worth noting that there are settings where authentication
 is non-cryptographic, such as other machines behind a firewall.
 Naturally, the level of trust one can have in identities verified in
 this way depends on how strong the topology enforcement is.

3.2. Unauthenticated Entities

 Other than the above entities, we are not generally able to identify
 other network elements, thus we cannot trust them. This does not
 mean that it is not possible to have any interaction with them, but

https://www.evil.org/

Rescorla Expires April 25, 2013 [Page 6]

Internet-Draft RTCWEB Sec. Arch. October 2012

 it means that we must assume that they will behave maliciously and
 design a system which is secure even if they do so.

4. Overview

 This section describes a typical RTCWeb session and shows how the
 various security elements interact and what guarantees are provided
 to the user. The example in this section is a "best case" scenario
 in which we provide the maximal amount of user authentication and
 media privacy with the minimal level of trust in the calling service.
 Simpler versions with lower levels of security are also possible and
 are noted in the text where applicable. It's also important to
 recognize the tension between security (or performance) and privacy.
 The example shown here is aimed towards settings where we are more
 concerned about secure calling than about privacy, but as we shall
 see, there are settings where one might wish to make different
 tradeoffs--this architecture is still compatible with those settings.

 For the purposes of this example, we assume the topology shown in the
 figure below. This topology is derived from the topology shown in
 Figure 1, but separates Alice and Bob's identities from the process
 of signaling. Specifically, Alice and Bob have relationships with
 some Identity Provider (IdP) that supports a protocol such OpenID or
 BrowserID) that can be used to attest to their identity. This
 separation isn't particularly important in "closed world" cases where
 Alice and Bob are users on the same social network and have
 identities based on that network. However, there are important
 settings where that is not the case, such as federation (calls from
 one network to another) and calling on untrusted sites, such as where
 two users who have a relationship via a given social network want to
 call each other on another, untrusted, site, such as a poker site.

Rescorla Expires April 25, 2013 [Page 7]

Internet-Draft RTCWEB Sec. Arch. October 2012

 +----------------+
 | |
 | Signaling |
 | Server |
 | |
 +----------------+
 ^ ^
 / \
 HTTPS / \ HTTPS
 / \
 / \
 v v
 JS API JS API
 +-----------+ +-----------+
 | | Media | |
 Alice | Browser |<---------->| Browser | Bob
 | | (DTLS-SRTP)| |
 +-----------+ +-----------+
 ^ ^--+ +--^ ^
 | | | |
 v | | v
 +-----------+ | | +-----------+
 | |<--------+ | | |
 | IdP | | | IdP |
 | | +------->| |
 +-----------+ +-----------+

 Figure 2: A call with IdP-based identity

4.1. Initial Signaling

 Alice and Bob are both users of a common calling service; they both
 have approved the calling service to make calls (we defer the
 discussion of device access permissions till later). They are both
 connected to the calling service via HTTPS and so know the origin
 with some level of confidence. They also have accounts with some
 identity provider. This sort of identity service is becoming
 increasingly common in the Web environment in technologies such
 (BrowserID, Federated Google Login, Facebook Connect, OAuth, OpenID,
 WebFinger), and is often provided as a side effect service of your
 ordinary accounts with some service. In this example, we show Alice
 and Bob using a separate identity service, though they may actually
 be using the same identity service as calling service or have no
 identity service at all.

 Alice is logged onto the calling service and decides to call Bob. She
 can see from the calling service that he is online and the calling
 service presents a JS UI in the form of a button next to Bob's name

Rescorla Expires April 25, 2013 [Page 8]

Internet-Draft RTCWEB Sec. Arch. October 2012

 which says "Call". Alice clicks the button, which initiates a JS
 callback that instantiates a PeerConnection object. This does not
 require a security check: JS from any origin is allowed to get this
 far.

 Once the PeerConnection is created, the calling service JS needs to
 set up some media. Because this is an audio/video call, it creates
 two MediaStreams, one connected to an audio input and one connected
 to a video input. At this point the first security check is
 required: untrusted origins are not allowed to access the camera and
 microphone. In this case, because Alice is a long-term user of the
 calling service, she has made a permissions grant (i.e., a setting in
 the browser) to allow the calling service to access her camera and
 microphone any time it wants. The browser checks this setting when
 the camera and microphone requests are made and thus allows them.

 In the current W3C API, once some streams have been added, Alice's
 browser + JS generates a signaling message The format of this data is
 currently undefined. It may be a complete message as defined by ROAP
 [I-D.jennings-rtcweb-signaling] or separate media description and
 transport messages as defined in [I-D.ietf-rtcweb-jsep] or may be
 assembled piecemeal by the JS. In either case, it will contain:

 o Media channel information
 o ICE candidates
 o A fingerprint attribute binding the communication to Alice's
 public key [RFC5763]

 [Note that it is currently unclear where JSEP will eventually put
 this information, in the SDP or in the transport info.] Prior to
 sending out the signaling message, the PeerConnection code contacts
 the identity service and obtains an assertion binding Alice's
 identity to her fingerprint. The exact details depend on the
 identity service (though as discussed in Section 5.6 PeerConnection
 can be agnostic to them), but for now it's easiest to think of as a
 BrowserID assertion. The assertion may bind other information to the
 identity besides the fingerprint, but at minimum it needs to bind the
 fingerprint.

 This message is sent to the signaling server, e.g., by XMLHttpRequest
 [XmlHttpRequest] or by WebSockets [RFC6455] The signaling server
 processes the message from Alice's browser, determines that this is a
 call to Bob and sends a signaling message to Bob's browser (again,
 the format is currently undefined). The JS on Bob's browser
 processes it, and alerts Bob to the incoming call and to Alice's
 identity. In this case, Alice has provided an identity assertion and
 so Bob's browser contacts Alice's identity provider (again, this is
 done in a generic way so the browser has no specific knowledge of the

https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires April 25, 2013 [Page 9]

Internet-Draft RTCWEB Sec. Arch. October 2012

 IdP) to verify the assertion. This allows the browser to display a
 trusted element indicating that a call is coming in from Alice. If
 Alice is in Bob's address book, then this interface might also
 include her real name, a picture, etc. The calling site will also
 provide some user interface element (e.g., a button) to allow Bob to
 answer the call, though this is most likely not part of the trusted
 UI.

 If Bob agrees [I am ignoring early media for now], a PeerConnection
 is instantiated with the message from Alice's side. Then, a similar
 process occurs as on Alice's browser: Bob's browser verifies that
 the calling service is approved, the media streams are created, and a
 return signaling message containing media information, ICE
 candidates, and a fingerprint is sent back to Alice via the signaling
 service. If Bob has a relationship with an IdP, the message will
 also come with an identity assertion.

 At this point, Alice and Bob each know that the other party wants to
 have a secure call with them. Based purely on the interface provided
 by the signaling server, they know that the signaling server claims
 that the call is from Alice to Bob. Because the far end sent an
 identity assertion along with their message, they know that this is
 verifiable from the IdP as well. Of course, the call works perfectly
 well if either Alice or Bob doesn't have a relationship with an IdP;
 they just get a lower level of assurance. Moreover, Alice might wish
 to make an anonymous call through an anonymous calling site, in which
 case she would of course just not provide any identity assertion and
 the calling site would mask her identity from Bob.

4.2. Media Consent Verification

 As described in ([I-D.ietf-rtcweb-security]; Section 4.2) This
 proposal specifies that media consent verification be performed via
 ICE. Thus, Alice and Bob perform ICE checks with each other. At the
 completion of these checks, they are ready to send non-ICE data.

 At this point, Alice knows that (a) Bob (assuming he is verified via
 his IdP) or someone else who the signaling service is claiming is Bob
 is willing to exchange traffic with her and (b) that either Bob is at
 the IP address which she has verified via ICE or there is an attacker
 who is on-path to that IP address detouring the traffic. Note that
 it is not possible for an attacker who is on-path but not attached to
 the signaling service to spoof these checks because they do not have
 the ICE credentials. Bob's security guarantees with respect to Alice
 are the converse of this.

Rescorla Expires April 25, 2013 [Page 10]

Internet-Draft RTCWEB Sec. Arch. October 2012

4.3. DTLS Handshake

 Once the ICE checks have completed [more specifically, once some ICE
 checks have completed], Alice and Bob can set up a secure channel.
 This is performed via DTLS [RFC4347] (for the data channel) and DTLS-
 SRTP [RFC5763] for the media channel. Specifically, Alice and Bob
 perform a DTLS handshake on every channel which has been established
 by ICE. The total number of channels depends on the amount of
 muxing; in the most likely case we are using both RTP/RTCP mux and
 muxing multiple media streams on the same channel, in which case
 there is only one DTLS handshake. Once the DTLS handshake has
 completed, the keys are exported [RFC5705] and used to key SRTP for
 the media channels.

 At this point, Alice and Bob know that they share a set of secure
 data and/or media channels with keys which are not known to any
 third-party attacker. If Alice and Bob authenticated via their IdPs,
 then they also know that the signaling service is not attacking them.
 Even if they do not use an IdP, as long as they have minimal trust in
 the signaling service not to perform a man-in-the-middle attack, they
 know that their communications are secure against the signaling
 service as well.

4.4. Communications and Consent Freshness

 From a security perspective, everything from here on in is a little
 anticlimactic: Alice and Bob exchange data protected by the keys
 negotiated by DTLS. Because of the security guarantees discussed in
 the previous sections, they know that the communications are
 encrypted and authenticated.

 The one remaining security property we need to establish is "consent
 freshness", i.e., allowing Alice to verify that Bob is still prepared
 to receive her communications. ICE specifies periodic STUN
 keepalizes but only if media is not flowing. Because the consent
 issue is more difficult here, we require RTCWeb implementations to
 periodically send keepalives. As described in Section 5.3, these
 keepalives MUST be based on the consent freshness mechanism specified
 in [I-D.muthu-behave-consent-freshness]. If a keepalive fails and no
 new ICEchannels can be established, then the session is terminated.

5. Detailed Technical Description

5.1. Origin and Web Security Issues

 The basic unit of permissions for RTCWEB is the origin [RFC6454].
 Because the security of the origin depends on being able to

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6454

Rescorla Expires April 25, 2013 [Page 11]

Internet-Draft RTCWEB Sec. Arch. October 2012

 authenticate content from that origin, the origin can only be
 securely established if data is transferred over HTTPS [RFC2818].
 Thus, clients MUST treat HTTP and HTTPS origins as different
 permissions domains. [Note: this follows directly from the origin
 security model and is stated here merely for clarity.]

 Many web browsers currently forbid by default any active mixed
 content on HTTPS pages. I.e., when JS is loaded from an HTTP origin
 onto an HTTPS page, an error is displayed and the content is not
 executed unless the user overrides the error. Any browser which
 enforces such a policy will also not permit access to RTCWEB
 functionality from mixed content pages. It is RECOMMENDED that
 browsers which allow active mixed content nevertheless disable RTCWEB
 functionality in mixed content settings. [[OPEN ISSUE: Should this
 be a 2119 MUST? It's not clear what set of conditions would make
 this OK, other than that browser manufacturers have traditionally
 been permissive here here.]] Note that it is possible for a page
 which was not mixed content to become mixed content during the
 duration of the call. Implementations MAY choose to terminate the
 call or display a warning at that point, but it is also permissible
 to ignore this condition. This is a deliberate implementation
 complexity versus security tradeoff. [[OPEN ISSUE:: Should we be
 more aggressive about this?]]

5.2. Device Permissions Model

 Implementations MUST obtain explicit user consent prior to providing
 access to the camera and/or microphone. Implementations MUST at
 minimum support the following two permissions models for HTTPS
 origins.

 o Requests for one-time camera/microphone access.
 o Requests for permanent access.

 Because HTTP origins cannot be securely established against network
 attackers, implementations MUST NOT allow the setting of permanent
 access permissions for HTTP origins. Implementations MAY also opt to
 refuse all permissions grants for HTTP origins, but it is RECOMMENDED
 that currently they support one-time camera/microphone access.

 In addition, they SHOULD support requests for access to a single
 communicating peer. E.g., "Call customerservice@ford.com". Browsers
 servicing such requests SHOULD clearly indicate that identity to the
 user when asking for permission.

https://datatracker.ietf.org/doc/html/rfc2818

Rescorla Expires April 25, 2013 [Page 12]

Internet-Draft RTCWEB Sec. Arch. October 2012

 API Requirement: The API MUST provide a mechanism for the requesting
 JS to indicate which of these forms of permissions it is
 requesting. This allows the client to know what sort of user
 interface experience to provide, i.e., to allow the client to
 clearly indicate to the user what he is agreeing to. In
 particular, browsers might display a non-invasive door hanger
 ("some features of this site may not work..." when asking for
 long-term permissions) but a more invasive UI ("here is your own
 video") for single-call permissions. The API MAY grant weaker
 permissions than the JS asked for if the user chooses to authorize
 only those permissions, but if it intends to grant stronger ones
 it SHOULD display the appropriate UI for those permissions and
 MUST clearly indicate what permissions are being requested.

 API Requirement: The API MUST provide a mechanism for the requesting
 JS to relinquish the ability to see or modify the media (e.g., via
 MediaStream.record()). Combined with secure authentication of the
 communicating peer, this allows a user to be sure that the calling
 site is not accessing or modifying their conversion.

 UI Requirement: The UI MUST clearly indicate when the user's camera
 and microphone are in use. This indication MUST NOT be
 suppressable by the JS and MUST clearly indicate how to terminate
 a call, and provide a UI means to immediately stop camera/
 microphone input without the JS being able to prevent it.

 UI Requirement: If the UI indication of camera/microphone use are
 displayed in the browser such that minimizing the browser window
 would hide the indication, or the JS creating an overlapping
 window would hide the indication, then the browser SHOULD stop
 camera and microphone input. [Note: this may not be necessary in
 systems that are non-windows-based but that have good
 notifications support, such as phones.]

 Clients MAY permit the formation of data channels without any direct
 user approval. Because sites can always tunnel data through the
 server, further restrictions on the data channel do not provide any
 additional security. (though see Section 5.3 for a related issue).

 Implementations which support some form of direct user authentication
 SHOULD also provide a policy by which a user can authorize calls only
 to specific counterparties. Specifically, the implementation SHOULD
 provide the following interfaces/controls:

 o Allow future calls to this verified user.
 o Allow future calls to any verified user who is in my system
 address book (this only works with address book integration, of
 course).

Rescorla Expires April 25, 2013 [Page 13]

Internet-Draft RTCWEB Sec. Arch. October 2012

 Implementations SHOULD also provide a different user interface
 indication when calls are in progress to users whose identities are
 directly verifiable. Section 5.5 provides more on this.

5.3. Communications Consent

 Browser client implementations of RTCWEB MUST implement ICE. Server
 gateway implementations which operate only at public IP addresses may
 implement ICE-Lite instead of ICE but MUST implement one of the two.

 Browser implementations MUST verify reachability via ICE prior to
 sending any non-ICE packets to a given destination. Implementations
 MUST NOT provide the ICE transaction ID to JavaScript during the
 lifetime of the transaction (i.e., during the period when the ICE
 stack would accept a new response for that transaction). [Note:
 this document takes no position on the split between ICE in JS and
 ICE in the browser. The above text is written the way it is for
 editorial convenience and will be modified appropriately if the WG
 decides on ICE in the JS.]

 Implementations MUST send keepalives no less frequently than every 30
 seconds regardless of whether traffic is flowing or not. If a
 keepalive fails then the implementation MUST either attempt to find a
 new valid path via ICE or terminate media for that ICE component.
 Note that ICE [RFC5245]; Section 10 keepalives use STUN Binding
 Indications which are one-way and therefore not sufficient. Instead,
 the consent freshness mechanism [I-D.muthu-behave-consent-freshness]
 MUST be used.

5.4. IP Location Privacy

 A side effect of the default ICE behavior is that the peer learns
 one's IP address, which leaks large amounts of location information,
 especially for mobile devices. This has negative privacy
 consequences in some circumstances. The API requirements in this
 section are intended to mitigate this issue. Note that these
 requirements are NOT intended to protect the user's IP address from a
 malicious site. In general, the site will learn at least a user's
 server reflexive address from any HTTP transaction. Rather, these
 requirements are intended to allow a site to cooperate with the user
 to hide the user's IP address from the other side of the call.
 Hiding the user's IP address from the server requires some sort of
 explicit privacy preserving mechanism on the client (e.g., Torbutton
 [https://www.torproject.org/torbutton/]) and is out of scope for this
 specification.

https://datatracker.ietf.org/doc/html/rfc5245

Rescorla Expires April 25, 2013 [Page 14]

Internet-Draft RTCWEB Sec. Arch. October 2012

 API Requirement: The API MUST provide a mechanism to allow the JS to
 suppress ICE negotiation (though perhaps to allow candidate
 gathering) until the user has decided to answer the call [note:
 determining when the call has been answered is a question for the
 JS.] This enables a user to prevent a peer from learning their IP
 address if they elect not to answer a call and also from learning
 whether the user is online.

 API Requirement: The API MUST provide a mechanism for the calling
 application JS to indicate that only TURN candidates are to be
 used. This prevents the peer from learning one's IP address at
 all. The API MUST provide a mechanism for the calling application
 to reconfigure an existing call to add non-TURN candidates. Taken
 together, these requirements allow ICE negotiation to start
 immediately on incoming call notification, thus reducing post-dial
 delay, but also to avoid disclosing the user's IP address until
 they have decided to answer. They also allow users to completely
 hide their IP address for the duration of the call. Finally, they
 allow a mechanism for the user to optimize performance by
 reconfiguring to allow non-TURN candidates during an active call
 if the user decides they no longer need to hide their IP address

5.5. Communications Security

 Implementations MUST implement DTLS [RFC4347] and DTLS-SRTP
 [RFC5763][RFC5764]. All data channels MUST be secured via DTLS.
 DTLS-SRTP MUST be offered for every media channel and MUST be the
 default; i.e., if an implementation receives an offer for DTLS-SRTP
 and SDES, DTLS-SRTP MUST be selected. Media traffic MUST NOT be sent
 over plain (unencrypted) RTP.

 [OPEN ISSUE: What should the settings be here? MUST?]
 Implementations MAY support SDES and RTP for media traffic for
 backward compatibility purposes.

 API Requirement: The API MUST provide a mechanism to indicate that a
 fresh DTLS key pair is to be generated for a specific call. This
 is intended to allow for unlinkability. Note that there are also
 settings where it is attractive to use the same keying material
 repeatedly, especially those with key continuity-based
 authentication.

 API Requirement: When DTLS-SRTP is used, the API MUST NOT permit the
 JS to obtain the negotiated keying material. This requirement
 preserves the end-to-end security of the media.

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5763

Rescorla Expires April 25, 2013 [Page 15]

Internet-Draft RTCWEB Sec. Arch. October 2012

 UI Requirements: A user-oriented client MUST provide an
 "inspector" interface which allows the user to determine the
 security characteristics of the media. [largely derived from
 [I-D.kaufman-rtcweb-security-ui]
 The following properties SHOULD be displayed "up-front" in the
 browser chrome, i.e., without requiring the user to ask for them:

 * A client MUST provide a user interface through which a user may
 determine the security characteristics for currently-displayed
 audio and video stream(s)
 * A client MUST provide a user interface through which a user may
 determine the security characteristics for transmissions of
 their microphone audio and camera video.
 * The "security characteristics" MUST include an indication as to
 whether the cryptographic keys were delivered out-of-band (from
 a server) or were generated as a result of a pairwise
 negotiation.
 * If the far endpoint was directly verified, either via a third-
 party verifiable X.509 certificate or via a Web IdP mechanism
 (see Section 5.6) the "security characteristics" MUST include
 the verified information.
 The following properties are more likely to require some "drill-
 down" from the user:

 * The security characteristics MUST indicate the cryptographic
 algorithms in use (For example: "AES-CBC" or "Null Cipher".)
 * The "security characteristics" MUST indicate whether PFS is
 provided.
 * The "security characteristics" MUST include some mechanism to
 allow an out-of-band verification of the peer, such as a
 certificate fingerprint or an SAS.

5.6. Web-Based Peer Authentication

 In a number of cases, it is desirable for the endpoint (i.e., the
 browser) to be able to directly identity the endpoint on the other
 side without trusting only the signaling service to which they are
 connected. For instance, users may be making a call via a federated
 system where they wish to get direct authentication of the other
 side. Alternately, they may be making a call on a site which they
 minimally trust (such as a poker site) but to someone who has an
 identity on a site they do trust (such as a social network.)

 Recently, a number of Web-based identity technologies (OAuth,
 BrowserID, Facebook Connect), etc. have been developed. While the
 details vary, what these technologies share is that they have a Web-
 based (i.e., HTTP/HTTPS identity provider) which attests to your
 identity. For instance, if I have an account at example.org, I could

Rescorla Expires April 25, 2013 [Page 16]

Internet-Draft RTCWEB Sec. Arch. October 2012

 use the example.org identity provider to prove to others that I was
 alice@example.org. The development of these technologies allows us
 to separate calling from identity provision: I could call you on
 Poker Galaxy but identify myself as alice@example.org.

 Whatever the underlying technology, the general principle is that the
 party which is being authenticated is NOT the signaling site but
 rather the user (and their browser). Similarly, the relying party is
 the browser and not the signaling site. Thus, the browser MUST
 securely generate the input to the IdP assertion process and MUST
 securely display the results of the verification process to the user
 in a way which cannot be imitated by the calling site.

 In order to make this work, we must standardize the following items:

 o The precise information from the signaling message that must be
 cryptographically bound to the user's identity and a mechanism for
 carrying assertions in JSEP messages. Section 5.6.3
 o The interface to the IdP. Section 5.6.4 specifies a specific
 protocol mechanism which allows the use of any identity protocol
 without requiring specific further protocol support in the browser
 o The JavaScript interfaces which the calling application can use to
 specify the IdP to use to generate assertions and to discover what
 assertions were received.

 The first two items are defined in this document. The final one is
 defined in the companion W3C WebRTC API specification [TODO:REF]

 The mechanisms in this document do not require the browser to
 implement any particular identity protocol or to support any
 particular IdP. Instead, this document provides a generic interface
 which any IdP can implement. Thus, new IdPs and protocols can be
 introduced without change to either the browser or the calling
 service. This avoids the need to make a commitment to any particular
 identity protocol, although browsers may opt to directly implement
 some identity protocols in order to provide superior performance or
 UI properties.

5.6.1. Trust Relationships: IdPs, APs, and RPs

 Any federated identity protocol has three major participants:

 Authenticating Party (AP): The entity which is trying to establish
 its identity.

Rescorla Expires April 25, 2013 [Page 17]

Internet-Draft RTCWEB Sec. Arch. October 2012

 Identity Provider (IdP): The entity which is vouching for the AP's
 identity.

 Relying Party (RP): The entity which is trying to verify the AP's
 identity.

 The AP and the IdP have an account relationship of some kind: the AP
 registers with the IdP and is able to subsequently authenticate
 directly to the IdP (e.g., with a password). This means that the
 browser must somehow know which IdP(s) the user has an account
 relationship with. This can either be something that the user
 configures into the browser or that is configured at the calling site
 and then provided to the PeerConnection by the calling site.

 At a high level there are two kinds of IdPs:

 Authoritative: IdPs which have verifiable control of some section
 of the identity space. For instance, in the realm of e-mail, the
 operator of "example.com" has complete control of the namespace
 ending in "@example.com". Thus, "alice@example.com" is whoever
 the operator says it is. Examples of systems with authoritative
 identity providers include DNSSEC, RFC 4474, and Facebook Connect
 (Facebook identities only make sense within the context of the
 Facebook system).

 Third-Party: IdPs which don't have control of their section of the
 identity space but instead verify user's identities via some
 unspecified mechanism and then attest to it. Because the IdP
 doesn't actually control the namespace, RPs need to trust that the
 IdP is correctly verifying AP identities, and there can
 potentially be multiple IdPs attesting to the same section of the
 identity space. Probably the best-known example of a third-party
 identity provider is SSL certificates, where there are a large
 number of CAs all of whom can attest to any domain name.

 If an AP is authenticating via an authoritative IdP, then the RP does
 not need to explicitly trust the IdP at all: as long as the RP knows
 how to verify that the IdP indeed made the relevant identity
 assertion (a function provided by the mechanisms in this document),
 then any assertion it makes about an identity for which it is
 authoritative is directly verifiable.

 By contrast, if an AP is authenticating via a third-party IdP, the RP
 needs to explicitly trust that IdP (hence the need for an explicit
 trust anchor list in PKI-based SSL/TLS clients). The list of
 trustable IdPs needs to be configured directly into the browser,
 either by the user or potentially by the browser manufacturer. This

https://datatracker.ietf.org/doc/html/rfc4474

Rescorla Expires April 25, 2013 [Page 18]

Internet-Draft RTCWEB Sec. Arch. October 2012

 is a significant advantage of authoritative IdPs and implies that if
 third-party IdPs are to be supported, the potential number needs to
 be fairly small.

5.6.2. Overview of Operation

 In order to provide security without trusting the calling site, the
 PeerConnection component of the browser must interact directly with
 the IdP. The details of the mechanism are described in the W3C API
 specification, but the general idea is that the PeerConnection
 component downloads JS from a specific location on the IdP dictated
 by the IdP domain name. That JS (the "IdP proxy") runs in an
 isolated security context within the browser and the PeerConnection
 talks to it via a secure message passing channel.

 +------------------------------------+
 | https://calling-site.example.com |
 | |
 | |
 | |
 | Calling JS Code |
 | ^ |
 | | API Calls |
 | v |
 | PeerConnection |
 | ^ |
 | | postMessage() |
 | v |
 | +-------------------------+ | +---------------+
 | | https://idp.example.org | | | |
 | | |<--------->| Identity |
 | | IdP JS | | | Provider |
 | | | | | |
 | +-------------------------+ | +---------------+
 | |
 +------------------------------------+

 When the PeerConnection object wants to interact with the IdP, the
 sequence of events is as follows:

 1. The browser (the PeerConnection component) instantiates an IdP
 proxy with its source at the IdP. This allows the IdP to load
 whatever JS is necessary into the proxy, which runs in the IdP's
 security context.
 2. If the user is not already logged in, the IdP does whatever is
 required to log them in, such as soliciting a username and
 password.

Rescorla Expires April 25, 2013 [Page 19]

Internet-Draft RTCWEB Sec. Arch. October 2012

 3. Once the user is logged in, the IdP proxy notifies the browser
 that it is ready.
 4. The browser and the IdP proxy communicate via a standardized
 series of messages delivered via postMessage. For instance, the
 browser might request the IdP proxy to sign or verify a given
 identity assertion.

 This approach allows us to decouple the browser from any particular
 identity provider; the browser need only know how to load the IdP's
 JavaScript--which is deterministic from the IdP's identity--and the
 generic protocol for requesting and verifying assertions. The IdP
 provides whatever logic is necessary to bridge the generic protocol
 to the IdP's specific requirements. Thus, a single browser can
 support any number of identity protocols, including being forward
 compatible with IdPs which did not exist at the time the browser was
 written.

5.6.3. Binding Identity Assertions to JSEP Offer/Answer Transactions

5.6.3.1. Input to Assertion Generation Process

 As discussed above, an identity assertion binds the user's identity
 (as asserted by the IdP) to the JSEP offer/exchange transaction and
 specifically to the media. In order to achieve this, the
 PeerConnection must provide the DTLS-SRTP fingerprint to be bound to
 the identity. This is provided in a JSON structure for
 extensibility, as shown below:

 {
 "fingerprint" : {
 {
 "algorithm":"SHA-1",
 "digest":"4A:AD:B9:B1:3F:...:E5:7C:AB"
 }
 }

 The "algorithm" and digest values correspond directly to the
 algorithm and digest in the a=fingerprint line of the SDP.

 Note: this structure does not need to be interpreted by the IdP or
 the IdP proxy. It is consumed solely by the RP's browser. The IdP
 merely treats it as an opaque value to be attested to. Thus, new
 parameters can be added to the assertion without modifying the IdP.

Rescorla Expires April 25, 2013 [Page 20]

Internet-Draft RTCWEB Sec. Arch. October 2012

5.6.3.2. Carrying Identity Assertions

 Once an IdP has generated an assertion, the JSEP message. This is
 done by adding a new a-line to the SDP, of the form a=identity. The
 sole contents of this value are a base-64-encoded version of the
 identity assertion. For example:

 v=0
 o=- 1181923068 1181923196 IN IP4 ua1.example.com
 s=example1
 c=IN IP4 ua1.example.com
 a=setup:actpass
 a=fingerprint: SHA-1 \
 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB
 a=identity: \
 ImlkcCI6eyJkb21haW4iOiAiZXhhbXBsZS5vcmciLCAicHJvdG9jb2wiOiAiYm9n \
 dXMifSwiYXNzZXJ0aW9uIjpcIntcImlkZW50aXR5XCI6XCJib2JAZXhhbXBsZS5v \
 cmdcIixcImNvbnRlbnRzXCI6XCJhYmNkZWZnaGlqa2xtbm9wcXJzdHV2d3l6XCIs \
 XCJzaWduYXR1cmVcIjpcIjAxMDIwMzA0MDUwNlwifSJ9Cg==
 t=0 0
 m=audio 6056 RTP/AVP 0
 a=sendrecv
 a=tcap:1 UDP/TLS/RTP/SAVP RTP/AVP
 a=pcfg:1 t=1

 Each identity attribute should be paired (and attests to) with an
 a=fingerprint attribute and therefore can exist either at the session
 or media level. Multiple identity attributes may appear at either
 level, though implementations are discouraged from doing this unless
 they have a clear idea of what security claim they intend to be
 making.

5.6.4. IdP Interaction Details

5.6.4.1. General Message Structure

 Messages between the PeerConnection object and the IdP proxy are
 formatted using JSON [RFC4627]. For instance, the PeerConnection
 would request a signature with the following "SIGN" message:

 {
 "type":"SIGN",
 "id": "1",
 "origin":"https://calling-site.example.com",
 "message":"012345678abcdefghijkl"
 }

https://datatracker.ietf.org/doc/html/rfc4627

Rescorla Expires April 25, 2013 [Page 21]

Internet-Draft RTCWEB Sec. Arch. October 2012

 All messages MUST contain a "type" field which indicates the general
 meaning of the message.

 All requests from the PeerConnection object MUST contain an "id"
 field which MUST be unique for that PeerConnection object. Any
 responses from the IdP proxy MUST contain the same id in response,
 which allows the PeerConnection to correlate requests and responses.

 All requests from the PeerConnection object MUST contain an "origin"
 field containing the origin of the JS which initiated the PC (i.e.,
 the URL of the calling site). This origin value can be used by the
 IdP to make access control decisions. For instance, an IdP might
 only issue identity assertions for certain calling services in the
 same way that some IdPs require that relying Web sites have an API
 key before learning user identity.

 Any message-specific data is carried in a "message" field. Depending
 on the message type, this may either be a string or a richer JSON
 object.

5.6.4.1.1. Errors

 If an error occurs, the IdP sends a message of type "ERROR". The
 message MAY have an "error" field containing freeform text data which
 containing additional information about what happened. For instance:

 {
 "type":"ERROR",
 "error":"Signature verification failed"
 }

 Figure 3: Example error

5.6.4.2. IdP Proxy Setup

 In order to perform an identity transaction, the PeerConnection must
 first create an IdP proxy. As stated above, the details of this are
 specified in the W3C API document. From the perspective of this
 specification, however, the relevant facts are:

 o The JS runs in the IdP's security context with the base page
 retrieved from the URL specified in Section 5.6.4.2.1
 o The usual browser sandbox isolation mechanisms MUST be enforced
 with respect to the IdP proxy.
 o JS running in the IdP proxy MUST be able to send and receive
 messages to the PeerConnection and the PC and IdP proxy are able
 to verify the source and destination of these messages.

Rescorla Expires April 25, 2013 [Page 22]

Internet-Draft RTCWEB Sec. Arch. October 2012

 Initially the IdP proxy is in an unready state; the IdP JS must be
 loaded and there may be several round trips to the IdP server, for
 instance to log the user in. When the IdP proxy is ready to receive
 commands, it delivers a "ready" message. As this message is
 unsolicited, it simply contains:

 { "type":"READY" }

 Once the PeerConnection object receives the ready message, it can
 send commands to the IdP proxy.

5.6.4.2.1. Determining the IdP URI

 Each IdP proxy instance is associated with two values:

 domain name: The IdP's domain name
 protocol: The specific IdP protocol which the IdP is using. This is
 a completely IdP-specific string, but allows an IdP to implement
 two protocols in parallel. This value may be the empty string.

 Each IdP MUST serve its initial entry page (i.e., the one loaded by
 the IdP proxy) from the well-known URI specified in "/.well-known/
 idp-proxy/<protocol>" on the IdP's web site. This URI MUST be loaded
 via HTTPS [RFC2818]. For example, for the IdP "identity.example.com"
 and the protocol "example", the URL would be:

 https://example.com/.well-known/idp-proxy/example

5.6.4.2.1.1. Authenticating Party

 How an AP determines the appropriate IdP domain is out of scope of
 this specification. In general, however, the AP has some actual
 account relationship with the IdP, as this identity is what the IdP
 is attesting to. Thus, the AP somehow supplies the IdP information
 to the browser. Some potential mechanisms include:

 o Provided by the user directly.
 o Selected from some set of IdPs known to the calling site. E.g., a
 button that shows "Authenticate via Facebook Connect"

5.6.4.2.1.2. Relying Party

 Unlike the AP, the RP need not have any particular relationship with
 the IdP. Rather, it needs to be able to process whatever assertion
 is provided by the AP. As the assertion contains the IdP's identity,
 the URI can be constructed directly from the assertion, and thus the
 RP can directly verify the technical validity of the assertion with
 no user interaction. Authoritative assertions need only be

https://datatracker.ietf.org/doc/html/rfc2818

Rescorla Expires April 25, 2013 [Page 23]

Internet-Draft RTCWEB Sec. Arch. October 2012

 verifiable. Third-party assertions also MUST be verified against
 local policy, as described in Section 5.6.4.2.3.1.

5.6.4.2.2. Requesting Assertions

 In order to request an assertion, the PeerConnection sends a "SIGN"
 message. Aside from the mandatory fields, this message has a
 "message" field containing a string. The contents of this string are
 defined above, but are opaque from the perspective of the IdP.

 A successful response to a "SIGN" message contains a message field
 which is a JS dictionary dictionary consisting of two fields:

 idp: A dictionary containing the domain name of the provider and the
 protocol string
 assertion: An opaque field containing the assertion itself. This is
 only interpretable by the idp or its proxy.

 Figure 4 shows an example transaction, with the message "abcde..."
 being signed and bound to identity "ekr@example.org". In this case,
 the message has presumably been digitally signed/MACed in some way
 that the IdP can later verify it, but this is an implementation
 detail and out of scope of this document. Line breaks are inserted
 solely for readability.

 PeerConnection -> IdP proxy:
 {
 "type":"SIGN",
 "id":1,
 "message":"abcdefghijklmnopqrstuvwyz"
 }

 IdPProxy -> PeerConnection:
 {
 "type":"SUCCESS",
 "id":1,
 "message": {
 "idp":{
 "domain": "example.org"
 "protocol": "bogus"
 },
 "assertion":\"{\"identity\":\"bob@example.org\",
 \"contents\":\"abcdefghijklmnopqrstuvwyz\",
 \"signature\":\"010203040506\"}"
 }
 }

Rescorla Expires April 25, 2013 [Page 24]

Internet-Draft RTCWEB Sec. Arch. October 2012

 Figure 4: Example assertion request

5.6.4.2.3. Verifying Assertions

 In order to verify an assertion, an RP sends a "VERIFY" message to
 the IdP proxy containing the assertion supplied by the AP in the
 "message" field.

 The IdP proxy verifies the assertion. Depending on the identity
 protocol, this may require one or more round trips to the IdP. For
 instance, an OAuth-based protocol will likely require using the IdP
 as an oracle, whereas with BrowserID the IdP proxy can likely verify
 the signature on the assertion without contacting the IdP, provided
 that it has cached the IdP's public key.

 Regardless of the mechanism, if verification succeeds, a successful
 response from the IdP proxy MUST contain a message field consisting
 of a dictionary/hash with the following fields:

 identity The identity of the AP from the IdP's perspective. Details
 of this are provided in Section 5.6.4.2.3.1
 contents The original unmodified string provided by the AP in the
 original SIGN request.

 Figure 5 shows an example transaction. Line breaks are inserted
 solely for readability.

Rescorla Expires April 25, 2013 [Page 25]

Internet-Draft RTCWEB Sec. Arch. October 2012

 PeerConnection -> IdP Proxy:
 {
 "type":"VERIFY",
 "id":2,
 "message":\"{\"identity\":\"bob@example.org\",
 \"contents\":\"abcdefghijklmnopqrstuvwyz\",
 \"signature\":\"010203040506\"}"
 }

 IdP Proxy -> PeerConnection:
 {
 "type":"SUCCESS",
 "id":2,
 "message": {
 "identity" : {
 "name" : "bob@example.org",
 "displayname" : "Bob"
 },
 "contents":"abcdefghijklmnopqrstuvwyz"
 }
 }

 Figure 5: Example verification request

5.6.4.2.3.1. Identity Formats

 Identities passed from the IdP proxy to the PeerConnection are
 structured as JSON dictionaries with one mandatory field: "name".
 This field MUST consist of an RFC822-formatted string representing
 the user's identity. [[OPEN ISSUE: Would it be better to have a
 typed field?]] The PeerConnection API MUST check this string as
 follows:

 1. If the RHS of the string is equal to the domain name of the IdP
 proxy, then the assertion is valid, as the IdP is authoritative
 for this domain.
 2. If the RHS of the string is not equal to the domain name of the
 IdP proxy, then the PeerConnection object MUST reject the
 assertion unless (a) the IdP domain is listed as an acceptable
 third-party IdP and (b) local policy is configured to trust this
 IdP domain for the RHS of the identity string.

 Sites which have identities that do not fit into the RFC822 style
 (for instance, Facebook ids are simple numeric values) SHOULD convert
 them to this form by appending their IdP domain (e.g.,
 12345@identity.facebook.com), thus ensuring that they are
 authoritative for the identity.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Rescorla Expires April 25, 2013 [Page 26]

Internet-Draft RTCWEB Sec. Arch. October 2012

 The IdP proxy MAY also include a "displayname" field which contains a
 more user-friendly identity assertion. Browsers SHOULD take care in
 the UI to distinguish the "name" assertion which is verifiable
 directly from the "displayname" which cannot be verified and thus
 relies on trust in the IdP. In future, we may define other fields to
 allow the IdP to provide more information to the browser.

5.7. Security Considerations

 Much of the security analysis of this problem is contained in
 [I-D.ietf-rtcweb-security] or in the discussion of the particular
 issues above. In order to avoid repetition, this section focuses on
 (a) residual threats that are not addressed by this document and (b)
 threats produced by failure/misbehavior of one of the components in
 the system.

5.7.1. Communications Security

 While this document favors DTLS-SRTP, it permits a variety of
 communications security mechanisms and thus the level of
 communications security actually provided varies considerably. Any
 pair of implementations which have multiple security mechanisms in
 common are subject to being downgraded to the weakest of those common
 mechanisms by any attacker who can modify the signaling traffic. If
 communications are over HTTP, this means any on-path attacker. If
 communications are over HTTPS, this means the signaling server.
 Implementations which wish to avoid downgrade attack should only
 offer the strongest available mechanism, which is DTLS/DTLS-SRTP.
 Note that the implication of this choice will be that interop to non-
 DTLS-SRTP devices will need to happen through gateways.

 Even if only DTLS/DTLS-SRTP are used, the signaling server can
 potentially mount a man-in-the-middle attack unless implementations
 have some mechanism for independently verifying keys. The UI
 requirements in Section 5.5 are designed to provide such a mechanism
 for motivated/security conscious users, but are not suitable for
 general use. The identity service mechanisms in Section 5.6 are more
 suitable for general use. Note, however, that a malicious signaling
 service can strip off any such identity assertions, though it cannot
 forge new ones. Note that all of the third-party security mechanisms
 available (whether X.509 certificates or a third-party IdP) rely on
 the security of the third party--this is of course also true of your
 connection to the Web site itself. Users who wish to assure
 themselves of security against a malicious identity provider can only
 do so by verifing peer credentials directly, e.g., by checking the
 peer's fingerprint against a value delivered out of band.

Rescorla Expires April 25, 2013 [Page 27]

Internet-Draft RTCWEB Sec. Arch. October 2012

5.7.2. Privacy

 The requirements in this document are intended to allow:

 o Users to participate in calls without revealing their location.
 o Potential callees to avoid revealing their location and even
 presence status prior to agreeing to answer a call.

 However, these privacy protections come at a performance cost in
 terms of using TURN relays and, in the latter case, delaying ICE.
 Sites SHOULD make users aware of these tradeoffs.

 Note that the protections provided here assume a non-malicious
 calling service. As the calling service always knows the users
 status and (absent the use of a technology like Tor) their IP
 address, they can violate the users privacy at will. Users who wish
 privacy against the calling sites they are using must use separate
 privacy enhancing technologies such as Tor. Combined RTCWEB/Tor
 implementations SHOULD arrange to route the media as well as the
 signaling through Tor. [Currently this will produce very suboptimal
 performance.]

5.7.3. Denial of Service

 The consent mechanisms described in this document are intended to
 mitigate denial of service attacks in which an attacker uses clients
 to send large amounts of traffic to a victim without the consent of
 the victim. While these mechanisms are sufficient to protect victims
 who have not implemented RTCWEB at all, RTCWEB implementations need
 to be more careful.

 Consider the case of a call center which accepts calls via RTCWeb.
 An attacker proxies the call center's front-end and arranges for
 multiple clients to initiate calls to the call center. Note that
 this requires user consent in many cases but because the data channel
 does not need consent, he can use that directly. Since ICE will
 complete, browsers can then be induced to send large amounts of data
 to the victim call center if it supports the data channel at all.
 Preventing this attack requires that automated RTCWEB
 implemementations implement sensible flow control and have the
 ability to triage out (i.e., stop responding to ICE probes on) calls
 which are behaving badly, and especially to be prepared to remotely
 throttle the data channel in the absence of plausible audio and video
 (which the attacker cannot control).

 Another related attack is for the signaling service to swap the ICE
 candidates for the audio and video streams, thus forcing a browser to
 send video to the sink that the other victim expects will contain

Rescorla Expires April 25, 2013 [Page 28]

Internet-Draft RTCWEB Sec. Arch. October 2012

 audio (perhaps it is only expecting audio!) potentially causing
 overload. Muxing multiple media flows over a single transport makes
 it harder to individually suppress a single flow by denying ICE
 keepalives. Media-level (RTCP) mechanisms must be used in this case.

 Yet another attack, suggested by Magnus Westerlund, is for the
 attacker to cross-connect offers and answers as follows. It induces
 the victim to make a call and then uses its control of other users
 browsers to get them to attempt a call to someone. It then
 translates their offers into apparent answers to the victim, which
 looks like large-scale parallel forking. The victim still responds
 to ICE responses and now the browsers all try to send media to the
 victim. [[OPEN ISSUE: How do we address this?]]

 [TODO: Should we have a mechanism for verifying total expected
 bandwidth]

 Note that attacks based on confusing one end or the other about
 consent are possible primarily even in the face of the third-party
 identity mechanism as long as major parts of the signaling messages
 are not signed. On the other hand, signing the entire message
 severely restricts the capabilities of the calling application, so
 there are difficult tradeoffs here.

5.7.4. IdP Authentication Mechanism

 This mechanism relies for its security on the IdP and on the
 PeerConnection correctly enforcing the security invariants described
 above. At a high level, the IdP is attesting that the user
 identified in the assertion wishes to be associated with the
 assertion. Thus, it must not be possible for arbitrary third parties
 to get assertions tied to a user or to produce assertions that RPs
 will accept.

5.7.4.1. PeerConnection Origin Check

 Fundamentally, the IdP proxy is just a piece of HTML and JS loaded by
 the browser, so nothing stops a Web attacker o from creating their
 own IFRAME, loading the IdP proxy HTML/JS, and requesting a
 signature. In order to prevent this attack, we require that all
 signatures be tied to a specific origin ("rtcweb://...") which cannot
 be produced by a page tied to a Web attacker. Thus, while an
 attacker can instantiate the IdP proxy, they cannot send messages
 from an appropriate origin and so cannot create acceptable
 assertions. [[OPEN ISSUE: Where is this enforced?]]

Rescorla Expires April 25, 2013 [Page 29]

Internet-Draft RTCWEB Sec. Arch. October 2012

5.7.4.2. IdP Well-known URI

 As described in Section 5.6.4.2.1 the IdP proxy HTML/JS landing page
 is located at a well-known URI based on the IdP's domain name. This
 requirement prevents an attacker who can write some resources at the
 IdP (e.g., on one's Facebook wall) from being able to impersonate the
 IdP.

5.7.4.3. Privacy of IdP-generated identities and the hosting site

 Depending on the structure of the IdP's assertions, the calling site
 may learn the user's identity from the perspective of the IdP. In
 many cases this is not an issue because the user is authenticating to
 the site via the IdP in any case, for instance when the user has
 logged in with Facebook Connect and is then authenticating their call
 with a Facebook identity. However, in other case, the user may not
 have already revealed their identity to the site. In general, IdPs
 SHOULD either verify that the user is willing to have their identity
 revealed to the site (e.g., through the usual IdP permissions dialog)
 or arrange that the identity information is only available to known
 RPs (e.g., social graph adjacencies) but not to the calling site.
 The "origin" field of the signature request can be used to check that
 the user has agreed to disclose their identity to the calling site;
 because it is supplied by the PeerConnection it can be trusted to be
 correct.

5.7.4.4. Security of Third-Party IdPs

 As discussed above, each third-party IdP represents a new universal
 trust point and therefore the number of these IdPs needs to be quite
 limited. Most IdPs, even those which issue unqualified identities
 such as Facebook, can be recast as authoritative IdPs (e.g.,
 123456@facebook.com). However, in such cases, the user interface
 implications are not entirely desirable. One intermediate approach
 is to have special (potentially user configurable) UI for large
 authoritative IdPs, thus allowing the user to instantly grasp that
 the call is being authenticated by Facebook, Google, etc.

5.7.4.5. Web Security Feature Interactions

 A number of optional Web security features have the potential to
 cause issues for this mechanism, as discussed below.

5.7.4.5.1. Popup Blocking

 If the user is not already logged into the IdP, the IdP proxy may
 need to pop up a top level window in order to prompt the user for
 their authentication information (it is bad practice to do this in an

Rescorla Expires April 25, 2013 [Page 30]

Internet-Draft RTCWEB Sec. Arch. October 2012

 IFRAME inside the window because then users have no way to determine
 the destination for their password). If the user's browser is
 configured to prevent popups, this may fail (depending on the exact
 algorithm that the popup blocker uses to suppress popups). It may be
 necessary to provide a standardized mechanism to allow the IdP proxy
 to request popping of a login window. Note that care must be taken
 here to avoid PeerConnection becoming a general escape hatch from
 popup blocking. One possibility would be to only allow popups when
 the user has explicitly registered a given IdP as one of theirs (this
 is only relevant at the AP side in any case). This is what
 WebIntents does, and the problem would go away if WebIntents is used.

5.7.4.5.2. Third Party Cookies

 Some browsers allow users to block third party cookies (cookies
 associated with origins other than the top level page) for privacy
 reasons. Any IdP which uses cookies to persist logins will be broken
 by third-party cookie blocking. One option is to accept this as a
 limitation; another is to have the PeerConnection object disable
 third-party cookie blocking for the IdP proxy.

6. Acknowledgements

 Bernard Aboba, Harald Alvestrand, Dan Druta, Cullen Jennings, Hadriel
 Kaplan, Matthew Kaufman, Jim McEachern, Martin Thomson, Magnus
 Westerland.

7. Changes since -03

 The following changes have been made since the -02 draft.

 o Editorial changes

8. Changes since -02

 The following changes have been made since the -02 draft.

 o Forbid persistent HTTP permissions.
 o Clarified the text in S 5.4 to clearly refer to requirements on
 the API to provide functionality to the site.
 o Fold in the IETF portion of draft-rescorla-rtcweb-generic-idp

9. References

https://datatracker.ietf.org/doc/html/draft-rescorla-rtcweb-generic-idp

Rescorla Expires April 25, 2013 [Page 31]

Internet-Draft RTCWEB Sec. Arch. October 2012

9.1. Normative References

 [I-D.ietf-rtcweb-security]
 Rescorla, E., "Security Considerations for RTC-Web",

draft-ietf-rtcweb-security-03 (work in progress),
 June 2012.

 [I-D.muthu-behave-consent-freshness]
 Perumal, M., Wing, D., and H. Kaplan, "STUN Usage for
 Consent Freshness and Session Liveness",

draft-muthu-behave-consent-freshness-01 (work in
 progress), July 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, May 2010.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764, May 2010.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

9.2. Informative References

 [I-D.ietf-rtcweb-jsep]
 Uberti, J. and C. Jennings, "Javascript Session
 Establishment Protocol", draft-ietf-rtcweb-jsep-01 (work
 in progress), June 2012.

https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-security-03
https://datatracker.ietf.org/doc/html/draft-muthu-behave-consent-freshness-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-jsep-01

Rescorla Expires April 25, 2013 [Page 32]

Internet-Draft RTCWEB Sec. Arch. October 2012

 [I-D.jennings-rtcweb-signaling]
 Jennings, C., Rosenberg, J., and R. Jesup, "RTCWeb Offer/
 Answer Protocol (ROAP)",

draft-jennings-rtcweb-signaling-01 (work in progress),
 October 2011.

 [I-D.kaufman-rtcweb-security-ui]
 Kaufman, M., "Client Security User Interface Requirements
 for RTCWEB", draft-kaufman-rtcweb-security-ui-00 (work in
 progress), June 2011.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

 [XmlHttpRequest]
 van Kesteren, A., "XMLHttpRequest Level 2".

Appendix A. Example IdP Bindings to Specific Protocols

 This section provides some examples of how the mechanisms described
 in this document could be used with existing authentication protocols
 such as BrowserID or OAuth. Note that this does not require browser-
 level support for either protocol. Rather, the protocols can be fit
 into the generic framework. (Though BrowserID in particular works
 better with some client side support).

A.1. BrowserID

 BrowserID [https://browserid.org/] is a technology which allows a
 user with a verified email address to generate an assertion
 (authenticated by their identity provider) attesting to their
 identity (phrased as an email address). The way that this is used in
 practice is that the relying party embeds JS in their site which
 talks to the BrowserID code (either hosted on a trusted intermediary
 or embedded in the browser). That code generates the assertion which
 is passed back to the relying party for verification. The assertion
 can be verified directly or with a Web service provided by the
 identity provider. It's relatively easy to extend this functionality
 to authenticate RTCWEB calls, as shown below.

https://datatracker.ietf.org/doc/html/draft-jennings-rtcweb-signaling-01
https://datatracker.ietf.org/doc/html/draft-kaufman-rtcweb-security-ui-00
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc6455

Rescorla Expires April 25, 2013 [Page 33]

Internet-Draft RTCWEB Sec. Arch. October 2012

 +----------------------+ +----------------------+
Alice's Browser		Bob's Browser				
	OFFER ------------>					
Calling JS Code		Calling JS Code				
^		^				
v		v				
PeerConnection		PeerConnection				
	^			^		
Finger		Signed		Signed		
print		Finger		Finger		"Alice"
		print		print		
v			v			
+--------------+		+---------------+				
	IdP Proxy				IdP Proxy	
	to				to	
	BrowserID				BrowserID	
	Signer				Verifier	
+--------------+		+---------------+				
^		^				
 +-----------|----------+ +----------|-----------+
 | |
 | Get certificate |
 v | Check
 +----------------------+ | certificate
 | | |
 | Identity |/-------------------------------+
 | Provider |
 | |
 +----------------------+

 The way this mechanism works is as follows. On Alice's side, Alice
 goes to initiate a call.

 1. The calling JS instantiates a PeerConnection and tells it that it
 is interested in having it authenticated via BrowserID (i.e., it
 provides "browserid.org" as the IdP name.)
 2. The PeerConnection instantiates the BrowserID signer in the IdP
 proxy
 3. The BrowserID signer contacts Alice's identity provider,
 authenticating as Alice (likely via a cookie).
 4. The identity provider returns a short-term certificate attesting
 to Alice's identity and her short-term public key.
 5. The Browser-ID code signs the fingerprint and returns the signed
 assertion + certificate to the PeerConnection.

Rescorla Expires April 25, 2013 [Page 34]

Internet-Draft RTCWEB Sec. Arch. October 2012

 6. The PeerConnection returns the signed information to the calling
 JS code.
 7. The signed assertion gets sent over the wire to Bob's browser
 (via the signaling service) as part of the call setup.

 Obviously, the format of the signed assertion varies depending on
 what signaling style the WG ultimately adopts. However, for
 concreteness, if something like ROAP were adopted, then the entire
 message might look like:

 {
 "messageType":"OFFER",
 "callerSessionId":"13456789ABCDEF",
 "seq": 1
 "sdp":"
 v=0\n
 o=- 2890844526 2890842807 IN IP4 192.0.2.1\n
 s= \n
 c=IN IP4 192.0.2.1\n
 t=2873397496 2873404696\n
 m=audio 49170 RTP/AVP 0\n
 a=fingerprint: SHA-1 \
 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB\n",
 "identity":{
 "idp":{ // Standardized
 "domain":"browserid.org",
 "method":"default"
 },
 "assertion": // Contents are browserid-specific
 "\"assertion\": {
 \"digest\":\"<hash of the contents from the browser>\",
 \"audience\": \"[TBD]\"
 \"valid-until\": 1308859352261,
 },
 \"certificate\": {
 \"email\": \"rescorla@example.org\",
 \"public-key\": \"<ekrs-public-key>\",
 \"valid-until\": 1308860561861,
 }" // certificate is signed by example.org
 }
 }

 Note that while the IdP here is specified as "browserid.org", the
 actual certificate is signed by example.org. This is because
 BrowserID is a combined authoritative/third-party system in which
 browserid.org delegates the right to be authoritative (what BrowserID
 calls primary) to individual domains.

Rescorla Expires April 25, 2013 [Page 35]

Internet-Draft RTCWEB Sec. Arch. October 2012

 On Bob's side, he receives the signed assertion as part of the call
 setup message and a similar procedure happens to verify it.

 1. The calling JS instantiates a PeerConnection and provides it the
 relevant signaling information, including the signed assertion.
 2. The PeerConnection instantiates the IdP proxy which examines the
 IdP name and brings up the BrowserID verification code.
 3. The BrowserID verifier contacts the identity provider to verify
 the certificate and then uses the key to verify the signed
 fingerprint.
 4. Alice's verified identity is returned to the PeerConnection (it
 already has the fingerprint).
 5. At this point, Bob's browser can display a trusted UI indication
 that Alice is on the other end of the call.

 When Bob returns his answer, he follows the converse procedure, which
 provides Alice with a signed assertion of Bob's identity and keying
 material.

A.2. OAuth

 While OAuth is not directly designed for user-to-user authentication,
 with a little lateral thinking it can be made to serve. We use the
 following mapping of OAuth concepts to RTCWEB concepts:

 +----------------------+----------------------+
 | OAuth | RTCWEB |
 +----------------------+----------------------+
 | Client | Relying party |
 | Resource owner | Authenticating party |
 | Authorization server | Identity service |
 | Resource server | Identity service |
 +----------------------+----------------------+

 Table 1

 The idea here is that when Alice wants to authenticate to Bob (i.e.,
 for Bob to be aware that she is calling). In order to do this, she
 allows Bob to see a resource on the identity provider that is bound
 to the call, her identity, and her public key. Then Bob retrieves
 the resource from the identity provider, thus verifying the binding
 between Alice and the call.

Rescorla Expires April 25, 2013 [Page 36]

Internet-Draft RTCWEB Sec. Arch. October 2012

 Alice IdP Bob

 Call-Id, Fingerprint ------->
 <------------------- Auth Code
 Auth Code -->
 <----- Get Token + Auth Code
 Token --------------------->
 <------------- Get call-info
 Call-Id, Fingerprint ------>

 This is a modified version of a common OAuth flow, but omits the
 redirects required to have the client point the resource owner to the
 IdP, which is acting as both the resource server and the
 authorization server, since Alice already has a handle to the IdP.

 Above, we have referred to "Alice", but really what we mean is the
 PeerConnection. Specifically, the PeerConnection will instantiate an
 IFRAME with JS from the IdP and will use that IFRAME to communicate
 with the IdP, authenticating with Alice's identity (e.g., cookie).
 Similarly, Bob's PeerConnection instantiates an IFRAME to talk to the
 IdP.

Author's Address

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Phone: +1 650 678 2350
 Email: ekr@rtfm.com

Rescorla Expires April 25, 2013 [Page 37]

