Network Working Group S. Josefsson TOC

Track

Internet-Draft SJD AB
Intended status: Standards o
N. wWilliams
. Sun
Expires: October 20, 2009 .
Microsystems

April 18, 2009

Using GSS-API Mechanisms in SASL: The G6S2 Mechanism Family
draft-ietf-sasl-gs2-12

Status of

this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79. This document may contain material

from IETF
available
copyright
the right
Standards
person(s)

Documents or IETF Contributions published or made publicly
before November 10, 2008. The person(s) controlling the

in some of this material may not have granted the IETF Trust
to allow modifications of such material outside the IETF
Process. Without obtaining an adequate license from the
controlling the copyright in such materials, this document

may not be modified outside the IETF Standards Process, and derivative
works of it may not be created outside the IETF Standards Process,

except to
languages

format it for publication as an RFC or to translate it into
other than English.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on October 20, 2009.

Copyright

Copyright

Notice

(c) 2009 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).


http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document describes how to use a Generic Security Service
Application Program Interface (GSS-API) mechanism in the the Simple
Authentication and Security Layer (SASL) framework. This is done by
defining a new SASL mechanism family, called GS2. This mechanism family
offers a number of improvements over the previous "SASL/GSSAPI"
mechanism: it is more general, uses fewer messages for the
authentication phase in some cases, and supports negotiable use of
channel binding. Only GSS-API mechanisms that support channel binding
are supported.

See <http://josefsson.org/sasl-gs2-*/> for more information.

Table of Contents

Introduction

Conventions used in this document

Mechanism name

3.1. Generating SASL mechanism names from GSS-API 0IDs

3.2. Computing mechanism names manually

3.3. Examples

3.4. Grandfathered mechanism names

SASL Authentication Exchange Message Format

4.1. SASL Messages

Channel Bindings

Examples

Authentication Conditions

GSS-API Parameters

Naming

GSS_Inquire_SASLname_for_mech call

10.1. gss_inquire_saslname_for_mech
GSS_Inquire_mech_for_SASLname call

11.1. gss_inquire_mech_for_saslname
Security Layers
Interoperability with the SASL "GSSAPI" mechanism
13.1. The interoperability problem

13.2. Resolving the problem

13.3. Additional Recommendations
Mechanisms that negotiate other mechanisms
14.1. The interoperability problem

14.2. Security problem

14.3. Resolving the problems

5. TIANA Considerations

16. Security Considerations

[

>

=
=

[T
w N

=
nN



17. Acknowledgements
18. References
18.1. Normative References
18.2. Informative References
8 Authors' Addresses

1. Introduction TOC

Generic Security Service Application Program Interface (GSS-API)
[REC2743] (Linn, J., “Generic Security Service Application Program
Interface Version 2, Update 1,” January 2000.) is a framework that
provides security services to applications using a variety of
authentication "mechanisms". Simple Authentication and Security Layer
(SASL) [RFC4422] (Melnikov, A. and K. Zeilenga, “Simple Authentication
and Security lLayer (SASL),” June 2006.) is a framework to provide
authentication and "security layers" for connection based protocols,
also using a variety of mechanisms. This document describes how to use
a GSS-API mechanism as though it were a SASL mechanism. This facility
is called "GS2" -- a moniker that indicates that this is the second
GSS-API->SASL mechanism bridge. The original GSS-API->SASL mechanism
bridge was specified by [RFC2222] (Myers, J., “Simple Authentication
and Security Layer (SASL),” October 1997.), now [RFC4752] (Melnikov,
A., “The Kerberos V5 ("GSSAPI") Simple Authentication and Security
Layer (SASL) Mechanism,” November 2006.); we shall sometimes refer to
the original bridge as "GS1" in this document.

All GSS-API mechanisms are implicitly registered for use within SASL by
this specification. The SASL mechanisms defined in this document are
known as the "GS2 family of mechanisms".

The GS1 bridge failed to gain wide deployment for any GSS-API mechanism
other than The "Kerberos V5 GSS-API mechanism" [RFC1964] (Linn, J.,
“The Kerberos Version 5 GSS-API Mechanism,” June 1996.) [RFC4121] (Zhu,
L., Jaganathan, K., and S. Hartman, “The Kerberos Version 5 Generic
Security Service Application Program Interface (GSS-API) Mechanism:
Version 2,” July 2005.), and has a number of problems that lead us to
desire a new bridge. Specifically: a) GS1 was not round-trip optimized,
b) GS1 did not support channel binding [RFC5056] (wWilliams, N., “On the
Use of Channel Bindings to Secure Channels,” November 2007.). These
problems and the opportunity to create the next SASL password-based
mechanism, SCRAM (Menon-Sen, A., Melnikov, A., Newman, C., and N.
wWilliams, “Salted Challenge Response (SCRAM) SASL Mechanism,”

May 2009.) [I-D.newman-auth-scram], as a GSS-API mechanism used by SASL
applications via GS2, provide the motivation for GS2.

In particular, the current consensus of the SASL community appears to
be that SASL "security layers" (i.e., confidentiality and integrity
protection of application data after authentication) are too complex




and, since SASL applications tend to have an option to run over a
Transport Layer Security (TLS) [RFC5246] (Dierks, T. and E. Rescorla,
“The Transport Layer Security (TLS) Protocol Version 1.2,”

August 2008.) channel, redundant and best replaced with channel
binding.

GS2 is designed to be as simple as possible. It adds to GSS-API
security context token exchanges only the bare minimum to support SASL
semantics and negotiation of use of channel binding. Specifically, GS2
adds a small header (2 bytes or 3 bytes plus the length of the client
requested SASL authorization ID (authzid)) to the initial context token
and to the application channel binding data, and it uses SASL mechanism
negotiation to implement channel binding negotiation. All GS2 plaintext
is protected via the use of GSS-API channel binding. Additionally, to
simplify the implementation of GS2 mechanisms for implementors who will
not implement a GSS-API framework, we compress the initial security
context token header required by [RFC2743] (Linn, J., “Generic Security
Service Application Program Interface Version 2, Update 1,”

January 2000.) (see section 3.1).

2. Conventions used in this document TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Mechanism name TOC

There are two SASL mechanism names for any GSS-API mechanism used
through this facility. One denotes that the server supports channel
binding. The other denotes that it does not.

The SASL mechanism name for a GSS-API mechanism is that which is
provided by that mechanism when it was specified, if one was specified.
This name denotes that the server does not support channel binding. Add
the suffix "-PLUS" and the resulting name denotes that the server does
support channel binding. SASL implementations can use the
GSS_Inquire_SASLname_for_mech call (see below) to query for the SASL
mechanism name of a GSS-API mechanism.

If the GSS_Inquire_SASLname_for_mech interface is not used, the GS2
implementation need some other mechanism to map mechanism 0IDs to SASL
name internally. In this case, the implementation can only support the
mechanisms for which it knows the SASL name. If the
GSS_Inquire_SASLname_for_mech call fails, and the GS2 implementation



cannot map the OID to a SASL mechanism name using some other means, it
cannot use the particular GSS-API mechanism since it does not know its
SASL mechanism name.

If the GSS_Inquire_SASLname_for_mech call is successful, but provides a
zero length string [FIXME: is this a good idea? --simon], it means the
GSS-API mechanism did not have a registered mechanism name. In this
case, the GS2 implementation can derive the SASL mechanism name from
the GSS-API mechanism OID as follows.

3.1. Generating SASL mechanism names from GSS-API OIDs TOC

For GSS-API mechanisms whose SASL names are not defined together with
the GSS-API mechanism or in this document, the SASL mechanism name is
concatenation of the string "GS2-" and the Base32 encoding (Josefsson,
S., “The Basel6, Base32, and Base64 Data Encodings,” October 2006.)
[RFC4648] (with an upper case alphabet) of the first 55 bits of the
binary SHA-1 hash (National Institute of Standards and Technology,
“Secure Hash Standard,” April 1995.) [FIPS.180-1.1995] string computed
over the ASN.1 DER encoding (International International Telephone and
Telegraph Consultative Committee, “ASN.1 encoding rules: Specification
of basic encoding Rules (BER), Canonical encoding rules (CER) and
Distinguished encoding rules (DER),” July 2002.) [CCITT.X690.2002],
including the tag and length octets, of the GSS-API mechanism's Object
Identifier. The Base32 rules on padding characters and characters
outside of the base32 alphabet are not relevant to this use of Base32.
If any padding or non-alphabet characters are encountered, the name is
not a GS2 family mechanism name. This name denotes that the server does
not support channel binding. Add the suffix "-PLUS" and the resulting
name denotes that the server does support channel binding.

3.2. Computing mechanism names manually TOC

The hash-derived GS2 SASL mechanism name may be computed manually. This
is useful when the set of supported GSS-API mechanisms is known in
advance. It also obliterate the need to implement Base32, SHA-1 and DER
in the SASL mechanism. The computed mechanism name can be used directly
in the implementation, and the implementation need not concern itself
with that the mechanism is part of a mechanism family.

TOC



3.3. Examples

The 0ID for the SPKM-1 mechanism (Adams, C., “The Simple Public-Key
GSS-API Mechanism (SPKM),” October 1996.) [RFC2025] is 1.3.6.1.5.5.1.1.
The ASN.1 DER encoding of the 0ID, including the tag and length, is (in
hex) 06 07 2b 06 01 05 05 01 01. The SHA-1 hash of the ASN.1 DER
encoding is (in hex) 1c f8 f4 2b 5a 9f 80 fa e9 f8 31 22 6d 5d 9d 56 27
86 61 ad. Convert the first 7 octets to binary, drop the last bit, and
re-group them in groups of 5, and convert them back to decimal, which
results in these computations:

hex:
1c f8 f4 2b 5a 9f 80

binary:
00011100 11111000 11110100 00101011 01011010
10011111 1000000

binary in groups of 5:
00011 1606011 11100 061111 0100600 016010 11010 11010
10011 11110 00000

decimal of each group:
319 28 15 8 10 26 26 19 30 0

base32 encoding:
DT4PIK22T®6A

The last step translate each decimal value using table 3 in Base32
(Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,”
October 2006.) [RFC4648]. Thus the SASL mechanism name for the SPKM-1
GSSAPI mechanism is "GS2-DT4PIK22T6A".

The 0ID for the Kerberos V5 GSS-API mechanism (Linn, J., “The Kerberos
Version 5 GSS-API Mechanism,” June 1996.) [RFC1964] is
1.2.840.113554.1.2.2 and its DER encoding is (in hex) 06 09 2A 86 48 86
F7 12 01 02 02. The SHA-1 hash is 82 d2 73 25 76 6b d6 c8 45 aa 93 25
51 6a fc ff 04 bO 43 60. Convert the 7 octets to binary, drop the last
bit, and re-group them in groups of 5, and convert them back to
decimal, which results in these computations:




hex:
82 d2 73 25 76 6b d6

binary:
10000010 11010010 01110011 00100101 011160110
01101011 1101011

binary in groups of 5:
10000 01011 01001 00111 00110 01001 01011 10110
011601 601111 01011

decimal of each group:
16 11 9 7 6 9 11 22 13 15 11

base32 encoding:
QLJHGJLWNPL

The last step translate each decimal value using table 3 in Base32
(Josefsson, S., “The Basel6, Base32, and Base64 Data Encodings,”
October 2006.) [RFC4648]. Thus the SASL mechanism name for the Kerberos
V5 GSSAPI mechanism would be "GS2-QLJHGJLWNPL" and (because this
mechanism supports channel binding) "GS2-QLJHGJLWNPL-PLUS". Instead,
the next section assigns the Kerberos V5 mechanism a non-hash-derived
mechanism name.

3.4. Grandfathered mechanism names TOC

Some older GSS-API mechanisms were not specified with a SASL GS2
mechanism name. Using a shorter name can be useful nonetheless. We
specify the names "GS2-KRB5" and "GS2-KRB5-PLUS" for the Kerberos V5
mechanism, to be used as if the original specification documented it.
See Section 15 (IANA Considerations).

4. SASL Authentication Exchange Message Format TOC

4.1. SASL Messages T0C

During the SASL authentication exchange for GS2, a number of messages
following the following format is sent between the client and server.
This number is the same as the number of context tokens that the GSS-



API mechanism would normally require in order to establish a security
context (or to fail to do so).

Note that when using a GS2 mechanism the SASL client is always a GSS-
API initiator and the SASL server is always a GSS-API acceptor. Thus
the SASL client calls GSS_Init_sec_context and the server calls
GSS_Accept_sec_context.

All the SASL authentication messages exchanged are exactly the same as
the security context tokens of the GSS-API mechanism, except for the
initial security context token.

Also, the server SHOULD refrain from sending GSS-API error tokens
(tokens output by GSS_Init_sec_context or GSS_Accept_sec_context along
with a major status code other than GSS_S_COMPLETE or
GSS_S_CONTINUE_NEEDED) as SASL applications handle error conditions.
The initial security context token is modified as follows:

*The [RFC2743] (Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” January 2000.) section
3.1 initial context token header MUST be removed if present. If
the header is not present, the client MUST send a "gs2-nonstd-
flag" flag (see below). On the server side this header MUST be
recomputed and restored prior to passing the token to
GSS_Accept_sec_context, except when the "gs2-nonstd-flag" is
sent.

*A GS2 header MUST be prefixed to the resulting initial context
token. This header has the form "gs2-header" given below in ABNF
[RFC5234] (Crocker, D. and P. Overell, “Augmented BNF for Syntax
Specifications: ABNF,” January 2008.).




UTF8-1-safe = %x01-2B / %x2D-3C / %X3E-T7F
;; As UTF8-1 in RFC 3629 except

;, NUL, "=", and ",".
UTF8-2 = <as defined in RFC 3629 (STD 63)>
UTF8-3 = <as defined in RFC 3629 (STD 63)>
UTF8-4 = <as defined in RFC 3629 (STD 63)>

UTF8-char-safe = UTF8-1-safe / UTF8-2 / UTF8-3 / UTF8-4

saslname = 1*(UTF8-char-safe / "=2C" / "=3D")
gs2-authzid "a=" saslname

;, GS2 has to transport an authzid since

;, the GSS-API has no equivalent
gs2-nonstd-flag = "F"

;. "F" means the mechanism is not a

,, Standard GSS-API mechanism in that the
; RFC2743 section 3.1 header was missing
"p" / "n" / "y"

gs2-cb-flag =
;, GS2 channel binding (CB) flag
;. "p" -> client supports and used CB
;. "n" -> client does not support CB
;. "y" -> client supports CB, thinks the server
;. does not
gs2-header = [gs2-nonstd-flag] gs2-cb-flag [gs2-authzid] ","

;, The GS2 header is gs2-header.

When the "gs2-nonstd-flag" flag is present, the client did not find/
remove a [RFC2743] (Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” January 2000.) section 3.1
token header from the initial token returned by GSS_Init_sec_context.
This signals to the server that it MUST NOT re-add the data that is
normally removed by the client.

The "gs2-cb-flag" signals the channel binding mode. One of "p", "n", or
"y" is used. A "p" means the client supports and used a channel
binding. A "n" means that the client does not support channel binding.
A "y" means the client supports channel binding, but believes the
server does not, so it did not use a channel binding. See the next
section for more details.

The "gs2-authzid" holds the SASL authorization identity. It is encoded
using UTF-8 (Yergeau, F., “UTF-8, a transformation format of ISO
10646,"” November 2003.) [RFC3629] with three exceptions:

*The NUL characters is forbidden as required by section 3.4.1 of
[RFEC4422] (Melnikov, A. and K. Zeilenga, “Simple Authentication
and Security Layer (SASL),” June 2006.).

*The server MUST replace any "," (comma) in the string with "=2C".



*The server MUST replace any "=" (equals) in the string with
II:3DII .

If a server sends a string that does not conform to this syntax, the
client MUST reject authentication.

5. Channel Bindings TOC

If the server supports channel binding then it MUST list both forms of
the SASL mechanism name for each GSS-API mechanism supported via GS2
(i.e., GSS-API mechanisms that support channel binding).

If the client supports channel binding and the server does not (i.e.,
the server did not advertise the -PLUS names) then the client MUST
either fail authentication or it MUST set the channel binding flag in
the GS2 initial security context token to "y" and MUST NOT include
application channel binding data in the GSS-API channel binding input
to GSS_Init_sec_context.

If the client supports channel binding and the server also does then
the client MUST set the channel binding flag in the GS2 initial
security context token to "p" and MUST include application channel
binding data in the GSS-API channel binding input to
GSS_Init_sec_context. This is done by pre-pending the gs2-header to the
application's channel binding data. If the application did not provide
channel binding data then the GS2 header is used as though it were
application-provided channel binding data.

If the client does not support channel binding then it MUST set the
channel binding flag in the GS2 initial security context token to "n"
and MUST NOT include application channel binding data in the GSS-API
channel binding input to GSS_Init_sec_context.

Upon receipt of the initial authentication message the server checks
the channel binding flag in the GS2 header and constructs a channel
binding data input for GSS_Accept_sec_context accordingly. If the
client channel binding flag was "n" then the server MUST NOT include
application channel binding data in the GSS-API channel binding input
to GSS_Accept_sec_context. If the client channel binding flag was "y"
and the server does support channel binding then the server MUST fail
authentication. If the client channel binding flag was "p" the server
MUST include application channel binding data in the GSS-API channel
binding input to GSS_Accept_sec_context.

For more discussions of channel bindings, and the syntax of the channel
binding data for various security protocols, see [RFC5056] (williams,
N., “On the Use of Channel Bindings to Secure Channels,”

November 2007.).

TOC



6. Examples

Example #1: a one round-trip GSS-API context token exchange, no channel
binding, optional authzid given.

C: Request authentication exchange

S: Empty Challenge

C: na=someuser,<initial context token with standard
header removed>

S: Send reply context token as is

Empty message

S: Outcome of authentication exchange

(@]

Example #2: a one and one half round-trip GSS-API context token
exchange.

C: Request authentication exchange

Empty Challenge

C: na=someuser,<initial context token with standard
header removed>

S: Send reply context token as is

C: Send reply context token as is

S: Outcome of authentication exchange

w

Example #3: a two round-trip GSS-API context token exchange, no
standard token header.

C: Request authentication exchange

S: Empty Challenge

Fna=someuser,<initial context token without
standard header>

Send reply context token as is

Send reply context token as is

Send reply context token as is

Empty message

Outcome of authentication exchange

(@]

nw o nmoownm

Example #4: using channel binding

C: Request authentication exchange

S: Empty Challenge

C: pa=someuser,<initial context token with standard
header removed>

S: Send reply context token as is

GSS-API authentication is always initiated by the client. The SASL
framework allows either the client and server to initiate
authentication. In GS2 the server will send an initial empty challenge
(zero byte string) if it has not yet received a token from the client.



See section 3 of [RFC4422] (Melnikov, A. and K. Zeilenga, “Simple
Authentication and Security Layer (SASL),” June 2006.).

7. Authentication Conditions TOC

Authentication MUST NOT succeed if any one of the following conditions
are true:

*GSS_Init/Accept_sec_context return anything other than
GSS_S_CONTINUE_NEEDED or GSS_S_COMPLETE.

*If the client's GS2 channel binding flag was "y" and the server
supports channel binding.

*If the client requires use of channel binding and the server did
not advertise support for channel binding.

*Authorization of client principal (i.e., src_name in
GSS_Accept_sec_context) to requested authzid failed.

*If the client is not authorized to the requested authzid or an
authzid could not be derived from the client's initiator
principal name.

8. GSS-API Parameters _TOC

GS2 does not use any GSS-API per-message tokens. Therefore the setting
of reg_flags related to per-message tokens is irrelevant.

9. Naming T0C

There's no requirement that any particular GSS-API name-types be used.
However, typically SASL servers will have host-based acceptor principal
names (see [RFC2743] (Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” January 2000.) section 4.1) and
clients will typically have username initiator principal names (see
[REC2743] (Linn, J., “Generic Security Service Application Program
Interface Version 2, Update 1,” January 2000.) section 4.2).




10. GSS_Inquire_SASLname_for_mech call TOC

To allow SASL implementations to query for the SASL mechanism name of a
GSS-API mechanism, we specify a new GSS-API function for this purpose.

Inputs:

o0 desired_mech OBJECT IDENTIFIER

Outputs:

o0 sasl_mech_name UTF-8 STRING -- SASL name for this mechanism

o mech_name UTF-8 STRING -- name of this mechanism, possibly
localized

o mech_description UTF-8 STRING -- possibly localized
description of this mechanism.

Return major_status codes:

0 GSS_S_COMPLETE indicates successful completion, and that output
parameters holds correct information.

0 GSS_S_BAD_MECH indicates that a desired_mech was unsupported by
the GSS-API implementation.

The GSS_Inquire_SASLname_for_mech call is used to get the SASL

mechanism name for a GSS-API mechanism. It also returns a name
and description of the mechanism in a human readable form.

10.1. gss_inquire_saslname_for_mech TOC

The C binding for the GSS_Inquire_SASLname_for_mech call is as follows.



OM_uint32 gss_inquire_saslname_for_mech(
OM_uint32 *minor_status,
const gss_0OID desired_mech,
gss_buffer_t sasl_mech_name,
gss_buffer_t mech_name,
gss_buffer_t mech_description,

)
Purpose:

Output the SASL mechanism name of a GSS-API mechanism.
It also returns a name and description of the mechanism in a
human readable form.

Parameters:
minor_status Integer, modify

Mechanism specific status code.
Function value: GSS status code

GSS_S_COMPLETE Successful completion

GSS_S_BAD_MECH The desired_mech OID is unsupported

11. G6SS_Inquire_mech_for_SASLname call TOC

To allow SASL clients to more efficiently identify which GSS-API
mechanism a particular SASL mechanism name refers to we specify a new
GSS-API utility function for this purpose.



Inputs:
0 sasl_mech_name UTF-8 STRING -- SASL name of mechanism
Outputs:

0 mech_type OBJECT IDENTIFIER -- must be explicit mechanism,
and not "default" specifier

Return major_status codes:

0 GSS_S_COMPLETE indicates successful completion, and that output
parameters holds correct information.

0 GSS_S_BAD_MECH indicates that no supported GSS-API mechanism
had the indicated sasl_mech_name.

The GSS_Inquire_mech_for_SASLname call is used to get the GSS-API
mechanism OID associated with a SASL mechanism name.

11.1. gss_inquire_mech_for_saslname TOC
The C binding for the GSS_Inquire_mech_for_SASLname call is as follows.

OM_uint32 gss_inquire_mech_for_saslname(

OM_uint32 *minor_status,
const gss_buffer_t sasl_mech_name,
gss_OID *mech_type

)i

Purpose:

Output GSS-API mechanism OID of mechanism associated with given
sasl_mech_name.

Parameters:
minor_status Integer, modify

Mechanism specific status code.
Function value: GSS status code

GSS_S_COMPLETE Successful completion

GSS_S_BAD_MECH The desired_mech OID is unsupported



12. Security Layers _TOC _

GS2 does not currently support SASL security layers. Applications that
need integrity protection or confidentiality and integrity protection
MUST use either channel binding to a secure external channel or a SASL
mechanism that does provide security layers.

NOTE WELL: the GS2 client's first authentication message MUST always
start with "F", "p", "n" or "y", otherwise the server MUST fail
authentication. This will allow us to add support for security layers
in the future if it were to become necessary. Note that adding security
layer support to GS2 must not break existing SASL/GS2 applications,
which can be accomplished by making security layers optional.

[A sketch of how to add sec layer support... Add a way for the client
to: a) make an offer of sec layers and max buffer, b) make an
opportunistic selection of sec layer and buffer size, both in the first
client authentication message, and starting with a character other than
"EF", "n", "y" or "p". The server could accept the opportunistic
proposal (reply token prefixed with a byte indicating acceptance) or
reject it along with an indication of the server's acceptable sec
layers and max buffer size. In the latter case the GSS-API security
context token exchange must be abandoned and recommenced, although this
would be a detail of the GS2 bridge not exposed to the SASL
application. The negotiation would be protected via GSS channel
binding, as with the rest of GS2.]

13. Interoperability with the SASL "GSSAPI" mechanism TOC

The Kerberos V5 GSS-API (Linn, J., “The Kerberos Version 5 GSS-API
Mechanism,” June 1996.) [RFC1964] mechanism is currently used in SASL
under the name "GSSAPI", see GSSAPI mechanism (Melnikov, A., “The
Kerberos V5 ("GSSAPI") Simple Authentication and Security Layer (SASL)
Mechanism,” November 2006.) [RFC4752]. The Kerberos V5 mechanism may
also be used with the GS2 family. This causes an interoperability
problem, which is discussed and resolved below.

13.1. The interoperability problem TOC

The SASL "GSSAPI" mechanism is not wire-compatible with the Kerberos V
GSS-API mechanism used as a SASL GS2 mechanism.



If a client (or server) only support Kerberos V5 under the "GSSAPI"
name and the server (or client) only support Kerberos V5 under the GS2
family, the mechanism negotiation will fail.

13.2. Resolving the problem TOC

If the Kerberos V5 mechanism is supported under GS2 in a server, the
server SHOULD also support Kerberos V5 through the "GSSAPI" mechanism,
to avoid interoperability problems with older clients.

Reasons for violating this recommendation may include security
considerations regarding the absent features in the GS2 mechanism. The
SASL "GSSAPI" mechanism lacks support for channel bindings, which means
that using an external secure channel may not be sufficient protection
against active attackers (see [RFC5056] (Williams, N., “On the Use of
Channel Bindings to Secure Channels,” November 2007.), [mitm] (Asokan,
N., Niemi, V., and K. Nyberg, “Man-in-the-Middle in Tunneled
Authentication,” .)).

13.3. Additional Recommendations TOC

If the application requires security layers then it MUST prefer the
SASL "GSSAPI" mechanism over "GS2-KRB5" or "GS2-KRB5-PLUS".

If the application can use channel binding to an external channel then
it is RECOMMENDED that it select Kerberos V5 through the GS2 mechanism
rather than the "GSSAPI" mechanism.

14. Mechanisms that negotiate other mechanisms TOC

A GSS-API mechanism that negotiate other mechanisms interact badly with
the SASL mechanism negotiation. There are two problems. The first is an
interoperability problem and the second is a security concern. The
problems are described and resolved below.

14.1. The interoperability problem TOC

If a client implement GSS-API mechanism X, potentially negotiated
through a GSS-API mechanism Y, and the server also implement GSS-API
mechanism X negotiated through a GSS-API mechanism Z, the
authentication negotiation will fail.



14.2. Security problem TOC

If a client's policy is to first prefer GSSAPI mechanism X, then non-
GSSAPI mechanism Y, then GSSAPI mechanism Z, and if a server supports
mechanisms Y and Z but not X, then if the client attempts to negotiate
mechanism X by using a GSS-API mechanism that negotiate other
mechanisms (such as SPNEGO), it may end up using mechanism Z when it
ideally should have used mechanism Y. For this reason, the use of GSS-
API mechanisms that negotiate other mechanisms are disallowed under
GS2.

14.3. Resolving the problems TOC

GSS-API mechanisms that negotiate other mechanisms MUST NOT be used
with the GS2 SASL mechanism. Specifically SPNEGO [RFC4178] (Zhu, L.,
Leach, P., Jaganathan, K., and W. Ingersoll, “The Simple and Protected
Generic Security Service Application Program Interface (GSS-API)
Negotiation Mechanism,” October 2005.) MUST NOT be used as a GS2
mechanism. To make this easier for SASL implementations we assign a
symbolic SASL mechanism name to the SPNEGO GSS-API mechanism: "SPNEGO".
SASL client implementations MUST NOT choose the SPNEGO mechanism under
any circumstances. [What about SASL apps that don't do mechanism
negotiation? Probably none exist. But if any did then presumably it
would OK to use the SPNEGO mechanism, no? -Nico]

The GSS C MA MECH NEGO attribute of GSS Inquire attrs for mech
(Williams, N., “Extended Generic Security Service Mechanism Inquiry
APIs,” April 2009.) [I-D.ietf-kitten-extended-mech-inquiry] can be used
to identify such mechanisms.

15. IANA Considerations TOC

The SASL names for the Kerberos V5 GSS-API mechanism [RFC4121] (Zhu,
L., Jaganathan, K., and S. Hartman, “The Kerberos Version 5 Generic
Security Service Application Program Interface (GSS-API) Mechanism:
Version 2,” July 2005.) [RFC1964] (Linn, J., “The Kerberos Version 5
GSS-API Mechanism,” June 1996.) used via GS2 SHALL be "GS2-KRB5" and
"GS2-KRB5-PLUS".

The SASL names for the SPNEGO GSS-API mechanism used via GS2 SHALL be
"SPNEGO" and "SPNEGO-PLUS". As described in Section 14 (Mechanisms that

negotiate other mechanisms) the SASL "SPNEGO" and "SPNEGO-PLUS" MUST




NOT be used. These names are provided as a convenience for SASL library
implementors.

The IANA is advised that SASL mechanism names starting with "GS2-" are
reserved for SASL mechanisms which conform to this document. The IANA
is directed to place a statement to that effect in the sasl-mechanisms
registry.

The IANA is further advised that SASL mechanisms MUST NOT end in "-
PLUS" except as a version of another mechanism name simply suffixed
with "-PLUS".

Subject: Registration of SASL mechanism GS2-*

SASL mechanism prefix: GS2-

Security considerations: RFC [THIS-DOC]

Published specification: RFC [THIS-DOC]

Person & email address to contact for further information:
Simon Josefsson <simon@josefsson.org>

Intended usage: COMMON

Owner/Change controller: iesg@ietf.org

Note: Compare with the GSSAPI and GSS-SPNEGO mechanisms.

16. Security Considerations TOC

Security issues are also discussed throughout this memo.

The security provided by a GS2 mechanism depends on the security of the
GSS-API mechanism. The GS2 mechanism family depends on channel binding
support, so GSS-API mechanisms that do not support channel binding
cannot be successfully used as SASL mechanisms via the GS2 bridge.
Because GS2 does not support security layers it is strongly RECOMMENDED
that channel binding to a secure external channel be used. Successful
channel binding eliminates the possibility of man-in-the-middle (MITM)
attacks, provided that the external channel and its channel binding
data are secure and provided that the GSS-API mechanism used is secure.
Authentication failure because of channel binding failure may indicate
that an MITM attack was attempted, but note that a real MITM attacker
would likely attempt to close the connection to the client or simulate
network partition , thus MITM attack detection is heuristic.

Use of channel binding will also protect the SASL mechanism negotiation
-- if there is no MITM then the external secure channel will have
protected the SASL mechanism negotiation.

The channel binding data MAY be sent (but the actual GSS-API mechanism
used) without confidentiality protection and knowledge of it is assumed
to provide no advantage to an MITM (who can, in any case, compute the
channel binding data independently). If the external channel does not
provide confidentiality protection and the GSS-API mechanism does not
provide confidentiality protection for the channel binding data, then



passive attackers (eavesdroppers) can recover the channel binding data.
See [RFC5056] (Williams, N., “On the Use of Channel Bindings to Secure
Channels,” November 2007.).

When constructing the input_name_string for GSS_Import_name with the
GSS_C_NT_HOSTBASED_SERVICE name type, the client SHOULD NOT
canonicalize the server's fully qualified domain name using an insecure
or untrusted directory service, such as the Domain Name System
(Mockapetris, P., “Domain names - concepts and facilities,”

November 1987.) [RFC1034] without DNSSEC (Arends, R., Austein, R.,
Larson, M., Massey, D., and S. Rose, “DNS Security Introduction and
Requirements,” March 2005.) [RFC4033].

GS2 does not directly use any cryptographic algorithms, therefore it is
automatically "algorithm agile", or, as agile as the GSS-API mechanisms
that are available for use in SASL applications via GS2.

The security considerations of SASL [RFC4422] (Melnikov, A. and K.
Zeilenga, “Simple Authentication and Security Layer (SASL),”

June 2006.), the GSS-API [RFC2743] (Linn, J., “Generic Security Service

Application Program Interface Version 2, Update 1,” January 2000.),
channel binding [RFC5056] (Williams, N., “0On the Use of Channel
Bindings to Secure Channels,” November 2007.), any external channels
(such as TLS, [RFC5246] (Dierks, T. and E. Rescorla, “The Transport
Layer Security (TLS) Protocol Version 1.2,” August 2008.), channel
binding types (see the IANA channel binding type registry), and GSS-API
mechanisms (such as the Kerberos V5 mechanism [RFC4121] (Zhu, L.,
Jaganathan, K., and S. Hartman, “The Kerberos Version 5 Generic
Security Service Application Program Interface (GSS-API) Mechanism:
Version 2,” July 2005.) [RFC1964] (Linn, J., “The Kerberos Version 5
GSS-API Mechanism,” June 1996.)), may also apply.

17. Acknowledgements TOC

The history of GS2 can be traced to the "GSSAPI" mechanism originally
specified by RFC2222. This document was derived from draft-ietf-sasl-
gssapi-02 which was prepared by Alexey Melnikov with significant
contributions from John G. Myers, although the majority of this
document has been rewritten by the current authors.

Contributions of many members of the SASL mailing list are gratefully
acknowledged. In particular, ideas and feedback from Sam Hartman,
Jeffrey Hutzelman, Alexey Melnikov, and Tom Yu improved the document
and the protocol.

18. References TOC



18.1. Normative References
TOC

[FIPS.180-1.1995] National Institute of Standards and Technology,
“Secure Hash Standard,” FIPS PUB 180-1,
April 1995.

[RFC2119] Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2743] Linn, J., “Generic Security Service Application
Program Interface Version 2, Update 1,” RFC 2743,
January 2000 (TXT).

[RFC3629] Yergeau, F., “UTF-8, a transformation format of
IS0 10646,"” STD 63, RFC 3629, November 2003
(IXT).

[RFC4422] Melnikov, A. and K. Zeilenga, “Simple

Authentication and Security Layer (SASL),”
RFC 4422, June 2006 (TXT).

[RFC4648] Josefsson, S., “The Basel6, Base32, and Base64
Data Encodings,” RFC 4648, October 2006 (TXT).

[RFC5056] wWilliams, N., “On the Use of Channel Bindings to
Secure Channels,” RFC 5056, November 2007 (TXT).

[RFC5234] Crocker, D. and P. Overell, “Augmented BNF for

Syntax Specifications: ABNF,” STD 68, RFC 5234,
January 2008 (TXT).

[CCITT.X690.2002] International International Telephone and
Telegraph Consultative Committee, “ASN.1 encoding
rules: Specification of basic encoding Rules
(BER), Canonical encoding rules (CER) and
Distinguished encoding rules (DER),”

CCITT Recommendation X.690, July 2002.

18.2. Informative References

TOC
[RFC1034] Mockapetris, P., “Domain names - concepts and
facilities,” STD 13, RFC 1034, November 1987 (TXT).
[RFC1964] Linn, J., “The Kerberos Version 5 GSS-API
Mechanism,” RFC 1964, June 1996 (TXT).
[RFC2025] Adams, C., “The Simple Public-Key GSS-API Mechanism
(SPKM),"” RFC 2025, October 1996 (TXT).
[RFC2222] Myers, J., “Simple Authentication and Security Layer
(SASL),” RFC 2222, October 1997 (TXT, HTML, XML).
[RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and

S. Rose, “DNS Security Introduction and
Requirements,” RFC 4033, March 2005 (TXT).

[RFC4121]


http://www.itl.nist.gov/fipspubs/fip180-1.htm
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:jlinn@rsasecurity.com
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://www.rfc-editor.org/rfc/rfc2743.txt
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
http://www.rfc-editor.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc4422
http://tools.ietf.org/html/rfc4422
http://www.rfc-editor.org/rfc/rfc4422.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5056
http://www.rfc-editor.org/rfc/rfc5056.txt
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://www.rfc-editor.org/rfc/rfc5234.txt
http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1034
http://www.rfc-editor.org/rfc/rfc1034.txt
mailto:John.Linn@ov.com
http://tools.ietf.org/html/rfc1964
http://tools.ietf.org/html/rfc1964
http://www.rfc-editor.org/rfc/rfc1964.txt
mailto:cadams@bnr.ca
http://tools.ietf.org/html/rfc2025
http://tools.ietf.org/html/rfc2025
http://www.rfc-editor.org/rfc/rfc2025.txt
mailto:jgmyers@netscape.com
http://tools.ietf.org/html/rfc2222
http://tools.ietf.org/html/rfc2222
http://www.rfc-editor.org/rfc/rfc2222.txt
http://xml.resource.org/public/rfc/html/rfc2222.html
http://xml.resource.org/public/rfc/xml/rfc2222.xml
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4033
http://www.rfc-editor.org/rfc/rfc4033.txt

[RFC4178]

[RFC4752]

[RFC5246]

[I-D.newman-
auth-scram]

[I-D.ietf-
kitten-
extended-mech-
inquiry]
[mitm]

Authors' Addresses

Zhu, L., Jaganathan, K., and S. Hartman, “The
Kerberos Version 5 Generic Security Service
Application Program Interface (GSS-API) Mechanism:
Version 2,” RFC 4121, July 2005 (TXT).

Zhu, L., Leach, P., Jaganathan, K., and W.
Ingersoll, “The Simple and Protected Generic
Security Service Application Program Interface (GSS-
API) Negotiation Mechanism,” RFC 4178, October 2005
(TXT).

Melnikov, A., “The Kerberos V5 ("GSSAPI") Simple
Authentication and Security Layer (SASL) Mechanism,”
RFC 4752, November 2006 (TXT).

Dierks, T. and E. Rescorla, “The Transport Layer
Security (TLS) Protocol Version 1.2,” RFC 5246,
August 2008 (TXT).

Menon-Sen, A., Melnikov, A., Newman, C., and N.
wWilliams, “Salted Challenge Response (SCRAM) SASL
Mechanism,” draft-newman-auth-scram-13 (work in
progress), May 2009 (TXT).

wWilliams, N., “Extended Generic Security Service
Mechanism Inquiry APIs,” draft-ietf-kitten-extended-
mech-inquiry-06 (work in progress), April 2009
(TXT).

Asokan, N., Niemi, V., and K. Nyberg, “Man-in-the-
Middle in Tunneled Authentication,” WwWwW http://
www.saunalahti.fi/~asokan/research/mitm.html.

_TOC _
Simon Josefsson
SJD AB
Hagagatan 24
Stockholm 113 47
SE
Email: simon@josefsson.org
URI: http://josefsson.org/

Nicolas Williams
Sun Microsystems
5300 Riata Trace Ct
Austin, TX 78727
USA
Email: Nicolas.Williams@sun.com



http://tools.ietf.org/html/rfc4121
http://tools.ietf.org/html/rfc4121
http://tools.ietf.org/html/rfc4121
http://tools.ietf.org/html/rfc4121
http://www.rfc-editor.org/rfc/rfc4121.txt
http://tools.ietf.org/html/rfc4178
http://tools.ietf.org/html/rfc4178
http://tools.ietf.org/html/rfc4178
http://www.rfc-editor.org/rfc/rfc4178.txt
http://tools.ietf.org/html/rfc4752
http://tools.ietf.org/html/rfc4752
http://www.rfc-editor.org/rfc/rfc4752.txt
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.ietf.org/internet-drafts/draft-newman-auth-scram-13.txt
http://www.ietf.org/internet-drafts/draft-newman-auth-scram-13.txt
http://www.ietf.org/internet-drafts/draft-newman-auth-scram-13.txt
http://www.ietf.org/internet-drafts/draft-ietf-kitten-extended-mech-inquiry-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-kitten-extended-mech-inquiry-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-kitten-extended-mech-inquiry-06.txt
mailto:simon@josefsson.org
http://josefsson.org/
mailto:Nicolas.Williams@sun.com

	Using GSS-API Mechanisms in SASL: The GS2 Mechanism Familydraft-ietf-sasl-gs2-12
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1.  Introduction
	2.  Conventions used in this document
	3.  Mechanism name
	3.1.  Generating SASL mechanism names from GSS-API OIDs
	3.2.  Computing mechanism names manually
	3.3.  Examples
	3.4.  Grandfathered mechanism names
	4.  SASL Authentication Exchange Message Format
	4.1.  SASL Messages
	5.  Channel Bindings
	6.  Examples
	7.  Authentication Conditions
	8.  GSS-API Parameters
	9.  Naming
	10.  GSS_Inquire_SASLname_for_mech call
	10.1.  gss_inquire_saslname_for_mech
	11.  GSS_Inquire_mech_for_SASLname call
	11.1.  gss_inquire_mech_for_saslname
	12.  Security Layers
	13.  Interoperability with the SASL "GSSAPI" mechanism
	13.1.  The interoperability problem
	13.2.  Resolving the problem
	13.3.  Additional Recommendations
	14.  Mechanisms that negotiate other mechanisms
	14.1.  The interoperability problem
	14.2.  Security problem
	14.3.  Resolving the problems
	15.  IANA Considerations
	16.  Security Considerations
	17.  Acknowledgements
	18.  References
	18.1. Normative References
	18.2. Informative References
	Authors' Addresses


