
SACM Working Group H. Birkholz
Internet-Draft Fraunhofer SIT
Intended status: Standards Track J. Fitzgerald-McKay
Expires: April 26, 2019 Department of Defense
 C. Schmidt
 The MITRE Corporation
 D. Waltermire
 NIST
 October 23, 2018

Concise Software Identifiers
draft-ietf-sacm-coswid-07

Abstract

 This document defines a concise representation of ISO/IEC
 19770-2:2015 Software Identification (SWID) tags that are
 interoperable with the XML schema definition of ISO/IEC 19770-2:2015
 and augmented for application in Constrained-Node Networks. Next to
 the inherent capability of SWID tags to express arbitrary context
 information, Concise SWID (CoSWID) tags support the definition of
 additional semantics via well-defined data definitions incorporated
 by extension points.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Birkholz, et al. Expires April 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft COSWID October 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. The SWID Tag Lifecycle 4
1.2. Concise SWID Extensions 6
1.3. Requirements Notation 7

2. Concise SWID Data Definition 7
2.1. The concise-software-identity Object 8
2.1.1. Determining the tag type 11
2.1.2. concise-software-identity Co-constraints 12

2.2. The global-attributes Group 12
2.3. The any-element-map Entry 13
2.4. The entity Object . 13
2.5. The link Object . 14
2.6. The software-meta Object 16
2.7. The Resource Collection Definition 19
2.7.1. The hash-entry Array 19
2.7.2. The resource-collection Group 20
2.7.3. The payload Object 22
2.7.4. The evidence Object 23

2.8. Full CDDL Definition 24
3. CoSWID Indexed Label Values 29
3.1. Version Scheme . 29
3.2. Entity Role Values 29

4. IANA Considerations . 30
4.1. SWID/CoSWID Version Schema Values Registry 30
4.2. SWID/CoSWID Entity Role Values Registry 31
4.3. Media Type Registration 32
4.3.1. swid+cbor Media Type Registration 32

4.4. CoAP Content-Format Registration 33
4.5. CBOR Tag Registration 34

5. Security Considerations 34
6. Acknowledgments . 36
7. Change Log . 36
8. Contributors . 38
9. References . 38
9.1. Normative References 39
9.2. Informative References 40

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Birkholz, et al. Expires April 26, 2019 [Page 2]

Internet-Draft COSWID October 2018

Appendix A. CoSWID Attributes for Firmware (label 60) 41
Appendix B. Signed Concise SWID Tags using COSE 44

 Authors' Addresses . 45

1. Introduction

 SWID tags have several use-applications including but not limited to:

 o Software Inventory Management, a part of the Software Asset
 Management [SAM] process, which requires an accurate list of
 discernible deployed software components.

 o Vulnerability Assessment, which requires a semantic link between
 standardized vulnerability descriptions and software components
 installed on IT-assets [X.1520].

 o Remote Attestation, which requires a link between reference
 integrity measurements (RIM) and security logs of measured
 software components [I-D.birkholz-tuda].

 SWID tags, as defined in ISO-19770-2:2015 [SWID], provide a
 standardized XML-based record format that identifies and describes a
 specific release of a software component. Different software
 components, and even different releases of a particular software
 component, each have a different SWID tag record associated with
 them. SWID tags are meant to be flexible and able to express a broad
 set of metadata about a software component.

 While there are very few required fields in SWID tags, there are many
 optional fields that support different use scenarios. While a SWID
 tag consisting of only required fields might be a few hundred bytes
 in size, a tag containing many of the optional fields can be many
 orders of magnitude larger. Thus, real-world instances of SWID tags
 can be fairly large, and the communication of SWID tags in use-
 applications such as those described earlier can cause a large amount
 of data to be transported. This can be larger than acceptable for
 constrained devices and networks. Concise SWID (CoSWID) tags
 significantly reduce the amount of data transported as compared to a
 typical SWID tag. This reduction is enabled through the use of CBOR,
 which maps human-readable labels of that content to more concise
 integer labels (indices). The use of CBOR to express SWID
 information in CoSWID tags allows both CoSWID and SWID tags to be
 part of an enterprise security solution for a wider range of
 endpoints and environments.

Birkholz, et al. Expires April 26, 2019 [Page 3]

Internet-Draft COSWID October 2018

1.1. The SWID Tag Lifecycle

 In addition to defining the format of a SWID tag record, ISO/IEC
 19770-2:2015 defines requirements concerning the SWID tag lifecycle.
 Specifically, when a software component is installed on an endpoint,
 that product's SWID tag is also installed. Likewise, when the
 product is uninstalled or replaced, the SWID tag is deleted or
 replaced, as appropriate. As a result, ISO/IEC 19770-2:2015
 describes a system wherein there is a correspondence between the set
 of installed software components on an endpoint, and the presence of
 the correspondingsponding SWID tags for these components on that
 endpoint. CoSWIDs share the same lifecycle requirements as a SWID
 tag.

 The following is an excerpt (with some modifications and reordering)
 from NIST Interagency Report (NISTIR) 8060: Guidelines for the
 Creation of Interoperable SWID Tags [SWID-GUIDANCE], which describes
 the tag types used within the lifecycle defined in ISO-19770-2:2015.

 The SWID specification defines four types of SWID tags: primary,
 patch, corpus, and supplemental.

 1. Primary Tag - A SWID or CoSWID tag that identifies and describes
 a software component is installed on a computing device.

 2. Patch Tag - A SWID or CoSWID tag that identifies and describes an
 installed patch which has made incremental changes to a software
 component installed on a computing device.

 3. Corpus Tag - A SWID or CoSWID tag that identifies and describes
 an installable software component in its pre-installation state.
 A corpus tag can be used to represent metadata about an
 installation package or installer for a software component, a
 software update, or a patch.

 4. Supplemental Tag - A SWID or CoSWID tag that allows additional
 information to be associated with a referenced SWID tag. This
 helps to ensure that SWID Primary and Patch Tags provided by a
 software provider are not modified by software management tools,
 while allowing these tools to provide their own software
 metadata.

 Corpus, primary, and patch tags have similar functions in that
 they describe the existence and/or presence of different types of
 software (e.g., software installers, software installations,
 software patches), and, potentially, different states of software
 components. In contrast, supplemental tags furnish additional
 information not contained in corpus, primary, or patch tags. All

Birkholz, et al. Expires April 26, 2019 [Page 4]

Internet-Draft COSWID October 2018

 four tag types come into play at various points in the software
 lifecycle, and support software management processes that depend
 on the ability to accurately determine where each software
 component is in its lifecycle.

 +------------+
 v |
 Installation Product Product Product Product
 Media -> Installed -> Patched -> Upgraded -> Removed
 Deployed

 Corpus Primary Primary xPrimary xPrimary
 Supplemental Supplemental xSupplemental xSuplemental
 Patch xPatch
 Primary
 Supplemental

 Figure 1: Use of Tag Types in the Software Lifecycle

 Figure 1 illustrates the steps in the software lifecycle and the
 relationships among those lifecycle events supported by the four
 types of SWID and CoSWID tags, as follows:

 * Software Deployment. Before the software component is
 installed (i.e., pre-installation), and while the product is
 being deployed, a corpus tag provides information about the
 installation files and distribution media (e.g., CD/DVD,
 distribution package).

 * Software Installation. A primary tag will be installed with
 the software component (or subsequently created) to uniquely
 identify and describe the software component. Supplemental
 tags are created to augment primary tags with additional site-
 specific or extended information. While not illustrated in the
 figure, patch tags may also be installed during software
 installation to provide information about software fixes
 deployed along with the base software installation.

 * Software Patching. When a new patch is applied to the software
 component, a new patch tag is provided, supplying details about
 the patch and its dependencies. While not illustrated in the
 figure, a corpus tag can also provide information about the
 patch installer, and patching dependencies that need to be
 installed before the patch.

Birkholz, et al. Expires April 26, 2019 [Page 5]

Internet-Draft COSWID October 2018

 * Software Upgrading. As a software component is upgraded to a
 new version, new primary and supplemental tags replace existing
 tags, enabling timely and accurate tracking of updates to
 software inventory. While not illustrated in the figure, a
 corpus tag can also provide information about the upgrade
 installer, and dependencies that need to be installed before
 the upgrade.

 * Software Removal. Upon removal of the software component,
 relevant SWID tags are removed. This removal event can trigger
 timely updates to software inventory reflecting the removal of
 the product and any associated patch or supplemental tags.

 Note: While not fully illustrated in the figure, supplemental tags
 can be associated with any corpus, primary, or patch tag to provide
 additional metadata about an installer, installed software, or
 installed patch respectively.

 Each of the different SWID and CoSWID tag types provide different
 sets of information. For example, a "corpus tag" is used to describe
 a software component's installation image on an installation media,
 while a "patch tag" is meant to describe a patch that modifies some
 other software component.

1.2. Concise SWID Extensions

 This document defines the CoSWID format, a more concise
 representation of SWID information in the Concise Binary Object
 Representation (CBOR) [RFC7049]. This is described via the Concise
 Data Definition Language (CDDL) [I-D.ietf-cbor-cddl]. The resulting
 CoSWID data definition is interoperable with the XML schema
 definition of ISO-19770-2:2015 [SWID]. The vocabulary, i.e., the
 CDDL names of the types and members used in the CoSWID data
 definition, are mapped to more concise labels represented as small
 integer values. The names used in the CDDL data definition and the
 mapping to the CBOR representation using integer labels is based on
 the vocabulary of the XML attribute and element names defined in ISO/
 IEC 19770-2:2015.

 The corresponding CoSWID data definition includes two kinds of
 augmentation.

 o The explicit definition of types for attributes that are typically
 stored in the "any attribute" of an ISO-19770-2:2015 in XML
 representation. These are covered in Section 2.2 and Section 2.3
 of this document.

https://datatracker.ietf.org/doc/html/rfc7049

Birkholz, et al. Expires April 26, 2019 [Page 6]

Internet-Draft COSWID October 2018

 o The inclusion of extension points in the CoSWID data definition
 that allow for additional uses of CoSWID tags that go beyond the
 original scope of ISO-19770-2:2015 tags. These are covered in

Section 2.7.3 and Section 2.7.4.

1.3. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in RFC

2119, BCP 14 [RFC2119].

2. Concise SWID Data Definition

 The following is a CDDL representation for a CoSWID tag. This CDDL
 represetation is intended to be parallel to the XML schema definition
 in the ISO/IEC 19770-2:2015 [SWID] specification, allowing both SWID
 and CoSWID tags to represent a common set of SWID information and to
 support all SWID tag use cases. To achieve this end, the CDDL
 representation includes every SWID tag field and attribute. The
 CamelCase notation used in the XML schema definition is changed to a
 hyphen-separated notation (e.g. ResourceCollection is named
 resource-collection in the CoSWID data definition). This deviation
 from the original notation used in the XML representation reduces
 ambiguity when referencing certain attributes in corresponding
 textual descriptions. An attribute referred by its name in CamelCase
 notation explicitly relates to XML SWID tags, an attribute referred
 by its name in hyphen-separated notation explicitly relates to CoSWID
 tags. This approach simplifies the composition of further work that
 reference both XML SWID and CoSWID documents.

 Human-readable names of members in the CDDL data definition are
 mapped to integer indices via a block of rules at the bottom of the
 definition. The 67 character strings of the SWID vocabulary that
 would have to be stored or transported in full if using the original
 vocabulary are replaced.

 In CBOR, an array is encoded using bytes that identify the array, and
 the array's length or stop point (see [RFC7049]). To make items that
 support 1 or more values, the following CDDL notion is used.

 name = (_label_: _data_ / [2* _data_])

 The CDDL above allows for a more effecient CBOR encoding of the data
 when a single value is used by avoiding the need to first encode the
 array. An array is used for two or more values. This modeling
 pattern is used frequently in the CoSWID CDDL data definition in such
 cases.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7049

Birkholz, et al. Expires April 26, 2019 [Page 7]

Internet-Draft COSWID October 2018

 The following subsections describe the different parts of the CoSWID
 model.

2.1. The concise-software-identity Object

 The CDDL for the main concise-software-identity object is as follows:

 concise-software-identity = {
 global-attributes,
 tag-id,
 tag-version,
 ? corpus,
 ? patch,
 ? supplemental,
 swid-name,
 ? software-version,
 ? version-scheme,
 ? media,
 ? software-meta-entry,
 ? entity-entry,
 ? link-entry,
 ? (payload-entry / evidence-entry),
 ? any-element-entry,
 }
 tag-id = (0: text)
 swid-name = (1: text)
 entity-entry = (2: entity / [2* entity])
 evidence-entry = (3: evidence)
 link-entry = (4: link / [2* link])
 software-meta-entry = (5: software-meta / [2* software-meta])
 payload-entry = (6: payload)
 any-element-entry = (7: any-element-map / [2* any-element-map])
 corpus = (8: bool)
 patch = (9: bool)
 media = (10: text)
 supplemental = (11: bool)
 tag-version = (12: integer)
 software-version = (13: text)
 version-scheme = (14: text)

 The following describes each child item of the concise-software-
 identity object model.

 o global-attributes: A list of items including an optional language
 definition to support the processing of text-string values and an
 unbounded set of any-attribute items. Described in Section 2.2.

Birkholz, et al. Expires April 26, 2019 [Page 8]

Internet-Draft COSWID October 2018

 o tag-id (label 0): An textual identifier uniquely referencing a
 (composite) software component. The tag identifier MUST be
 globally unique. There are no strict guidelines on how this
 identifier is structured, but examples include a 16 byte GUID
 (e.g. class 4 UUID) [RFC4122].

 o tag-version (label 12): An integer value that indicates if a
 specific release of a software component has more than one tag
 that can represent that specific release. Typically, the initial
 value of this field is set to 0, and the value is monotonically
 increased for subsequent tags produced for the same software
 component release. This item is used when a CoSWID tag producer
 creates and releases an incorrect tag that they subsequently want
 to fix, but no underlying changes have been made to the product
 the CoSWID tag represents. This could happen if, for example, a
 patch is distributed that has a link reference that does not cover
 all the various software releases it can patch. A newer CoSWID
 tag for that patch can be generated and the tag-version value
 incremented to indicate that the data is updated.

 o corpus (label 8): A boolean value that indicates if the tag
 identifies and describes an installable software component in its
 pre-installation state. Installable software includes a
 installation package or installer for a software component, a
 software update, or a patch. If the CoSWID tag represents
 installable software, the corpus item MUST be set to "true". If
 not provided the default value MUST be considered "false".

 o patch (label 9): A boolean value that indicates if the tag
 identifies and describes an installed patch which has made
 incremental changes to a software component installed on a
 computing device. Typically, an installed patch has made a set of
 file modifications to pre-installed software, and does not alter
 the version number or the descriptive metadata of an installed
 software component. If a CoSWID tag is for a patch, it MUST
 contain the patch item and its value MUST be set to "true". If
 not provided the default value MUST be considered "false".

 o supplemental (label 11): A boolean value that indicates if the tag
 is providing additional information to be associated with another
 referenced SWID or CoSWID tag. Tags using this item help to
 ensure that primary and patch tags provided by a software provider
 are not modified by software management tools, while allowing
 these tools to provide their own software metadata for a software
 component. If a CoSWID tag is a supplemntal tag, it MUST contain
 the supplemental item and its value MUST be set to "true". If not
 provided the default value MUST be considered "false".

https://datatracker.ietf.org/doc/html/rfc4122

Birkholz, et al. Expires April 26, 2019 [Page 9]

Internet-Draft COSWID October 2018

 o swid-name (label 1): This textual item provides the software
 component name as it would typically be referenced. For example,
 what would be seen in the add/remove software dialog in an
 operating system, or what is specified as the name of a packaged
 software component or a patch identifier name.

 o software-version (label 13): A textual value representing the
 specific underlying release or development version of the software
 component.

 o version-scheme (label 14): An 8-bit integer or textual value
 representing the versioning scheme used for the software-version
 item. If an integer value is used it MUST be a value from the
 registry (see section Section 4.1 or a value in the private use
 range: 32768-65,535.

 o media (label 10): This text value is a hint to the tag consumer to
 understand what this tag applies to. This item represents a query
 as defined by the W3C Media Queries Recommendation (see

http://www.w3.org/TR/css3-mediaqueries/). A hint to the consumer
 of the link to what the target item is applicable for.

 o software-meta-entry (label 5): An open-ended collection of key/
 value data related to this CoSWID. A number of predefined
 attributes can be used within this item providing for common usage
 and semantics across the industry. The data definition of this
 entry allows for any additional attribute to be included, though
 it is recommended that industry norms for new attributes are
 defined and followed to the degree possible. Described in

Section 2.6.

 o entity-entry (label 2): Specifies the organizations related to the
 software component referenced by this CoSWID tag. Described in

Section 2.4.

 o link-entry (label 4): Provides a means to establish a relationship
 arc between the tag and another item. A link can be used to
 establish relationships between tags and to reference other
 resources that are related to the CoSWID tag, e.g. vulnerability
 database associations, ROLIE feeds, MUD files, software download
 location, etc). This is modeled after the HTML "link" element.
 Described in Section 2.5.

 o payload-entry (label 6): The items that may be installed on a
 system entity when the software component is installed. Note that
 payload may be a superset of the items installed and - depending
 on optimization mechanisms in respect to that system entity - may
 or may not include every item that could be created or executed on

http://www.w3.org/TR/css3-mediaqueries/

Birkholz, et al. Expires April 26, 2019 [Page 10]

Internet-Draft COSWID October 2018

 the corresponding system entitiy when software components are
 installed. In general, payload will be used to indicate the files
 that may be installed with a software component. Therefore
 payload will often be a superset of those files (i.e. if a
 particular optional sub-component is not installed, the files
 associated with that software component may be included in
 payload, but not installed in the system entity). Described in

Section 2.7.3.

 o evidence-entry (label 3): This item is used to provide results
 from a scan of a system where software that does not have a CoSWID
 tag is discovered. This information is not provided by the
 software-creator, and is instead created when a system is being
 scanned and the evidence for why software is believed to be
 installed on the device is provided in the evidence item.
 Described in Section 2.7.4.

 o any-element-entry (label 7): A default map that can contain
 arbitrary map members and even nested maps (which would also be
 any-elements). In essence, the any-element allows items not
 defined in this CDDL data definition to be included in a Concise
 Software Identifier. Described in Section 2.3.

2.1.1. Determining the tag type

 The operational model for SWID and CoSWID tags introduced in
Section 1.1. The following rules can be used to determine the type

 of a CoSWID tag.

 o Corpus Tag: A CoSWID tag MUST be considered a corpus tag if the
 corpus item is "true".

 o Primary Tag: A CoSWID tag MUST be considered a primary tag if the
 corpus, patch, and supplemental items are "false".

 o Patch Tag: A CoSWID tag MUST be considered a patch tag if the
 patch item is "true" and the corpus item is "false".

 o Supplemental Tag: A CoSWID tag MUST be considered a supplemental
 tag if the supplemental item is set to "true".

 A tag that does not match one of the above rules MUST be considered
 an invalid, unsupported tag type.

 If a patch modifies the version number or the descriptive metadata of
 the software, then a new tag representing these details SHOULD be
 installed, and the old tag SHOULD be removed.

Birkholz, et al. Expires April 26, 2019 [Page 11]

Internet-Draft COSWID October 2018

2.1.2. concise-software-identity Co-constraints

 o Only one of the corpus, patch, and supplemental items MUST be set
 to "true", or all of the corpus, patch, and supplemental items
 MUST be set to "false" or be omitted.

 o If the patch item is set to "true", the the tag SHOULD contain at
 least one link with the rel(ation) item value of "patches" and an
 href item specifying an association with the software that was
 patched.

 o If the supplemental item is set to "true", the the tag SHOULD
 contain at least one link with the rel(ation) item value of
 "supplements" and an href item specifying an association with the
 software that is supplemented.

 o If all of the corpus, patch, and supplemental items are "false",
 or if the corpus item is set to "true", then a software-version
 item MUST be included with a value set to the version of the
 software component. This ensures that primary and corpus tags
 have an identifiable software version.

2.2. The global-attributes Group

 The global-attributes group provides a list of items including an
 optional language definition to support the processing of text-string
 values and an unbounded set of any-attribute items allowing for
 additional items to be provided as a general point of extension in
 the model.

 The CDDL for the global-attributes is as follows:

 global-attributes = (
 ? lang,
 * any-attribute,
)

 label = text / int

 any-attribute = (
 label => text / int / [2* text] / [2* int]
)

 lang = (15: text)

 The following describes each child item of this object.

Birkholz, et al. Expires April 26, 2019 [Page 12]

Internet-Draft COSWID October 2018

 o lang (index 15): A language tag or corresponding IANA index
 integer that conforms with IANA Language Subtag Registry
 [RFC5646].

 o any-attribute: This sub-group provides a means to include
 arbitrary information via label (key) item value pairs where both
 keys and values can be either a single integer or text string, or
 an array of integers or text strings.

2.3. The any-element-map Entry

 The CDDL for the any-element-entry object is as follows:

 any-element-map = {
 global-attributes,
 * label => any-element-map / [2* any-element-map],
 }
 any-element-entry = (7: any-element-map / [2* any-element-map])

 The following describes each child item of this object.

 o global-attributes: The global-attributes group described in
Section 2.2.

 o label: a single or multiple

2.4. The entity Object

 The CDDL for the entity object is as follows:

 entity = {
 global-attributes,
 entity-name,
 ? reg-id,
 role,
 ? thumbprint,
 extended-data,
 }

 any-uri = text

 extended-data = (30: any-element-map / [2* any-element-map])
 entity-name = (31: text)
 reg-id = (32: any-uri)
 role = (33: text / [2* text])
 thumbprint = (34: hash-entry)

 The following describes each child item of this object.

https://datatracker.ietf.org/doc/html/rfc5646

Birkholz, et al. Expires April 26, 2019 [Page 13]

Internet-Draft COSWID October 2018

 o global-attributes: The global-attributes group described in
Section 2.2.

 o entity-name (index 32): The text-string name of the organization
 claiming a particular role in the CoSWID tag.

 o reg-id (index 32): The registration id is intended to uniquely
 identify a naming authority in a given scope (e.g. global,
 organization, vendor, customer, administrative domain, etc.) that
 is implied by the referenced naming authority. The value of an
 registration ID MUST be a RFC 3986 URI. The scope SHOULD be the
 scope of an organization. In a given scope, the registration id
 MUST be used consistently.

 o role (index 33): The relationship(s) between this organization and
 this tag. The role of tag creator is required for every CoSWID
 tag. The role of an entity may include any role value, but the
 pre-defined roles include: "aggregator", "distributor",
 "licensor", "software-creator", and "tag-creator". These pre-
 defined role index and text values are defined in Section 3.2.
 Use of index values instead of text for these pre-defined roles
 allows a CoSWID to be more concise.

 o thumbprint (index 34): The value of the thmbprint item provides an
 integer-based hash algorithm identifier (hash-alg-id) and a byte
 string string value (hash-value) that contains the corresponding
 hash value (i.e. the thumbprint) of the signing entities
 certificate(s). If the hash-alg-id is not known, then the integer
 value "0" MUST be used. This ensures parity between the SWID tag
 specification [SWID], which does not allow an algorithm to be
 identified for this field. See Section 2.7.1 for more details on
 the use of the hash-entry data structure.

 o extended-data (index 30): An open-ended collection of elements
 that can be used to attach arbitrary metadata to an entity item.

2.5. The link Object

 The CDDL for the link object is as follows:

https://datatracker.ietf.org/doc/html/rfc3986

Birkholz, et al. Expires April 26, 2019 [Page 14]

Internet-Draft COSWID October 2018

 link = {
 global-attributes,
 ? artifact,
 href,
 ? media
 ? ownership,
 rel,
 ? media-type,
 ? use,
 }
 artifact = (37: text)
 href = (38: any-uri)
 media = (10: any-uri)
 ownership = (39: "shared" / "private" / "abandon")
 rel = (40: text)
 media-type = (41: text)
 use = (42: "optional" / "required" / "recommended")

 The following describes each child item of this object.

 o global-attributes: The global-attributes group described in
Section 2.2.

 o artifact (index: 37): For installation media (rel="installation-
 media"), this item value indicates the path of the installer
 executable or script that can be run to launch the referenced
 installation. Items with the same artifact name should be
 considered mirrors of each other, allowing the installation media
 to be downloaded from any of the described sources.

 o href (index 38): The link to the item being referenced. The
 "href" item's value can point to several different things, and can
 be any of the following:

 * If no URI scheme is provided, then the URI is to be interpreted
 as being relative to the URI of the CoSWID tag. For example,
 "./folder/supplemental.coswid".

 * a physical resource location with any system-acceptable URI
 scheme (e.g., file:// http:// https:// ftp://)

 * a URI with "coswid:" as the scheme, which refers to another
 CoSWID by tag-id. This URI would need to be resolved in the
 context of the system by software that can lookup other CoSWID
 tags. For example, "coswid:2df9de35-0aff-
 4a86-ace6-f7dddd1ade4c" references the tag with the tag-id
 value "2df9de35-0aff-4a86-ace6-f7dddd1ade4c".

Birkholz, et al. Expires April 26, 2019 [Page 15]

Internet-Draft COSWID October 2018

 * a URI with "swidpath:" as the scheme, which refers to another
 CoSIWD via an XPATH query. This URI would need to be resolved
 in the context of the system entity via dedicated software
 components that can lookup other CoSWID tags and select the
 appropriate tag based on an XPATH query. Examples include:

 * swidpath://SoftwareIdentity[Entity/@regid='http://contoso.com']
 would retrieve all CoSWID tags that include an entity where the
 regid is "Contoso" or swidpath://SoftwareIdentity[Meta/@persist
 entId='b0c55172-38e9-4e36-be86-92206ad8eddb'] would match
 CoSWID tags with the persistent-id value
 "b0c55172-38e9-4e36-be86-92206ad8eddb".

 * See XPATH query standard : http://www.w3.org/TR/xpath20/

 o media (index 10): See media defined in Section 2.1.

 o ownership (index 39): Determines the relative strength of
 ownership of the software components. Valid enumerations are:
 abandon, private, shared

 o rel (index 40): The relationship between this CoSWID and the
 target file. Relationships can be identified by referencing the
 IANA registration library: https://www.iana.org/assignments/link-

relations/link-relations.xhtml.

 o media-type (index 41): The IANA MediaType for the target file;
 this provides the consumer with intelligence of what to expect.
 See http://www.iana.org/assignments/media-types/media-types.xhtml
 for more details on link type.

 o use (index 42): Determines if the target software is a hard
 requirement or not. Valid enumerations are: required,
 recommended, optional.

2.6. The software-meta Object

 The CDDL for the software-meta object is as follows:

http://www.w3.org/TR/xpath20/
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml

Birkholz, et al. Expires April 26, 2019 [Page 16]

Internet-Draft COSWID October 2018

 software-meta = {
 global-attributes,
 ? activation-status,
 ? channel-type,
 ? colloquial-version,
 ? description,
 ? edition,
 ? entitlement-data-required,
 ? entitlement-key,
 ? generator,
 ? persistent-id,
 ? product,
 ? product-family,
 ? revision,
 ? summary,
 ? unspsc-code,
 ? unspsc-version,
 }
 activation-status = (43: text)
 channel-type = (44: text)
 colloquial-version = (45: text)
 description = (46: text)
 edition = (47: text)
 entitlement-data-required = (48: bool)
 entitlement-key = (49: text)
 generator = (50: text)
 persistent-id = (51: text)
 product = (52: text)
 product-family = (53: text)
 revision = (54: text)
 summary = (55: text)
 unspsc-code = (56: text)
 unspsc-version = (57: text)

 The following describes each child item of this object.

 o global-attributes: The global-attributes group described in
Section 2.2.

 o activation-status (index 43): Identification of the activation
 status of this software title (e.g. Trial, Serialized, Licensed,
 Unlicensed, etc). Typically, this is used in supplemental tags.

 o channel-type (index 44): Provides information on which channel
 this particular software was targeted for (e.g. Volume, Retail,
 OEM, Academic, etc). Typically used in supplemental tags.

Birkholz, et al. Expires April 26, 2019 [Page 17]

Internet-Draft COSWID October 2018

 o colloquial-version (index 45): The informal or colloquial version
 of the product (i.e. 2013). Note that this version may be the
 same through multiple releases of a software component where the
 version specified in entity is much more specific and will change
 for each software release. Note that this representation of
 version is typically used to identify a group of specific software
 releases that are part of the same release/support infrastructure
 (i.e. Fabrikam Office 2013). This version is used for string
 comparisons only and is not compared to be an earlier or later
 release (that is done via the entity version).

 o description (index 46): A longer, detailed description of the
 software. This description can be multiple sentences
 (differentiated from summary, which is a very short, one-sentence
 description).

 o edition (index 47): The variation of the product (Extended,
 Enterprise, Professional, Standard etc).

 o entitlement-data-required (index 48): An indicator to determine if
 there should be accompanying proof of entitlement when a software
 license reconciliation is completed.

 o entitlement-key (index 49): A vendor-specific textual key that can
 be used to reconcile the validity of an entitlement. (e.g. serial
 number, product or license key).

 o generator (index 50): The name of the software tool that created a
 CoSWID tag. This item is typically used if tags are created on
 the fly or via a catalog-based analysis for data found on a
 computing device.

 o persistent-id (index 51): A GUID used to represent products
 installed where the products are related, but may be different
 versions.

 o product (index 52): The base name of the product (e.g.).

 o product-family (index 53): The overall product family this
 software belongs to. Product family is not used to identify that
 a product is part of a suite, but is instead used when a set of
 products that are all related may be installed on multiple
 different devices. For example, an enterprise backup system may
 consist of a backup services, multiple different backup services
 that support mail services, databases and ERP systems, as well as
 individual software components that backup client system entities.
 In such an usage scenario, all software components that are part

Birkholz, et al. Expires April 26, 2019 [Page 18]

Internet-Draft COSWID October 2018

 of the backup system would have the same product-family name so
 they can be grouped together in respect to reporting systems.

 o revision (index 54): The informal or colloquial representation of
 the sub-version of the given product (ie, SP1, R2, RC1, Beta 2,
 etc). Note that the version will provide very exact version
 details, the revision is intended for use in environments where
 reporting on the informal or colloquial representation of the
 software is important (for example, if for a certain business
 process, an organization recognizes that it must have, for example
 "ServicePack 1" or later of a specific product installed on all
 devices, they can use the revision data value to quickly identify
 any devices that do not meet this requirement). Depending on how
 a software organizations distributes revisions, this value could
 be specified in a primary (if distributed as an upgrade) or
 supplemental (if distributed as a patch) CoSWID tag.

 o summary (index 55): A short (one-sentence) description of the
 software.

 o unspsc-code (index 56): An 8 digit code that provides UNSPSC
 classification of the software component this SWID tag identifies.
 For more information see, http://www.unspsc.org/.

 o unspsc-version (index 57): The version of the UNSPSC code used to
 define the UNSPSC code value. For more information see,

http://www.unspsc.org/.

2.7. The Resource Collection Definition

2.7.1. The hash-entry Array

 CoSWID add explicit support for the representation of hash entries
 using algorithms that are registered at the Named Information Hash
 Algorithm Registry via the hash-entry member (label 58).

 hash-entry = (58: [hash-alg-id: int, hash-value: bstr])

 The number used as a value for hash-alg-id MUST refer an ID in the
 Named Information Hash Algorithm Registry; other hash algorithms MUST
 NOT be used. The hash-value MUST represent the raw hash value of the
 hashed resource generated using the hash algorithm indicated by the
 hash-alg-id.

http://www.unspsc.org/
http://www.unspsc.org/

Birkholz, et al. Expires April 26, 2019 [Page 19]

Internet-Draft COSWID October 2018

2.7.2. The resource-collection Group

 A list of items both used in evidence (discovered by an inventory
 process) and payload (installed in a system entity) content of a
 CoSWID tag document to structure and differentiate the content of
 specific CoSWID tag types. Potential content includes directories,
 files, processes, resources or firmwares.

 The CDDL for the resource-collection group is as follows:

 resource-collection = (
 ? directory-entry,
 ? file-entry,
 ? process-entry,
 ? resource-entry
)

 directory = {
 filesystem-item,
 path-elements,
 }

 file = {
 filesystem-item,
 ? size,
 ? file-version,
 ? hash-entry,
 }

 process = {
 global-attributes,
 process-name,
 ? pid,
 }

 resource = {
 global-attributes,
 type,
 }

 filesystem-item = (
 global-attributes,
 ? key,
 ? location,
 fs-name,
 ? root,
)

Birkholz, et al. Expires April 26, 2019 [Page 20]

Internet-Draft COSWID October 2018

 directory-entry = (16: directory / [2* directory])
 file-entry = (17: file / [2* file])
 process-entry = (18: process / [2* process])
 resource-entry = (19: resource / [2* resource])
 size = (20: integer)
 file-version = (21: text)
 key = (22: bool)
 location = (23: text)
 fs-name = (24: text)
 root = (25: text)
 path-elements = (26: { * file-entry,
 * directory-entry,
 }
)
 process-name = (27: text)
 pid = (28: integer)
 type = (29: text)

 The following describes each child item or group for these groups.

 o filesystem-item: A list of items both used in representing the
 nodes of a file-system hierarchy, i.e. directory items that allow
 one or more directories to be defined in the file structure, and
 file items that allow one or more files to be specified for a
 given location.

 o global-attributes: The global-attributes group described in
Section 2.2.

 o directory-entry (index 16): A directory item allows one or more
 directories to be defined in the file structure.

 o file-entry (index 17): A file element that allows one or more
 files to be specified for a given location.

 o process-entry (index 18): Provides process (software component in
 execution) information for data that will show up in a devices
 process table.

 o resource-entry (index 19): A set of items that can be used to
 provide arbitrary resource information about an application
 installed on a system entity, or evidence collected from a system
 entity.

 o size (index 20): The file size in bytes of the file.

 o file-version (index 21): The version of the file.

Birkholz, et al. Expires April 26, 2019 [Page 21]

Internet-Draft COSWID October 2018

 o key (index 22): Files that are considered important or required
 for the use of a software component. Typical key files would be
 those which, if not available on a system entity, would cause the
 software component not to execute or function properly. Key files
 will typically be used to validate that a software component
 referenced by the CoSWID tag document is actually installed on a
 specific system entity.

 o location (index 23): The directory or location where a file was
 found or can expected to be located. This text-string is intended
 to include the filename itself. This SHOULD be the relative path
 from the location represented by the root item.

 o fs-name (index 24): The file name or directory name without any
 path characters.

 o root (index 25): A system-specific root folder that the location
 item is an offset from. If this is not specified the assumption
 is the root is the same folder as the location of the CoSWID tag.
 The text-string value represents a path expression relative to the
 CoSWID tag document location in the (composite) file-system
 hierarchy.

 o path-elements (index 26): Provides the ability to apply a
 directory structure to the path expressions for files defined in a
 payload or evidence item.

 o process-name (index 27): The process name as it will be found in
 the system entity's process table.

 o pid (index 28): The process ID for the process in execution that
 can be included in the process item as part of an evidence tag.

 o type (index 29): The type of resource represented via a text-
 string (typically, registry-key, port or root-uri).

2.7.3. The payload Object

 The CDDL for the payload object is as follows:

 payload = {
 global-attributes,
 resource-collection,
 * $$payload-extension
 }

 The following describes each child item of this object.

Birkholz, et al. Expires April 26, 2019 [Page 22]

Internet-Draft COSWID October 2018

 o global-attributes: The global-attributes group described in
Section 2.2.

 o resource-collection: The resource-collection group described in
Section 2.7.2.

 o $$payload-extension: This CDDL socket (see [I-D.ietf-cbor-cddl]
section 3.9) can be used to extend the payload model, allowing

 well-formed extensions to be defined in additional CDDL
 descriptions.

2.7.4. The evidence Object

 The CDDL for the evidence object is as follows:

 evidence = {
 global-attributes,
 resource-collection,
 ? date,
 ? device-id,
 * $$evidence-extension
 }
 date = (35: time)
 device-id = (36: text)

 The following describes each child item of this object.

 o global-attributes: The global-attributes group described in
Section 2.2.

 o resource-collection: The resource-collection group described in
Section 2.7.2.

 o date (index 35): The date and time evidence represented by an
 evidence item was gathered.

 o device-id (index 36): A text-string identifier for a device
 evidence was gathered from.

 o $$evidence-extension: This CDDL socket (see [I-D.ietf-cbor-cddl]
section 3.9) can be used to extend the evidence model, allowing

 well-formed extensions to be defined in additional CDDL
 descriptions.

Birkholz, et al. Expires April 26, 2019 [Page 23]

Internet-Draft COSWID October 2018

2.8. Full CDDL Definition

 In order to create a valid CoSWID document the structure of the
 corresponding CBOR message MUST adhere to the following CDDL data
 definition.

concise-software-identity = {
 global-attributes,
 tag-id,
 tag-version,
 ? corpus,
 ? patch,
 ? supplemental,
 swid-name,
 ? software-version,
 ? version-scheme,
 ? media,
 ? software-meta-entry,
 entity-entry,
 ? link-entry,
 ? (payload-entry // evidence-entry),
 * $$coswid-extension
}

any-uri = text
label = text / int

any-attribute = (
 label => text / int / [2* text] / [2* int]
)

global-attributes = (
 ? lang,
 * any-attribute,
)

resource-collection = (
 ? directory-entry,
 ? file-entry,
 ? process-entry,
 ? resource-entry
)

file = {
 filesystem-item,
 ? size,
 ? file-version,
 ? hash-entry,

Birkholz, et al. Expires April 26, 2019 [Page 24]

Internet-Draft COSWID October 2018

}

filesystem-item = (
 global-attributes,
 ? key,
 ? location,
 fs-name,
 ? root,
)

directory = {
 filesystem-item,
 path-elements,
}

process = {
 global-attributes,
 process-name,
 ? pid,
}

resource = {
 global-attributes,
 type,
}

entity = {
 global-attributes,
 entity-name,
 ? reg-id,
 role,
 ? thumbprint,
 * $$entity-extension,
}

evidence = {
 global-attributes,
 resource-collection,
 ? date,
 ? device-id,
 * $$evidence-extension
}

link = {
 global-attributes,
 ? artifact,
 href,
 ? media

Birkholz, et al. Expires April 26, 2019 [Page 25]

Internet-Draft COSWID October 2018

 ? ownership,
 rel,
 ? media-type,
 ? use,
}

software-meta = {
 global-attributes,
 ? activation-status,
 ? channel-type,
 ? colloquial-version,
 ? description,
 ? edition,
 ? entitlement-data-required,
 ? entitlement-key,
 ? generator,
 ? persistent-id,
 ? product,
 ? product-family,
 ? revision,
 ? summary,
 ? unspsc-code,
 ? unspsc-version,
}

payload = {
 global-attributes,
 resource-collection,
 * $$payload-extension
}

tag-id = (0: text)
swid-name = (1: text)
entity-entry = (2: entity / [2* entity])
evidence-entry = (3: evidence)
link-entry = (4: link / [2* link])
software-meta-entry = (5: software-meta / [2* software-meta])
payload-entry = (6: payload)
corpus = (8: bool)
patch = (9: bool)
media = (10: [+ [media-expression,
 ? [media-operation,
 media-expression,
]
]
])
media-operation = text
media-expression = media-environment / [media-prefix,

Birkholz, et al. Expires April 26, 2019 [Page 26]

Internet-Draft COSWID October 2018

 media-environment,
 media-attribute,
 media-value,
]
media-prefix = text
media-environment = text
media-attribute = text
media-value = text
supplemental = (11: bool)
tag-version = (12: integer)
software-version = (13: text)
version-scheme = (14: version-schemes / extended-value)
version-schemes = multipartnumeric / multipartnumeric-suffix / alphanumeric /
decimal / semver
multipartnumeric = 1
multipartnumeric-suffix = 2
alphanumeric = 3
decimal = 4
semver = 16384
lang = (15: text)
directory-entry = (16: directory / [2* directory])
file-entry = (17: file / [2* file])
process-entry = (18: process / [2* process])
resource-entry = (19: resource / [2* resource])
size = (20: integer)
file-version = (21: text)
key = (22: bool)
location = (23: text)
fs-name = (24: text)
root = (25: text)
path-elements = (26: { * file-entry,
 * directory-entry,
 }
)
process-name = (27: text)
pid = (28: integer)
type = (29: text)
entity-name = (31: text)
reg-id = (32: any-uri)
role = (33: roles / extended-value / [2* roles / extended-value])
extended-value = text / uint
roles= aggregator / distributor / licensor / software-creator / tag-creator
aggregator=0
distributor=1
licensor=2
software-creator=3
tag-creator=4
thumbprint = (34: [hash-alg-id: int,

 hash-value: bstr,

Birkholz, et al. Expires April 26, 2019 [Page 27]

Internet-Draft COSWID October 2018

]
)
date = (35: time)
device-id = (36: text)
artifact = (37: text)
href = (38: any-uri)
ownership = (39: shared / private / abandon / extended-value)
shared=0
private=1
abandon=2
rel = (40: rels / extended-value)
rels = ancestor / component / feature / installationmedia / packageinstaller /
parent / patches / requires / see-also / supersedes / rel-supplemental
ancestor=0
component=1
feature=2
installationmedia=3
packageinstaller=4
parent=5
patches=6
requires=7
see-also=8
supersedes=9
rel-supplemental=10
media-type = (41: text)
use = (42: optional / required / recommended / extended-value)
optional=0
required=1
recommended=2
activation-status = (43: text)
channel-type = (44: text)
colloquial-version = (45: text)
description = (46: text)
edition = (47: text)
entitlement-data-required = (48: bool)
entitlement-key = (49: text)
generator = (50: text)
persistent-id = (51: text)
product = (52: text)
product-family = (53: text)
revision = (54: text)
summary = (55: text)
unspsc-code = (56: text)
unspsc-version = (57: text)
hash-entry = (58: [hash-alg-id: int,
 hash-value: bstr,
]
)

Birkholz, et al. Expires April 26, 2019 [Page 28]

Internet-Draft COSWID October 2018

3. CoSWID Indexed Label Values

3.1. Version Scheme

 The following are an initial set of values for use in the version-
 scheme item for the version schemes defined in the ISO/IEC
 19770-2:2015 [SWID] specification. Index value in parens indicates
 the index value to use in the version-scheme item.

 o multipartnumeric (index 1): Numbers separated by dots, where the
 numbers are interpreted as integers (e.g.,1.2.3, 1.4.5,
 1.2.3.4.5.6.7)

 o multipartnumeric+suffix (index 2): Numbers separated by dots,
 where the numbers are interpreted as integers with an additional
 string suffix(e.g., 1.2.3a)

 o alphanumeric (index 3): Strictly a string, sorting is done
 alphanumerically

 o decimal (index 4): A floating point number (e.g., 1.25 is less
 than 1.3)

 o semver (index 16384): Follows the [SEMVER] specification

 The values above are registered in the "SWID/CoSWID Version Schema
 Values" registry defined in section Section 4.1. Additional valid
 values will likely be registered over time in this registry.

3.2. Entity Role Values

 The following table indicates the index value to use for the entity
 roles defined in the ISO/IEC 19770-2:2015 [SWID] specification.

Birkholz, et al. Expires April 26, 2019 [Page 29]

Internet-Draft COSWID October 2018

 +-------+-----------------+
 | Index | Role Name |
 +-------+-----------------+
 | 0 | Reserved |
 | | |
 | 1 | tagCreator |
 | | |
 | 2 | softwareCreator |
 | | |
 | 3 | aggregator |
 | | |
 | 4 | distributor |
 | | |
 | 5 | licensor |
 +-------+-----------------+

 The values above are registered in the "SWID/CoSWID Entity Role
 Values" registry defined in section Section 4.2. Additional valid
 values will likely be registered over time. Additionally, the index
 values 226 through 255 have been reserved for private use.

4. IANA Considerations

 This document will include requests to IANA:

 o Integer indices for SWID content attributes and information
 elements.

 o Content-Type for CoAP to be used in COSE.

 This document has a number of IANA considerations, as described in
 the following subsections.

4.1. SWID/CoSWID Version Schema Values Registry

 This document uses unsigned 16-bit index values to version-scheme
 item values. The initial set of version-scheme values are derived
 from the textual version scheme names defined in the ISO/IEC
 19770-2:2015 specification [SWID].

 This document defines a new a new registry entitled "SWID/CoSWID
 Version Schema Values". Future registrations for this registry are
 to be made based on [RFC8126] as follows:

https://datatracker.ietf.org/doc/html/rfc8126

Birkholz, et al. Expires April 26, 2019 [Page 30]

Internet-Draft COSWID October 2018

 +-------------+--------------------------+
 | Range | Registration Procedures |
 +-------------+--------------------------+
 | 0-16383 | Standards Action |
 | | |
 | 16384-32767 | Specification Required |
 | | |
 | 32768-65535 | Reserved for Private Use |
 +-------------+--------------------------+

 Initial registrations for the SWID/CoSWID Version Schema Values
 registry are provided below.

 +-------------+--------------------------+-----------------+
 | Index | Role Name | Specification |
 +-------------+--------------------------+-----------------+
 | 0 | Reserved | |
 | | | |
 | 1 | multipartnumeric | See Section 3.1 |
 | | | |
 | 2 | multipartnumeric+suffix | See Section 3.1 |
 | | | |
 | 3 | alphanumeric | See Section 3.1 |
 | | | |
 | 4 | decimal | See Section 3.1 |
 | | | |
 | 5-16383 | Unassigned | |
 | | | |
 | 16384 | semver | [SEMVER] |
 | | | |
 | 16385-32767 | Unassigned | |
 | | | |
 | 32768-65535 | Reserved for Private Use | |
 +-------------+--------------------------+-----------------+

4.2. SWID/CoSWID Entity Role Values Registry

 This document uses unsigned 8-bit index values to represent entity-
 role values. The initial set of Entity roles are derived from the
 textual role names defined in the ISO/IEC 19770-2:2015 specification
 [SWID].

 This document defines a new a new registry entitled "SWID/CoSWID
 Entity Role Values". Future registrations for this registry are to
 be made based on [RFC8126] as follows:

https://datatracker.ietf.org/doc/html/rfc8126

Birkholz, et al. Expires April 26, 2019 [Page 31]

Internet-Draft COSWID October 2018

 +---------+--------------------------+
 | Range | Registration Procedures |
 +---------+--------------------------+
 | 0-31 | Standards Action |
 | | |
 | 32-127 | Specification Required |
 | | |
 | 128-255 | Reserved for Private Use |
 +---------+--------------------------+

 Initial registrations for the SWID/CoSWID Entity Role Values registry
 are provided below.

 +---------+--------------------------+-----------------+
 | Index | Role Name | Specification |
 +---------+--------------------------+-----------------+
 | 0 | Reserved | |
 | | | |
 | 1 | tagCreator | See Section 3.2 |
 | | | |
 | 2 | softwareCreator | See Section 3.2 |
 | | | |
 | 3 | aggregator | See Section 3.2 |
 | | | |
 | 4 | distributor | See Section 3.2 |
 | | | |
 | 5 | licensor | See Section 3.2 |
 | | | |
 | 6-49 | Unassigned | |
 | | | |
 | 50-225 | Unassigned | |
 | | | |
 | 225-255 | Reserved for Private Use | |
 +---------+--------------------------+-----------------+

4.3. Media Type Registration

4.3.1. swid+cbor Media Type Registration

 Type name: application

 Subtype name: swid+cbor

 Required parameters: none

 Optional parameters: none

Birkholz, et al. Expires April 26, 2019 [Page 32]

Internet-Draft COSWID October 2018

 Encoding considerations: Must be encoded as using [RFC7049]. See
 RFC-AAAA for details.

 Security considerations: See Section 5 of RFC-AAAA.

 Interoperability considerations: Applications MAY ignore any key
 value pairs that they do not understand. This allows backwards
 compatible extensions to this specification.

 Published specification: RFC-AAAA

 Applications that use this media type: The type is used by Software
 asset management systems, Vulnerability assessment systems, and in
 applications that use remote integrity verification.

 Fragment identifier considerations: Fragment identification for
 application/swid+cbor is supported by using fragment identifiers as
 specified by RFC-AAAA. [Section to be defined]

 Additional information:

 Magic number(s): first five bytes in hex: da 53 57 49 44

 File extension(s): coswid

 Macintosh file type code(s): none

 Macintosh Universal Type Identifier code: org.ietf.coswid conforms to
 public.data

 Person & email address to contact for further information: Henk
 Birkholz <henk.birkholz@sit.fraunhofer.de>

 Intended usage: COMMON

 Restrictions on usage: None

 Author: Henk Birkholz <henk.birkholz@sit.fraunhofer.de>

 Change controller: IESG

4.4. CoAP Content-Format Registration

 IANA is requested to assign a CoAP Content-Format ID for the CoSWID
 media type in the "CoAP Content-Formats" sub-registry, from the "IETF
 Review or IESG Approval" space (256..999), within the "CoRE
 Parameters" registry [RFC7252]:

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252

Birkholz, et al. Expires April 26, 2019 [Page 33]

Internet-Draft COSWID October 2018

 +-----------------------+----------+-------+-----------+
 | Media type | Encoding | ID | Reference |
 +-----------------------+----------+-------+-----------+
 | application/swid+cbor | - | TBDcf | RFC-AAAA |
 +-----------------------+----------+-------+-----------+

 Table 1: CoAP Content-Format IDs

4.5. CBOR Tag Registration

 IANA is requested to allocate a tag in the CBOR Tags Registry,
 preferably with the specific value requested:

 +------------+----------+---+
 | Tag | Data | Semantics |
 | | Item | |
 +------------+----------+---+
 | 1398229316 | map | Concise Software Identifier (CoSWID) |
 | | | [RFC-AAAA] |
 +------------+----------+---+

5. Security Considerations

 SWID and CoSWID tags contain public information about software
 components and, as such, do not need to be protected against
 disclosure on an endpoint. Similarly, SWID tags are intended to be
 easily discoverable by applications and users on an endpoint in order
 to make it easy to identify and collect all of an endpoint's SWID
 tags. As such, any security considerations regarding SWID tags focus
 on the application of SWID tags to address security challenges, and
 the possible disclosure of the results of those applications.

 A signed SWID tag whose signature has been validated can be relied
 upon to be unchanged since it was signed. If the SWID tag was
 created by the software provider, is signed, and the software
 provider can be authenticated as the originator of the signature,
 then the tag can be considered authoritative. In this way, an
 authoritative SWID tag contains information about a software product
 provided by the maintainer of the product, who is expected to be an
 expert in their own product. Thus, authoritative SWID tags can be
 trusted to represent authoritative information about the software
 product. Having an authoritative SWID tag can be useful when the
 information in the tag needs to be trusted, such as when the tag is
 being used to convey reference integrity measurements for software
 components. By contrast, the data contained in unsigned tags cannot
 be trusted to be unmodified.

Birkholz, et al. Expires April 26, 2019 [Page 34]

Internet-Draft COSWID October 2018

 SWID tags are designed to be easily added and removed from an
 endpoint along with the installation or removal of software
 components. On endpoints where addition or removal of software
 components is tightly controlled, the addition or removal of SWID
 tags can be similarly controlled. On more open systems, where many
 users can manage the software inventory, SWID tags may be easier to
 add or remove. On such systems, it may be possible to add or remove
 SWID tags in a way that does not reflect the actual presence or
 absence of corresponding software components. Similarly, not all
 software products automatically install SWID tags, so products may be
 present on an endpoint without providing a corresponding SWID tag.
 As such, any collection of SWID tags cannot automatically be assumed
 to represent either a complete or fully accurate representation of
 the software inventory of the endpoint. However, especially on
 devices that more strictly control the ability to add or remove
 applications, SWID tags are an easy way to provide an preliminary
 understanding of that endpoint's software inventory.

 Any report of an endpoint's SWID tag collection provides information
 about the software inventory of that endpoint. If such a report is
 exposed to an attacker, this can tell them which software products
 and versions thereof are present on the endpoint. By examining this
 list, the attacker might learn of the presence of applications that
 are vulnerable to certain types of attacks. As noted earlier, SWID
 tags are designed to be easily discoverable by an endpoint, but this
 does not present a significant risk since an attacker would already
 need to have access to the endpoint to view that information.
 However, when the endpoint transmits its software inventory to
 another party, or that inventory is stored on a server for later
 analysis, this can potentially expose this information to attackers
 who do not yet have access to the endpoint. As such, it is important
 to protect the confidentiality of SWID tag information that has been
 collected from an endpoint, not because those tags individually
 contain sensitive information, but because the collection of SWID
 tags and their association with an endpoint reveals information about
 that endpoint's attack surface.

 Finally, both the ISO-19770-2:2015 XML schema definition and the
 Concise SWID data definition allow for the construction of "infinite"
 SWID tags or SWID tags that contain malicious content with the intent
 if creating non-deterministic states during validation or processing
 of SWID tags. While software product vendors are unlikely to do
 this, SWID tags can be created by any party and the SWID tags
 collected from an endpoint could contain a mixture of vendor and non-
 vendor created tags. For this reason, tools that consume SWID tags
 ought to treat the tag contents as potentially malicious and should
 employ input sanitizing on the tags they ingest.

Birkholz, et al. Expires April 26, 2019 [Page 35]

Internet-Draft COSWID October 2018

6. Acknowledgments

7. Change Log

 Changes from version 06 to version 07:

 o Added version-scheme definitions

 o Added stubs for additional extension points

 o Added value registry request

 o Added media type registration request

 o Added content format registration request

 o Added CBOR tag registration request

 o Fixed any-element-map

 o Removed RIM appedix to be addressed in complementary draft

 o Removed CWT appendix

 o Flagged firmware resource colletion appendix for revision

 Changes from version 05 to version 06:

 o Improved quantities

 o Included proposals for implicet enumerations that were NMTOKENS

 o Added extension points

 o Improved exemplary firmware-resource extension

 Changes from version 04 to version 05:

 o Clarified language around SWID and CoSWID to make more consistant
 use of these terms.

 o Added language describing CBOR optimizations for single vs. arrays
 in the model front matter.

 o Fixed a number of gramatical, spelling, and wording issues.

 o Documented extension points that use CDDL sockets.

Birkholz, et al. Expires April 26, 2019 [Page 36]

Internet-Draft COSWID October 2018

 o Converted IANA registration tables to markdown tables, reserving
 the 0 value for use when a value is not known.

 o Updated a number of references to their current versions.

 Changes from version 03 to version 04:

 o Re-index label values in the CDDL.

 o Added a section describing the CoSWID model in detail.

 o Created IANA registries for entity-role and version-scheme

 Changes from version 02 to version 03:

 o Updated CDDL to allow for a choice between a payload or evidence

 o Re-index label values in the CDDL.

 o Added item definitions

 o Updated references for COSE, CBOR Web Token, and CDDL.

 Changes from version 01 to version 02:

 o Added extensions for Firmware and CoSWID use as Reference
 Integrity Measurements (CoSWID RIM)

 o Changes meta handling in CDDL from use of an explicit use of items
 to a more flexible unconstrained collection of items.

 o Added sections discussing use of COSE Signatures and CBOR Web
 Tokens

 Changes from version 00 to version 01:

 o Added CWT usage for absolute SWID paths on a device

 o Fixed cardinality of type-choices including arrays

 o Included first iteration of firmware resource-collection

 Changes since adopted as a WG I-D -00:

 o Removed redundant any-attributes originating from the ISO-
 19770-2:2015 XML schema definition

 o Fixed broken multi-map members

Birkholz, et al. Expires April 26, 2019 [Page 37]

Internet-Draft COSWID October 2018

 o Introduced a more restrictive item (any-element-map) to represent
 custom maps, increased restriction on types for the any-attribute,
 accordingly

 o Fixed X.1520 reference

 o Minor type changes of some attributes (e.g. NMTOKENS)

 o Added semantic differentiation of various name types (e,g. fs-
 name)

 Changes from version 00 to version 01:

 o Ambiguity between evidence and payload eliminated by introducing
 explicit members (while still

 o allowing for "empty" SWID tags)

 o Added a relatively restrictive COSE envelope using cose_sign1 to
 define signed CoSWID (single signer only, at the moment)

 o Added a definition how to encode hashes that can be stored in the
 any-member using existing IANA tables to reference hash-algorithms

 Changes from version 01 to version 02:

 o Enforced a more strict separation between the core CoSWID
 definition and additional usage by moving content to corresponding
 appendices.

 o Removed artifacts inherited from the reference schema provided by
 ISO (e.g. NMTOKEN(S))

 o Simplified the core data definition by removing group and type
 choices where possible

 o Minor reordering of map members

 o Added a first extension point to address requested flexibility for
 extensions beyond the any-element

8. Contributors

9. References

Birkholz, et al. Expires April 26, 2019 [Page 38]

Internet-Draft COSWID October 2018

9.1. Normative References

 [I-D.ietf-ace-cbor-web-token]
 Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", draft-ietf-ace-cbor-web-token-15
 (work in progress), March 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4108] Housley, R., "Using Cryptographic Message Syntax (CMS) to
 Protect Firmware Packages", RFC 4108,
 DOI 10.17487/RFC4108, August 2005,
 <https://www.rfc-editor.org/info/rfc4108>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
RFC 8152, DOI 10.17487/RFC8152, July 2017,

 <https://www.rfc-editor.org/info/rfc8152>.

 [SAM] "Information technology - Software asset management - Part
 5: Overview and vocabulary", ISO/IEC 19770-5:2013,
 November 2013.

 [SEMVER] Preston-Werner, T., "Semantic Versioning 2.0.0", n.d.,
 <https://semver.org/spec/v2.0.0.html>.

https://datatracker.ietf.org/doc/html/draft-ietf-ace-cbor-web-token-15
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4108
https://www.rfc-editor.org/info/rfc4108
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://semver.org/spec/v2.0.0.html

Birkholz, et al. Expires April 26, 2019 [Page 39]

Internet-Draft COSWID October 2018

 [SWID] "Information technology - Software asset management - Part
 2: Software identification tag", ISO/IEC 19770-2:2015,
 October 2015.

 [SWID-GUIDANCE]
 Waltermire, D., Cheikes, B., Feldman, L., and G. Witte,
 "Guidelines for the Creation of Interoperable Software
 Identification (SWID) Tags", NISTIR 8060, April 2016,
 <https://doi.org/10.6028/NIST.IR.8060>.

 [X.1520] "Recommendation ITU-T X.1520 (2014), Common
 vulnerabilities and exposures", April 2011.

9.2. Informative References

 [I-D.birkholz-tuda]
 Fuchs, A., Birkholz, H., McDonald, I., and C. Bormann,
 "Time-Based Uni-Directional Attestation", draft-birkholz-

tuda-04 (work in progress), March 2017.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-05 (work in progress), August 2018.

 [I-D.ietf-sacm-rolie-softwaredescriptor]
 Banghart, S. and D. Waltermire, "Definition of the ROLIE
 Software Descriptor Extension", draft-ietf-sacm-rolie-

softwaredescriptor-03 (work in progress), July 2018.

 [I-D.ietf-sacm-terminology]
 Birkholz, H., Lu, J., Strassner, J., Cam-Winget, N., and
 A. Montville, "Security Automation and Continuous
 Monitoring (SACM) Terminology", draft-ietf-sacm-

terminology-15 (work in progress), June 2018.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

https://doi.org/10.6028/NIST.IR.8060
https://datatracker.ietf.org/doc/html/draft-birkholz-tuda-04
https://datatracker.ietf.org/doc/html/draft-birkholz-tuda-04
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-rolie-softwaredescriptor-03
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-rolie-softwaredescriptor-03
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-terminology-15
https://datatracker.ietf.org/doc/html/draft-ietf-sacm-terminology-15
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949

Birkholz, et al. Expires April 26, 2019 [Page 40]

Internet-Draft COSWID October 2018

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

Appendix A. CoSWID Attributes for Firmware (label 60)

 NOTE: this appendix is subject to revision based potential
 convergence of:

 o draft-moran-suit-manifest, and

 o draft-birkholz-suit-coswid-manifest

 The ISO-19770-2:2015 specification of SWID tags assumes the existence
 of a file system a software component is installed and stored in. In
 the case of constrained-node networks [RFC7228] or network equipment
 this assumption might not apply. Concise software instances in the
 form of (modular) firmware are often stored directly on a block
 device that is a hardware component of the constrained-node or
 network equipment. Multiple differentiable block devices or
 segmented block devices that contain parts of modular firmware
 components (potentially each with their own instance version) are
 already common at the time of this writing.

 The optional attributes that annotate a firmware package address
 specific characteristics of pieces of firmware stored directly on a
 block-device in contrast to software deployed in a file-system. In
 essence, trees of relative path-elements expressed by the directory
 and file structure in CoSWID tags are typically unable to represent
 the location of a firmware on a constrained-node (small thing). The
 composite nature of firmware and also the actual composition of small
 things require a set of attributes to address the identification of
 the correct component in a composite thing for each individual piece
 of firmware. A single component also potentially requires a number
 of distinct firmware parts that might depend on each other
 (versions). These dependencies can be limited to the scope of the
 component itself or extend to the scope of a larger composite device.
 In addition, it might not be possible (or feasible) to store a CoSWID
 tag document (permanently) on a small thing along with the
 corresponding piece of firmware.

 To address the specific characteristics of firmware, the extension
 points "$$payload-extension" and "$$evidence-extension" are used to
 allow for an additional type of resource description--firmware-
 entry--thereby increasing the self-descriptiveness and flexibility of
 CoSWID. The optional use of the extension points "$$payload-

https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/draft-moran-suit-manifest
https://datatracker.ietf.org/doc/html/draft-birkholz-suit-coswid-manifest
https://datatracker.ietf.org/doc/html/rfc7228

Birkholz, et al. Expires April 26, 2019 [Page 41]

Internet-Draft COSWID October 2018

 extension" and "$$evidence-extension" in respect to firmware MUST
 adhere to the following CDDL data definition.

<CODE BEGINS>
$$payload-extension //= (suit.manifest-entry,)
$$evidence-extension //= (suit.manifest-entry,)

suit-manifest = {
 suit.manifest-version,
 suit.digest-info,
 suit.text-reference,
 suit.nonce,
 suit.sequence-number,
 ? suit.pre-condition,
 ? suit.post-condition,
 ? suit.directives,
 ? suit.resources,
 ? suit.processors,
 ? suit.targets,
 ? suit.extensions,
}

suit.manifest-entry = (59: suit-manifest / [2* suit-manifest])
suit.manifest-version = (60: 1)
suit.digest-info = (61: [suit.digest-algorithm,
 ? suit.digest-parameters,
]
)
suit.digest-algorithm = uint
suit.digest-parameters = bytes
suit.text-reference = (62: bytes)
suit.nonce = (63: bytes)
suit.sequence-number = (64: uint)
suit.pre-condition = (suit.id-condition // suit.time-condition // suit.image-
condition // suit.custom-condition)
suit.post-condition = (suit.image-condition // suit.custom-condition)
suit.id-condition = (65: [+ [suit.vendor / suit.class / suit.device,
 suit.uuid,
]
]
)
suit.vendor = 0
suit.class = 1
suit.device = 2
suit.uuid = bstr .size 16
suit.time-condition = (66: [+ [suit.install-after / suit.best-before,
 suit.timestamp,
]

]

Birkholz, et al. Expires April 26, 2019 [Page 42]

Internet-Draft COSWID October 2018

)
suit.install-after = 0
suit.best-before = 1
suit.timestamp = uint .size 8
suit.image-condition = (67: [+ [suit.current-content / suit.not-current-
content,
 suit.storage-identifier,
 ? suit.digest,
]
]
)
suit.current-content = 0
suit.not-current-content = 1
suit.digest = bytes
suit.storage-identifier = bytes
suit.custom-condition = (68: [nint,
 suit.condition-parameters,
]
)
suit.condition-parameters = bytes
suit.directives = (69: { + int => bytes })
suit.resources = (70: [+ [suit.resource-type,
 suit.uri-list,
 suit.digest,
 suit.onode,
 ? suit.size,
]
]
)
suit.resource-type = suit.payload / suit.dependency / suit.key / suit.alias
suit.payload = 0
suit.dependency = 1
suit.key = 2
suit.alias = 3
suit.uri-list = { + int => text }
suit.size = uint
suit.onode = bytes
suit.processors = (71: [+ [suit.decrypt / suit.decompress / suit.undiff /
suit.relocate / suit.unrelocate,
 suit.parameters,
 suit.inode,
 suit.onode,
]
]
)
suit.decrypt = 0
suit.decompress = 1
suit.undiff = 2

suit.relocate = 3
suit.unrelocate = 4

Birkholz, et al. Expires April 26, 2019 [Page 43]

Internet-Draft COSWID October 2018

suit.parameters = bytes
suit.inode = bytes
suit.targets = (72: [+ [suit.component-id,
 suit.storage-identifier,
 suit.inode,
 ? suit.encoding,
]
]
)
suit.component-id = [+ bytes]
suit.encoding = bytes
suit.extensions = (73: { + int => bytes })
<CODE ENDS>

 The members of the firmware group that constitutes the content of the
 firmware-entry is based on the metadata about firmware Described in
 [RFC4108]. As with every semantic differentiation that is supported
 by the resource-collection type, the use of firmware-entry is
 optional. It is REQUIRED not to instantiate more than one firmware-
 entry, as the firmware group is used in a map and therefore only
 allows for unique labels.

 The optional cms-firmware-package member allows to include the actual
 firmware in the CoSWID tag that also expresses its metadata as a
 byte-string. This option enables a CoSWID tag to be used as a
 container or wrapper that composes both firmware and its metadata in
 a single document (which again can be signed, encrypted and/or
 compressed). In consequence, a CoSWID tag about firmware can be
 conveyed as an identifying document across endpoints or used as a
 reference integrity measurement as usual. Alternatively, it can also
 convey an actual piece of firmware, serve its intended purpose as a
 SWID tag and then - due to the lack of a location to store it - be
 discarded.

Appendix B. Signed Concise SWID Tags using COSE

 SWID tags, as defined in the ISO-19770-2:2015 XML schema, can include
 cryptographic signatures to protect the integrity of the SWID tag.
 In general, tags are signed by the tag creator (typically, although
 not exclusively, the vendor of the software component that the SWID
 tag identifies). Cryptographic signatures can make any modification
 of the tag detectable, which is especially important if the integrity
 of the tag is important, such as when the tag is providing reference
 integrity measurements for files.

 The ISO-19770-2:2015 XML schema uses XML DSIG to support
 cryptographic signatures. CoSWID tags require a different signature
 scheme than this. COSE (CBOR Object Signing and Encryption) provides

https://datatracker.ietf.org/doc/html/rfc4108

Birkholz, et al. Expires April 26, 2019 [Page 44]

Internet-Draft COSWID October 2018

 the required mechanism [RFC8152]. Concise SWID can be wrapped in a
 COSE Single Signer Data Object (cose-sign1) that contains a single
 signature. The following CDDL defines a more restrictive subset of
 header attributes allowed by COSE tailored to suit the requirements
 of Concise SWID.

<CODE BEGINS>
signed-coswid = #6.997(COSE-Sign1-coswid) ; see TBS7 in current COSE I-D

label = int / tstr ; see COSE I-D 1.4.
values = any ; see COSE I-D 1.4.

unprotected-signed-coswid-header = {
 1 => int, ; algorithm identifier
 3 => "application/coswid", ; request for CoAP IANA registry to become an
int
 * label => values,
}

protected-signed-coswid-header = {
 4 => bstr, ; key identifier
 * label => values,
}

COSE-Sign1-coswid = [
 protected: bstr .cbor protected-signed-coswid-header,
 unprotected: unprotected-signed-coswid-header,
 payload: bstr .cbor concise-software-identity,
 signature: bstr,
]
<CODE ENDS>

Authors' Addresses

 Henk Birkholz
 Fraunhofer SIT
 Rheinstrasse 75
 Darmstadt 64295
 Germany

 Email: henk.birkholz@sit.fraunhofer.de

https://datatracker.ietf.org/doc/html/rfc8152

Birkholz, et al. Expires April 26, 2019 [Page 45]

Internet-Draft COSWID October 2018

 Jessica Fitzgerald-McKay
 Department of Defense
 9800 Savage Road
 Ft. Meade, Maryland
 USA

 Email: jmfitz2@nsa.gov

 Charles Schmidt
 The MITRE Corporation
 202 Burlington Road
 Bedford, Maryland 01730
 USA

 Email: cmschmidt@mitre.org

 David Waltermire
 National Institute of Standards and Technology
 100 Bureau Drive
 Gaithersburg, Maryland 20877
 USA

 Email: david.waltermire@nist.gov

Birkholz, et al. Expires April 26, 2019 [Page 46]

