
Routing Area Working Group G. Enyedi, Ed.
Internet-Draft A. Csaszar
Intended status: Standards Track Ericsson
Expires: January 3, 2016 A. Atlas, Ed.
 C. Bowers
 Juniper Networks
 A. Gopalan
 University of Arizona
 July 2, 2015

Algorithms for computing Maximally Redundant Trees for IP/LDP Fast-
Reroute

draft-ietf-rtgwg-mrt-frr-algorithm-05

Abstract

 A complete solution for IP and LDP Fast-Reroute using Maximally
 Redundant Trees is presented in [I-D.ietf-rtgwg-mrt-frr-
 architecture]. This document defines the associated MRT Lowpoint
 algorithm that is used in the default MRT profile to compute both the
 necessary Maximally Redundant Trees with their associated next-hops
 and the alternates to select for MRT-FRR.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Enyedi, et al. Expires January 3, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft MRT FRR Algorithm July 2015

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements Language . 5
3. Terminology and Definitions 5
4. Algorithm Key Concepts 7
4.1. Partial Ordering for Disjoint Paths 7
4.2. Finding an Ear and the Correct Direction 9
4.3. Low-Point Values and Their Uses 11
4.4. Blocks in a Graph . 15
4.5. Determining Local-Root and Assigning Block-ID 17

5. Algorithm Sections . 19
5.1. Interface Ordering 19
5.2. MRT Island Identification 22
5.3. GADAG Root Selection 23
5.4. Initialization . 23

 5.5. MRT Lowpoint Algorithm: Computing GADAG using lowpoint
 inheritance . 24

5.6. Augmenting the GADAG by directing all links 26
5.7. Compute MRT next-hops 30

 5.7.1. MRT next-hops to all nodes partially ordered with
 respect to the computing node 30
 5.7.2. MRT next-hops to all nodes not partially ordered with
 respect to the computing node 31
 5.7.3. Computing Redundant Tree next-hops in a 2-connected
 Graph . 32

5.7.4. Generalizing for a graph that isn't 2-connected . . . 34
5.7.5. Complete Algorithm to Compute MRT Next-Hops 35

5.8. Identify MRT alternates 37
5.9. Finding FRR Next-Hops for Proxy-Nodes 42

6. MRT Lowpoint Algorithm: Next-hop conformance 45
7. Python Implementation of MRT Lowpoint Algorithm 45
8. Algorithm Alternatives and Evaluation 66
8.1. Algorithm Evaluation 66

9. Implementation Status . 76
10. Algorithm Work to Be Done 76
11. Acknowledgements . 76
12. IANA Considerations . 76
13. Security Considerations 76
14. References . 76

http://trustee.ietf.org/license-info

Enyedi, et al. Expires January 3, 2016 [Page 2]

Internet-Draft MRT FRR Algorithm July 2015

14.1. Normative References 76
14.2. Informative References 77

Appendix A. Option 2: Computing GADAG using SPFs 79
Appendix B. Option 3: Computing GADAG using a hybrid method . . 84

 Authors' Addresses . 86

1. Introduction

 MRT Fast-Reroute requires that packets can be forwarded not only on
 the shortest-path tree, but also on two Maximally Redundant Trees
 (MRTs), referred to as the MRT-Blue and the MRT-Red. A router which
 experiences a local failure must also have pre-determined which
 alternate to use. This document defines how to compute these three
 things for use in MRT-FRR and describes the algorithm design
 decisions and rationale. The algorithm is based on those presented
 in [MRTLinear] and expanded in [EnyediThesis]. The MRT Lowpoint
 algorithm is required for implementation when the default MRT profile
 is implemented.

 Just as packets routed on a hop-by-hop basis require that each router
 compute a shortest-path tree which is consistent, it is necessary for
 each router to compute the MRT-Blue next-hops and MRT-Red next-hops
 in a consistent fashion. This document defines the MRT Lowpoint
 algorithm to be used as a standard in the default MRT profile for
 MRT-FRR.

 As now, a router's FIB will contain primary next-hops for the current
 shortest-path tree for forwarding traffic. In addition, a router's
 FIB will contain primary next-hops for the MRT-Blue for forwarding
 received traffic on the MRT-Blue and primary next-hops for the MRT-
 Red for forwarding received traffic on the MRT-Red.

 What alternate next-hops a point-of-local-repair (PLR) selects need
 not be consistent - but loops must be prevented. To reduce
 congestion, it is possible for multiple alternate next-hops to be
 selected; in the context of MRT alternates, each of those alternate
 next-hops would be equal-cost paths.

 This document defines an algorithm for selecting an appropriate MRT
 alternate for consideration. Other alternates, e.g. LFAs that are
 downstream paths, may be prefered when available and that policy-
 based alternate selection process[I-D.ietf-rtgwg-lfa-manageability]
 is not captured in this document.

Enyedi, et al. Expires January 3, 2016 [Page 3]

Internet-Draft MRT FRR Algorithm July 2015

 [E]---[D]---| [E]<--[D]<--| [E]-->[D]
 | | | | ^ | |
 | | | V | | V
 [R] [F] [C] [R] [F] [C] [R] [F] [C]
 | | | ^ ^ | |
 | | | | | V |
 [A]---[B]---| [A]-->[B] [A]---[B]<--|

 (a) (b) (c)
 a 2-connected graph MRT-Blue towards R MRT-Red towards R

 Figure 1

 Algorithms for computing MRTs can handle arbitrary network topologies
 where the whole network graph is not 2-connected, as in Figure 2, as
 well as the easier case where the network graph is 2-connected
 (Figure 1). Each MRT is a spanning tree. The pair of MRTs provide
 two paths from every node X to the root of the MRTs. Those paths
 share the minimum number of nodes and the minimum number of links.
 Each such shared node is a cut-vertex. Any shared links are cut-
 links.

 [E]---[D]---| |---[J]
 | | | | |
 | | | | |
 [R] [F] [C]---[G] |
 | | | | |
 | | | | |
 [A]---[B]---| |---[H]

 (a) a graph that isn't 2-connected

 [E]<--[D]<--| [J] [E]-->[D]---| |---[J]
 | ^ | | | | | ^
 V | | | V V V |
 [R] [F] [C]<--[G] | [R] [F] [C]<--[G] |
 ^ ^ ^ | ^ | | |
 | | | V | V | |
 [A]-->[B]---| |---[H] [A]<--[B]<--| [H]

 (b) MRT-Blue towards R (c) MRT-Red towards R

 Figure 2

Enyedi, et al. Expires January 3, 2016 [Page 4]

Internet-Draft MRT FRR Algorithm July 2015

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]

3. Terminology and Definitions

 network graph: A graph that reflects the network topology where all
 links connect exactly two nodes and broadcast links have been
 transformed into a pseudo-node representation (e.g. in OSPF,
 viewing a Network LSA as representing a pseudo-noe).

 Redundant Trees (RT): A pair of trees where the path from any node X
 to the root R on the first tree is node-disjoint with the path
 from the same node X to the root along the second tree. These can
 be computed in 2-connected graphs.

 Maximally Redundant Trees (MRT): A pair of trees where the path
 from any node X to the root R along the first tree and the path
 from the same node X to the root along the second tree share the
 minimum number of nodes and the minimum number of links. Each
 such shared node is a cut-vertex. Any shared links are cut-links.
 Any RT is an MRT but many MRTs are not RTs.

 MRT Island: From the computing router, the set of routers that
 support a particular MRT profile and are connected.

 MRT-Red: MRT-Red is used to describe one of the two MRTs; it is
 used to describe the associated forwarding topology and MT-ID.
 Specifically, MRT-Red is the decreasing MRT where links in the
 GADAG are taken in the direction from a higher topologically
 ordered node to a lower one.

 MRT-Blue: MRT-Blue is used to describe one of the two MRTs; it is
 used to describe the associated forwarding topology and MT-ID.
 Specifically, MRT-Blue is the increasing MRT where links in the
 GADAG are taken in the direction from a lower topologically
 ordered node to a higher one.

 cut-vertex: A vertex whose removal partitions the network.

 cut-link: A link whose removal partitions the network. A cut-link
 by definition must be connected between two cut-vertices. If
 there are multiple parallel links, then they are referred to as
 cut-links in this document if removing the set of parallel links
 would partition the network.

https://datatracker.ietf.org/doc/html/rfc2119

Enyedi, et al. Expires January 3, 2016 [Page 5]

Internet-Draft MRT FRR Algorithm July 2015

 2-connected: A graph that has no cut-vertices. This is a graph
 that requires two nodes to be removed before the network is
 partitioned.

 spanning tree: A tree containing links that connects all nodes in
 the network graph.

 back-edge: In the context of a spanning tree computed via a depth-
 first search, a back-edge is a link that connects a descendant of
 a node x with an ancestor of x.

 2-connected cluster: A maximal set of nodes that are 2-connected.
 In a network graph with at least one cut-vertex, there will be
 multiple 2-connected clusters.

 block: Either a 2-connected cluster, a cut-link, or an isolated
 vertex.

 DAG: Directed Acyclic Graph - a digraph containing no directed
 cycle.

 ADAG: Almost Directed Acyclic Graph - a digraph that can be
 transformed into a DAG with removing a single node (the root
 node).

 partial ADAG: A subset of an ADAG that doesn't yet contain all the
 nodes in the block. A partial ADAG is created during the MRT
 algorithm and then expanded until all nodes in the block are
 included and it is an ADAG.

 GADAG: Generalized ADAG - a digraph, which has only ADAGs as all of
 its blocks. The root of such a block is the node closest to the
 global root (e.g. with uniform link costs).

 DFS: Depth-First Search

 DFS ancestor: A node n is a DFS ancestor of x if n is on the DFS-
 tree path from the DFS root to x.

 DFS descendant: A node n is a DFS descendant of x if x is on the
 DFS-tree path from the DFS root to n.

 ear: A path along not-yet-included-in-the-GADAG nodes that starts
 at a node that is already-included-in-the-GADAG and that ends at a
 node that is already-included-in-the-GADAG. The starting and
 ending nodes may be the same node if it is a cut-vertex.

Enyedi, et al. Expires January 3, 2016 [Page 6]

Internet-Draft MRT FRR Algorithm July 2015

 X >> Y or Y << X: Indicates the relationship between X and Y in a
 partial order, such as found in a GADAG. X >> Y means that X is
 higher in the partial order than Y. Y << X means that Y is lower
 in the partial order than X.

 X > Y or Y < X: Indicates the relationship between X and Y in the
 total order, such as found via a topological sort. X > Y means
 that X is higher in the total order than Y. Y < X means that Y is
 lower in the total order than X.

 proxy-node: A node added to the network graph to represent a multi-
 homed prefix or routers outside the local MRT-fast-reroute-
 supporting island of routers. The key property of proxy-nodes is
 that traffic cannot transit them.

 UNDIRECTED: In the GADAG, each link is marked as OUTGOING, INCOMING
 or both. Until the directionality of the link is determined, the
 link is marked as UNDIRECTED to indicate that its direction hasn't
 been determined.

 OUTGOING: A link marked as OUTGOING has direction in the GADAG from
 the interface's router to the remote end.

 INCOMING: A link marked as INCOMING has direction in the GADAG from
 the remote end to the interface's router.

4. Algorithm Key Concepts

 There are five key concepts that are critical for understanding the
 MRT Lowpoint algorithm and other algorithms for computing MRTs. The
 first is the idea of partially ordering the nodes in a network graph
 with regard to each other and to the GADAG root. The second is the
 idea of finding an ear of nodes and adding them in the correct
 direction. The third is the idea of a Low-Point value and how it can
 be used to identify cut-vertices and to find a second path towards
 the root. The fourth is the idea that a non-2-connected graph is
 made up of blocks, where a block is a 2-connected cluster, a cut-link
 or an isolated node. The fifth is the idea of a local-root for each
 node; this is used to compute ADAGs in each block.

4.1. Partial Ordering for Disjoint Paths

 Given any two nodes X and Y in a graph, a particular total order
 means that either X < Y or X > Y in that total order. An example
 would be a graph where the nodes are ranked based upon their unique
 IP loopback addresses. In a partial order, there may be some nodes
 for which it can't be determined whether X << Y or X >> Y. A partial
 order can be captured in a directed graph, as shown in Figure 3. In

Enyedi, et al. Expires January 3, 2016 [Page 7]

Internet-Draft MRT FRR Algorithm July 2015

 a graphical representation, a link directed from X to Y indicates
 that X is a neighbor of Y in the network graph and X << Y.

 [A]<---[R] [E] R << A << B << C << D << E
 | ^ R << A << B << F << G << H << D << E
 | |
 V | Unspecified Relationships:
 [B]--->[C]--->[D] C and F
 | ^ C and G
 | | C and H
 V |
 [F]--->[G]--->[H]

 Figure 3: Directed Graph showing a Partial Order

 To compute MRTs, the root of the MRTs is at both the very bottom and
 the very top of the partial ordering. This means that from any node
 X, one can pick nodes higher in the order until the root is reached.
 Similarly, from any node X, one can pick nodes lower in the order
 until the root is reached. For instance, in Figure 4, from G the
 higher nodes picked can be traced by following the directed links and
 are H, D, E and R. Similarly, from G the lower nodes picked can be
 traced by reversing the directed links and are F, B, A, and R. A
 graph that represents this modified partial order is no longer a DAG;
 it is termed an Almost DAG (ADAG) because if the links directed to
 the root were removed, it would be a DAG.

 [A]<---[R]<---[E] R << A << B << C << R
 | ^ ^ R << A << B << C << D << E << R
 | | | R << A << B << F << G << H << D << E << R
 V | |
 [B]--->[C]--->[D] Unspecified Relationships:
 | ^ C and F
 | | C and G
 V | C and H
 [F]--->[G]--->[H]

 Figure 4: ADAG showing a Partial Order with R lowest and highest

 Most importantly, if a node Y >> X, then Y can only appear on the
 increasing path from X to the root and never on the decreasing path.
 Similarly, if a node Z << X, then Z can only appear on the decreasing
 path from X to the root and never on the inceasing path.

Enyedi, et al. Expires January 3, 2016 [Page 8]

Internet-Draft MRT FRR Algorithm July 2015

 When following the increasing paths, it is possible to pick multiple
 higher nodes and still have the certainty that those paths will be
 disjoint from the decreasing paths. E.g. in the previous example
 node B has multiple possibilities to forward packets along an
 increasing path: it can either forward packets to C or F.

4.2. Finding an Ear and the Correct Direction

 For simplicity, the basic idea of creating a GADAG by adding ears is
 described assuming that the network graph is a single 2-connected
 cluster so that an ADAG is sufficient. Generalizing to multiple
 blocks is done by considering the block-roots instead of the GADAG
 root - and the actual algorithm is given in Section 5.5.

 In order to understand the basic idea of finding an ADAG, first
 suppose that we have already a partial ADAG, which doesn't contain
 all the nodes in the block yet, and we want to extend it to cover all
 the nodes. Suppose that we find a path from a node X to Y such that
 X and Y are already contained by our partial ADAG, but all the
 remaining nodes along the path are not added to the ADAG yet. We
 refer to such a path as an ear.

 Recall that our ADAG is closely related to a partial order. More
 precisely, if we remove root R, the remaining DAG describes a partial
 order of the nodes. If we suppose that neither X nor Y is the root,
 we may be able to compare them. If one of them is definitely lesser
 with respect to our partial order (say X<<Y), we can add the new path
 to the ADAG in a direction from X to Y. As an example consider
 Figure 5.

 E---D---| E<--D---| E<--D<--|
 | | | | ^ | | ^ |
 | | | V | | V | |
 R F C R F C R F C
 | | | | ^ | | ^ ^
 | | | V | | V | |
 A---B---| A-->B---| A-->B---|

 (a) (b) (c)

 (a) A 2-connected graph
 (b) Partial ADAG (C is not included)
 (c) Resulting ADAG after adding path (or ear) B-C-D

 Figure 5

 In this partial ADAG, node C is not yet included. However, we can
 find path B-C-D, where both endpoints are contained by this partial

Enyedi, et al. Expires January 3, 2016 [Page 9]

Internet-Draft MRT FRR Algorithm July 2015

 ADAG (we say those nodes are "ready" in the following text), and the
 remaining node (node C) is not contained yet. If we remove R, the
 remaining DAG defines a partial order, and with respect to this
 partial order we can say that B<<D, so we can add the path to the
 ADAG in the direction from B to D (arcs B->C and C->D are added). If
 B >> D, we would add the same path in reverse direction.

 If in the partial order where an ear's two ends are X and Y, X << Y,
 then there must already be a directed path from X to Y in the ADAG.
 The ear must be added in a direction such that it doesn't create a
 cycle; therefore the ear must go from X to Y.

 In the case, when X and Y are not ordered with each other, we can
 select either direction for the ear. We have no restriction since
 neither of the directions can result in a cycle. In the corner case
 when one of the endpoints of an ear, say X, is the root (recall that
 the two endpoints must be different), we could use both directions
 again for the ear because the root can be considered both as smaller
 and as greater than Y. However, we strictly pick that direction in
 which the root is lower than Y. The logic for this decision is
 explained in Section 5.7

 A partial ADAG is started by finding a cycle from the root R back to
 itself. This can be done by selecting a non-ready neighbor N of R
 and then finding a path from N to R that doesn't use any links
 between R and N. The direction of the cycle can be assigned either
 way since it is starting the ordering.

 Once a partial ADAG is already present, it will always have a node
 that is not the root R in it. As a brief proof that a partial ADAG
 can always have ears added to it: just select a non-ready neighbor N
 of a ready node Q, such that Q is not the root R, find a path from N
 to the root R in the graph with Q removed. This path is an ear where
 the first node of the ear is Q, the next is N, then the path until
 the first ready node the path reached (that ready node is the other
 endpoint of the path). Since the graph is 2-connected, there must be
 a path from N to R without Q.

 It is always possible to select a non-ready neighbor N of a ready
 node Q so that Q is not the root R. Because the network is
 2-connected, N must be connected to two different nodes and only one
 can be R. Because the initial cycle has already been added to the
 ADAG, there are ready nodes that are not R. Since the graph is
 2-connected, while there are non-ready nodes, there must be a non-
 ready neighbor N of a ready node that is not R.

Enyedi, et al. Expires January 3, 2016 [Page 10]

Internet-Draft MRT FRR Algorithm July 2015

 Generic_Find_Ears_ADAG(root)
 Create an empty ADAG. Add root to the ADAG.
 Mark root as IN_GADAG.
 Select an arbitrary cycle containing root.
 Add the arbitrary cycle to the ADAG.
 Mark cycle's nodes as IN_GADAG.
 Add cycle's non-root nodes to process_list.
 while there exists connected nodes in graph that are not IN_GADAG
 Select a new ear. Let its endpoints be X and Y.
 if Y is root or (Y << X)
 add the ear towards X to the ADAG
 else // (a) X is root or (b)X << Y or (c) X, Y not ordered
 Add the ear towards Y to the ADAG

 Figure 6: Generic Algorithm to find ears and their direction in
 2-connected graph

 Algorithm Figure 6 merely requires that a cycle or ear be selected
 without specifying how. Regardless of the way of selecting the path,
 we will get an ADAG. The method used for finding and selecting the
 ears is important; shorter ears result in shorter paths along the
 MRTs. The MRT Lowpoint algorithm's method using Low-Point
 Inheritance is defined in Section 5.5. Other methods are described
 in the Appendices (Appendix A and Appendix B).

 As an example, consider Figure 5 again. First, we select the
 shortest cycle containing R, which can be R-A-B-F-D-E (uniform link
 costs were assumed), so we get to the situation depicted in Figure 5
 (b). Finally, we find a node next to a ready node; that must be node
 C and assume we reached it from ready node B. We search a path from
 C to R without B in the original graph. The first ready node along
 this is node D, so the open ear is B-C-D. Since B<<D, we add arc
 B->C and C->D to the ADAG. Since all the nodes are ready, we stop at
 this point.

4.3. Low-Point Values and Their Uses

 A basic way of computing a spanning tree on a network graph is to run
 a depth-first-search, such as given in Figure 7. This tree has the
 important property that if there is a link (x, n), then either n is a
 DFS ancestor of x or n is a DFS descendant of x. In other words,
 either n is on the path from the root to x or x is on the path from
 the root to n.

Enyedi, et al. Expires January 3, 2016 [Page 11]

Internet-Draft MRT FRR Algorithm July 2015

 global_variable: dfs_number

 DFS_Visit(node x, node parent)
 D(x) = dfs_number
 dfs_number += 1
 x.dfs_parent = parent
 for each link (x, w)
 if D(w) is not set
 DFS_Visit(w, x)

 Run_DFS(node gadag_root)
 dfs_number = 0
 DFS_Visit(gadag_root, NONE)

 Figure 7: Basic Depth-First Search algorithm

 Given a node x, one can compute the minimal DFS number of the
 neighbours of x, i.e. min(D(w) if (x,w) is a link). This gives the
 earliest attachment point neighbouring x. What is interesting,
 though, is what is the earliest attachment point from x and x's
 descendants. This is what is determined by computing the Low-Point
 value.

 In order to compute the low point value, the network is traversed
 using DFS and the vertices are numbered based on the DFS walk. Let
 this number be represented as DFS(x). All the edges that lead to
 already visited nodes during DFS walk are back-edges. The back-edges
 are important because they give information about reachability of a
 node via another path.

 The low point number is calculated by finding:

 Low(x) = Minimum of ((DFS(x),
 Lowest DFS(n, x->n is a back-edge),
 Lowest Low(n, x->n is tree edge in DFS walk)).

 A detailed algorithm for computing the low-point value is given in
 Figure 8. Figure 9 illustrates how the lowpoint algorithm applies to
 a example graph.

Enyedi, et al. Expires January 3, 2016 [Page 12]

Internet-Draft MRT FRR Algorithm July 2015

 global_variable: dfs_number

 Lowpoint_Visit(node x, node parent, interface p_to_x)
 D(x) = dfs_number
 L(x) = D(x)
 dfs_number += 1
 x.dfs_parent = parent
 x.dfs_parent_intf = p_to_x.remote_intf
 x.lowpoint_parent = NONE
 for each ordered_interface intf of x
 if D(intf.remote_node) is not set
 Lowpoint_Visit(intf.remote_node, x, intf)
 if L(intf.remote_node) < L(x)
 L(x) = L(intf.remote_node)
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf
 else if intf.remote_node is not parent
 if D(intf.remote_node) < L(x)
 L(x) = D(intf.remote_node)
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf

 Run_Lowpoint(node gadag_root)
 dfs_number = 0
 Lowpoint_Visit(gadag_root, NONE, NONE)

 Figure 8: Computing Low-Point value

Enyedi, et al. Expires January 3, 2016 [Page 13]

Internet-Draft MRT FRR Algorithm July 2015

 [E]---| [J]-------[I] [P]---[O]
 | | | | | |
 | | | | | |
 [R] [D]---[C]--[F] [H]---[K] [N]
 | | | | | |
 | | | | | |
 [A]--------[B] [G]---| [L]---[M]

 (a) a non-2-connected graph

 [E]----| [J]---------[I] [P]------[O]
 (5,) | (10,) (9,) (16,) (15,)
 | | | | | |
 | | | | | |
 [R] [D]---[C]---[F] [H]----[K] [N]
 (0,) (4,) (3,) (6,) (8,) (11,) (14,)
 | | | | | |
 | | | | | |
 [A]---------[B] [G]----| [L]------[M]
 (1,) (2,) (7,) (12,) (13,)

 (b) with DFS values assigned (D(x), L(x))

 [E]----| [J]---------[I] [P]------[O]
 (5,0) | (10,3) (9,3) (16,11) (15,11)
 | | | | | |
 | | | | | |
 [R] [D]---[C]---[F] [H]----[K] [N]
 (0,0) (4,0) (3,0) (6,3) (8,3) (11,11) (14,11)
 | | | | | |
 | | | | | |
 [A]---------[B] [G]----| [L]------[M]
 (1,0) (2,0) (7,3) (12,11) (13,11)

 (c) with low-point values assigned (D(x), L(x))

 Figure 9: Example lowpoint value computation

 From the low-point value and lowpoint parent, there are three very
 useful things which motivate our computation.

 First, if there is a child c of x such that L(c) >= D(x), then there
 are no paths in the network graph that go from c or its descendants
 to an ancestor of x - and therefore x is a cut-vertex. In Figure 9,
 this can be seen by looking at the DFS children of C. C has two
 children - D and F and L(F) = 3 = D(C) so it is clear that C is a
 cut-vertex and F is in a block where C is the block's root. L(D) = 0

Enyedi, et al. Expires January 3, 2016 [Page 14]

Internet-Draft MRT FRR Algorithm July 2015

 < 3 = D(C) so D has a path to the ancestors of C; in this case, D can
 go via E to reach R. Comparing the low-point values of all a node's
 DFS-children with the node's DFS-value is very useful because it
 allows identification of the cut-vertices and thus the blocks.

 Second, by repeatedly following the path given by lowpoint_parent,
 there is a path from x back to an ancestor of x that does not use the
 link [x, x.dfs_parent] in either direction. The full path need not
 be taken, but this gives a way of finding an initial cycle and then
 ears.

 Third, as seen in Figure 9, even if L(x) < D(x), there may be a block
 that contains both the root and a DFS-child of a node while other
 DFS-children might be in different blocks. In this example, C's
 child D is in the same block as R while F is not. It is important to
 realize that the root of a block may also be the root of another
 block.

4.4. Blocks in a Graph

 A key idea for an MRT algorithm is that any non-2-connected graph is
 made up by blocks (e.g. 2-connected clusters, cut-links, and/or
 isolated nodes). To compute GADAGs and thus MRTs, computation is
 done in each block to compute ADAGs or Redundant Trees and then those
 ADAGs or Redundant Trees are combined into a GADAG or MRT.

Enyedi, et al. Expires January 3, 2016 [Page 15]

Internet-Draft MRT FRR Algorithm July 2015

 [E]---| [J]-------[I] [P]---[O]
 | | | | | |
 | | | | | |
 [R] [D]---[C]--[F] [H]---[K] [N]
 | | | | | |
 | | | | | |
 [A]--------[B] [G]---| [L]---[M]

 (a) A graph with four blocks that are:
 three 2-connected clusters
 and one cut-link

 [E]<--| [J]<------[I] [P]<--[O]
 | | | ^ | ^
 V | V | V |
 [R] [D]<--[C] [F] [H]<---[K] [N]
 ^ | ^ ^
 | V | |
 [A]------->[B] [G]---| [L]-->[M]

 (b) MRT-Blue for destination R

 [E]---| [J]-------->[I] [P]-->[O]
 | | |
 V V V
 [R] [D]-->[C]<---[F] [H]<---[K] [N]
 ^ | ^ | ^ |
 | V | | | V
 [A]<-------[B] [G]<--| [L]<--[M]

 (c) MRT-Red for destionation R

 Figure 10

 Consider the example depicted in Figure 10 (a). In this figure, a
 special graph is presented, showing us all the ways 2-connected
 clusters can be connected. It has four blocks: block 1 contains R,
 A, B, C, D, E, block 2 contains C, F, G, H, I, J, block 3 contains K,
 L, M, N, O, P, and block 4 is a cut-link containing H and K. As can
 be observed, the first two blocks have one common node (node C) and
 blocks 2 and 3 do not have any common node, but they are connected
 through a cut-link that is block 4. No two blocks can have more than
 one common node, since two blocks with at least two common nodes
 would qualify as a single 2-connected cluster.

Enyedi, et al. Expires January 3, 2016 [Page 16]

Internet-Draft MRT FRR Algorithm July 2015

 Moreover, observe that if we want to get from one block to another,
 we must use a cut-vertex (the cut-vertices in this graph are C, H,
 K), regardless of the path selected, so we can say that all the paths
 from block 3 along the MRTs rooted at R will cross K first. This
 observation means that if we want to find a pair of MRTs rooted at R,
 then we need to build up a pair of RTs in block 3 with K as a root.
 Similarly, we need to find another pair of RTs in block 2 with C as a
 root, and finally, we need the last pair of RTs in block 1 with R as
 a root. When all the trees are selected, we can simply combine them;
 when a block is a cut-link (as in block 4), that cut-link is added in
 the same direction to both of the trees. The resulting trees are
 depicted in Figure 10 (b) and (c).

 Similarly, to create a GADAG it is sufficient to compute ADAGs in
 each block and connect them.

 It is necessary, therefore, to identify the cut-vertices, the blocks
 and identify the appropriate local-root to use for each block.

4.5. Determining Local-Root and Assigning Block-ID

 Each node in a network graph has a local-root, which is the cut-
 vertex (or root) in the same block that is closest to the root. The
 local-root is used to determine whether two nodes share a common
 block.

 Compute_Localroot(node x, node localroot)
 x.localroot = localroot
 for each DFS child node c of x
 if L(c) < D(x) //x is not a cut-vertex
 Compute_Localroot(c, x.localroot)
 else
 mark x as cut-vertex
 Compute_Localroot(c, x)

 Compute_Localroot(gadag_root, gadag_root)

 Figure 11: A method for computing local-roots

 There are two different ways of computing the local-root for each
 node. The stand-alone method is given in Figure 11 and better
 illustrates the concept; it is used by the MRT algorithms given in
 the Appendices Appendix A and Appendix B. The MRT Lowpoint algorithm
 computes the local-root for a block as part of computing the GADAG
 using lowpoint inheritance; the essence of this computation is given
 in Figure 12. Both methods for computing the local-root produce the
 same results.

Enyedi, et al. Expires January 3, 2016 [Page 17]

Internet-Draft MRT FRR Algorithm July 2015

 Get the current node, s.
 Compute an ear(either through lowpoint inheritance
 or by following dfs parents) from s to a ready node e.
 (Thus, s is not e, if there is such ear.)
 if s is e
 for each node x in the ear that is not s
 x.localroot = s
 else
 for each node x in the ear that is not s or e
 x.localroot = e.localroot

 Figure 12: Ear-based method for computing local-roots

 Once the local-roots are known, two nodes X and Y are in a common
 block if and only if one of the following three conditions apply.

 o Y's local-root is X's local-root : They are in the same block and
 neither is the cut-vertex closest to the root.

 o Y's local-root is X: X is the cut-vertex closest to the root for
 Y's block

 o Y is X's local-root: Y is the cut-vertex closest to the root for
 X's block

 Once we have computed the local-root for each node in the network
 graph, we can assign for each node, a block id that represents the
 block in which the node is present. This computation is shown in
 Figure 13.

 global_var: max_block_id

 Assign_Block_ID(x, cur_block_id)
 x.block_id = cur_block_id
 foreach DFS child c of x
 if (c.local_root is x)
 max_block_id += 1
 Assign_Block_ID(c, max_block_id)
 else
 Assign_Block_ID(c, cur_block_id)

 max_block_id = 0
 Assign_Block_ID(gadag_root, max_block_id)

 Figure 13: Assigning block id to identify blocks

Enyedi, et al. Expires January 3, 2016 [Page 18]

Internet-Draft MRT FRR Algorithm July 2015

5. Algorithm Sections

 This algorithm computes one GADAG that is then used by a router to
 determine its MRT-Blue and MRT-Red next-hops to all destinations.
 Finally, based upon that information, alternates are selected for
 each next-hop to each destination. The different parts of this
 algorithm are described below. These work on a network graph after
 its interfaces have been ordered as per Figure 14.

 1. Compute the local MRT Island for the particular MRT Profile.
 [See Section 5.2.]

 2. Select the root to use for the GADAG. [See Section 5.3.]

 3. Initialize all interfaces to UNDIRECTED. [See Section 5.4.]

 4. Compute the DFS value,e.g. D(x), and lowpoint value, L(x). [See
 Figure 8.]

 5. Construct the GADAG. [See Section 5.5]

 6. Assign directions to all interfaces that are still UNDIRECTED.
 [See Section 5.6.]

 7. From the computing router x, compute the next-hops for the MRT-
 Blue and MRT-Red. [See Section 5.7.]

 8. Identify alternates for each next-hop to each destination by
 determining which one of the blue MRT and the red MRT the
 computing router x should select. [See Section 5.8.]

5.1. Interface Ordering

 To ensure consistency in computation, all routers MUST order
 interfaces identically down to the set of links with the same metric
 to the same neighboring node. This is necessary for the DFS in
 Lowpoint_Visit in Section 4.3, where the selection order of the
 interfaces to explore results in different trees. Consistent
 interface ordering is also necessary for computing the GADAG, where
 the selection order of the interfaces to use to form ears can result
 in different GADAGs. It is also necessary for the topological sort
 described in Section 5.8, where different topological sort orderings
 can result in undirected links being added to the GADAG in different
 directions.

 The required ordering between two interfaces from the same router x
 is given in Figure 14.

Enyedi, et al. Expires January 3, 2016 [Page 19]

Internet-Draft MRT FRR Algorithm July 2015

 Interface_Compare(interface a, interface b)
 if a.metric < b.metric
 return A_LESS_THAN_B
 if b.metric < a.metric
 return B_LESS_THAN_A
 if a.neighbor.mrt_node_id < b.neighbor.mrt_node_id
 return A_LESS_THAN_B
 if b.neighbor.mrt_node_id < a.neighbor.mrt_node_id
 return B_LESS_THAN_A
 // Same metric to same node, so the order doesn't matter for
 // interoperability.
 return A_EQUAL_TO_B

 Figure 14: Rules for ranking multiple interfaces. Order is from low
 to high.

 In Figure 14, if two interfaces on a router connect to the same
 remote router with the same metric, the Interface_Compare function
 returns A_EQUAL_TO_B. This is because the order in which those
 interfaces are initially explored does not affect the final GADAG
 produced by the algorithm described here. While only one of the
 links will be added to the GADAG in the initial traversal, the other
 parallel links will be added to the GADAG with the same direction
 assigned during the procedure for assigning direction to UNDIRECTED
 links described in Section 5.6. An implementation is free to apply
 some additional criteria to break ties in interface ordering in this
 situation, but that criteria is not specified here since it will not
 affect the final GADAG produced by the algorithm.

 The Interface_Compare function in Figure 14 relies on the
 interface.metric and the interface.neighbor.mrt_node_id values to
 order interfaces. The exact source of these values for different
 IGPs (or flooding protocol in the case of ISIS-PCR
 [I-D.ietf-isis-pcr]) and applications is specified in Figure 15. The
 metric and mrt_node_id values for OSPFv2, OSPFv3, and IS-IS provided
 here is normative. The metric and mrt_node_id values for ISIS-PCR
 should be considered informational.

Enyedi, et al. Expires January 3, 2016 [Page 20]

Internet-Draft MRT FRR Algorithm July 2015

 +--------------+-----------------------+-----------------------------+
IGP/flooding	mrt_node_id	metric of
protocol	of neighbor	interface
and	on interface	
application		
+--------------+-----------------------+-----------------------------+		
OSPFv2 for	4 octet Neighbor	2 octet Metric field
IP/LDP FRR	Router ID in	for corresponding
	Link ID field for	point-to-point link
	corresponding	in Router-LSA
	point-to-point link	
	in Router-LSA	
+--------------+-----------------------+-----------------------------+		
OSPFv3 for	4 octet Neighbor	2 octet Metric field
IP/LDP FRR	Router ID field	for corresponding
	for corresponding	point-to-point link
	point-to-point link	in Router-LSA
	in Router-LSA	
+--------------+-----------------------+-----------------------------+		
IS-IS for	7 octet neighbor	3 octet metric field
IP/LDP FRR	system ID and	in Extended IS
	pseudonode number	Reachability TLV #22
	in Extended IS	or Multi-Topology
	Reachability TLV #22	IS Neighbor TLV #222
	or Multi-Topology	
	IS Neighbor TLV #222	
+--------------+-----------------------+-----------------------------+		
ISIS-PCR for	8 octet Bridge ID	3 octet SPB-LINK-METRIC in
protection	created from 2 octet	SPB-Metric sub-TLV (type 29)
of traffic	Bridge Priority in	in Extended IS Reachability
in bridged	SPB Instance sub-TLV	TLV #22 or Multi-Topology
networks	(type 1) carried in	Intermediate Systems
	MT-Capability TLV	TLV #222. In the case
	#144 and 6 octet	of asymmetric link metrics,
	neighbor system ID in	the larger link metric
	Extended IS	is used for both link
	Reachability TLV #22	directions.
	or Multi-Topology	(informational)
	Intermediate Systems	
	TLV #222	
	(informational)	
 +--------------+-----------------------+-----------------------------+

 Figure 15: value of interface.neighbor.mrt_node_id and
 interface.metric to be used for ranking interfaces, for different
 flooding protocols and applications

Enyedi, et al. Expires January 3, 2016 [Page 21]

Internet-Draft MRT FRR Algorithm July 2015

 The metrics are unsigned integers and MUST be compared as unsigned
 integers. The results of mrt_node_id comparisons MUST be the same as
 would be obtained by converting the mrt_node_ids to unsigned integers
 using network byte order and performing the comparison as unsigned
 integers. Also note that these values are only specified in the case
 of point-to-point links. Therefore, in the case of IS-IS for IP/LDP
 FRR, the pseudonode number (the 7th octet) will always be zero.

 In the case of IS-IS for IP/LDP FRR, this specification allows for
 the use of Multi-Topology routing. [RFC5120] requires that
 information related to the standard/default topology (MT-ID = 0) be
 carried in the Extended IS Reachability TLV #22, while it requires
 that the Multi-Topology IS Neighbor TLV #222 only be used to carry
 topology information related to non-default topologies (with non-zero
 MT-IDs). [RFC5120] enforces this by requiring an implementation to
 ignore TLV#222 with MT-ID = 0. The current document also requires
 that TLV#222 with MT-ID = 0 MUST be ignored.

5.2. MRT Island Identification

 The local MRT Island for a particular MRT profile can be determined
 by starting from the computing router in the network graph and doing
 a breadth-first-search (BFS). The BFS explores only links that are
 in the same area/level, are not IGP-excluded, and are not MRT-
 ineligible. The BFS explores only nodes that are are not IGP-
 excluded, and that support the particular MRT profile. See section 7
 of [I-D.ietf-rtgwg-mrt-frr-architecture] for more precise definitions
 of these criteria.

 MRT_Island_Identification(topology, computing_rtr, profile_id, area)
 for all routers in topology
 rtr.IN_MRT_ISLAND = FALSE
 computing_rtr.IN_MRT_ISLAND = TRUE
 explore_list = { computing_rtr }
 while (explore_list is not empty)
 next_rtr = remove_head(explore_list)
 for each interface in next_rtr
 if interface is (not MRT-ineligible and not IGP-excluded
 and in area)
 if ((interface.remote_node supports profile_id) and
 (interface.remote_node.IN_MRT_ISLAND is FALSE))
 interface.remote_node.IN_MRT_ISLAND = TRUE
 add_to_tail(explore_list, interface.remote_node)

 Figure 16: MRT Island Identification

https://datatracker.ietf.org/doc/html/rfc5120
https://datatracker.ietf.org/doc/html/rfc5120

Enyedi, et al. Expires January 3, 2016 [Page 22]

Internet-Draft MRT FRR Algorithm July 2015

5.3. GADAG Root Selection

 In Section 8.3 of [I-D.ietf-rtgwg-mrt-frr-architecture], the GADAG
 Root Selection Policy is described for the MRT default profile. In
 [I-D.ietf-ospf-mrt] and [I-D.ietf-isis-mrt], a mechanism is given for
 routers to advertise the GADAG Root Selection Priority and
 consistently select a GADAG Root inside the local MRT Island. The
 MRT Lowpoint algorithm simply requires that all routers in the MRT
 Island MUST select the same GADAG Root; the mechanism can vary based
 upon the MRT profile description. Before beginning computation, the
 network graph is reduced to contain only the set of routers that
 support the specific MRT profile whose MRTs are being computed.

 Analysis has shown that the centrality of a router can have a
 significant impact on the lengths of the alternate paths computed.
 Therefore, it is RECOMMENDED that off-line analysis that considers
 the centrality of a router be used to help determine how good a
 choice a particular router is for the role of GADAG root.

5.4. Initialization

 Before running the algorithm, there is the standard type of
 initialization to be done, such as clearing any computed DFS-values,
 lowpoint-values, DFS-parents, lowpoint-parents, any MRT-computed
 next-hops, and flags associated with algorithm.

 It is assumed that a regular SPF computation has been run so that the
 primary next-hops from the computing router to each destination are
 known. This is required for determining alternates at the last step.

 Initially, all interfaces MUST be initialized to UNDIRECTED. Whether
 they are OUTGOING, INCOMING or both is determined when the GADAG is
 constructed and augmented.

 It is possible that some links and nodes will be marked as unusable
 using standard IGP mechanisms (see section 7 of
 [I-D.ietf-rtgwg-mrt-frr-architecture]). Due to FRR manageability
 considerations [I-D.ietf-rtgwg-lfa-manageability], it may also be
 desirable to administratively configure some interfaces as ineligible
 to carry MRT FRR traffic. This constraint MUST be consistently
 flooded via the IGP [I-D.ietf-ospf-mrt] [I-D.ietf-isis-mrt] by the
 owner of the interface, so that links are clearly known to be MRT-
 ineligible and not explored or used in the MRT algorithm. In the
 algorithm description, it is assumed that such links and nodes will
 not be explored or used, and no more discussion is given of this
 restriction.

Enyedi, et al. Expires January 3, 2016 [Page 23]

Internet-Draft MRT FRR Algorithm July 2015

5.5. MRT Lowpoint Algorithm: Computing GADAG using lowpoint inheritance

 As discussed in Section 4.2, it is necessary to find ears from a node
 x that is already in the GADAG (known as IN_GADAG). Two different
 methods are used to find ears in the algorithm. The first is by
 going to a not IN_GADAG DFS-child and then following the chain of
 low-point parents until an IN_GADAG node is found. The second is by
 going to a not IN_GADAG neighbor and then following the chain of DFS
 parents until an IN_GADAG node is found. As an ear is found, the
 associated interfaces are marked based on the direction taken. The
 nodes in the ear are marked as IN_GADAG. In the algorithm, first the
 ears via DFS-children are found and then the ears via DFS-neighbors
 are found.

 By adding both types of ears when an IN_GADAG node is processed, all
 ears that connect to that node are found. The order in which the
 IN_GADAG nodes is processed is, of course, key to the algorithm. The
 order is a stack of ears so the most recent ear is found at the top
 of the stack. Of course, the stack stores nodes and not ears, so an
 ordered list of nodes, from the first node in the ear to the last
 node in the ear, is created as the ear is explored and then that list
 is pushed onto the stack.

 Each ear represents a partial order (see Figure 4) and processing the
 nodes in order along each ear ensures that all ears connecting to a
 node are found before a node higher in the partial order has its ears
 explored. This means that the direction of the links in the ear is
 always from the node x being processed towards the other end of the
 ear. Additionally, by using a stack of ears, this means that any
 unprocessed nodes in previous ears can only be ordered higher than
 nodes in the ears below it on the stack.

 In this algorithm that depends upon Low-Point inheritance, it is
 necessary that every node have a low-point parent that is not itself.
 If a node is a cut-vertex, that may not yet be the case. Therefore,
 any nodes without a low-point parent will have their low-point parent
 set to their DFS parent and their low-point value set to the DFS-
 value of their parent. This assignment also properly allows an ear
 between two cut-vertices.

 Finally, the algorithm simultaneously computes each node's local-
 root, as described in Figure 12. This is further elaborated as
 follows. The local-root can be inherited from the node at the end of
 the ear unless the end of the ear is x itself, in which case the
 local-root for all the nodes in the ear would be x. This is because
 whenever the first cycle is found in a block, or an ear involving a
 bridge is computed, the cut-vertex closest to the root would be x
 itself. In all other scenarios, the properties of lowpoint/dfs

Enyedi, et al. Expires January 3, 2016 [Page 24]

Internet-Draft MRT FRR Algorithm July 2015

 parents ensure that the end of the ear will be in the same block, and
 thus inheriting its local-root would be the correct local-root for
 all newly added nodes.

 The pseudo-code for the GADAG algorithm (assuming that the adjustment
 of lowpoint for cut-vertices has been made) is shown in Figure 17.

 Construct_Ear(x, Stack, intf, ear_type)
 ear_list = empty
 cur_node = intf.remote_node
 cur_intf = intf
 not_done = true

 while not_done
 cur_intf.UNDIRECTED = false
 cur_intf.OUTGOING = true
 cur_intf.remote_intf.UNDIRECTED = false
 cur_intf.remote_intf.INCOMING = true

 if cur_node.IN_GADAG is false
 cur_node.IN_GADAG = true
 add_to_list_end(ear_list, cur_node)
 if ear_type is CHILD
 cur_intf = cur_node.lowpoint_parent_intf
 cur_node = cur_node.lowpoint_parent
 else // ear_type must be NEIGHBOR
 cur_intf = cur_node.dfs_parent_intf
 cur_node = cur_node.dfs_parent
 else
 not_done = false

 if (ear_type is CHILD) and (cur_node is x)
 // x is a cut-vertex and the local root for
 // the block in which the ear is computed
 x.IS_CUT_VERTEX = true
 localroot = x
 else
 // Inherit local-root from the end of the ear
 localroot = cur_node.localroot
 while ear_list is not empty
 y = remove_end_item_from_list(ear_list)
 y.localroot = localroot
 push(Stack, y)

 Construct_GADAG_via_Lowpoint(topology, gadag_root)
 gadag_root.IN_GADAG = true
 gadag_root.localroot = None
 Initialize Stack to empty

Enyedi, et al. Expires January 3, 2016 [Page 25]

Internet-Draft MRT FRR Algorithm July 2015

 push gadag_root onto Stack
 while (Stack is not empty)
 x = pop(Stack)
 foreach ordered_interface intf of x
 if ((intf.remote_node.IN_GADAG == false) and
 (intf.remote_node.dfs_parent is x))
 Construct_Ear(x, Stack, intf, CHILD)
 foreach ordered_interface intf of x
 if ((intf.remote_node.IN_GADAG == false) and
 (intf.remote_node.dfs_parent is not x))
 Construct_Ear(x, Stack, intf, NEIGHBOR)

 Construct_GADAG_via_Lowpoint(topology, gadag_root)

 Figure 17: Low-point Inheritance GADAG algorithm

5.6. Augmenting the GADAG by directing all links

 The GADAG, regardless of the algorithm used to construct it, at this
 point could be used to find MRTs, but the topology does not include
 all links in the network graph. That has two impacts. First, there
 might be shorter paths that respect the GADAG partial ordering and so
 the alternate paths would not be as short as possible. Second, there
 may be additional paths between a router x and the root that are not
 included in the GADAG. Including those provides potentially more
 bandwidth to traffic flowing on the alternates and may reduce
 congestion compared to just using the GADAG as currently constructed.

 The goal is thus to assign direction to every remaining link marked
 as UNDIRECTED to improve the paths and number of paths found when the
 MRTs are computed.

 To do this, we need to establish a total order that respects the
 partial order described by the GADAG. This can be done using Kahn's
 topological sort[Kahn_1962_topo_sort] which essentially assigns a
 number to a node x only after all nodes before it (e.g. with a link
 incoming to x) have had their numbers assigned. The only issue with
 the topological sort is that it works on DAGs and not ADAGs or
 GADAGs.

 To convert a GADAG to a DAG, it is necessary to remove all links that
 point to a root of block from within that block. That provides the
 necessary conversion to a DAG and then a topological sort can be
 done. When adding undirected links to the GADAG, links connecting
 the block root to other nodes in that block need special handling
 because the topological order will not always give the right answer
 for those links. There are three cases to consider. If the
 undirected link in question has another parallel link between the

Enyedi, et al. Expires January 3, 2016 [Page 26]

Internet-Draft MRT FRR Algorithm July 2015

 same two nodes that is already directed, then the direction of the
 undirected link can be inherited from the previously directed link.
 In the case of parallel cut links, we set all of the parallel links
 to both INCOMING and OUTGOING. Otherwise, the undirected link in
 question is set to OUTGOING from the block root node. A cut-link can
 then be identified by the fact that it will be directed both INCOMING
 and OUTGOING in the GADAG. The exact details of this whole process
 are captured in Figure 18

 Add_Undirected_Block_Root_Links(topo, gadag_root):
 foreach node x in topo
 if x.IS_CUT_VERTEX or x is gadag_root
 foreach interface i of x
 if (i.remote_node.localroot is not x
 or i.PROCESSED)
 continue
 Initialize bundle_list to empty
 bundle.UNDIRECTED = true
 bundle.OUTGOING = false
 bundle.INCOMING = false
 foreach interface i2 in x
 if i2.remote_node is i.remote_node
 add_to_list_end(bundle_list, i2)
 if not i2.UNDIRECTED:
 bundle.UNDIRECTED = false
 if i2.INCOMING:
 bundle.INCOMING = true
 if i2.OUTGOING:
 bundle.OUTGOING = true
 if bundle.UNDIRECTED
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.OUTGOING = true
 i3.remote_intf.INCOMING = true
 else
 if (bundle.OUTGOING and bundle.INCOMING)
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.OUTGOING = true
 i3.INCOMING = true
 i3.remote_intf.INCOMING = true
 i3.remote_intf.OUTGOING = true

Enyedi, et al. Expires January 3, 2016 [Page 27]

Internet-Draft MRT FRR Algorithm July 2015

 else if bundle.OUTGOING
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.OUTGOING = true
 i3.remote_intf.INCOMING = true
 else if bundle.INCOMING
 foreach interface i3 in bundle_list
 i3.UNDIRECTED = false
 i3.remote_intf.UNDIRECTED = false
 i3.PROCESSED = true
 i3.remote_intf.PROCESSED = true
 i3.INCOMING = true
 i3.remote_intf.OUTGOING = true

 Modify_Block_Root_Incoming_Links(topo, gadag_root):
 foreach node x in topo
 if x.IS_CUT_VERTEX or x is gadag_root
 foreach interface i of x
 if i.remote_node.localroot is x
 if i.INCOMING:
 i.INCOMING = false
 i.INCOMING_STORED = true
 i.remote_intf.OUTGOING = false
 i.remote_intf.OUTGOING_STORED = true

 Revert_Block_Root_Incoming_Links(topo, gadag_root):
 foreach node x in topo
 if x.IS_CUT_VERTEX or x is gadag_root
 foreach interface i of x
 if i.remote_node.localroot is x
 if i.INCOMING_STORED:
 i.INCOMING = true
 i.remote_intf.OUTGOING = true
 i.INCOMING_STORED = false
 i.remote_intf.OUTGOING_STORED = false

 Run_Topological_Sort_GADAG(topo, gadag_root):
 Modify_Block_Root_Incoming_Links(topo, gadag_root)
 foreach node x in topo:
 node.unvisited = 0
 foreach interface i of x:
 if (i.INCOMING):
 node.unvisited += 1
 Initialize working_list to empty
 Initialize topo_order_list to empty

Enyedi, et al. Expires January 3, 2016 [Page 28]

Internet-Draft MRT FRR Algorithm July 2015

 add_to_list_end(working_list, gadag_root)
 while working_list is not empty
 y = remove_start_item_from_list(working_list)
 add_to_list_end(topo_order_list, y)
 foreach ordered_interface i of y
 if intf.OUTGOING
 i.remote_node.unvisited -= 1
 if i.remote_node.unvisited is 0
 add_to_list_end(working_list, i.remote_node)
 next_topo_order = 1
 while topo_order_list is not empty
 y = remove_start_item_from_list(topo_order_list)
 y.topo_order = next_topo_order
 next_topo_order += 1
 Revert_Block_Root_Incoming_Links(topo, gadag_root)

 def Set_Other_Undirected_Links_Based_On_Topo_Order(topo):
 foreach node x in topo
 foreach interface i of x
 if i.UNDIRECTED:
 if x.topo_order < i.remote_node.topo_order
 i.OUTGOING = true
 i.UNDIRECTED = false
 i.remote_intf.INCOMING = true
 i.remote_intf.UNDIRECTED = false
 else
 i.INCOMING = true
 i.UNDIRECTED = false
 i.remote_intf.OUTGOING = true
 i.remote_intf.UNDIRECTED = false

 Add_Undirected_Links(topo, gadag_root)
 Add_Undirected_Block_Root_Links(topo, gadag_root)
 Run_Topological_Sort_GADAG(topo, gadag_root)
 Set_Other_Undirected_Links_Based_On_Topo_Order(topo)

 Add_Undirected_Links(topo, gadag_root)

 Figure 18: Assigning direction to UNDIRECTED links

 Proxy-nodes do not need to be added to the network graph. They
 cannot be transited and do not affect the MRTs that are computed.
 The details of how the MRT-Blue and MRT-Red next-hops are computed
 for proxy-nodes and how the appropriate alternate next-hops are
 selected is given in Section 5.9.

Enyedi, et al. Expires January 3, 2016 [Page 29]

Internet-Draft MRT FRR Algorithm July 2015

5.7. Compute MRT next-hops

 As was discussed in Section 4.1, once a ADAG is found, it is
 straightforward to find the next-hops from any node X to the ADAG
 root. However, in this algorithm, we will reuse the common GADAG and
 find not only the one pair of MRTs rooted at the GADAG root with it,
 but find a pair rooted at each node. This is useful since it is
 significantly faster to compute.

 The method for computing differently rooted MRTs from the common
 GADAG is based on two ideas. First, if two nodes X and Y are ordered
 with respect to each other in the partial order, then an SPF along
 OUTGOING links (an increasing-SPF) and an SPF along INCOMING links (a
 decreasing-SPF) can be used to find the increasing and decreasing
 paths. Second, if two nodes X and Y aren't ordered with respect to
 each other in the partial order, then intermediary nodes can be used
 to create the paths by increasing/decreasing to the intermediary and
 then decreasing/increasing to reach Y.

 As usual, the two basic ideas will be discussed assuming the network
 is two-connected. The generalization to multiple blocks is discussed
 in Section 5.7.4. The full algorithm is given in Section 5.7.5.

5.7.1. MRT next-hops to all nodes partially ordered with respect to the
 computing node

 To find two node-disjoint paths from the computing router X to any
 node Y, depends upon whether Y >> X or Y << X. As shown in
 Figure 19, if Y >> X, then there is an increasing path that goes from
 X to Y without crossing R; this contains nodes in the interval [X,Y].
 There is also a decreasing path that decreases towards R and then
 decreases from R to Y; this contains nodes in the interval
 [X,R-small] or [R-great,Y]. The two paths cannot have common nodes
 other than X and Y.

 [Y]<---(Cloud 2)<--- [X]
 | ^
 | |
 V |
 (Cloud 3)--->[R]--->(Cloud 1)

 MRT-Blue path: X->Cloud 2->Y
 MRT-Red path: X->Cloud 1->R->Cloud 3->Y

 Figure 19: Y >> X

Enyedi, et al. Expires January 3, 2016 [Page 30]

Internet-Draft MRT FRR Algorithm July 2015

 Similar logic applies if Y << X, as shown in Figure 20. In this
 case, the increasing path from X increases to R and then increases
 from R to Y to use nodes in the intervals [X,R-great] and [R-small,
 Y]. The decreasing path from X reaches Y without crossing R and uses
 nodes in the interval [Y,X].

 [X]<---(Cloud 2)<--- [Y]
 | ^
 | |
 V |
 (Cloud 3)--->[R]--->(Cloud 1)

 MRT-Blue path: X->Cloud 3->R->Cloud 1->Y
 MRT-Red path: X->Cloud 2->Y

 Figure 20: Y << X

5.7.2. MRT next-hops to all nodes not partially ordered with respect to
 the computing node

 When X and Y are not ordered, the first path should increase until we
 get to a node G, where G >> Y. At G, we need to decrease to Y. The
 other path should be just the opposite: we must decrease until we get
 to a node H, where H << Y, and then increase. Since R is smaller and
 greater than Y, such G and H must exist. It is also easy to see that
 these two paths must be node disjoint: the first path contains nodes
 in interval [X,G] and [Y,G], while the second path contains nodes in
 interval [H,X] and [H,Y]. This is illustrated in Figure 21. It is
 necessary to decrease and then increase for the MRT-Blue and increase
 and then decrease for the MRT-Red; if one simply increased for one
 and decreased for the other, then both paths would go through the
 root R.

Enyedi, et al. Expires January 3, 2016 [Page 31]

Internet-Draft MRT FRR Algorithm July 2015

 (Cloud 6)<---[Y]<---(Cloud 5)<------------|
 | |
 | |
 V |
 [G]--->(Cloud 4)--->[R]--->(Cloud 1)--->[H]
 ^ |
 | |
 | |
 (Cloud 3)<---[X]<---(Cloud 2)<-----------|

 MRT-Blue path: decrease to H and increase to Y
 X->Cloud 2->H->Cloud 5->Y
 MRT-Red path: increase to G and decrease to Y
 X->Cloud 3->G->Cloud 6->Y

 Figure 21: X and Y unordered

 This gives disjoint paths as long as G and H are not the same node.
 Since G >> Y and H << Y, if G and H could be the same node, that
 would have to be the root R. This is not possible because there is
 only one incoming interface to the root R which is created when the
 initial cycle is found. Recall from Figure 6 that whenever an ear
 was found to have an end that was the root R, the ear was directed
 from R so that the associated interface on R is outgoing and not
 incoming. Therefore, there must be exactly one node M which is the
 largest one before R, so the MRT-Red path will never reach R; it will
 turn at M and decrease to Y.

5.7.3. Computing Redundant Tree next-hops in a 2-connected Graph

 The basic ideas for computing RT next-hops in a 2-connected graph
 were given in Section 5.7.1 and Section 5.7.2. Given these two
 ideas, how can we find the trees?

 If some node X only wants to find the next-hops (which is usually the
 case for IP networks), it is enough to find which nodes are greater
 and less than X, and which are not ordered; this can be done by
 running an increasing-SPF and a decreasing-SPF rooted at X and not
 exploring any links from the ADAG root.

 In principle, an traversal method other than SPF could be used to
 traverse the GADAG in the process of determining blue and red next-
 hops that result in maximally redundant trees. This will be the case
 as long as one traversal uses the links in the direction specified by
 the GADAG and the other traversal uses the links in the direction
 opposite of that specified by the GADAG. However, a different
 traversal algorithm will generally result in different blue and red
 next-hops. Therefore, the algorithm specified here requires the use

Enyedi, et al. Expires January 3, 2016 [Page 32]

Internet-Draft MRT FRR Algorithm July 2015

 of SPF to traverse the GADAG to generate MRT blue and red next-hops,
 as described below.

 An increasing-SPF rooted at X and not exploring links from the root
 will find the increasing next-hops to all Y >> X. Those increasing
 next-hops are X's next-hops on the MRT-Blue to reach Y. A
 decreasing-SPF rooted at X and not exploring links from the root will
 find the decreasing next-hops to all Z << X. Those decreasing next-
 hops are X's next-hops on the MRT-Red to reach Z. Since the root R
 is both greater than and less than X, after this increasing-SPF and
 decreasing-SPF, X's next-hops on the MRT-Blue and on the MRT-Red to
 reach R are known. For every node Y >> X, X's next-hops on the MRT-
 Red to reach Y are set to those on the MRT-Red to reach R. For every
 node Z << X, X's next-hops on the MRT-Blue to reach Z are set to
 those on the MRT-Blue to reach R.

 For those nodes which were not reached by either the increasing-SPF
 or the decreasing-SPF, we can determine the next-hops as well. The
 increasing MRT-Blue next-hop for a node which is not ordered with
 respect to X is the next-hop along the decreasing MRT-Red towards R,
 and the decreasing MRT-Red next-hop is the next-hop along the
 increasing MRT-Blue towards R. Naturally, since R is ordered with
 respect to all the nodes, there will always be an increasing and a
 decreasing path towards it. This algorithm does not provide the
 complete specific path taken but just the appropriate next-hops to
 use. The identities of G and H are not determined by the computing
 node X.

 The final case to considered is when the root R computes its own
 next-hops. Since the root R is << all other nodes, running an
 increasing-SPF rooted at R will reach all other nodes; the MRT-Blue
 next-hops are those found with this increasing-SPF. Similarly, since
 the root R is >> all other nodes, running a decreasing-SPF rooted at
 R will reach all other nodes; the MRT-Red next-hops are those found
 with this decreasing-SPF.

 E---D---| E<--D<--|
 | | | | ^ |
 | | | V | |
 R F C R F C
 | | | | ^ ^
 | | | V | |
 A---B---| A-->B---|

 (a) (b)
 A 2-connected graph A spanning ADAG rooted at R

 Figure 22

Enyedi, et al. Expires January 3, 2016 [Page 33]

Internet-Draft MRT FRR Algorithm July 2015

 As an example consider the situation depicted in Figure 22. Node C
 runs an increasing-SPF and a decreasing-SPF on the ADAG. The
 increasing-SPF reaches D, E and R and the decreasing-SPF reaches B, A
 and R. E>>C. So towards E the MRT-Blue next-hop is D, since E was
 reached on the increasing path through D. And the MRT-Red next-hop
 towards E is B, since R was reached on the decreasing path through B.
 Since E>>D, D will similarly compute its MRT-Blue next-hop to be E,
 ensuring that a packet on MRT-Blue will use path C-D-E. B, A and R
 will similarly compute the MRT-Red next-hops towards E (which is
 ordered less than B, A and R), ensuring that a packet on MRT-Red will
 use path C-B-A-R-E.

 C can determine the next-hops towards F as well. Since F is not
 ordered with respect to C, the MRT-Blue next-hop is the decreasing
 one towards R (which is B) and the MRT-Red next-hop is the increasing
 one towards R (which is D). Since F>>B, for its MRT-Blue next-hop
 towards F, B will use the real increasing next-hop towards F. So a
 packet forwarded to B on MRT-Blue will get to F on path C-B-F.
 Similarly, D will use the real decreasing next-hop towards F as its
 MRT-Red next-hop, a packet on MRT-Red will use path C-D-F.

5.7.4. Generalizing for a graph that isn't 2-connected

 If a graph isn't 2-connected, then the basic approach given in
Section 5.7.3 needs some extensions to determine the appropriate MRT

 next-hops to use for destinations outside the computing router X's
 blocks. In order to find a pair of maximally redundant trees in that
 graph we need to find a pair of RTs in each of the blocks (the root
 of these trees will be discussed later), and combine them.

 When computing the MRT next-hops from a router X, there are three
 basic differences:

 1. Only nodes in a common block with X should be explored in the
 increasing-SPF and decreasing-SPF.

 2. Instead of using the GADAG root, X's local-root should be used.
 This has the following implications:

 A. The links from X's local-root should not be explored.

 B. If a node is explored in the outgoing SPF so Y >> X, then X's
 MRT-Red next-hops to reach Y uses X's MRT-Red next-hops to
 reach X's local-root and if Z << X, then X's MRT-Blue next-
 hops to reach Z uses X's MRT-Blue next-hops to reach X's
 local-root.

Enyedi, et al. Expires January 3, 2016 [Page 34]

Internet-Draft MRT FRR Algorithm July 2015

 C. If a node W in a common block with X was not reached in the
 increasing-SPF or decreasing-SPF, then W is unordered with
 respect to X. X's MRT-Blue next-hops to W are X's decreasing
 (aka MRT-Red) next-hops to X's local-root. X's MRT-Red next-
 hops to W are X's increasing (aka MRT-Blue) next-hops to X's
 local-root.

 3. For nodes in different blocks, the next-hops must be inherited
 via the relevant cut-vertex.

 These are all captured in the detailed algorithm given in
Section 5.7.5.

5.7.5. Complete Algorithm to Compute MRT Next-Hops

 The complete algorithm to compute MRT Next-Hops for a particular
 router X is given in Figure 23. In addition to computing the MRT-
 Blue next-hops and MRT-Red next-hops used by X to reach each node Y,
 the algorithm also stores an "order_proxy", which is the proper cut-
 vertex to reach Y if it is outside the block, and which is used later
 in deciding whether the MRT-Blue or the MRT-Red can provide an
 acceptable alternate for a particular primary next-hop.

 In_Common_Block(x, y)
 if ((x.block_id is y.block_id)
 or (x is y.localroot) or (y is x.localroot))
 return true
 return false

 Store_Results(y, direction)
 if direction is FORWARD
 y.higher = true
 y.blue_next_hops = y.next_hops
 if direction is REVERSE
 y.lower = true
 y.red_next_hops = y.next_hops

 SPF_No_Traverse_Block_Root(spf_root, block_root, direction)
 Initialize spf_heap to empty
 Initialize nodes' spf_metric to infinity and next_hops to empty
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 while (spf_heap is not empty)
 min_node = remove_lowest(spf_heap)
 Store_Results(min_node, direction)
 if ((min_node is spf_root) or (min_node is not block_root))
 foreach interface intf of min_node
 if ((((direction is FORWARD) and intf.OUTGOING) or

Enyedi, et al. Expires January 3, 2016 [Page 35]

Internet-Draft MRT FRR Algorithm July 2015

 ((direction is REVERSE) and intf.INCOMING))
 and In_Common_Block(spf_root, intf.remote_node))
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root
 intf.remote_node.next_hops = make_list(intf)
 else
 intf.remote_node.next_hops = min_node.next_hops
 insert_or_update(spf_heap, intf.remote_node)
 else if path_metric is intf.remote_node.spf_metric
 if min_node is spf_root
 add_to_list(intf.remote_node.next_hops, intf)
 else
 add_list_to_list(intf.remote_node.next_hops,
 min_node.next_hops)

 SetEdge(y)
 if y.blue_next_hops is empty and y.red_next_hops is empty
 SetEdge(y.localroot)
 y.blue_next_hops = y.localroot.blue_next_hops
 y.red_next_hops = y.localroot.red_next_hops
 y.order_proxy = y.localroot.order_proxy

 Compute_MRT_NextHops(x, gadag_root)
 foreach node y
 y.higher = y.lower = false
 clear y.red_next_hops and y.blue_next_hops
 y.order_proxy = y
 SPF_No_Traverse_Block_Root(x, x.localroot, FORWARD)
 SPF_No_Traverse_Block_Root(x, x.localroot, REVERSE)

 // red and blue next-hops are stored to x.localroot as different
 // paths are found via the SPF and reverse-SPF.
 // Similarly any nodes whose local-root is x will have their
 // red_next_hops and blue_next_hops already set.

 // Handle nodes in the same block that aren't the local-root
 foreach node y
 if (y.IN_MRT_ISLAND and (y is not x) and
 (y.block_id is x.block_id))
 if y.higher
 y.red_next_hops = x.localroot.red_next_hops
 else if y.lower
 y.blue_next_hops = x.localroot.blue_next_hops
 else
 y.blue_next_hops = x.localroot.red_next_hops
 y.red_next_hops = x.localroot.blue_next_hops

Enyedi, et al. Expires January 3, 2016 [Page 36]

Internet-Draft MRT FRR Algorithm July 2015

 // Inherit next-hops and order_proxies to other components
 if x is not gadag_root
 gadag_root.blue_next_hops = x.localroot.blue_next_hops
 gadag_root.red_next_hops = x.localroot.red_next_hops
 gadag_root.order_proxy = x.localroot
 foreach node y
 if (y is not gadag_root) and (y is not x) and y.IN_MRT_ISLAND
 SetEdge(y)

 max_block_id = 0
 Assign_Block_ID(gadag_root, max_block_id)
 Compute_MRT_NextHops(x, gadag_root)

 Figure 23

5.8. Identify MRT alternates

 At this point, a computing router S knows its MRT-Blue next-hops and
 MRT-Red next-hops for each destination in the MRT Island. The
 primary next-hops along the SPT are also known. It remains to
 determine for each primary next-hop to a destination D, which of the
 MRTs avoids the primary next-hop node F. This computation depends
 upon data set in Compute_MRT_NextHops such as each node y's
 y.blue_next_hops, y.red_next_hops, y.order_proxy, y.higher, y.lower
 and topo_orders. Recall that any router knows only which are the
 nodes greater and lesser than itself, but it cannot decide the
 relation between any two given nodes easily; that is why we need
 topological ordering.

 For each primary next-hop node F to each destination D, S can call
 Select_Alternates(S, D, F, primary_intf) to determine whether to use
 the MRT-Blue or MRT-Red next-hops as the alternate next-hop(s) for
 that primary next hop. The algorithm is given in Figure 24 and
 discussed afterwards.

 Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order):
 if D_higher and D_lower
 if F.HIGHER and F.LOWER
 if F.topo_order < D_topo_order
 return USE_RED
 else
 return USE_BLUE
 if F.HIGHER
 return USE_RED
 if F.LOWER
 return USE_BLUE
 else if D_higher

Enyedi, et al. Expires January 3, 2016 [Page 37]

Internet-Draft MRT FRR Algorithm July 2015

 if F.HIGHER and F.LOWER
 return USE_BLUE
 if F.LOWER
 return USE_BLUE
 if F.HIGHER
 if (F.topo_order > D_topo_order)
 return USE_BLUE
 if (F.topo_order < D_topo_order)
 return USE_RED
 else if D_lower
 if F.HIGHER and F.LOWER
 return USE_RED
 if F.HIGHER
 return USE_RED
 if F.LOWER
 if F.topo_order > D_topo_order
 return USE_BLUE
 if F.topo_order < D_topo_order
 return USE_RED
 else //D is unordered wrt S
 if F.HIGHER and F.LOWER
 if primary_intf.OUTGOING and primary_intf.INCOMING
 // this case should not occur
 if primary_intf.OUTGOING
 return USE_BLUE
 if primary_intf.INCOMING
 return USE_RED
 if F.LOWER
 return USE_RED
 if F.HIGHER
 return USE_BLUE

 Select_Alternates(D, F, primary_intf)
 if (D is F) or (D.order_proxy is F)
 return PRIM_NH_IS_D_OR_OP_FOR_D
 D_lower = D.order_proxy.LOWER
 D_higher = D.order_proxy.HIGHER
 D_topo_order = D.order_proxy.topo_order
 return Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order)

 Figure 24

 It is useful to first handle the case where where F is also D, or F
 is the order proxy for D. In this case, only link protection is
 possible. The MRT that doesn't use the failed primary next-hop is
 used. If both MRTs use the primary next-hop, then the primary next-
 hop must be a cut-link, so either MRT could be used but the set of

Enyedi, et al. Expires January 3, 2016 [Page 38]

Internet-Draft MRT FRR Algorithm July 2015

 MRT next-hops must be pruned to avoid the failed primary next-hop
 interface. To indicate this case, Select_Alternates returns
 PRIM_NH_IS_D_OR_OP_FOR_D. Explicit pseudocode to handle the three
 sub-cases above is not provided.

 The logic behind Select_Alternates_Internal is described in
 Figure 25. As an example, consider the first case described in the
 table, where the D>>S and D<<S. If this is true, then either S or D
 must be the block root, R. If F>>S and F<<S, then S is the block
 root. So the blue path from S to D is the increasing path to D, and
 the red path S to D is the decreasing path to D. If the
 F.topo_order<D.topo_order, then either F is ordered higher than D or
 F is unordered with respect to D. Therefore, F is either on a
 decreasing path from S to D, or it is on neither an increasing nor a
 decreasing path from S to D. In either case, it is safe to take an
 increasing path from S to D to avoid F. We know that when S is R,
 the increasing path is the blue path, so it is safe to use the blue
 path to avoid F.

 If instead F.topo_order>D.topo_order, then either F is ordered lower
 than D, or F is unordered with respect to D. Therefore, F is either
 on an increasing path from S to D, or it is on neither an increasing
 nor a decreasing path from S to D. In either case, it is safe to
 take a decreasing path from S to D to avoid F. We know that when S
 is R, the decreasing path is the red path, so it is safe to use the
 red path to avoid F.

 If F>>S or F<<S (but not both), then D is the block root. We then
 know that the blue path from S to D is the increasing path to R, and
 the red path is the decreasing path to R. When F>>S, we deduce that
 F is on an increasing path from S to R. So in order to avoid F, we
 use a decreasing path from S to R, which is the red path. Instead,
 when F<<S, we deduce that F is on a decreasing path from S to R. So
 in order to avoid F, we use an increasing path from S to R, which is
 the blue path.

 All possible cases are systematically described in the same manner in
 the rest of the table.

+------+------------+------+------------------------------+------------+
D	MRT blue	F	additional	F	Alternate
wrt	and red	wrt	criteria	wrt	
S	path	S		MRT	
	properties			(deduced)	
+------+------------+------+-----------------+------------+------------+					
D>>S	Blue path:	F>>S	additional	F on an	Use Red
and	Increasing	only	criteria	increasing	to avoid
D<<S,	path to R.		not needed	path from	F

Enyedi, et al. Expires January 3, 2016 [Page 39]

Internet-Draft MRT FRR Algorithm July 2015

| D is | Red path: | | | S to R | |
| R, | Decreasing +------+-----------------+------------+------------+
	path to R.	F<<S	additional	F on a	Use Blue
		only	criteria	decreasing	to avoid
			not needed	path from	F
or				S to R	
	+------+-----------------+------------+------------+				
		F>>S	topo(F)>topo(D)	F on a	Use Blue
S is	Blue path:	and	implies that	decreasing	to avoid
R	Increasing	F<<S	F>>D or F??D	path from	F
	path to D.			S to D or	
	Red path:			neither	
	Decreasing	+-----------------+------------+------------+			
	path to D.		topo(F)<topo(D)	F on an	Use Red
			implies that	increasing	to avoid
			F<<D or F??D	path from	F
				S to D or	
				neither	
+------+------------+------+-----------------+------------+------------+					
D>>S	Blue path:	F<<S	additional	F on	Use Blue
only	Increasing	only	criteria	decreasing	to avoid
	shortest		not needed	path from	F
	path from			S to R	
	S to D. +------+-----------------+------------+------------+				
	Red path:	F>>S	topo(F)>topo(D)	F on	Use Blue
	Decreasing	only	implies that	decreasing	to avoid
	shortest		F>>D or F??D	path from	F
	path from			R to D	
	S to R,			or	
	then			neither	
	decreasing	+-----------------+------------+------------+			
	shortest		topo(F)<topo(D)	F on	Use Red
	path from		implies that	increasing	to avoid
	R to D.		F<<D or F??D	path from	F
				S to D	
				or	
				neither	
	+------+-----------------+------------+------------+				
		F>>S	additional	F on Red	Use Blue
		and	criteria		to avoid
		F<<S,	not needed		F
		F is			
		R			
+------+------------+------+-----------------+------------+------------+					
D<<S	Blue path:	F>>S	additional	F on	Use Red
only	Increasing	only	criteria	increasing	to avoid
	shortest		not needed	path from	F
	path from			S to R	

Enyedi, et al. Expires January 3, 2016 [Page 40]

Internet-Draft MRT FRR Algorithm July 2015

| | S to R, +------+-----------------+------------+------------+
	then	F<<S	topo(F)>topo(D)	F on	Use Blue
	increasing	only	implies that	decreasing	to avoid
	shortest		F>>D or F??D	path from	F
	path from			R to D	
	R to D.			or	
	Red path:			neither	
	Decreasing	+-----------------+------------+------------+			
	shortest		topo(F)<topo(D)	F on	Use Red
	path from		implies that	increasing	to avoid
	S to D.		F<<D or F??D	path from	F
				S to D	
				or	
				neither	
	+------+-----------------+------------+------------+				
		F>>S	additional	F on Blue	Use Red
		and	criteria		to avoid
		F<<S,	not		F
		F is	needed		
		R			
+------+------------+------+-----------------+------------+------------+					
D??S	Blue path:	F<<S	additional	F on a	Use Red
	Decr. from	only	criteria	decreasing	to avoid
	S to first		not needed	path from	F
	node H>>D,			S to H.	
	then incr. +------+-----------------+------------+------------+				
	to D.	F>>S	additional	F on an	Use Blue
	Red path:	only	criteria	increasing	to avoid
	Incr. from		not needed	path from	F
	S to first			S to G	
	node G<<D,				
	then decr.				
	+------+-----------------+------------+------------+				
		F>>S	GADAG link	F on an	Use Blue
		and	direction	incr. path	to avoid
		F<<S,	S->F	from S	F
		F is +-----------------+------------+------------+			
		R	GADAG link	F on a	Use Red
			direction	decr. path	to avoid
			S<-F	from S	F
		+-----------------+------------+------------+			
			GADAG link	Implies F is the order	
			direction	proxy for D, which has	
			S<-->F	already been handled.	
+------+------------+------+-----------------+------------+------------+

 Figure 25: determining MRT next-hops and alternates based on the
 partial order and topological sort relationships between the

Enyedi, et al. Expires January 3, 2016 [Page 41]

Internet-Draft MRT FRR Algorithm July 2015

 source(S), destination(D), primary next-hop(F), and block root(R).
 topo(N) indicates the topological sort value of node N. X??Y
 indicates that node X is unordered with respect to node Y. It is
 assumed that the case where F is D, or where F is the order proxy for
 D, has already been handled.

 As an example, consider the ADAG depicted in Figure 26 and first
 suppose that G is the source, D is the destination and H is the
 failed next-hop. Since D>>G, we need to compare H.topo_order and
 D.topo_order. Since D.topo_order>H.topo_order, D must be not smaller
 than H, so we should select the decreasing path towards the root.
 If, however, the destination were instead J, we must find that
 H.topo_order>J.topo_order, so we must choose the increasing Blue
 next-hop to J, which is I. In the case, when instead the destination
 is C, we find that we need to first decrease to avoid using H, so the
 Blue, first decreasing then increasing, path is selected.

 [E]<-[D]<-[H]<-[J]
 | ^ ^ ^
 V | | |
 [R] [C] [G]->[I]
 | ^ ^ ^
 V | | |
 [A]->[B]->[F]---|

 (a)ADAG rooted at R for
 a 2-connected graph

 Figure 26

5.9. Finding FRR Next-Hops for Proxy-Nodes

 As discussed in Section 10.2 of
 [I-D.ietf-rtgwg-mrt-frr-architecture], it is necessary to find MRT-
 Blue and MRT-Red next-hops and MRT-FRR alternates for a named proxy-
 nodes. An example case is for a router that is not part of that
 local MRT Island, when there is only partial MRT support in the
 domain.

 A first incorrect and naive approach to handling proxy-nodes, which
 cannot be transited, is to simply add these proxy-nodes to the graph
 of the network and connect it to the routers through which the new
 proxy-node can be reached. Unfortunately, this can introduce some
 new ordering between the border routers connected to the new node
 which could result in routing MRT paths through the proxy-node.
 Thus, this naive approach would need to recompute GADAGs and redo
 SPTs for each proxy-node.

Enyedi, et al. Expires January 3, 2016 [Page 42]

Internet-Draft MRT FRR Algorithm July 2015

 Instead of adding the proxy-node to the original network graph, each
 individual proxy-node can be individually added to the GADAG. The
 proxy-node is connected to at most two nodes in the GADAG.
 Section 10.2 of [I-D.ietf-rtgwg-mrt-frr-architecture] defines how the
 proxy-node attachments MUST be determined. The degenerate case where
 the proxy-node is attached to only one node in the GADAG is trivial
 as all needed information can be derived from that attachment node;
 if there are different interfaces, then some can be assigned to MRT-
 Red and others to MRT_Blue.

 Now, consider the proxy-node that is attached to exactly two nodes in
 the GADAG. Let the order_proxies of these nodes be A and B. Let the
 current node, where next-hop is just being calculated, be S. If one
 of these two nodes A and B is the local root of S, let A=S.local_root
 and the other one be B. Otherwise, let A.topo_order < B.topo_order.

 A valid GADAG was constructed. Instead doing an increasing-SPF and a
 decreasing-SPF to find ordering for the proxy-nodes, the following
 simple rules, providing the same result, can be used independently
 for each different proxy-node. For the following rules, let
 X=A.local_root, and if A is the local root, let that be strictly
 lower than any other node. Always take the first rule that matches.

 Rule Condition Blue NH Red NH Notes
 1 S=X Blue to A Red to B
 2 S<<A Blue to A Red to R
 3 S>>B Blue to R Red to B
 4 A<<S<<B Red to A Blue to B
 5 A<<S Red to A Blue to R S not ordered w/ B
 6 S<<B Red to R Blue to B S not ordered w/ A
 7 Otherwise Red to R Blue to R S not ordered w/ A+B

 These rules are realized in the following pseudocode where P is the
 proxy-node, X and Y are the nodes that P is attached to, and S is the
 computing router:

Enyedi, et al. Expires January 3, 2016 [Page 43]

Internet-Draft MRT FRR Algorithm July 2015

 Select_Proxy_Node_NHs(P, S, X, Y)
 if (X.order_proxy.topo_order < Y.order_proxy.topo_order)
 //This fits even if X.order_proxy=S.local_root
 A=X.order_proxy
 B=Y.order_proxy
 else
 A=Y.order_proxy
 B=X.order_proxy

 if (S==A.local_root)
 P.blue_next_hops = A.blue_next_hops
 P.red_next_hops = B.red_next_hops
 return
 if (A.higher)
 P.blue_next_hops = A.blue_next_hops
 P.red_next_hops = R.red_next_hops
 return
 if (B.lower)
 P.blue_next_hops = R.blue_next_hops
 P.red_next_hops = B.red_next_hops
 return
 if (A.lower && B.higher)
 P.blue_next_hops = A.red_next_hops
 P.red_next_hops = B.blue_next_hops
 return
 if (A.lower)
 P.blue_next_hops = R.red_next_hops
 P.red_next_hops = B.blue_next_hops
 return
 if (B.higher)
 P.blue_next_hops = A.red_next_hops
 P.red_next_hops = R.blue_next_hops
 return
 P.blue_next_hops = R.red_next_hops
 P.red_next_hops = R.blue_next_hops
 return

 After finding the the red and the blue next-hops, it is necessary to
 know which one of these to use in the case of failure. This can be
 done by Select_Alternates_Inner(). In order to use
 Select_Alternates_Internal(), we need to know if P is greater, less
 or unordered with S, and P.topo_order. P.lower = B.lower, P.higher =
 A.higher, and any value is OK for P.topo_order, as long as
 A.topo_order<=P.topo_order<=B.topo_order and P.topo_order is not
 equal to the topo_order of the failed node. So for simplicity let
 P.topo_order=A.topo_order when the next-hop is not A, and

Enyedi, et al. Expires January 3, 2016 [Page 44]

Internet-Draft MRT FRR Algorithm July 2015

 P.topo_order=B.topo_order otherwise. This gives the following
 pseudo-code:

 Select_Alternates_Proxy_Node(S, P, F, primary_intf)
 if (F is not P.neighbor_A)
 return Select_Alternates_Internal(S, P, F, primary_intf,
 P.neighbor_B.lower,
 P.neighbor_A.higher,
 P.neighbor_A.topo_order)
 else
 return Select_Alternates_Internal(S, P, F, primary_intf,
 P.neighbor_B.lower,
 P.neighbor_A.higher,
 P.neighbor_B.topo_order)

 Figure 27

6. MRT Lowpoint Algorithm: Next-hop conformance

 This specification defines the MRT Lowpoint Algorithm, which include
 the construction of a common GADAG and the computation of MRT-Red and
 MRT-Blue next-hops to each node in the graph. An implementation MAY
 select any subset of next-hops for MRT-Red and MRT-Blue that respect
 the available nodes that are described in Section 5.7 for each of the
 MRT-Red and MRT-Blue and the selected next-hops are further along in
 the interval of allowed nodes towards the destination.

 For example, the MRT-Blue next-hops used when the destination Y >> X,
 the computing router, MUST be one or more nodes, T, whose topo_order
 is in the interval [X.topo_order, Y.topo_order] and where Y >> T or Y
 is T. Similarly, the MRT-Red next-hops MUST be have a topo_order in
 the interval [R-small.topo_order, X.topo_order] or [Y.topo_order,
 R-big.topo_order].

 Implementations SHOULD implement the Select_Alternates() function to
 pick an MRT-FRR alternate.

7. Python Implementation of MRT Lowpoint Algorithm

 Below is Python code implementing the MRT Lowpoint algorithm
 specified in this document. In order to avoid the page breaks in the
 .txt version of the draft, one can cut and paste the Python code from
 the .xml version. The code is also posted on Github.

 <CODE BEGINS>
 # This program has been tested to run on Python 2.6 and 2.7
 # (specifically Python 2.6.6 and 2.7.8 were tested).

Enyedi, et al. Expires January 3, 2016 [Page 45]

Internet-Draft MRT FRR Algorithm July 2015

 # The program has known incompatibilities with Python 3.X.

 # When executed, this program will generate a text file describing
 # an example topology. It then reads that text file back in as input
 # to create the example topology, and runs the MRT algorithm.This
 # was done to simplify the inclusion of the program as a single text
 # file that can be extracted from the IETF draft.

 # The output of the program is four text files containing a description
 # of the GADAG, the blue and red MRTs for all destinations, and the
 # MRT alternates for all failures.

 import heapq

 # simple Class definitions allow structure-like dot notation for
 # variables and a convenient place to initialize those variables.
 class Topology:
 pass

 class Node:
 pass

 class Interface:
 pass

 class Bundle:
 pass

 class Alternate:
 def __init__(self):
 self.failed_intf = None
 self.nh_list = []
 self.fec = 'NO_ALTERNATE'
 self.prot = 'NO_PROTECTION'
 self.info = 'NONE'

 def Interface_Compare(intf_a, intf_b):
 if intf_a.metric < intf_b.metric:
 return -1
 if intf_b.metric < intf_a.metric:
 return 1
 if intf_a.remote_node.node_id < intf_b.remote_node.node_id:
 return -1
 if intf_b.remote_node.node_id < intf_a.remote_node.node_id:
 return 1
 return 0

Enyedi, et al. Expires January 3, 2016 [Page 46]

Internet-Draft MRT FRR Algorithm July 2015

 def Sort_Interfaces(topo):
 for node in topo.island_node_list:
 node.island_intf_list.sort(Interface_Compare)

 def Initialize_Node(node):
 node.intf_list = []
 node.island_intf_list = []
 node.profile_id_list = [0]
 node.GR_sel_priority = 128
 node.IN_MRT_ISLAND = False
 node.IN_GADAG = False
 node.dfs_number = None
 node.dfs_parent = None
 node.dfs_parent_intf = None
 node.dfs_child_list = []
 node.lowpoint_number = None
 node.lowpoint_parent = None
 node.lowpoint_parent_intf = None
 node.localroot = None
 node.block_id = None
 node.IS_CUT_VERTEX = False
 node.blue_next_hops_dict = {}
 node.red_next_hops_dict = {}
 node.pnh_dict = {}
 node.alt_dict = {}

 def Initialize_Intf(intf):
 intf.metric = None
 intf.area = None
 intf.MRT_INELIGIBLE = False
 intf.IGP_EXCLUDED = False
 intf.UNDIRECTED = True
 intf.INCOMING = False
 intf.OUTGOING = False
 intf.INCOMING_STORED = False
 intf.OUTGOING_STORED = False
 intf.PROCESSED = False
 intf.IN_MRT_ISLAND = False

 def Reset_Computed_Node_and_Intf_Values(topo):
 for node in topo.node_list:
 node.IN_MRT_ISLAND = False
 node.IN_GADAG = False
 node.dfs_number = None
 node.dfs_parent = None
 node.dfs_parent_intf = None
 node.dfs_child_list = []
 node.lowpoint_number = None

Enyedi, et al. Expires January 3, 2016 [Page 47]

Internet-Draft MRT FRR Algorithm July 2015

 node.lowpoint_parent = None
 node.lowpoint_parent_intf = None
 node.localroot = None
 node.block_id = None
 node.IS_CUT_VERTEX = False
 for intf in node.intf_list:
 intf.UNDIRECTED = True
 intf.INCOMING = False
 intf.OUTGOING = False
 intf.INCOMING_STORED = False
 intf.OUTGOING_STORED = False
 intf.IN_MRT_ISLAND = False

 # This function takes a file with links represented by 2-digit
 # numbers in the format:
 # 01,05,10
 # 05,02,30
 # 02,01,15
 # which represents a triangle topology with nodes 01, 05, and 02
 # and symmetric metrics of 10, 30, and 15.

 # Inclusion of a fourth column makes the metrics for the link
 # asymmetric. An entry of:
 # 02,07,10,15
 # creates a link from node 02 to 07 with metrics 10 and 15.
 def Create_Topology_From_File(filename):
 topo = Topology()
 topo.gadag_root = None
 topo.node_list = []
 topo.node_dict = {}
 topo.island_node_list = []
 topo.prefix_list = [] # possibly no longer needed
 node_id_set= set()
 cols_list = []
 # on first pass just create nodes
 with open(filename) as topo_file:
 for line in topo_file:
 line = line.rstrip('\r\n')
 cols=line.split(',')
 cols_list.append(cols)
 nodea_node_id = int(cols[0])
 nodeb_node_id = int(cols[1])
 if (nodea_node_id > 999 or nodeb_node_id > 999):
 print("node_id must be between 0 and 999.")
 print("exiting.")
 exit()
 node_id_set.add(nodea_node_id)

Enyedi, et al. Expires January 3, 2016 [Page 48]

Internet-Draft MRT FRR Algorithm July 2015

 node_id_set.add(nodeb_node_id)
 for node_id in node_id_set:
 node = Node()
 node.node_id = node_id
 Initialize_Node(node)
 topo.node_list.append(node)
 topo.node_dict[node_id] = node
 # on second pass create interfaces
 for cols in cols_list:
 nodea_node_id = int(cols[0])
 nodeb_node_id = int(cols[1])
 metric = int(cols[2])
 reverse_metric = int(cols[2])
 if len(cols) > 3:
 reverse_metric=int(cols[3])
 nodea = topo.node_dict[nodea_node_id]
 nodeb = topo.node_dict[nodeb_node_id]
 nodea_intf = Interface()
 Initialize_Intf(nodea_intf)
 nodea_intf.metric = metric
 nodea_intf.area = 0
 nodeb_intf = Interface()
 Initialize_Intf(nodeb_intf)
 nodeb_intf.metric = reverse_metric
 nodeb_intf.area = 0
 nodea_intf.remote_intf = nodeb_intf
 nodeb_intf.remote_intf = nodea_intf
 nodea_intf.remote_node = nodeb
 nodeb_intf.remote_node = nodea
 nodea_intf.local_node = nodea
 nodeb_intf.local_node = nodeb
 nodea_intf.link_data = len(nodea.intf_list)
 nodeb_intf.link_data = len(nodeb.intf_list)
 nodea.intf_list.append(nodea_intf)
 nodeb.intf_list.append(nodeb_intf)
 return topo

 def MRT_Island_Identification(topo, computing_rtr, profile_id, area):
 if profile_id in computing_rtr.profile_id_list:
 computing_rtr.IN_MRT_ISLAND = True
 explore_list = [computing_rtr]
 else:
 return
 while explore_list != []:
 next_rtr = explore_list.pop()
 for intf in next_rtr.intf_list:
 if (not intf.MRT_INELIGIBLE and not intf.IGP_EXCLUDED
 and intf.area == area):

Enyedi, et al. Expires January 3, 2016 [Page 49]

Internet-Draft MRT FRR Algorithm July 2015

 if (profile_id in intf.remote_node.profile_id_list):
 intf.IN_MRT_ISLAND = True
 if (not intf.remote_node.IN_MRT_ISLAND):
 intf.remote_node.IN_MRT_ISLAND = True
 explore_list.append(intf.remote_node)

 def Set_Island_Intf_and_Node_Lists(topo):
 topo.island_node_list = []
 for node in topo.node_list:
 node.island_intf_list = []
 if node.IN_MRT_ISLAND:
 topo.island_node_list.append(node)
 for intf in node.intf_list:
 if intf.IN_MRT_ISLAND:
 node.island_intf_list.append(intf)

 global_dfs_number = None

 def Lowpoint_Visit(x, parent, intf_p_to_x):
 global global_dfs_number
 x.dfs_number = global_dfs_number
 x.lowpoint_number = x.dfs_number
 global_dfs_number += 1
 x.dfs_parent = parent
 if intf_p_to_x == None:
 x.dfs_parent_intf = None
 else:
 x.dfs_parent_intf = intf_p_to_x.remote_intf
 x.lowpoint_parent = None
 if parent != None:
 parent.dfs_child_list.append(x)
 for intf in x.island_intf_list:
 if intf.remote_node.dfs_number == None:
 Lowpoint_Visit(intf.remote_node, x, intf)
 if intf.remote_node.lowpoint_number < x.lowpoint_number:
 x.lowpoint_number = intf.remote_node.lowpoint_number
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf
 else:
 if intf.remote_node is not parent:
 if intf.remote_node.dfs_number < x.lowpoint_number:
 x.lowpoint_number = intf.remote_node.dfs_number
 x.lowpoint_parent = intf.remote_node
 x.lowpoint_parent_intf = intf

 def Run_Lowpoint(topo):
 global global_dfs_number
 global_dfs_number = 0

Enyedi, et al. Expires January 3, 2016 [Page 50]

Internet-Draft MRT FRR Algorithm July 2015

 Lowpoint_Visit(topo.gadag_root, None, None)

 # addresses these cases.
 max_block_id = None

 def Assign_Block_ID(x, cur_block_id):
 global max_block_id
 x.block_id = cur_block_id
 for c in x.dfs_child_list:
 if (c.localroot is x):
 max_block_id += 1
 Assign_Block_ID(c, max_block_id)
 else:
 Assign_Block_ID(c, cur_block_id)

 def Run_Assign_Block_ID(topo):
 global max_block_id
 max_block_id = 0
 Assign_Block_ID(topo.gadag_root, max_block_id)

 def Construct_Ear(x, stack, intf, ear_type):
 ear_list = []
 cur_intf = intf
 not_done = True

 while not_done:
 cur_intf.UNDIRECTED = False
 cur_intf.OUTGOING = True
 cur_intf.remote_intf.UNDIRECTED = False
 cur_intf.remote_intf.INCOMING = True
 if cur_intf.remote_node.IN_GADAG == False:
 cur_intf.remote_node.IN_GADAG = True
 ear_list.append(cur_intf.remote_node)
 if ear_type == 'CHILD':
 cur_intf = cur_intf.remote_node.lowpoint_parent_intf
 else:
 assert ear_type == 'NEIGHBOR'
 cur_intf = cur_intf.remote_node.dfs_parent_intf
 else:
 not_done = False

 if ear_type == 'CHILD' and cur_intf.remote_node is x:
 # x is a cut-vertex and the local root for the block
 # in which the ear is computed
 x.IS_CUT_VERTEX = True
 localroot = x

Enyedi, et al. Expires January 3, 2016 [Page 51]

Internet-Draft MRT FRR Algorithm July 2015

 else:
 # inherit local root from the end of the ear
 localroot = cur_intf.remote_node.localroot

 while ear_list != []:
 y = ear_list.pop()
 y.localroot = localroot
 stack.append(y)

 def Construct_GADAG_via_Lowpoint(topo):
 gadag_root = topo.gadag_root
 gadag_root.IN_GADAG = True
 gadag_root.localroot = None
 stack = []
 stack.append(gadag_root)

 while stack != []:
 x = stack.pop()
 for intf in x.island_intf_list:
 if (intf.remote_node.IN_GADAG == False
 and intf.remote_node.dfs_parent is x):
 Construct_Ear(x, stack, intf, 'CHILD')
 for intf in x.island_intf_list:
 if (intf.remote_node.IN_GADAG == False
 and intf.remote_node.dfs_parent is not x):
 Construct_Ear(x, stack, intf, 'NEIGHBOR')

 def Assign_Remaining_Lowpoint_Parents(topo):
 for node in topo.island_node_list:
 if (node is not topo.gadag_root
 and node.lowpoint_parent == None):
 node.lowpoint_parent = node.dfs_parent
 node.lowpoint_parent_intf = node.dfs_parent_intf
 node.lowpoint_number = node.dfs_parent.dfs_number

 def Add_Undirected_Block_Root_Links(topo):
 for node in topo.island_node_list:
 if node.IS_CUT_VERTEX or node is topo.gadag_root:
 for intf in node.island_intf_list:
 if (intf.remote_node.localroot is not node
 or intf.PROCESSED):
 continue
 bundle_list = []
 bundle = Bundle()
 bundle.UNDIRECTED = True
 bundle.OUTGOING = False
 bundle.INCOMING = False
 for intf2 in node.island_intf_list:

Enyedi, et al. Expires January 3, 2016 [Page 52]

Internet-Draft MRT FRR Algorithm July 2015

 if intf2.remote_node is intf.remote_node:
 bundle_list.append(intf2)
 if not intf2.UNDIRECTED:
 bundle.UNDIRECTED = False
 if intf2.INCOMING:
 bundle.INCOMING = True
 if intf2.OUTGOING:
 bundle.OUTGOING = True
 if bundle.UNDIRECTED:
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.OUTGOING = True
 intf3.remote_intf.INCOMING = True
 else:
 if (bundle.OUTGOING and bundle.INCOMING):
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.OUTGOING = True
 intf3.INCOMING = True
 intf3.remote_intf.INCOMING = True
 intf3.remote_intf.OUTGOING = True
 elif bundle.OUTGOING:
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.OUTGOING = True
 intf3.remote_intf.INCOMING = True
 elif bundle.INCOMING:
 for intf3 in bundle_list:
 intf3.UNDIRECTED = False
 intf3.remote_intf.UNDIRECTED = False
 intf3.PROCESSED = True
 intf3.remote_intf.PROCESSED = True
 intf3.INCOMING = True
 intf3.remote_intf.OUTGOING = True

 def Modify_Block_Root_Incoming_Links(topo):
 for node in topo.island_node_list:
 if (node.IS_CUT_VERTEX == True or node is topo.gadag_root):
 for intf in node.island_intf_list:

Enyedi, et al. Expires January 3, 2016 [Page 53]

Internet-Draft MRT FRR Algorithm July 2015

 if intf.remote_node.localroot is node:
 if intf.INCOMING:
 intf.INCOMING = False
 intf.INCOMING_STORED = True
 intf.remote_intf.OUTGOING = False
 intf.remote_intf.OUTGOING_STORED = True

 def Revert_Block_Root_Incoming_Links(topo):
 for node in topo.island_node_list:
 if (node.IS_CUT_VERTEX == True or node is topo.gadag_root):
 for intf in node.island_intf_list:
 if intf.remote_node.localroot is node:
 if intf.INCOMING_STORED:
 intf.INCOMING = True
 intf.remote_intf.OUTGOING = True
 intf.INCOMING_STORED = False
 intf.remote_intf.OUTGOING_STORED = False

 def Run_Topological_Sort_GADAG(topo):
 Modify_Block_Root_Incoming_Links(topo)
 for node in topo.island_node_list:
 node.unvisited = 0
 for intf in node.island_intf_list:
 if (intf.INCOMING == True):
 node.unvisited += 1
 working_list = []
 topo_order_list = []
 working_list.append(topo.gadag_root)
 while working_list != []:
 y = working_list.pop(0)
 topo_order_list.append(y)
 for intf in y.island_intf_list:
 if (intf.OUTGOING == True):
 intf.remote_node.unvisited -= 1
 if intf.remote_node.unvisited == 0:
 working_list.append(intf.remote_node)
 next_topo_order = 1
 while topo_order_list != []:
 y = topo_order_list.pop(0)
 y.topo_order = next_topo_order
 next_topo_order += 1
 Revert_Block_Root_Incoming_Links(topo)

 def Set_Other_Undirected_Links_Based_On_Topo_Order(topo):
 for node in topo.island_node_list:
 for intf in node.island_intf_list:
 if intf.UNDIRECTED:
 if node.topo_order < intf.remote_node.topo_order:

Enyedi, et al. Expires January 3, 2016 [Page 54]

Internet-Draft MRT FRR Algorithm July 2015

 intf.OUTGOING = True
 intf.UNDIRECTED = False
 intf.remote_intf.INCOMING = True
 intf.remote_intf.UNDIRECTED = False
 else:
 intf.INCOMING = True
 intf.UNDIRECTED = False
 intf.remote_intf.OUTGOING = True
 intf.remote_intf.UNDIRECTED = False

 def Initialize_Temporary_Interface_Flags(topo):
 for node in topo.island_node_list:
 for intf in node.island_intf_list:
 intf.PROCESSED = False
 intf.INCOMING_STORED = False
 intf.OUTGOING_STORED = False

 def Add_Undirected_Links(topo):
 Initialize_Temporary_Interface_Flags(topo)
 Add_Undirected_Block_Root_Links(topo)
 Run_Topological_Sort_GADAG(topo)
 Set_Other_Undirected_Links_Based_On_Topo_Order(topo)

 def In_Common_Block(x,y):
 if ((x.block_id == y.block_id)
 or (x is y.localroot) or (y is x.localroot)):
 return True
 return False

 def Copy_List_Items(target_list, source_list):
 del target_list[:] # Python idiom to remove all elements of a list
 for element in source_list:
 target_list.append(element)

 def Add_Item_To_List_If_New(target_list, item):
 if item not in target_list:
 target_list.append(item)

 def Store_Results(y, direction):
 if direction == 'INCREASING':
 y.HIGHER = True
 Copy_List_Items(y.blue_next_hops, y.next_hops)
 if direction == 'DECREASING':
 y.LOWER = True
 Copy_List_Items(y.red_next_hops, y.next_hops)
 if direction == 'NORMAL_SPF':
 y.primary_spf_metric = y.spf_metric
 Copy_List_Items(y.primary_next_hops, y.next_hops)

Enyedi, et al. Expires January 3, 2016 [Page 55]

Internet-Draft MRT FRR Algorithm July 2015

 if direction == 'MRT_ISLAND_SPF':
 Copy_List_Items(y.mrt_island_next_hops, y.next_hops)
 if direction == 'COLLAPSED_SPF':
 y.collapsed_metric = y.spf_metric
 Copy_List_Items(y.collapsed_next_hops, y.next_hops)

 # Note that the Python heapq fucntion allows for duplicate items,
 # so we use the 'spf_visited' property to only consider a node
 # as min_node the first time it gets removed from the heap.
 def SPF_No_Traverse_Block_Root(topo, spf_root, block_root, direction):
 spf_heap = []
 for y in topo.island_node_list:
 y.spf_metric = 2147483647 # 2^31-1
 y.next_hops = []
 y.spf_visited = False
 spf_root.spf_metric = 0
 heapq.heappush(spf_heap,
 (spf_root.spf_metric, spf_root.node_id, spf_root))
 while spf_heap != []:
 #extract third element of tuple popped from heap
 min_node = heapq.heappop(spf_heap)[2]
 if min_node.spf_visited:
 continue
 min_node.spf_visited = True
 Store_Results(min_node, direction)
 if ((min_node is spf_root) or (min_node is not block_root)):
 for intf in min_node.island_intf_list:
 if (((direction == 'INCREASING' and intf.OUTGOING)
 or (direction == 'DECREASING' and intf.INCOMING))
 and In_Common_Block(spf_root, intf.remote_node)) :
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric:
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root:
 intf.remote_node.next_hops = [intf]
 else:
 Copy_List_Items(intf.remote_node.next_hops,
 min_node.next_hops)
 heapq.heappush(spf_heap,
 (intf.remote_node.spf_metric,
 intf.remote_node.node_id,
 intf.remote_node))
 elif path_metric == intf.remote_node.spf_metric:
 if min_node is spf_root:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,intf)
 else:
 for nh_intf in min_node.next_hops:

Enyedi, et al. Expires January 3, 2016 [Page 56]

Internet-Draft MRT FRR Algorithm July 2015

 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,nh_intf)

 def Normal_SPF(topo, spf_root):
 spf_heap = []
 for y in topo.node_list:
 y.spf_metric = 2147483647 # 2^31-1 as max metric
 y.next_hops = []
 y.primary_spf_metric = 2147483647
 y.primary_next_hops = []
 y.spf_visited = False
 spf_root.spf_metric = 0
 heapq.heappush(spf_heap,
 (spf_root.spf_metric,spf_root.node_id,spf_root))
 while spf_heap != []:
 #extract third element of tuple popped from heap
 min_node = heapq.heappop(spf_heap)[2]
 if min_node.spf_visited:
 continue
 min_node.spf_visited = True
 Store_Results(min_node, 'NORMAL_SPF')
 for intf in min_node.intf_list:
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric:
 intf.remote_node.spf_metric = path_metric
 if min_node is spf_root:
 intf.remote_node.next_hops = [intf]
 else:
 Copy_List_Items(intf.remote_node.next_hops,
 min_node.next_hops)
 heapq.heappush(spf_heap,
 (intf.remote_node.spf_metric,
 intf.remote_node.node_id,
 intf.remote_node))
 elif path_metric == intf.remote_node.spf_metric:
 if min_node is spf_root:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,intf)
 else:
 for nh_intf in min_node.next_hops:
 Add_Item_To_List_If_New(
 intf.remote_node.next_hops,nh_intf)

 def Set_Edge(y):
 if (y.blue_next_hops == [] and y.red_next_hops == []):
 Set_Edge(y.localroot)
 Copy_List_Items(y.blue_next_hops,y.localroot.blue_next_hops)
 Copy_List_Items(y.red_next_hops ,y.localroot.red_next_hops)

Enyedi, et al. Expires January 3, 2016 [Page 57]

Internet-Draft MRT FRR Algorithm July 2015

 y.order_proxy = y.localroot.order_proxy

 def Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,x):
 for y in topo.island_node_list:
 y.HIGHER = False
 y.LOWER = False
 y.red_next_hops = []
 y.blue_next_hops = []
 y.order_proxy = y
 SPF_No_Traverse_Block_Root(topo, x, x.localroot, 'INCREASING')
 SPF_No_Traverse_Block_Root(topo, x, x.localroot, 'DECREASING')
 for y in topo.island_node_list:
 if (y is not x and (y.block_id == x.block_id)):
 assert (not (y is x.localroot or x is y.localroot))
 assert(not (y.HIGHER and y.LOWER))
 if y.HIGHER == True:
 Copy_List_Items(y.red_next_hops,
 x.localroot.red_next_hops)
 elif y.LOWER == True:
 Copy_List_Items(y.blue_next_hops,
 x.localroot.blue_next_hops)
 else:
 Copy_List_Items(y.blue_next_hops,
 x.localroot.red_next_hops)
 Copy_List_Items(y.red_next_hops,
 x.localroot.blue_next_hops)

 # Inherit x's MRT next-hops to reach the GADAG root
 # from x's MRT next-hops to reach its local root,
 # but first check if x is the gadag_root (in which case
 # x does not have a local root) or if x's local root
 # is the gadag root (in which case we already have the
 # x's MRT next-hops to reach the gadag root)
 if x is not topo.gadag_root and x.localroot is not topo.gadag_root:
 Copy_List_Items(topo.gadag_root.blue_next_hops,
 x.localroot.blue_next_hops)
 Copy_List_Items(topo.gadag_root.red_next_hops,
 x.localroot.red_next_hops)
 topo.gadag_root.order_proxy = x.localroot

 # Inherit next-hops and order_proxies to other blocks
 for y in topo.island_node_list:
 if (y is not topo.gadag_root and y is not x):
 Set_Edge(y)

 def Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,x):
 for y in topo.island_node_list:

Enyedi, et al. Expires January 3, 2016 [Page 58]

Internet-Draft MRT FRR Algorithm July 2015

 if y is x:
 continue
 x.blue_next_hops_dict[y.node_id] = []
 x.red_next_hops_dict[y.node_id] = []
 Copy_List_Items(x.blue_next_hops_dict[y.node_id],
 y.blue_next_hops)
 Copy_List_Items(x.red_next_hops_dict[y.node_id],
 y.red_next_hops)

 def Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,x):
 for y in topo.island_node_list:
 x.pnh_dict[y.node_id] = []
 Copy_List_Items(x.pnh_dict[y.node_id], y.primary_next_hops)
 x.alt_dict[y.node_id] = []
 Copy_List_Items(x.alt_dict[y.node_id], y.alt_list)

 def Store_MRT_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,x):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 x.blue_next_hops_dict[P.node_id] = []
 x.red_next_hops_dict[P.node_id] = []
 Copy_List_Items(x.blue_next_hops_dict[P.node_id],
 P.blue_next_hops)
 Copy_List_Items(x.red_next_hops_dict[P.node_id],
 P.red_next_hops)
 if P.convert_blue_to_green:
 x.blue_to_green_nh_dict[P.node_id] = True
 if P.convert_red_to_green:
 x.red_to_green_nh_dict[P.node_id] = True

 def Store_Alts_For_One_Src_To_Named_Proxy_Nodes(topo,x):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 x.alt_dict[P.node_id] = []
 Copy_List_Items(x.alt_dict[P.node_id],
 P.alt_list)

 def Store_Primary_NHs_For_One_Source_To_Nodes(topo,x):
 for y in topo.node_list:
 x.pnh_dict[y.node_id] = []
 Copy_List_Items(x.pnh_dict[y.node_id], y.primary_next_hops)

 def Store_Primary_NHs_For_One_Src_To_Named_Proxy_Nodes(topo,x):
 for prefix in topo.named_proxy_dict:
 P = topo.named_proxy_dict[prefix]
 x.pnh_dict[P.node_id] = []
 Copy_List_Items(x.pnh_dict[P.node_id],
 P.primary_next_hops)

Enyedi, et al. Expires January 3, 2016 [Page 59]

Internet-Draft MRT FRR Algorithm July 2015

 def Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order):

 if D_higher and D_lower:
 if F.HIGHER and F.LOWER:
 if F.topo_order > D_topo_order:
 return 'USE_BLUE'
 else:
 return 'USE_RED'
 if F.HIGHER:
 return 'USE_RED'
 if F.LOWER:
 return 'USE_BLUE'
 assert(False)
 if D_higher:
 if F.HIGHER and F.LOWER:
 return 'USE_BLUE'
 if F.LOWER:
 return 'USE_BLUE'
 if F.HIGHER:
 if (F.topo_order > D_topo_order):
 return 'USE_BLUE'
 if (F.topo_order < D_topo_order):
 return 'USE_RED'
 assert(False)
 assert(False)
 if D_lower:
 if F.HIGHER and F.LOWER:
 return 'USE_RED'
 if F.HIGHER:
 return 'USE_RED'
 if F.LOWER:
 if F.topo_order > D_topo_order:
 return 'USE_BLUE'
 if F.topo_order < D_topo_order:
 return 'USE_RED'
 assert(False)
 assert(False)
 else: # D is unordered wrt S
 if F.HIGHER and F.LOWER:
 if primary_intf.OUTGOING and primary_intf.INCOMING:
 assert(False)
 if primary_intf.OUTGOING:
 # this case isn't hit it topo-9e
 return 'USE_BLUE'
 if primary_intf.INCOMING:
 return 'USE_RED'
 assert(False)

Enyedi, et al. Expires January 3, 2016 [Page 60]

Internet-Draft MRT FRR Algorithm July 2015

 if F.LOWER:
 return 'USE_RED'
 if F.HIGHER:
 return 'USE_BLUE'
 assert(False)

 def Select_Alternates(D, F, primary_intf):
 if (D is F) or (D.order_proxy is F):
 return 'PRIM_NH_IS_D_OR_OP_FOR_D'
 D_lower = D.order_proxy.LOWER
 D_higher = D.order_proxy.HIGHER
 D_topo_order = D.order_proxy.topo_order
 return Select_Alternates_Internal(D, F, primary_intf,
 D_lower, D_higher, D_topo_order)

 def Select_Alts_For_One_Src_To_Island_Dests(topo,x):
 Normal_SPF(topo, x)
 for D in topo.island_node_list:
 D.alt_list = []
 if D is x:
 continue
 for primary_intf in D.primary_next_hops:
 alt = Alternate()
 alt.failed_intf = primary_intf
 if primary_intf in x.island_intf_list:
 alt.info = Select_Alternates(D,
 primary_intf.remote_node, primary_intf)
 else:
 alt.info = 'PRIM_NH_NOT_IN_ISLAND'
 Copy_List_Items(alt.nh_list, D.blue_next_hops)
 alt.fec = 'BLUE'
 alt.prot = 'NODE_PROTECTION'
 if (alt.info == 'USE_BLUE'):
 Copy_List_Items(alt.nh_list, D.blue_next_hops)
 alt.fec = 'BLUE'
 alt.prot = 'NODE_PROTECTION'
 if (alt.info == 'USE_RED'):
 Copy_List_Items(alt.nh_list, D.red_next_hops)
 alt.fec = 'RED'
 alt.prot = 'NODE_PROTECTION'
 if (alt.info == 'PRIM_NH_IS_D_OR_OP_FOR_D'):
 if primary_intf.OUTGOING and primary_intf.INCOMING:
 # cut-link: if there are parallel cut links, use
 # the link(s) with lowest metric that are not
 # primary intf or None
 cand_alt_list = [None]
 min_metric = 2147483647
 for intf in x.island_intf_list:

Enyedi, et al. Expires January 3, 2016 [Page 61]

Internet-Draft MRT FRR Algorithm July 2015

 if (intf is not primary_intf and
 (intf.remote_node is
 primary_intf.remote_node)):
 if intf.metric < min_metric:
 cand_alt_list = [intf]
 min_metric = intf.metric
 elif intf.metric == min_metric:
 cand_alt_list.append(intf)
 if cand_alt_list != [None]:
 alt.fec = 'GREEN'
 alt.prot = 'PARALLEL_CUTLINK'
 else:
 alt.fec = 'NO_ALTERNATE'
 alt.prot = 'NO_PROTECTION'
 Copy_List_Items(alt.nh_list, cand_alt_list)
 elif primary_intf in D.red_next_hops:
 Copy_List_Items(alt.nh_list, D.blue_next_hops)
 alt.fec = 'BLUE'
 alt.prot = 'LINK_PROTECTION'
 else:
 Copy_List_Items(alt.nh_list, D.red_next_hops)
 alt.fec = 'RED'
 alt.prot = 'LINK_PROTECTION'
 D.alt_list.append(alt)

 def Write_GADAG_To_File(topo, file_prefix):
 gadag_edge_list = []
 for node in topo.island_node_list:
 for intf in node.island_intf_list:
 if intf.OUTGOING:
 local_node = "%04d" % (intf.local_node.node_id)
 remote_node = "%04d" % (intf.remote_node.node_id)
 intf_data = "%03d" % (intf.link_data)
 edge_string=(local_node+','+remote_node+','+
 intf_data+'\n')
 gadag_edge_list.append(edge_string)
 gadag_edge_list.sort();
 filename = file_prefix + '_gadag.csv'
 with open(filename, 'w') as gadag_file:
 gadag_file.write('local_node,'\
 'remote_node,local_intf_link_data\n')
 for edge_string in gadag_edge_list:
 gadag_file.write(edge_string);

 def Write_MRTs_For_All_Dests_To_File(topo, color, file_prefix):
 edge_list = []
 for node in topo.island_node_list:
 if color == 'blue':

Enyedi, et al. Expires January 3, 2016 [Page 62]

Internet-Draft MRT FRR Algorithm July 2015

 node_next_hops_dict = node.blue_next_hops_dict
 elif color == 'red':
 node_next_hops_dict = node.red_next_hops_dict
 for dest_node_id in node_next_hops_dict:
 for intf in node_next_hops_dict[dest_node_id]:
 gadag_root = "%04d" % (topo.gadag_root.node_id)
 dest_node = "%04d" % (dest_node_id)
 local_node = "%04d" % (intf.local_node.node_id)
 remote_node = "%04d" % (intf.remote_node.node_id)
 intf_data = "%03d" % (intf.link_data)
 edge_string=(gadag_root+','+dest_node+','+local_node+
 ','+remote_node+','+intf_data+'\n')
 edge_list.append(edge_string)
 edge_list.sort()
 filename = file_prefix + '_' + color + '_to_all.csv'
 with open(filename, 'w') as mrt_file:
 mrt_file.write('gadag_root,dest,'\
 'local_node,remote_node,link_data\n')
 for edge_string in edge_list:
 mrt_file.write(edge_string);

 def Write_Both_MRTs_For_All_Dests_To_File(topo, file_prefix):
 Write_MRTs_For_All_Dests_To_File(topo, 'blue', file_prefix)
 Write_MRTs_For_All_Dests_To_File(topo, 'red', file_prefix)

 def Write_Alternates_For_All_Dests_To_File(topo, file_prefix):
 edge_list = []
 for x in topo.island_node_list:
 for dest_node_id in x.alt_dict:
 alt_list = x.alt_dict[dest_node_id]
 for alt in alt_list:
 for alt_intf in alt.nh_list:
 gadag_root = "%04d" % (topo.gadag_root.node_id)
 dest_node = "%04d" % (dest_node_id)
 prim_local_node = \
 "%04d" % (alt.failed_intf.local_node.node_id)
 prim_remote_node = \
 "%04d" % (alt.failed_intf.remote_node.node_id)
 prim_intf_data = \
 "%03d" % (alt.failed_intf.link_data)
 if alt_intf == None:
 alt_local_node = "None"
 alt_remote_node = "None"
 alt_intf_data = "None"
 else:
 alt_local_node = \
 "%04d" % (alt_intf.local_node.node_id)
 alt_remote_node = \

Enyedi, et al. Expires January 3, 2016 [Page 63]

Internet-Draft MRT FRR Algorithm July 2015

 "%04d" % (alt_intf.remote_node.node_id)
 alt_intf_data = \
 "%03d" % (alt_intf.link_data)
 edge_string = (gadag_root+','+dest_node+','+
 prim_local_node+','+prim_remote_node+','+
 prim_intf_data+','+alt_local_node+','+
 alt_remote_node+','+alt_intf_data+','+
 alt.fec +'\n')
 edge_list.append(edge_string)
 edge_list.sort()
 filename = file_prefix + '_alts_to_all.csv'
 with open(filename, 'w') as alt_file:
 alt_file.write('gadag_root,dest,'\
 'prim_nh.local_node,prim_nh.remote_node,'\
 'prim_nh.link_data,alt_nh.local_node,'\
 'alt_nh.remote_node,alt_nh.link_data,'\
 'alt_nh.fec\n')
 for edge_string in edge_list:
 alt_file.write(edge_string);

 def Raise_GADAG_Root_Selection_Priority(topo,node_id):
 node = topo.node_dict[node_id]
 node.GR_sel_priority = 255

 def Lower_GADAG_Root_Selection_Priority(topo,node_id):
 node = topo.node_dict[node_id]
 node.GR_sel_priority = 128

 def GADAG_Root_Compare(node_a, node_b):
 if (node_a.GR_sel_priority > node_b.GR_sel_priority):
 return 1
 elif (node_a.GR_sel_priority < node_b.GR_sel_priority):
 return -1
 else:
 if node_a.node_id > node_b.node_id:
 return 1
 elif node_a.node_id < node_b.node_id:
 return -1

 def Set_GADAG_Root(topo,computing_router):
 gadag_root_list = []
 for node in topo.island_node_list:
 gadag_root_list.append(node)
 gadag_root_list.sort(GADAG_Root_Compare)
 topo.gadag_root = gadag_root_list.pop()

Enyedi, et al. Expires January 3, 2016 [Page 64]

Internet-Draft MRT FRR Algorithm July 2015

 def Run_MRT_for_One_Source(topo, src):
 Reset_Computed_Node_and_Intf_Values(topo)
 MRT_Island_Identification(topo, src, 0, 0)
 Set_Island_Intf_and_Node_Lists(topo)
 Set_GADAG_Root(topo,src)
 Sort_Interfaces(topo)
 Run_Lowpoint(topo)
 Assign_Remaining_Lowpoint_Parents(topo)
 Construct_GADAG_via_Lowpoint(topo)
 Run_Assign_Block_ID(topo)
 Add_Undirected_Links(topo)
 Compute_MRT_NH_For_One_Src_To_Island_Dests(topo,src)
 Store_MRT_Nexthops_For_One_Src_To_Island_Dests(topo,src)
 Select_Alts_For_One_Src_To_Island_Dests(topo,src)
 Store_Primary_and_Alts_For_One_Src_To_Island_Dests(topo,src)

 def Run_Prim_SPF_for_One_Source(topo,src):
 Normal_SPF(topo, src)
 Store_Primary_NHs_For_One_Source_To_Nodes(topo,src)

 def Run_MRT_for_All_Sources(topo):
 for src in topo.node_list:
 if 0 in src.profile_id_list:
 # src runs MRT if it has profile_id=0
 Run_MRT_for_One_Source(topo,src)
 else:
 # still run SPF for nodes not running MRT
 Run_Prim_SPF_for_One_Source(topo,src)

 def Write_Output_To_Files(topo,file_prefix):
 Write_GADAG_To_File(topo,file_prefix)
 Write_Both_MRTs_For_All_Dests_To_File(topo,file_prefix)
 Write_Alternates_For_All_Dests_To_File(topo,file_prefix)

 def Create_Example_Topology_Input_File(filename):
 data = [[01,02,10],[02,03,10],[03,04,11],[04,05,10,20],[05,06,10],
 [06,07,10],[06,07,10],[06,07,15],[07,01,10],[07,51,10],
 [51,52,10],[52,53,10],[53,03,10],[01,55,10],[55,06,10],
 [04,12,10],[12,13,10],[13,14,10],[14,15,10],[15,16,10],
 [16,17,10],[17,04,10],[05,76,10],[76,77,10],[77,78,10],
 [78,79,10],[79,77,10]]
 with open(filename, 'w') as topo_file:
 for item in data:
 if len(item) > 3:
 line = (str(item[0])+','+str(item[1])+','+
 str(item[2])+','+str(item[3])+'\n')
 else:
 line = (str(item[0])+','+str(item[1])+','+

Enyedi, et al. Expires January 3, 2016 [Page 65]

Internet-Draft MRT FRR Algorithm July 2015

 str(item[2])+'\n')
 topo_file.write(line)

 def Generate_Example_Topology_and_Run_MRT():
 Create_Example_Topology_Input_File('example_topo_input_file.csv')
 topo = Create_Topology_From_File('example_topo_input_file.csv')
 res_file_base = 'example_topo'
 Raise_GADAG_Root_Selection_Priority(topo,3)
 Run_MRT_for_All_Sources(topo)
 Write_Output_To_Files(topo, res_file_base)

 Generate_Example_Topology_and_Run_MRT()

 <CODE ENDS>

8. Algorithm Alternatives and Evaluation

 This specification defines the MRT Lowpoint Algorithm, which is one
 option among several possible MRT algorithms. Other alternatives are
 described in the appendices.

 In addition, it is possible to calculate Destination-Rooted GADAG,
 where for each destination, a GADAG rooted at that destination is
 computed. Then a router can compute the blue MRT and red MRT next-
 hops to that destination. Building GADAGs per destination is
 computationally more expensive, but may give somewhat shorter
 alternate paths. It may be useful for live-live multicast along
 MRTs.

8.1. Algorithm Evaluation

 The MRT Lowpoint algorithm is the lowest computation of the MRT
 algorithms. Two other MRT algorithms are provided in Appendix A and

Appendix B. When analyzed on service provider network topologies,
 they did not provide significant differences in the path lenghts for
 the alternatives. This section does not focus on that analysis or
 the decision to use the MRT Lowpoint algorithm as the default MRT
 algorithm; it has the lowest computational and storage requirements
 and gave comparable results.

 Since this document defines the MRT Lowpoint algorithm for use in
 fast-reroute applications, it is useful to compare MRT and Remote LFA
 [RFC7490]. This section compares MRT and remote LFA for IP Fast
 Reroute in 19 service provider network topologies, focusing on
 coverage and alternate path length. Figure 28 shows the node-
 protecting coverage provided by local LFA (LLFA), remote LFA (RLFA),
 and MRT against different failure scenarios in these topologies. The
 coverage values are calculated as the percentage of source-

https://datatracker.ietf.org/doc/html/rfc7490

Enyedi, et al. Expires January 3, 2016 [Page 66]

Internet-Draft MRT FRR Algorithm July 2015

 destination pairs protected by the given IPFRR method relative to
 those protectable by optimal routing, against the same failure modes.
 More details on alternate selection policies used for this analysis
 are described later in this section.

 +------------+-----------------------------+
 | Topology | percentage of failure |
 | | scenarios covered by |
 | | IPFRR method |
 | |-----------------------------+
 | | NP_LLFA | NP_RLFA | MRT |
 +------------+---------+---------+---------+
 | T201 | 37 | 90 | 100 |
 | T202 | 73 | 83 | 100 |
 | T203 | 51 | 80 | 100 |
 | T204 | 55 | 81 | 100 |
 | T205 | 92 | 93 | 100 |
 | T206 | 71 | 74 | 100 |
 | T207 | 57 | 74 | 100 |
 | T208 | 66 | 81 | 100 |
 | T209 | 79 | 79 | 100 |
 | T210 | 95 | 98 | 100 |
 | T211 | 68 | 71 | 100 |
 | T212 | 59 | 63 | 100 |
 | T213 | 84 | 84 | 100 |
 | T214 | 68 | 78 | 100 |
 | T215 | 84 | 88 | 100 |
 | T216 | 43 | 59 | 100 |
 | T217 | 78 | 88 | 100 |
 | T218 | 72 | 75 | 100 |
 | T219 | 78 | 84 | 100 |
 +------------+---------+---------+---------+

 Figure 28

 For the topologies analyzed here, LLFA is able to provide node-
 protecting coverage ranging from 37% to 95% of the source-destination
 pairs, as seen in the column labeled NP_LLFA. The use of RLFA in
 addition to LLFA is generally able to increase the node-protecting
 coverage. The percentage of node-protecting coverage with RLFA is
 provided in the column labeled NP_RLFA, ranges from 59% to 98% for
 these topologies. The node-protecting coverage provided by MRT is
 100% since MRT is able to provide protection for any source-
 destination pair for which a path still exists after the failure.

 We would also like to measure the quality of the alternate paths
 produced by these different IPFRR methods. An obvious approach is to
 take an average of the alternate path costs over all source-

Enyedi, et al. Expires January 3, 2016 [Page 67]

Internet-Draft MRT FRR Algorithm July 2015

 destination pairs and failure modes. However, this presents a
 problem, which we will illustrate by presenting an example of results
 for one topology using this approach (Figure 29). In this table,
 the average relative path length is the alternate path length for the
 IPFRR method divided by the optimal alternate path length, averaged
 over all source-destination pairs and failure modes. The first three
 columns of data in the table give the path length calculated from the
 sum of IGP metrics of the links in the path. The results for
 topology T208 show that the metric-based path lengths for NP_LLFA and
 NP_RLFA alternates are on average 78 and 66 times longer than the
 path lengths for optimal alternates. The metric-based path lengths
 for MRT alternates are on average 14 times longer than for optimal
 alternates.

 +--------+--+
 | | average relative alternate path length |
 | |-----------------------+------------------------+
 |Topology| IGP metric | hopcount |
 | |-----------------------+------------------------+
 | |NP_LLFA |NP_RLFA | MRT |NP_LLFA |NP_RLFA | MRT |
 +--------+--------+--------+-----+--------+--------+------+
 | T208 | 78.2 | 66.0 | 13.6| 0.99 | 1.01 | 1.32 |
 +--------+--------+--------+-----+--------+--------+------+

 Figure 29

 The network topology represented by T208 uses values of 10, 100, and
 1000 as IGP costs, so small deviations from the optimal alternate
 path can result in large differences in relative path length. LLFA,
 RLFA, and MRT all allow for at least one hop in the alterate path to
 be chosen independent of the cost of the link. This can easily
 result in an alternate using a link with cost 1000, which introduces
 noise into the path length measurement. In the case of T208, the
 adverse effects of using metric-based path lengths is obvious.
 However, we have observed that the metric-based path length
 introduces noise into alternate path length measurements in several
 other topologies as well. For this reason, we have opted to measure
 the alternate path length using hopcount. While IGP metrics may be
 adjusted by the network operator for a number of reasons (e.g.
 traffic engineering), the hopcount is a fairly stable measurement of
 path length. As shown in the last three columns of Figure 29, the
 hopcount-based alternate path lengths for topology T208 are fairly
 well-behaved.

 Figure 30, Figure 31, Figure 32, and Figure 33 present the hopcount-
 based path length results for the 19 topologies examined. The
 topologies in the four tables are grouped based on the size of the
 topologies, as measured by the number of nodes, with Figure 30 having

Enyedi, et al. Expires January 3, 2016 [Page 68]

Internet-Draft MRT FRR Algorithm July 2015

 the smallest topologies and Figure 33 having the largest topologies.
 Instead of trying to represent the path lengths of a large set of
 alternates with a single number, we have chosen to present a
 histogram of the path lengths for each IPFRR method and alternate
 selection policy studied. The first eight colums of data represent
 the percentage of failure scenarios protected by an alternate N hops
 longer than the primary path, with the first column representing an
 alternate 0 or 1 hops longer than the primary path, all the way up
 through the eighth column respresenting an alternate 14 or 15 hops
 longer than the primary path. The last column in the table gives the
 percentage of failure scenarios for which there is no alternate less
 than 16 hops longer than the primary path. In the case of LLFA and
 RLFA, this category includes failure scenarios for which no alternate
 was found.

 For each topology, the first row (labeled OPTIMAL) is the
 distribution of the number of hops in excess of the primary path
 hopcount for optimally routed alternates. (The optimal routing was
 done with respect to IGP metrics, as opposed to hopcount.) The
 second row(labeled NP_LLFA) is the distribution of the extra hops for
 node-protecting LLFA. The third row (labeled NP_LLFA_THEN_NP_RLFA)
 is the hopcount distribution when one adds node-protecting RLFA to
 increase the coverage. The alternate selection policy used here
 first tries to find a node-protecting LLFA. If that does not exist,
 then it tries to find an RLFA, and checks if it is node-protecting.
 Comparing the hopcount distribution for RLFA and LLFA across these
 topologies, one can see how the coverage is increased at the expense
 of using longer alternates. It is also worth noting that while
 superficially LLFA and RLFA appear to have better hopcount
 distributions than OPTIMAL, the presence of entries in the last
 column (no alternate < 16) mainly represent failure scenarios that
 are not protected, for which the hopcount is effectively infinite.

 The fourth and fifth rows of each topology show the hopcount
 distributions for two alternate selection policies using MRT
 alternates. The policy represented by the label
 NP_LLFA_THEN_MRT_LOWPOINT will first use a node-protecting LLFA. If
 a node-protecting LLFA does not exist, then it will use an MRT
 alternate. The policy represented by the label MRT_LOWPOINT instead
 will use the MRT alternate even if a node-protecting LLFA exists.
 One can see from the data that combining node-protecting LLFA with
 MRT results in a significant shortening of the alternate hopcount
 distribution.

Enyedi, et al. Expires January 3, 2016 [Page 69]

Internet-Draft MRT FRR Algorithm July 2015

 +---+
	percentage of failure scenarios
Topology name	protected by an alternate N hops
and	longer than the primary path
alternate selection +------------------------------------+	
policy evaluated	
	0-1
+------------------------------+---+---+---+---+---+---+---+---+----+	
T201(avg primary hops=3.5)	
OPTIMAL	37
NP_LLFA	37
NP_LLFA_THEN_NP_RLFA	37
NP_LLFA_THEN_MRT_LOWPOINT	37
MRT_LOWPOINT	33
+------------------------------+---+---+---+---+---+---+---+---+----+	
T202(avg primary hops=4.8)	
OPTIMAL	90
NP_LLFA	71
NP_LLFA_THEN_NP_RLFA	78
NP_LLFA_THEN_MRT_LOWPOINT	80
MRT_LOWPOINT_ONLY	48
+------------------------------+---+---+---+---+---+---+---+---+----+	
T203(avg primary hops=4.1)	
OPTIMAL	36
NP_LLFA	34
NP_LLFA_THEN_NP_RLFA	35
NP_LLFA_THEN_MRT_LOWPOINT	36
MRT_LOWPOINT_ONLY	31
+------------------------------+---+---+---+---+---+---+---+---+----+	
T204(avg primary hops=3.7)	
OPTIMAL	76
NP_LLFA	54
NP_LLFA_THEN_NP_RLFA	67
NP_LLFA_THEN_MRT_LOWPOINT	70
MRT_LOWPOINT_ONLY	58
+------------------------------+---+---+---+---+---+---+---+---+----+	
T205(avg primary hops=3.4)	
OPTIMAL	92
NP_LLFA	89
NP_LLFA_THEN_NP_RLFA	90
NP_LLFA_THEN_MRT_LOWPOINT	91
MRT_LOWPOINT_ONLY	62
 +------------------------------+---+---+---+---+---+---+---+---+----+

 Figure 30

Enyedi, et al. Expires January 3, 2016 [Page 70]

Internet-Draft MRT FRR Algorithm July 2015

 +---+
	percentage of failure scenarios
Topology name	protected by an alternate N hops
and	longer than the primary path
alternate selection +------------------------------------+	
policy evaluated	
	0-1
+------------------------------+---+---+---+---+---+---+---+---+----+	
T206(avg primary hops=3.7)	
OPTIMAL	63
NP_LLFA	60
NP_LLFA_THEN_NP_RLFA	60
NP_LLFA_THEN_MRT_LOWPOINT	64
MRT_LOWPOINT	55
+------------------------------+---+---+---+---+---+---+---+---+----+	
T207(avg primary hops=3.9)	
OPTIMAL	71
NP_LLFA	55
NP_LLFA_THEN_NP_RLFA	63
NP_LLFA_THEN_MRT_LOWPOINT	70
MRT_LOWPOINT_ONLY	57
+------------------------------+---+---+---+---+---+---+---+---+----+	
T208(avg primary hops=4.6)	
OPTIMAL	58
NP_LLFA	53
NP_LLFA_THEN_NP_RLFA	56
NP_LLFA_THEN_MRT_LOWPOINT	58
MRT_LOWPOINT_ONLY	34
+------------------------------+---+---+---+---+---+---+---+---+----+	
T209(avg primary hops=3.6)	
OPTIMAL	85
NP_LLFA	79
NP_LLFA_THEN_NP_RLFA	79
NP_LLFA_THEN_MRT_LOWPOINT	82
MRT_LOWPOINT_ONLY	63
+------------------------------+---+---+---+---+---+---+---+---+----+	
T210(avg primary hops=2.5)	
OPTIMAL	95
NP_LLFA	94
NP_LLFA_THEN_NP_RLFA	94
NP_LLFA_THEN_MRT_LOWPOINT	95
MRT_LOWPOINT_ONLY	91
 +------------------------------+---+---+---+---+---+---+---+---+----+

 Figure 31

Enyedi, et al. Expires January 3, 2016 [Page 71]

Internet-Draft MRT FRR Algorithm July 2015

 +---+
	percentage of failure scenarios
Topology name	protected by an alternate N hops
and	longer than the primary path
alternate selection +------------------------------------+	
policy evaluated	
	0-1
+------------------------------+---+---+---+---+---+---+---+---+----+	
T211(avg primary hops=3.3)	
OPTIMAL	88
NP_LLFA	66
NP_LLFA_THEN_NP_RLFA	68
NP_LLFA_THEN_MRT_LOWPOINT	88
MRT_LOWPOINT	85
+------------------------------+---+---+---+---+---+---+---+---+----+	
T212(avg primary hops=3.5)	
OPTIMAL	76
NP_LLFA	59
NP_LLFA_THEN_NP_RLFA	61
NP_LLFA_THEN_MRT_LOWPOINT	75
MRT_LOWPOINT_ONLY	66
+------------------------------+---+---+---+---+---+---+---+---+----+	
T213(avg primary hops=4.3)	
OPTIMAL	91
NP_LLFA	84
NP_LLFA_THEN_NP_RLFA	84
NP_LLFA_THEN_MRT_LOWPOINT	89
MRT_LOWPOINT_ONLY	75
+------------------------------+---+---+---+---+---+---+---+---+----+	
T214(avg primary hops=5.8)	
OPTIMAL	71
NP_LLFA	58
NP_LLFA_THEN_NP_RLFA	61
NP_LLFA_THEN_MRT_LOWPOINT	66
MRT_LOWPOINT_ONLY	30
+------------------------------+---+---+---+---+---+---+---+---+----+	
T215(avg primary hops=4.8)	
OPTIMAL	73
NP_LLFA	73
NP_LLFA_THEN_NP_RLFA	73
NP_LLFA_THEN_MRT_LOWPOINT	74
MRT_LOWPOINT_ONLY	32
 +------------------------------+---+---+---+---+---+---+---+---+----+

 Figure 32

Enyedi, et al. Expires January 3, 2016 [Page 72]

Internet-Draft MRT FRR Algorithm July 2015

 +---+
	percentage of failure scenarios
Topology name	protected by an alternate N hops
and	longer than the primary path
alternate selection +------------------------------------+	
policy evaluated	
	0-1
+------------------------------+---+---+---+---+---+---+---+---+----+	
T216(avg primary hops=5.2)	
OPTIMAL	60
NP_LLFA	39
NP_LLFA_THEN_NP_RLFA	46
NP_LLFA_THEN_MRT_LOWPOINT	48
MRT_LOWPOINT	28
+------------------------------+---+---+---+---+---+---+---+---+----+	
T217(avg primary hops=8.0)	
OPTIMAL	81
NP_LLFA	74
NP_LLFA_THEN_NP_RLFA	76
NP_LLFA_THEN_MRT_LOWPOINT	77
MRT_LOWPOINT_ONLY	25
+------------------------------+---+---+---+---+---+---+---+---+----+	
T218(avg primary hops=5.5)	
OPTIMAL	85
NP_LLFA	68
NP_LLFA_THEN_NP_RLFA	71
NP_LLFA_THEN_MRT_LOWPOINT	77
MRT_LOWPOINT_ONLY	37
+------------------------------+---+---+---+---+---+---+---+---+----+	
T219(avg primary hops=7.7)	
OPTIMAL	77
NP_LLFA	72
NP_LLFA_THEN_NP_RLFA	73
NP_LLFA_THEN_MRT_LOWPOINT	74
MRT_LOWPOINT_ONLY	19
 +------------------------------+---+---+---+---+---+---+---+---+----+

 Figure 33

 In the preceding analysis, the following procedure for selecting an
 RLFA was used. Nodes were ordered with respect to distance from the
 source and checked for membership in Q and P-space. The first node
 to satisfy this condition was selected as the RLFA. More
 sophisticated methods to select node-protecting RLFAs is an area of
 active research.

Enyedi, et al. Expires January 3, 2016 [Page 73]

Internet-Draft MRT FRR Algorithm July 2015

 The analysis presented above uses the MRT Lowpoint Algorithm defined
 in this specification with a common GADAG root. The particular
 choice of a common GADAG root is expected to affect the quality of
 the MRT alternate paths, with a more central common GADAG root
 resulting in shorter MRT alternate path lengths. For the analysis
 above, the GADAG root was chosen for each topology by calculating
 node centrality as the sum of costs of all shortest paths to and from
 a given node. The node with the lowest sum was chosen as the common
 GADAG root. In actual deployments, the common GADAG root would be
 chosen based on the GADAG Root Selection Priority advertised by each
 router, the values of which would be determined off-line.

 In order to measure how sensitive the MRT alternate path lengths are
 to the choice of common GADAG root, we performed the same analysis
 using different choices of GADAG root. All of the nodes in the
 network were ordered with respect to the node centrality as computed
 above. Nodes were chosen at the 0th, 25th, and 50th percentile with
 respect to the centrality ordering, with 0th percentile being the
 most central node. The distribution of alternate path lengths for
 those three choices of GADAG root are shown in Figure 34 for a subset
 of the 19 topologies (chosen arbitrarily). The third row for each
 topology (labeled MRT_LOWPOINT (0 percentile)) reproduces the
 results presented above for MRT_LOWPOINT_ONLY. The fourth and fifth
 rows show the alternate path length distibution for the 25th and 50th
 percentile choice for GADAG root. One can see some impact on the
 path length distribution with the less central choice of GADAG root
 resulting in longer path lenghths.

 We also looked at the impact of MRT algorithm variant on the
 alternate path lengths. The first two rows for each topology present
 results of the same alternate path length distribution analysis for
 the SPF and Hybrid methods for computing the GADAG. These two
 methods are described in Appendix A and Appendix B. For three of the
 topologies in this subset (T201, T206, and T211), the use of SPF or
 Hybrid methods does not appear to provide a significant advantage
 over the Lowpoint method with respect to path length. Instead, the
 choice of GADAG root appears to have more impact on the path length.
 However, for two of the topologies in this subset(T216 and T219) and
 for this particular choice of GAGAG root, the use of the SPF method
 results in noticeably shorter alternate path lengths than the use of
 the Lowpoint or Hybrid methods. It remains to be determined if this
 effect applies generally across more topologies or is sensitive to
 choice of GADAG root.

Enyedi, et al. Expires January 3, 2016 [Page 74]

Internet-Draft MRT FRR Algorithm July 2015

 +---+
Topology name	percentage of failure scenarios
	protected by an alternate N hops
MRT algorithm variant	longer than the primary path
+------------------------------------+	
(GADAG root	
centrality percentile)	
	0-1
+------------------------------+---+---+---+---+---+---+---+---+----+	
T201(avg primary hops=3.5)	
MRT_HYBRID (0 percentile)	33
MRT_SPF (0 percentile)	33
MRT_LOWPOINT (0 percentile)	33
MRT_LOWPOINT (25 percentile)	27
MRT_LOWPOINT (50 percentile)	27
+------------------------------+---+---+---+---+---+---+---+---+----+	
T206(avg primary hops=3.7)	
MRT_HYBRID (0 percentile)	50
MRT_SPF (0 percentile)	50
MRT_LOWPOINT (0 percentile)	55
MRT_LOWPOINT (25 percentile)	47
MRT_LOWPOINT (50 percentile)	38
+------------------------------+---+---+---+---+---+---+---+---+----+	
T211(avg primary hops=3.3)	
MRT_HYBRID (0 percentile)	86
MRT_SPF (0 percentile)	86
MRT_LOWPOINT (0 percentile)	85
MRT_LOWPOINT (25 percentile)	70
MRT_LOWPOINT (50 percentile)	80
+------------------------------+---+---+---+---+---+---+---+---+----+	
T216(avg primary hops=5.2)	
MRT_HYBRID (0 percentile)	23
MRT_SPF (0 percentile)	35
MRT_LOWPOINT (0 percentile)	28
MRT_LOWPOINT (25 percentile)	24
MRT_LOWPOINT (50 percentile)	19
+------------------------------+---+---+---+---+---+---+---+---+----+	
T219(avg primary hops=7.7)	
MRT_HYBRID (0 percentile)	20
MRT_SPF (0 percentile)	31
MRT_LOWPOINT (0 percentile)	19
MRT_LOWPOINT (25 percentile)	19
MRT_LOWPOINT (50 percentile)	19
 +------------------------------+---+---+---+---+---+---+---+---+----+

 Figure 34

Enyedi, et al. Expires January 3, 2016 [Page 75]

Internet-Draft MRT FRR Algorithm July 2015

9. Implementation Status

 [RFC Editor: please remove this section prior to publication.]

 Please see [I-D.ietf-rtgwg-mrt-frr-architecture] for details on
 implementation status.

10. Algorithm Work to Be Done

 Broadcast Interfaces: The algorithm assumes that broadcast
 interfaces are already represented as pseudo-nodes in the network
 graph. Given maximal redundancy, one of the MRT will try to avoid
 both the pseudo-node and the next hop. The exact rules need to be
 fully specified.

11. Acknowledgements

 The authors would like to thank Shraddha Hegde for her suggestions
 and review. We would also like to thank Anil Kumar SN for his
 assistance in clarifying the algorithm description and pseudocode.

12. IANA Considerations

 This document includes no request to IANA.

13. Security Considerations

 This architecture is not currently believed to introduce new security
 concerns.

14. References

14.1. Normative References

 [I-D.ietf-rtgwg-mrt-frr-architecture]
 Atlas, A., Kebler, R., Bowers, C., Envedi, G., Csaszar,
 A., Tantsura, J., and R. White, "An Architecture for IP/
 LDP Fast-Reroute Using Maximally Redundant Trees", draft-

ietf-rtgwg-mrt-frr-architecture-05 (work in progress),
 January 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-mrt-frr-architecture-05
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-mrt-frr-architecture-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Enyedi, et al. Expires January 3, 2016 [Page 76]

Internet-Draft MRT FRR Algorithm July 2015

14.2. Informative References

 [EnyediThesis]
 Enyedi, G., "Novel Algorithms for IP Fast Reroute",
 Department of Telecommunications and Media Informatics,
 Budapest University of Technology and Economics Ph.D.
 Thesis, February 2011, <http://www.omikk.bme.hu/collection

s/phd/Villamosmernoki_es_Informatikai_Kar/2011/
Enyedi_Gabor/ertekezes.pdf>.

 [I-D.ietf-isis-mrt]
 Li, Z., Wu, N., Zhao, Q., Atlas, A., Bowers, C., and J.
 Tantsura, "Intermediate System to Intermediate System (IS-
 IS) Extensions for Maximally Redundant Trees (MRT)",

draft-ietf-isis-mrt-00 (work in progress), February 2015.

 [I-D.ietf-isis-pcr]
 Farkas, J., Bragg, N., Unbehagen, P., Parsons, G.,
 Ashwood-Smith, P., and C. Bowers, "IS-IS Path Computation
 and Reservation", draft-ietf-isis-pcr-00 (work in
 progress), April 2015.

 [I-D.ietf-mpls-ldp-mrt]
 Atlas, A., Tiruveedhula, K., Bowers, C., Tantsura, J., and
 I. Wijnands, "LDP Extensions to Support Maximally
 Redundant Trees", draft-ietf-mpls-ldp-mrt-00 (work in
 progress), January 2015.

 [I-D.ietf-ospf-mrt]
 Atlas, A., Hegde, S., Bowers, C., Tantsura, J., and Z. Li,
 "OSPF Extensions to Support Maximally Redundant Trees",

draft-ietf-ospf-mrt-00 (work in progress), January 2015.

 [I-D.ietf-rtgwg-ipfrr-notvia-addresses]
 Bryant, S., Previdi, S., and M. Shand, "A Framework for IP
 and MPLS Fast Reroute Using Not-via Addresses", draft-

ietf-rtgwg-ipfrr-notvia-addresses-11 (work in progress),
 May 2013.

 [I-D.ietf-rtgwg-lfa-manageability]
 Litkowski, S., Decraene, B., Filsfils, C., Raza, K.,
 Horneffer, M., and P. Sarkar, "Operational management of
 Loop Free Alternates", draft-ietf-rtgwg-lfa-

manageability-11 (work in progress), June 2015.

http://www.omikk.bme.hu/collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/Enyedi_Gabor/ertekezes.pdf
http://www.omikk.bme.hu/collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/Enyedi_Gabor/ertekezes.pdf
http://www.omikk.bme.hu/collections/phd/Villamosmernoki_es_Informatikai_Kar/2011/Enyedi_Gabor/ertekezes.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-isis-mrt-00
https://datatracker.ietf.org/doc/html/draft-ietf-isis-pcr-00
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-ldp-mrt-00
https://datatracker.ietf.org/doc/html/draft-ietf-ospf-mrt-00
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-11
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-11
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-lfa-manageability-11
https://datatracker.ietf.org/doc/html/draft-ietf-rtgwg-lfa-manageability-11

Enyedi, et al. Expires January 3, 2016 [Page 77]

Internet-Draft MRT FRR Algorithm July 2015

 [Kahn_1962_topo_sort]
 Kahn, A., "Topological sorting of large networks",
 Communications of the ACM, Volume 5, Issue 11 , Nov 1962,
 <http://dl.acm.org/citation.cfm?doid=368996.369025>.

 [LFARevisited]
 Retvari, G., Tapolcai, J., Enyedi, G., and A. Csaszar, "IP
 Fast ReRoute: Loop Free Alternates Revisited", Proceedings
 of IEEE INFOCOM , 2011,
 <http://opti.tmit.bme.hu/~tapolcai/papers/

retvari2011lfa_infocom.pdf>.

 [LightweightNotVia]
 Enyedi, G., Retvari, G., Szilagyi, P., and A. Csaszar, "IP
 Fast ReRoute: Lightweight Not-Via without Additional
 Addresses", Proceedings of IEEE INFOCOM , 2009,
 <http://mycite.omikk.bme.hu/doc/71691.pdf>.

 [MRTLinear]
 Enyedi, G., Retvari, G., and A. Csaszar, "On Finding
 Maximally Redundant Trees in Strictly Linear Time", IEEE
 Symposium on Computers and Comunications (ISCC) , 2009,
 <http://opti.tmit.bme.hu/~enyedi/ipfrr/

distMaxRedTree.pdf>.

 [RFC3137] Retana, A., Nguyen, L., White, R., Zinin, A., and D.
 McPherson, "OSPF Stub Router Advertisement", RFC 3137,
 June 2001.

 [RFC5120] Przygienda, T., Shen, N., and N. Sheth, "M-ISIS: Multi
 Topology (MT) Routing in Intermediate System to
 Intermediate Systems (IS-ISs)", RFC 5120, February 2008.

 [RFC5286] Atlas, A. and A. Zinin, "Basic Specification for IP Fast
 Reroute: Loop-Free Alternates", RFC 5286, September 2008.

 [RFC5714] Shand, M. and S. Bryant, "IP Fast Reroute Framework", RFC
5714, January 2010.

 [RFC6571] Filsfils, C., Francois, P., Shand, M., Decraene, B.,
 Uttaro, J., Leymann, N., and M. Horneffer, "Loop-Free
 Alternate (LFA) Applicability in Service Provider (SP)
 Networks", RFC 6571, June 2012.

 [RFC7490] Bryant, S., Filsfils, C., Previdi, S., Shand, M., and N.
 So, "Remote Loop-Free Alternate (LFA) Fast Reroute (FRR)",

RFC 7490, April 2015.

http://dl.acm.org/citation.cfm?doid=368996.369025
http://opti.tmit.bme.hu/~tapolcai/papers/retvari2011lfa_infocom.pdf
http://opti.tmit.bme.hu/~tapolcai/papers/retvari2011lfa_infocom.pdf
http://mycite.omikk.bme.hu/doc/71691.pdf
http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf
http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf
https://datatracker.ietf.org/doc/html/rfc3137
https://datatracker.ietf.org/doc/html/rfc5120
https://datatracker.ietf.org/doc/html/rfc5286
https://datatracker.ietf.org/doc/html/rfc5714
https://datatracker.ietf.org/doc/html/rfc5714
https://datatracker.ietf.org/doc/html/rfc6571
https://datatracker.ietf.org/doc/html/rfc7490

Enyedi, et al. Expires January 3, 2016 [Page 78]

Internet-Draft MRT FRR Algorithm July 2015

Appendix A. Option 2: Computing GADAG using SPFs

 The basic idea in this option is to use slightly-modified SPF
 computations to find ears. In every block, an SPF computation is
 first done to find a cycle from the local root and then SPF
 computations in that block find ears until there are no more
 interfaces to be explored. The used result from the SPF computation
 is the path of interfaces indicated by following the previous hops
 from the mininized IN_GADAG node back to the SPF root.

 To do this, first all cut-vertices must be identified and local-roots
 assigned as specified in Figure 12.

 The slight modifications to the SPF are as follows. The root of the
 block is referred to as the block-root; it is either the GADAG root
 or a cut-vertex.

 a. The SPF is rooted at a neighbor x of an IN_GADAG node y. All
 links between y and x are marked as TEMP_UNUSABLE. They should
 not be used during the SPF computation.

 b. If y is not the block-root, then it is marked TEMP_UNUSABLE. It
 should not be used during the SPF computation. This prevents
 ears from starting and ending at the same node and avoids cycles;
 the exception is because cycles to/from the block-root are
 acceptable and expected.

 c. Do not explore links to nodes whose local-root is not the block-
 root. This keeps the SPF confined to the particular block.

 d. Terminate when the first IN_GADAG node z is minimized.

 e. Respect the existing directions (e.g. INCOMING, OUTGOING,
 UNDIRECTED) already specified for each interface.

 Mod_SPF(spf_root, block_root)
 Initialize spf_heap to empty
 Initialize nodes' spf_metric to infinity
 spf_root.spf_metric = 0
 insert(spf_heap, spf_root)
 found_in_gadag = false
 while (spf_heap is not empty) and (found_in_gadag is false)
 min_node = remove_lowest(spf_heap)
 if min_node.IN_GADAG
 found_in_gadag = true
 else
 foreach interface intf of min_node

Enyedi, et al. Expires January 3, 2016 [Page 79]

Internet-Draft MRT FRR Algorithm July 2015

 if ((intf.OUTGOING or intf.UNDIRECTED) and
 ((intf.remote_node.localroot is block_root) or
 (intf.remote_node is block_root)) and
 (intf.remote_node is not TEMP_UNUSABLE) and
 (intf is not TEMP_UNUSABLE))
 path_metric = min_node.spf_metric + intf.metric
 if path_metric < intf.remote_node.spf_metric
 intf.remote_node.spf_metric = path_metric
 intf.remote_node.spf_prev_intf = intf
 insert_or_update(spf_heap, intf.remote_node)
 return min_node

 SPF_for_Ear(cand_intf.local_node,cand_intf.remote_node, block_root,
 method)
 Mark all interfaces between cand_intf.remote_node
 and cand_intf.local_node as TEMP_UNUSABLE
 if cand_intf.local_node is not block_root
 Mark cand_intf.local_node as TEMP_UNUSABLE
 Initialize ear_list to empty
 end_ear = Mod_SPF(spf_root, block_root)
 y = end_ear.spf_prev_hop
 while y.local_node is not spf_root
 add_to_list_start(ear_list, y)
 y.local_node.IN_GADAG = true
 y = y.local_node.spf_prev_intf
 if(method is not hybrid)
 Set_Ear_Direction(ear_list, cand_intf.local_node,
 end_ear,block_root)
 Clear TEMP_UNUSABLE from all interfaces between
 cand_intf.remote_node and cand_intf.local_node
 Clear TEMP_UNUSABLE from cand_intf.local_node
 return end_ear

 Figure 35: Modified SPF for GADAG computation

 Assume that an ear is found by going from y to x and then running an
 SPF that terminates by minimizing z (e.g. y<->x...q<->z). Now it is
 necessary to determine the direction of the ear; if y << z, then the
 path should be y->x...q->z but if y >> z, then the path should be y<-
 x...q<-z. In Section 5.5, the same problem was handled by finding
 all ears that started at a node before looking at ears starting at
 nodes higher in the partial order. In this algorithm, using that
 approach could mean that new ears aren't added in order of their
 total cost since all ears connected to a node would need to be found
 before additional nodes could be found.

Enyedi, et al. Expires January 3, 2016 [Page 80]

Internet-Draft MRT FRR Algorithm July 2015

 The alternative is to track the order relationship of each node with
 respect to every other node. This can be accomplished by maintaining
 two sets of nodes at each node. The first set, Higher_Nodes,
 contains all nodes that are known to be ordered above the node. The
 second set, Lower_Nodes, contains all nodes that are known to be
 ordered below the node. This is the approach used in this algorithm.

Enyedi, et al. Expires January 3, 2016 [Page 81]

Internet-Draft MRT FRR Algorithm July 2015

 Set_Ear_Direction(ear_list, end_a, end_b, block_root)
 // Default of A_TO_B for the following cases:
 // (a) end_a and end_b are the same (root)
 // or (b) end_a is in end_b's Lower Nodes
 // or (c) end_a and end_b were unordered with respect to each
 // other
 direction = A_TO_B
 if (end_b is block_root) and (end_a is not end_b)
 direction = B_TO_A
 else if end_a is in end_b.Higher_Nodes
 direction = B_TO_A
 if direction is B_TO_A
 foreach interface i in ear_list
 i.UNDIRECTED = false
 i.INCOMING = true
 i.remote_intf.UNDIRECTED = false
 i.remote_intf.OUTGOING = true
 else
 foreach interface i in ear_list
 i.UNDIRECTED = false
 i.OUTGOING = true
 i.remote_intf.UNDIRECTED = false
 i.remote_intf.INCOMING = true
 if end_a is end_b
 return
 // Next, update all nodes' Lower_Nodes and Higher_Nodes
 if (end_a is in end_b.Higher_Nodes)
 foreach node x where x.localroot is block_root
 if end_a is in x.Lower_Nodes
 foreach interface i in ear_list
 add i.remote_node to x.Lower_Nodes
 if end_b is in x.Higher_Nodes
 foreach interface i in ear_list
 add i.local_node to x.Higher_Nodes
 else
 foreach node x where x.localroot is block_root
 if end_b is in x.Lower_Nodes
 foreach interface i in ear_list
 add i.local_node to x.Lower_Nodes
 if end_a is in x.Higher_Nodes
 foreach interface i in ear_list
 add i.remote_node to x.Higher_Nodes

 Figure 36: Algorithm to assign links of an ear direction

 A goal of the algorithm is to find the shortest cycles and ears. An
 ear is started by going to a neighbor x of an IN_GADAG node y. The
 path from x to an IN_GADAG node is minimal, since it is computed via

Enyedi, et al. Expires January 3, 2016 [Page 82]

Internet-Draft MRT FRR Algorithm July 2015

 SPF. Since a shortest path is made of shortest paths, to find the
 shortest ears requires reaching from the set of IN_GADAG nodes to the
 closest node that isn't IN_GADAG. Therefore, an ordered tree is
 maintained of interfaces that could be explored from the IN_GADAG
 nodes. The interfaces are ordered by their characteristics of
 metric, local loopback address, remote loopback address, and ifindex,
 as in the algorithm previously described in Figure 14.

 The algorithm ignores interfaces picked from the ordered tree that
 belong to the block root if the block in which the interface is
 present already has an ear that has been computed. This is necessary
 since we allow at most one incoming interface to a block root in each
 block. This requirement stems from the way next-hops are computed as
 was seen in Section 5.7. After any ear gets computed, we traverse
 the newly added nodes to the GADAG and insert interfaces whose far
 end is not yet on the GADAG to the ordered tree for later processing.

 Finally, cut-links are a special case because there is no point in
 doing an SPF on a block of 2 nodes. The algorithm identifies cut-
 links simply as links where both ends of the link are cut-vertices.
 Cut-links can simply be added to the GADAG with both OUTGOING and
 INCOMING specified on their interfaces.

 add_eligible_interfaces_of_node(ordered_intfs_tree,node)
 for each interface of node
 if intf.remote_node.IN_GADAG is false
 insert(intf,ordered_intfs_tree)

 check_if_block_has_ear(x,block_id)
 block_has_ear = false
 for all interfaces of x
 if ((intf.remote_node.block_id == block_id) &&
 intf.remote_node.IN_GADAG)
 block_has_ear = true
 return block_has_ear

 Construct_GADAG_via_SPF(topology, root)
 Compute_Localroot (root,root)
 Assign_Block_ID(root,0)
 root.IN_GADAG = true
 add_eligible_interfaces_of_node(ordered_intfs_tree,root)
 while ordered_intfs_tree is not empty
 cand_intf = remove_lowest(ordered_intfs_tree)
 if cand_intf.remote_node.IN_GADAG is false
 if L(cand_intf.remote_node) == D(cand_intf.remote_node)
 // Special case for cut-links
 cand_intf.UNDIRECTED = false
 cand_intf.remote_intf.UNDIRECTED = false

Enyedi, et al. Expires January 3, 2016 [Page 83]

Internet-Draft MRT FRR Algorithm July 2015

 cand_intf.OUTGOING = true
 cand_intf.INCOMING = true
 cand_intf.remote_intf.OUTGOING = true
 cand_intf.remote_intf.INCOMING = true
 cand_intf.remote_node.IN_GADAG = true
 add_eligible_interfaces_of_node(
 ordered_intfs_tree,cand_intf.remote_node)
 else
 if (cand_intf.remote_node.local_root ==
 cand_intf.local_node) &&
 check_if_block_has_ear(cand_intf.local_node,
 cand_intf.remote_node.block_id))
 /* Skip the interface since the block root
 already has an incoming interface in the
 block */
 else
 ear_end = SPF_for_Ear(cand_intf.local_node,
 cand_intf.remote_node,
 cand_intf.remote_node.localroot,
 SPF method)
 y = ear_end.spf_prev_hop
 while y.local_node is not cand_intf.local_node
 add_eligible_interfaces_of_node(
 ordered_intfs_tree, y.local_node)
 y = y.local_node.spf_prev_intf

 Figure 37: SPF-based GADAG algorithm

Appendix B. Option 3: Computing GADAG using a hybrid method

 In this option, the idea is to combine the salient features of the
 lowpoint inheritance and SPF methods. To this end, we process nodes
 as they get added to the GADAG just like in the lowpoint inheritance
 by maintaining a stack of nodes. This ensures that we do not need to
 maintain lower and higher sets at each node to ascertain ear
 directions since the ears will always be directed from the node being
 processed towards the end of the ear. To compute the ear however, we
 resort to an SPF to have the possibility of better ears (path
 lentghs) thus giving more flexibility than the restricted use of
 lowpoint/dfs parents.

 Regarding ears involving a block root, unlike the SPF method which
 ignored interfaces of the block root after the first ear, in the
 hybrid method we would have to process all interfaces of the block
 root before moving on to other nodes in the block since the direction
 of an ear is pre-determined. Thus, whenever the block already has an
 ear computed, and we are processing an interface of the block root,

Enyedi, et al. Expires January 3, 2016 [Page 84]

Internet-Draft MRT FRR Algorithm July 2015

 we mark the block root as unusable before the SPF run that computes
 the ear. This ensures that the SPF terminates at some node other
 than the block-root. This in turn guarantees that the block-root has
 only one incoming interface in each block, which is necessary for
 correctly computing the next-hops on the GADAG.

 As in the SPF gadag, bridge ears are handled as a special case.

 The entire algorithm is shown below in Figure 38

 find_spf_stack_ear(stack, x, y, xy_intf, block_root)
 if L(y) == D(y)
 // Special case for cut-links
 xy_intf.UNDIRECTED = false
 xy_intf.remote_intf.UNDIRECTED = false
 xy_intf.OUTGOING = true
 xy_intf.INCOMING = true
 xy_intf.remote_intf.OUTGOING = true
 xy_intf.remote_intf.INCOMING = true
 xy_intf.remote_node.IN_GADAG = true
 push y onto stack
 return
 else
 if (y.local_root == x) &&
 check_if_block_has_ear(x,y.block_id)
 //Avoid the block root during the SPF
 Mark x as TEMP_UNUSABLE
 end_ear = SPF_for_Ear(x,y,block_root,hybrid)
 If x was set as TEMP_UNUSABLE, clear it
 cur = end_ear
 while (cur != y)
 intf = cur.spf_prev_hop
 prev = intf.local_node
 intf.UNDIRECTED = false
 intf.remote_intf.UNDIRECTED = false
 intf.OUTGOING = true
 intf.remote_intf.INCOMING = true
 push prev onto stack
 cur = prev
 xy_intf.UNDIRECTED = false
 xy_intf.remote_intf.UNDIRECTED = false
 xy_intf.OUTGOING = true
 xy_intf.remote_intf.INCOMING = true
 return

 Construct_GADAG_via_hybrid(topology,root)
 Compute_Localroot (root,root)
 Assign_Block_ID(root,0)

Enyedi, et al. Expires January 3, 2016 [Page 85]

Internet-Draft MRT FRR Algorithm July 2015

 root.IN_GADAG = true
 Initialize Stack to empty
 push root onto Stack
 while (Stack is not empty)
 x = pop(Stack)
 for each interface intf of x
 y = intf.remote_node
 if y.IN_GADAG is false
 find_spf_stack_ear(stack, x, y, intf, y.block_root)

 Figure 38: Hybrid GADAG algorithm

Authors' Addresses

 Gabor Sandor Enyedi (editor)
 Ericsson
 Konyves Kalman krt 11
 Budapest 1097
 Hungary

 Email: Gabor.Sandor.Enyedi@ericsson.com

 Andras Csaszar
 Ericsson
 Konyves Kalman krt 11
 Budapest 1097
 Hungary

 Email: Andras.Csaszar@ericsson.com

 Alia Atlas (editor)
 Juniper Networks
 10 Technology Park Drive
 Westford, MA 01886
 USA

 Email: akatlas@juniper.net

 Chris Bowers
 Juniper Networks
 1194 N. Mathilda Ave.
 Sunnyvale, CA 94089
 USA

 Email: cbowers@juniper.net

Enyedi, et al. Expires January 3, 2016 [Page 86]

Internet-Draft MRT FRR Algorithm July 2015

 Abishek Gopalan
 University of Arizona
 1230 E Speedway Blvd.
 Tucson, AZ 85721
 USA

 Email: abishek@ece.arizona.edu

Enyedi, et al. Expires January 3, 2016 [Page 87]

