
Network Working Group A. Melnikov
Internet Draft Editor
Document: draft-ietf-sasl-rfc2222bis-06.txt February 2004
Obsoletes: RFC 2222 Expires in six months

Simple Authentication and Security Layer (SASL)

Status of this Memo

 This document is an Internet Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet Drafts are working documents of the Internet Engineering
 Task Force (IETF), its Areas, and its Working Groups. Note that
 other groups may also distribute working documents as Internet
 Drafts. Internet Drafts are draft documents valid for a maximum of
 six months. Internet Drafts may be updated, replaced, or obsoleted
 by other documents at any time. It is not appropriate to use
 Internet Drafts as reference material or to cite them other than as
 ``work in progress''.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 A revised version of this draft document will be submitted to the RFC
 editor as a Standards Track RFC for the Internet Community.
 Discussion and suggestions for improvement are requested.
 Distribution of this draft is unlimited.

 When published as an RFC this document will obsolete RFC 2222.

A. Melnikov FORMFEED[Page i]

https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2222bis-06.txt
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2222

Internet DRAFT SASL 14 February 2004

1. Abstract

 The Simple Authentication and Security Layer (SASL) provides a method
 for adding authentication support with an optional security layer to
 connection-based protocols. It also describes a structure for
 authentication mechanisms. The result is an abstraction layer
 between protocols and authentication mechanisms such that any SASL-
 compatible authentication mechanism can be used with any SASL-
 compatible protocol.

 This document describes how a SASL authentication mechanism is
 structured, describes how a protocol adds support for SASL, defines
 the protocol for carrying a security layer over a connection, and
 defines the EXTERNAL SASL authentication mechanism.

2. Organization of this document

2.1. How to read this document

 This document is written to serve several different audiences,
 protocol designers using this specification to support authentication
 in their protocol, mechanism designers that define new SASL
 mechanisms, and implementors of clients or servers for those
 protocols using this specification.

 The sections "Overview", "Authentication Mechanisms", "Protocol
 Profile Requirements", "Specific Issues", and "Security
 Considerations" cover issues that protocol designers need to
 understand and address in profiling this specification for use in a
 specific protocol.

 The sections "Overview", "Authentication Mechanisms", "Mechanism
 Profile Requirements" and "Security Considerations" cover issues that
 mechanism designers need to understand and address in designing new
 SASL mechanisms.

 Implementors of a protocol using this specification need the
 protocol-specific profiling information in addition to the
 information in this document.

2.2. Conventions used in this document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

A. Melnikov FORMFEED[Page 2]

Internet DRAFT SASL 14 February 2004

 Character names in this document use the notation for code points and
 names from the Unicode Standard [Unicode]. For example, the letter
 "a" may be represented as either <U+0061> or <LATIN SMALL LETTER A>.

 This document uses terms "integrity protection" and "confidentiality
 protection". The former references to a security layer that is able
 to detect data modification by using some kind of hash. However,
 integrity protection doesn't make the data unreadable to an attacker.
 Confidentiality protection is a security layer that is able to make
 the data unreadable to an attacker by using encryption.
 Confidentiality protection usually implies integrity protection.

3. Overview

 The Simple Authentication and Security Layer (SASL) is a method for
 adding authentication support to connection-based protocols.

 The SASL specification has three layers, as indicated in the diagram
 below. At the top, a protocol definition using SASL specifies a
 profile, including a command for identifying and authenticating a
 user to a server and for optionally negotiating a security layer for
 subsequent protocol interactions. At the bottom, a SASL mechanism
 definition specifies an authentication mechanism. The SASL
 framework, specified by this document, constrains the behavior of
 protocol profiles and mechanisms, separating protocol from mechanism
 and defining how they interact.

 SMTP Protocol LDAP Protocol Etc
 Profile Profile . . .
 \----- | -----/
 \ | /
 SASL framework
 / | \
 /----- | -----\
 EXTERNAL DIGEST-MD5 Etc
 SASL mechanism SASL mechanism . . .

 This separation between the definition of protocols and the
 definition of authentication mechanisms is crucial. It permits an
 authentication mechanism to be defined once, making it usable by any
 SASL protocol profile. In many implementations, the same SASL
 mechanism code is used for multiple protocols.

4. Authentication mechanisms

 SASL mechanisms are named by strings, from 1 to 20 characters in
 length, consisting of ASCII [ASCII] upper-case letters, digits,

A. Melnikov FORMFEED[Page 3]

Internet DRAFT SASL 14 February 2004

 hyphens, and/or underscores. SASL mechanism names must be registered
 with the Internet Assigned Numbers Authority (IANA). IETF standards
 track documents may direct the IANA to reserve a portion of the SASL
 mechanism namespace and may specify different registration criteria
 for the reserved portion; the GSSAPI mechanism specification
 [SASL-GSSAPI] does this. Procedures for registering new SASL
 mechanisms are given in section 8.

 The "sasl-mech" production below defines the syntax of a SASL
 mechanism name. This uses the Augmented Backus-Naur Form (ABNF)
 notation as specified in [ABNF] and the ABNF core rules as specified
 in Appendix A of the ABNF specification [ABNF].

 sasl-mech = 1*20mech-char
 mech-char = %x41-5A / DIGIT / "-" / "_"
 ; mech names restricted to ASCII uppercase letters,
 ; digits, "-" and "_"

4.1. Authentication protocol exchange

 A SASL mechanism is responsible for conducting an authentication
 protocol exchange. This consists of a series of server challenges
 and client responses, the contents of which are specific to and
 defined by the mechanism. To the protocol, the challenges and
 responses are opaque binary tokens of arbitrary length. The
 protocol's profile then specifies how these binary tokens are then
 encoded for transfer over the connection.

 After receiving an authentication command or any client response, a
 server mechanism may issue a challenge, indicate failure, or indicate
 completion. The server mechanism may return additional data with a
 completion indication. The protocol's profile specifies how each of
 these is then represented over the connection.

 After receiving a challenge, a client mechanism may issue a response
 or abort the exchange. The protocol's profile specifies how each of
 these is then represented over the connection.

 During the authentication protocol exchange, the mechanism performs
 authentication, transmits an authorization identity (frequently known
 as a userid) from the client to server, and negotiates the use of a
 mechanism-specific security layer. If the use of a security layer is
 agreed upon, then the mechanism must also define or negotiate the
 maximum security layer buffer size that each side is able to receive.

A. Melnikov FORMFEED[Page 4]

Internet DRAFT SASL 14 February 2004

4.2. Authorization and authentication identities

 SASL authentication deals with two identities: the authorization
 identity and the authentication identity. The transmitted
 authorization identity may be an empty string (zero length), but the
 transmitted authentication identity may not be an empty string.

 A mechanisms which are incapable of transmitting an authorization
 identity must be treated as if it always transmits an authorization
 identity of an empty string.

 Authentication identity is the identity derived from the client's
 authentication credentials.

 The authorization identity is used by the server as the primary
 identity for making access policy decisions.

4.2.1. Authorization identities and proxy authentication

 With any mechanism, transmitting an authorization identity of the
 empty string directs the server to derive the authorization identity
 from the client's authentication identity.

 If the authorization identity transmitted during the authentication
 protocol exchange is not the empty string, this is typically referred
 to as "proxy authentication". This feature permits agents such as
 proxy servers to authenticate using their own credentials, yet
 request the access privileges of the identity for which they are
 proxying.

 The server makes an implementation defined policy decision as to
 whether the authentication identity is permitted to have the access
 privileges of the authorization identity and whether the
 authorization identity is permitted to receive service. If it is
 not, the server indicates failure of the authentication protocol
 exchange.

 As a client might not have the same information as the server,
 clients SHOULD NOT derive authorization identities from
 authentication identities. Instead, clients SHOULD provide no (or
 empty) authorization identity when the user has not provided an
 authorization identity.

 The server SHOULD verify that a received authorization identity is in
 the correct form. Profiles whose authorization identities are simple
 user names (e.g. IMAP [RFC 3501]) SHOULD use "SASLprep" profile
 [SASLprep] of the "stringprep" algorithm [StringPrep] to prepare
 these names for matching. The profiles MAY use a stringprep profile

https://datatracker.ietf.org/doc/html/rfc3501

A. Melnikov FORMFEED[Page 5]

Internet DRAFT SASL 14 February 2004

 that is more strict than "SASLprep". If the preparation of the
 authorization identity fails or results in an empty string, the
 server MUST fail the authentication exchange. The only exception to
 this rule is when the received authorization identity is already the
 empty string.

4.2.2. Authorization Identity Format

 An authorization identity is a string of zero or more Unicode
 [Unicode] coded characters. The NUL <U+0000> character is not
 permitted in authorization identities.

 The character encoding scheme used for transmitting an authorization
 identity over the protocol is specified in each authentication
 mechanism. All IETF-defined mechanisms MUST, and all other
 mechanisms SHOULD, use UTF-8 [UTF-8]. (See [CHARSET-POLICY] for IETF
 policy regarding character sets and encoding schemes.)

 Mechanisms are expected to be capable of carrying the entire Unicode
 repertoire (with the exception of the NUL character). An
 authorization identity of the empty string and an absent
 authorization identity MUST be treated as equivalent. A mechanism
 which provides an optional field for an authorization identity,
 SHOULD NOT allow that field, when present, to be empty. The meaning
 of the empty string as an authorization identity is described in the
 previous section.

4.3. Security layers

 If use of a security layer is negotiated by the authentication
 protocol exchange, the security layer is applied to all subsequent
 data sent over the connection (until another security layer is
 negotiated; see also section 6.3). The security layer takes effect
 immediately following the last response of the authentication
 exchange for data sent by the client and the completion indication
 for data sent by the server.

 Note that all SASL mechanisms that are unable to negotiate a security
 layer automatically select no security layer.

 Once the security layer is in effect the protocol stream is processed
 by the security layer into buffers of security encoded data. Each
 buffer of security encoded data is transferred over the connection as
 a stream of octets prepended with a four octet field in network byte
 order that represents the length of the following buffer. The length
 of the security encoded data buffer MUST be no larger than the
 maximum size that was either defined in the mechanism specification
 or negotiated by the other side during the authentication protocol

A. Melnikov FORMFEED[Page 6]

Internet DRAFT SASL 14 February 2004

 exchange. Upon the receipt of a data buffer which is larger than the
 defined/negotiated maximal buffer size the receiver SHOULD close the
 connection. This might be a sign of an attack or a buggy
 implementation.

5. Protocol and mechanism profiles

5.1. Protocol profile requirements

 In order to use this specification, a protocol definition MUST supply
 the following information:

 1) A service name, to be selected from the IANA registry of "service"
 elements for the GSSAPI host-based service name form [GSSAPI]. This
 service name is made available to the authentication mechanism.

 The registry is available at the URL
 <http://www.iana.org/assignments/gssapi-service-names>.

 2) A definition of the command to initiate the authentication
 protocol exchange. This command must have as a parameter the name of
 the mechanism being selected by the client.

 The command SHOULD have an optional parameter giving an initial
 response. If the protocol allows for the initial response, the
 protocol profile SHOULD also describe how an empty initial response
 is encoded. This optional parameter allows the client to avoid a
 round trip when using a mechanism which is defined to have the client
 send data first. When this initial response is sent by the client
 and the selected mechanism is defined to have the server start with
 an initial challenge, the command fails. See section 6.1 of this
 document for further information.

 3) A definition of the method by which the authentication protocol
 exchange is carried out, including how the challenges and responses
 are encoded, how the server indicates completion or failure of the
 exchange, how the client aborts an exchange, and how the exchange
 method interacts with any line length limits in the protocol.

 The exchange method SHOULD allow the server to include an optional
 data ("optional challenge") with a success notification. This allows
 the server to avoid a round trip when using a mechanism which is
 defined to have the server send additional data along with the
 indication of successful completion. See section 6.2 of this
 document for further information.

 4) A protocol profile SHOULD specify a mechanism through which a
 client may obtain the names of the SASL mechanisms available to it.

http://www.iana.org/assignments/gssapi-service-names

A. Melnikov FORMFEED[Page 7]

Internet DRAFT SASL 14 February 2004

 This is typically done through the protocol's extensions or
 capabilities mechanism.

 5) Identification of the octet where any negotiated security layer
 starts to take effect, in both directions.

 6) Specify if the protocol profile supports "multiple
 authentications" (see section 6.3).

 7) If both TLS and SASL security layer are allowed to be negotiated
 by the protocol, the protocol profile MUST define in which order they
 are applied to a cleartext data sent over the connection.

 8) A protocol profile MAY further refine the definition of an
 authorization identity by adding additional syntactic restrictions
 and protocol-specific semantics. A protocol profile MUST specify the
 form of the authorization identity (since it is protocol specific, as
 opposed to the authentication identity, which is mechanism specific)
 and how authorization identities are to be compared. Profiles whose
 authorization identities are simple user names (e.g. IMAP [RFC 3501])
 SHOULD use "SASLprep" profile [SASLprep] of the "stringprep"
 algorithm [StringPrep] to prepare these names for matching. The
 profiles MAY use a stringprep profile that is more strict than
 SASLprep.

 A protocol profile SHOULD NOT attempt to amend the definition of
 mechanisms or make mechanism-specific encodings. This breaks the
 separation between protocol and mechanism that is fundamental to the
 design of SASL. Likewise, SASL mechanisms SHOULD be profile neutral.

5.2. Mechanism profile guidelines

 Designers of new SASL mechanism should be aware of the following
 issues:

 1) Authorization identity.

 While some legacy mechanisms are incapable of transmitting an
 authorization identity (which means that for these mechanisms the
 authorization identity is always the empty string), newly defined
 mechanisms SHOULD be capable of transmitting a non-empty
 authorization identity. See also section 4.2.

 2) Character string issues

 Authentication mechanisms SHOULD encode character strings in UTF-8
 [UTF-8] (see [CHARSET-POLICY] for IETF policy regarding character

https://datatracker.ietf.org/doc/html/rfc3501

A. Melnikov FORMFEED[Page 8]

Internet DRAFT SASL 14 February 2004

 sets in IETF protocols). In order to avoid interoperability problems
 due to differing normalizations, when a mechanisms specifies that
 character data is to be used as input to a cryptographic and/or
 comparison function, the mechanism specification MUST detail how the
 data is to be represented, including any normalizations or other
 preparations, to ensure proper function. Designers of mechanisms
 SHOULD use the "SASLprep" profile [SASLprep] of the "stringprep"
 algorithm [StringPrep] where applicable.

 The preparation can be potentially performed on the client end (upon
 getting user input or retrieving a value from configuration) or on
 the server end (upon receiving the value from the client, retrieving
 a value from its authentication database or generating a new value in
 order to store in in the authentication database). SASL mechanisms
 must define which entity (or entities) must perform the preparation.
 If preparation fails or results in an empty string, the entity doing
 the preparation SHALL fail the authentication exchange.

 Implementation note: A server end can be represented by multiple
 processes. For example, it may consist of the server process itself
 that communicated with a client, and a command line utility (a server
 agent) that is able to store passwords/hashes in a database that can
 be later used by the server. For the server agent the requirement to
 "fail the authentication exchange" should be interpreted as a
 requirement to refuse to store the data in the database.

6. Specific issues

6.1. Client sends data first

 Some mechanisms specify that the first data sent in the
 authentication protocol exchange is from the client to the server.

 If a protocol's profile permits the command which initiates an
 authentication protocol exchange to contain an initial client
 response, this parameter SHOULD be used with such mechanisms.

 If the initial client response parameter is not given, or if a
 protocol's profile does not permit the command which initiates an
 authentication protocol exchange to contain an initial client
 response, then the server issues a challenge with no data. The
 client's response to this challenge is then used as the initial
 client response. (The server then proceeds to send the next
 challenge, indicates completion, or indicates failure.)

A. Melnikov FORMFEED[Page 9]

Internet DRAFT SASL 14 February 2004

6.1.1. Client sends data first examples

 The following are two examples of an SECURID authentication [SASL-
 SECURID] in the SMTP protocol [SMTP]. In the first example below,
 the client is trying fast reauthentication by sending the initial
 response:

 S: 220-smtp.example.com ESMTP Server
 C: EHLO client.example.com
 S: 250-smtp.example.com Hello client.example.com, pleased to meet you
 S: 250-AUTH GSSAPI SECURID
 S: 250 DSN
 C: AUTH SECURID AG1hZ251cwAxMjM0NTY3OAA=
 S: 235 Authentication successful

 The example below is almost identical to the previous, but here the
 client chooses not to use the initial response parameter.

 S: 220-smtp.example.com ESMTP Server
 C: EHLO client.example.com
 S: 250-smtp.example.com Hello client.example.com, pleased to meet you
 S: 250-AUTH GSSAPI SECURID
 S: 250 DSN
 C: AUTH SECURID
 S: 334
 C: AG1hZ251cwAxMjM0NTY3OAA=
 S: 235 Authentication successful

Section 7.2 contains an additional example.

6.2. Server returns success with additional data

 Some mechanisms may specify that additional data be sent to the
 client along with an indication of successful completion of the
 exchange. This data would, for example, authenticate the server to
 the client.

 If a protocol's profile does not permit this additional data to be
 returned with a success indication, then the server issues the data
 as a server challenge, without an indication of successful
 completion. The client then responds with no data. After receiving
 this empty response, the server then indicates successful completion
 (with no additional data).

 Client implementors should be aware of an additional failure case
 that might occur when the profile supports sending the additional
 data with success. Imagine that an active attacker is trying to

A. Melnikov FORMFEED[Page 10]

Internet DRAFT SASL 14 February 2004

 impersonate the server and sends faked data, which should be used to
 authenticate the server to the client, with success. (A similar
 situation can happen when either the server and/or the client has a
 bug and they calculate different responses.) After checking the data,
 the client will think that the authentication exchange has failed,
 however the server will think that the authentication exchange has
 completed successfully. At this point the client can not abort the
 authentication exchange; it SHOULD close the connection instead.
 However, if the profile did not support sending of additional data
 with success, the client could have aborted the exchange at the very
 last step of the authentication exchange.

6.2.1. Server returns success with additional data examples

 The following are two examples of a DIGEST-MD5 authentication [SASL-
 DIGEST] in the XMPP protocol [XMPP]. In the first example below, the
 server is sending mutual authentication data with success.

 C: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>
 S: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_234'
 from='example.com'
 version='1.0'>
 S: <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>CRAM-MD5</mechanism>
 </mechanisms>
 </stream:features>
 C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>
 S: <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9ImF1dGgi
 LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNzCg==
 </challenge>
 C: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVub2RlIixyZWFsbT0ic29tZXJlYWxtIixub25jZT0i
 T0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5jPTAw
 MDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5jb20i
 LHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3LGNo
 YXJzZXQ9dXRmLTgK

A. Melnikov FORMFEED[Page 11]

Internet DRAFT SASL 14 February 2004

 </response>
 S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
 </success>

 The example below is almost identical to the previous, but here
 the server chooses not to use the additional data with success.

 C: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>
 S: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_234'
 from='example.com'
 version='1.0'>
 S: <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>CRAM-MD5</mechanism>
 </mechanisms>
 </stream:features>
 C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>
 S: <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9ImF1dGgi
 LGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNzCg==
 </challenge>
 C: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVub2RlIixyZWFsbT0ic29tZXJlYWxtIixub25jZT0i
 T0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5jPTAw
 MDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5jb20i
 LHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3LGNo
 YXJzZXQ9dXRmLTgK
 </response>
 S: <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
 </challenge>
 C: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
 S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

6.3. Multiple authentications

 Unless otherwise stated by the protocol's profile, only one
 successful SASL negotiation may occur in a protocol session. In this

A. Melnikov FORMFEED[Page 12]

Internet DRAFT SASL 14 February 2004

 case, once an authentication protocol exchange has successfully
 completed, further attempts to initiate an authentication protocol
 exchange fail.

 If a profile explicitly permits multiple successful SASL negotiations
 to occur, then in no case may multiple security layers be
 simultaneously in effect. If a security layer is in effect and a
 subsequent SASL negotiation selects a second security layer, then the
 second security layer replaces the first. If a security layer is in
 effect and a subsequent SASL negotiation selects no security layer,
 the original security layer remains in effect.

 Note that keeping the original security layer is a subject to a class
 of security attack described in section 6.3.1. However, at the time
 of the writing of this document the Working Group consensus is not to
 change SASL handling of security layers, as the risk of such attacks
 is considered to be low and specific to only certain classes of
 implementations. The protocol profiles that allow for
 reauthentication SHOULD recommend that another security layer is
 negotiated once a security layer was installed.

 Also note, that if a subsequent authentication fails, the protocol
 profile MAY allow the connection state to return to non-
 authenticated, however the previously negotiated security layer MUST
 NOT be removed. Only a successful reauthentication is able
 replace/remove the previously negotiated security layer.

6.3.1. Description of Multiple Authentication attack

 Let's assume that the protected resources on a server are partitioned
 into a set of protection spaces, each with its own authentication
 mechanisms and/or authorization database. Let's use the term
 "partition" to reference any such protected space. An example of a
 partition might be an HTTP "realm". Also a proxy/frontend can use
 different partitions for different servers/backends it represents.

 Now consider the following scenario. A client has already
 authenticated and established a security layer with "Partition A"
 which is managed by the server AA. Now the same client authenticates
 to "Partition B" (managed by the server BB) without negotiating a new
 security layer, while the security layer negotiated with "Partition
 A" remains in effect. The server BB is now able to observe how known
 cleartext is encrypted. This scenario enables the server BB to make
 guesses about previously observed ciphertext between the client and
 the server AA using the server's SASL engine as an oracle. This
 scenario is illustrated below:

A. Melnikov FORMFEED[Page 13]

Internet DRAFT SASL 14 February 2004

 +---------+ +---------+
 | | | |
 |Partition| |Partition|
 | B | | A |
 +---------+ +---------+
 | ^ |
 | : +-----------+ |
 Traffic from | : | Encryption| | Traffic from A
 B to client +-------->| end point |<-------+ to client
 : | (SSL/SASL)|
 : +-----------+
 : |
 : |
 : +---+
 : | |
 : | |
 : | | Encryption tunnel, e.g. SASL or SSL,
 : | | between the server
 (1) Recording +---------:| | and a single client only.
 encrypted | | Separate tunnels to different
 traffic between | | clients.
 Partition A and client +---+
 |
 |
 +-----------> Traffic to clients

 <<Some text about trust relationship here.

 Where this situation cannot be managed through trust relationship, it
 may be appropriate for the server implementation to not support
 multiple authentications. >>

7. The EXTERNAL mechanism

 The mechanism name associated with external authentication is
 "EXTERNAL".

 The client sends an initial response with the UTF-8 encoding of the
 authorization identity. The form of the authorization identity is
 further restricted by the application-level protocol's SASL profile.

 The server uses information, external to SASL, to determine whether
 the client is authorized to authenticate as the authorization
 identity. If the client is so authorized, the server indicates
 successful completion of the authentication exchange; otherwise the

A. Melnikov FORMFEED[Page 14]

Internet DRAFT SASL 14 February 2004

 server indicates failure.

 The system providing this external information may be, for example,
 IPSec or TLS. However, the client can make no assumptions as to what
 information the server can use in determining client authorization.
 For example, just because TLS was established, doesn't mean that the
 server will use the information provided by TLS.

 If the client sends the empty string as the authorization identity,
 the authorization identity is to be derived from authentication
 credentials which exist in the system that is providing the external
 authentication.

7.1. Formal syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in [ABNF]. This uses the ABNF core
 rules as specified in Appendix A of the ABNF specification [ABNF].
 Non-terminals referenced but not defined below are as defined by
 [UTF-8].

 The "extern-init-resp" rule below defines the initial response sent
 from client to server.

 extern-init-resp = *(UTF8-char-no-nul)

 UTF8-char-no-nul = UTF8-1-no-nul / UTF8-2 / UTF8-3 / UTF8-4

 UTF8-1-no-nul = %x01-7F

7.2. Example

 The following is an example of an EXTERNAL authentication in the SMTP
 protocol [SMTP]. In this example, the client is proxy
 authenticating, sending the authorization identity "fred" using in
 the (optional) initial response. The server has determined the
 client's identity through IPsec and has a security policy that
 permits that identity to proxy authenticate as any other identity.

 To the protocol profile, the four octet sequence "fred" is an opaque
 binary data. The SASL protocol profile for SMTP [SMTP-AUTH] specifies
 that server challenges and client responses are encoded in BASE64
 [BASE64]; the BASE64 encoding of "fred" is "ZnJlZA==".

 S: 220 smtp.example.com ESMTP server ready
 C: EHLO jgm.example.com
 S: 250-smtp.example.com

A. Melnikov FORMFEED[Page 15]

Internet DRAFT SASL 14 February 2004

 S: 250 AUTH DIGEST-MD5 EXTERNAL
 C: AUTH EXTERNAL ZnJlZA==
 S: 235 Authentication successful.

 The following example is almost identical to the one above, but the
 client doesn't use proxy authentication.

 S: 220 smtp.example.com ESMTP server ready
 C: EHLO jgm.example.com
 S: 250-smtp.example.com
 S: 250 AUTH DIGEST-MD5 EXTERNAL
 C: AUTH EXTERNAL
 S: 235 Authentication successful.

8. IANA Considerations

8.1. Guidelines for IANA

 It is requested that IANA updates the SASL mechanisms registry as
 follows:

 Change the "Intended usage" of the KERBEROS_V4 and SKEY mechanism
 registrations to OBSOLETE. Change the "Published specification"
 of the EXTERNAL mechanism to this document. Updated registration
 is provided in Section 8.6.

8.2. Registration procedure

 Registration of a SASL mechanism is done by filling in the template
 in section 8.5 and sending it via electronic mail to <iana@iana.org>.
 IANA has the right to reject obviously bogus registrations, but will
 perform no review of claims made in the registration form. SASL
 mechanism registrations are currently available at the URL
 <http://www.iana.org/assignments/sasl-mechanisms>.

 There is no naming convention for SASL mechanisms; any name that
 conforms to the syntax of a SASL mechanism name can be registered.
 An IETF Standards Track document may reserve a portion of the SASL
 mechanism namespace ("family of SASL mechanisms") for its own use,
 amending the registration rules for that portion of the namespace.
 Each family of SASL mechanisms MUST be identified by a prefix.

 While the registration procedures do not require it, authors of SASL

http://www.iana.org/assignments/sasl-mechanisms

A. Melnikov FORMFEED[Page 16]

Internet DRAFT SASL 14 February 2004

 mechanisms are encouraged to seek community review and comment
 whenever that is feasible. Authors may seek community review by
 posting a specification of their proposed mechanism as an Internet-
 Draft. SASL mechanisms intended for widespread use should be
 standardized through the normal IETF process, when appropriate.

8.3. Comments on SASL mechanism registrations

 Comments on registered SASL mechanisms should first be sent to the
 "owner" of the mechanism and/or to the SASL WG mailing list.
 Submitters of comments may, after a reasonable attempt to contact the
 owner, request IANA to attach their comment to the SASL mechanism
 registration itself. If IANA approves of this, the comment will be
 made accessible in conjunction with the SASL mechanism registration
 itself.

8.4. Change control

 Once a SASL mechanism registration has been published by IANA, the
 author may request a change to its definition. The change request
 follows the same procedure as the registration request.

 The owner of a SASL mechanism may pass responsibility for the SASL
 mechanism to another person or agency by informing IANA; this can be
 done without discussion or review.

 The IESG may reassign responsibility for a SASL mechanism. The most
 common case of this will be to enable changes to be made to
 mechanisms where the author of the registration has died, moved out
 of contact or is otherwise unable to make changes that are important
 to the community.

 SASL mechanism registrations may not be deleted; mechanisms which are
 no longer believed appropriate for use can be declared OBSOLETE by a
 change to their "intended use" field; such SASL mechanisms will be
 clearly marked in the lists published by IANA.

 The IESG is considered to be the owner of all SASL mechanisms which
 are on the IETF standards track.

8.5. Registration template

 Subject: Registration of SASL mechanism X

 Family of SASL mechanisms: (YES or NO)

 SASL mechanism name (or prefix for the family):

A. Melnikov FORMFEED[Page 17]

Internet DRAFT SASL 14 February 2004

 Security considerations:

 Published specification (optional, recommended):

 Person & email address to contact for further information:

 Intended usage:

 (One of COMMON, LIMITED USE or OBSOLETE)

 Owner/Change controller:

 (Any other information that the author deems interesting may be
 added below this line.)

8.6. The EXTERNAL mechanism registration

 It is requested that the SASL Mechanism registry [IANA-SASL] entry
 for the EXTERNAL mechanism be updated to reflect that this document
 now provides its technical specification.

 Subject: Updated Registration of SASL mechanism EXTERNAL

 Family of SASL mechanisms: NO

 SASL mechanism name: EXTERNAL

 Security considerations: See RFC XXXX, section 9.

 Published specification (optional, recommended): RFC XXXX

 Person & email address to contact for further information:
 Alexey Melnikov <Alexey.Melnikov@isode.com>

 Intended usage: COMMON

 Owner/Change controller: IESG <iesg@ietf.org>

 Note: Updates existing entry for EXTERNAL

9. Security considerations

 Security issues are discussed throughout this memo.

 The mechanisms that support integrity protection are designed such
 that the negotiation of the security layer and authorization identity

A. Melnikov FORMFEED[Page 18]

Internet DRAFT SASL 14 February 2004

 is integrity protected. When the client selects a security layer
 with at least integrity protection, this protects against an active
 attacker hijacking the connection and modifying the authentication
 exchange to negotiate a plaintext connection.

 When a server or client supports multiple authentication mechanisms,
 each of which has a different security strength, it is possible for
 an active attacker to cause a party to use the least secure mechanism
 supported. To protect against this sort of attack, a client or
 server which supports mechanisms of different strengths should have a
 configurable minimum strength that it will use. It is not sufficient
 for this minimum strength check to only be on the server, since an
 active attacker can change which mechanisms the client sees as being
 supported, causing the client to send authentication credentials for
 its weakest supported mechanism.

 The client's selection of a SASL mechanism is done in the clear and
 may be modified by an active attacker. It is important for any new
 SASL mechanisms to be designed such that an active attacker cannot
 obtain an authentication with weaker security properties by modifying
 the SASL mechanism name and/or the challenges and responses.

 In order to detect Man-in-the-middle (MITM) attacks the client MAY
 list available SASL mechanisms both before and after the SASL
 security layer is negotiated. This allows the client to detect
 active attacks that remove mechanisms from the server's list of
 supported mechanisms, and allows the client to ensure that it is
 using the best mechanism supported by both client and server. New
 protocol profiles SHOULD require servers to make the list of SASL
 mechanisms available for the initial authentication available to the
 client after security layers are established. Some older protocols
 do not require this (or don't support listing of SASL mechanisms once
 authentication is complete); for these protocols clients MUST NOT
 treat an empty list of SASL mechanisms after authentication as a MITM
 attack.

 Any protocol interactions prior to authentication are performed in
 the clear and may be modified by an active attacker. In the case
 where a client selects integrity protection, it is important that any
 security-sensitive protocol negotiations be performed after
 authentication is complete. Protocols should be designed such that
 negotiations performed prior to authentication should be either
 ignored or revalidated once authentication is complete.

 When use of a security layer is negotiated by the authentication
 protocol exchange, the receiver should handle gracefully any security
 encoded data buffer larger than the defined/negotiated maximal size.
 In particular, it must not blindly allocate the amount of memory

A. Melnikov FORMFEED[Page 19]

Internet DRAFT SASL 14 February 2004

 specified in the buffer size field, as this might cause the "out of
 memory" condition. If the receiver detects a large block, it SHOULD
 close the connection.

 Distributed server implementations need to be careful in how they
 trust other parties and, in particular, authentication secrets should
 only be disclosed to other parties that are trusted to manage and use
 those secrets in manner acceptable to disclosing party. It should be
 noted that, where those secrets are used to provide data
 confidentiality protections, if a third party (other than the
 discloser/disclosee) has knowledge of some portion of the protected
 information, it can use this knowledge in an attack upon other
 portions of the protected information.

Section 6.3.1 contains a description of a potential class of attack
 on a distributed server implementation. The section also gives some
 recommendations about mitigating such attacks.

 "stringprep" and Unicode security considerations apply to
 authentication identities, authorization identities and passwords.

 The EXTERNAL mechanism provides no security protection; it is
 vulnerable to spoofing by either client or server, active attack, and
 eavesdropping. It should only be used when external security
 mechanisms are present and have sufficient strength.

10. References

10.1. Normative References

 [ABNF] Crocker, D. (Ed.), Overell, P., "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997

 [ASCII] American National Standards Institute, "Code Extension
 Techniques for Use with the 7-bit Coded Character Set of American
 National Standard Code (ASCII) for Information Interchange", FIPS PUB
 35, 1974

 [CHARSET-POLICY] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", RFC 2277, BCP 18, January 1998

 [GSSAPI] Linn, J., "Generic Security Service Application Program
 Interface, Version 2, Update 1", RFC 2743, January 2000

 [ISO-10646] "Universal Multiple-Octet Coded Character Set (UCS) -
 Architecture and Basic Multilingual Plane", ISO/IEC 10646-1 : 1993.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2743

A. Melnikov FORMFEED[Page 20]

Internet DRAFT SASL 14 February 2004

 Requirement Levels", RFC 2119, BCP 19, March 1997

 [Unicode] The Unicode Consortium, "The Unicode Standard, Version
 3.2.0" is defined by "The Unicode Standard, Version 3.0" (Reading,
 MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), as amended by the
 "Unicode Standard Annex #27: Unicode 3.1"
 (http://www.unicode.org/reports/tr27/) and by the "Unicode Standard
 Annex #28: Unicode 3.2" (http://www.unicode.org/reports/tr28/).

 [Stringprep] Hoffman, P., Blanchet, M., "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454, December 2002.

 [SASLprep] Zeilenga, K., "SASLprep: Stringprep profile for user names
 and passwords", Work in progress, draft-ietf-sasl-saslprep-XX.txt.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
RFC 3629, STD 63, November 2003.

10.2. Informative References

 [SASL-GSSAPI] Melnikov, A., "SASL GSSAPI mechanisms", work in
 progress, draft-ietf-sasl-gssapi-XX.txt, November 2003

 [SASL-DIGEST] Leach, P., Newman, C., Melnikov, A., "Using Digest
 Authentication as a SASL Mechanism", work in progress, draft-ietf-

sasl-rfc2831bis-XX.txt, replaces RFC 2831

 [SASL-OTP] Newman, C., "The One-Time-Password SASL Mechanism", RFC
2444, October 1998.

 [SASL-SECURID] Nystrom, M., "The SecurID(r) SASL Mechanism", RFC
2808, April 2000.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April
 2001.

 [SMTP-AUTH] Myers, J., "SMTP Service Extension for Authentication",
RFC 2554, March 1999.

 Being revised by Siemborski, R., "SMTP Service Extension for
 Authentication", work in progress, draft-siemborski-rfc2554bis-

XX.txt.

 [XMPP] Saint-Andre, P., "Extensible Messaging and Presence Protocol
 (XMPP): Core", work in progress, draft-ietf-xmpp-core-XX.txt.

 [BASE64] Josefsson, S., "The Base16, Base32, and Base64 Data

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp19
http://www.unicode.org/reports/tr27/
http://www.unicode.org/reports/tr28/
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-saslprep-XX.txt
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-gssapi-XX.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2831bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2831bis-XX.txt
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc2444
https://datatracker.ietf.org/doc/html/rfc2444
https://datatracker.ietf.org/doc/html/rfc2808
https://datatracker.ietf.org/doc/html/rfc2808
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2554
https://datatracker.ietf.org/doc/html/draft-siemborski-rfc2554bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-siemborski-rfc2554bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-XX.txt

A. Melnikov FORMFEED[Page 21]

Internet DRAFT SASL 14 February 2004

 Encodings", RFC 3548, July 2003.

 [RFC-INSTRUCTIONS] Postel, J., Reynolds, J., "Instructions to RFC
 Authors", RFC 2223, October 1997.

 [IANA-SASL] IANA, "SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL)
 MECHANISMS", http://www.iana.org/assignments/sasl-mechanisms.

11. Editor's Address

 Alexey Melnikov
 Isode Limited

 Email: Alexey.Melnikov@isode.com

12. Acknowledgments

 This document is a revision of RFC 2222 written by John G. Myers. He
 also contributed significantly to this revision.

 Magnus Nystrom provided the ASCII art used in Section 6.3.

 Definition of partition was extracted from RFC 2617 ("HTTP
 Authentication: Basic and Digest Access Authentication").

 Contributions of many members of the SASL mailing list are gratefully
 acknowledged, in particular Kurt D. Zeilenga, Peter Saint-Andre, Rob
 Siemborski, Jeffrey Hutzelman, Hallvard B Furuseth, Tony Hansen and
 Abhijit Menon-Sen for proofreading the document and various editorial
 suggestions.

13. Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than

https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/rfc2223
http://www.iana.org/assignments/sasl-mechanisms
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2617

A. Melnikov FORMFEED[Page 22]

Internet DRAFT SASL 14 February 2004

 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Appendix A. Relation of SASL to transport security

 Questions have been raised about the relationship between SASL and
 various services (such as IPsec and TLS) which provide a secured
 connection.

 Two of the key features of SASL are:

 The separation of the authorization identity from the identity in
 the client's credentials. This permits agents such as proxy
 servers to authenticate using their own credentials, yet request
 the access privileges of the identity for which they are proxying.

 Upon successful completion of an authentication exchange, the
 server knows the authorization identity the client wishes to use.
 This allows servers to move to a "user is authenticated" state in
 the protocol.

 These features are extremely important to some application protocols,
 yet Transport Security services do not always provide them. To
 define SASL mechanisms based on these services would be a very messy
 task, as the framing of these services would be redundant with the
 framing of SASL and some method of providing these important SASL
 features would have to be devised.

 Sometimes it is desired to enable within an existing connection the
 use of a security service which does not fit the SASL model. (TLS is
 an example of such a service.) This can be done by adding a command,
 for example "STARTTLS", to the protocol. Such a command is outside
 the scope of SASL, and should be different from the command which
 starts a SASL authentication protocol exchange.

A. Melnikov FORMFEED[Page 23]

Internet DRAFT SASL 14 February 2004

 In certain situations, it is reasonable to use SASL underneath one of
 these Transport Security services. The transport service would
 secure the connection, either service would authenticate the client,
 and SASL would negotiate the authorization identity. The SASL
 negotiation would be what moves the protocol from "unauthenticated"
 to "authenticated" state. The "EXTERNAL" SASL mechanism is
 explicitly intended to handle the case where the transport service
 secures the connection and authenticates the client and SASL
 negotiates the authorization identity.

Appendix B. Changes since RFC 2222

 The GSSAPI mechanism was removed. It is now specified in a separate
 document [SASL-GSSAPI].

 The "KERBEROS_V4" mechanism defined in RFC 2222 is obsolete and has
 been removed.

 The "SKEY" mechanism described in RFC 2222 is obsolete and has been
 removed. It has been replaced by the OTP mechanism [SASL-OTP].

 The overview has been substantially reorganized and clarified.

 Clarified the definition and semantics of the authorization identity.

 Prohibited the NUL character in authorization identities.

 Added a section on character string issues.

 The word "must" in the first paragraph of the "Protocol profile
 requirements" section was changed to "MUST".

 Specified that protocol profiles SHOULD provide a way for clients to
 discover available SASL mechanisms.

 Made the requirement that protocol profiles specify the semantics of
 the authorization identity optional to the protocol profile.
 Clarified that such a specification is a refinement of the definition
 in the base SASL spec.

 Added a requirement discouraging protocol profiles from breaking the
 separation between protocol and mechanism.

 Mentioned that standards track documents may carve out their own
 portions of the SASL mechanism namespace and may amend registration
 rules for the portion. However registration of individual SASL
 mechanisms is still required.

https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222

A. Melnikov FORMFEED[Page 24]

Internet DRAFT SASL 14 February 2004

 Specified that the authorization identity in the EXTERNAL mechanism
 is encoded in UTF-8.

 Added a statement that a protocol profile SHOULD allow challenge data
 to be sent with a success indication.

 Added a security consideration for the EXTERNAL mechanism.

 Clarified sections concerning success with additional data.

 Cleaned up IANA considerations/registrations and assembled them in
 one place.

 Updated references and split them into Informative and Normative.

 Added text to the Security Considerations section regarding handling
 of extremely large SASL blocks.

 Replaced UTF-8 ABNF with the reference to the UTF-8 document.

 Added text about SASLprep for authentication identities and
 passwords. Described where SASLprep preparation should take place.

 Added paragraph about verifying authorization identities.

 Added a protocol profile requirement to specify interaction between
 SASL and TLS security layers.

 Added a protocol profile requirement to specify if it supports
 reauthentication.

 Removed the text that seemed to suggest that SASL security layer must
 not be used when TLS is available.

 Created two subsections in 4.2 to talk separately about proxy
 authorization and format of the authorization identities.

 Made requirement to verify that an authorization identity is correct
 by performing SASLprep a SHOULD, instead of a MUST.

 Clarified that each SASL mechanism must decide where SASLprep is
 taking place.

 Added 4 new examples for initial response and additional data with
 success.

 Added text on checking the list of available SASL mechanisms after
 negotiating a security layer.

A. Melnikov FORMFEED[Page 25]

Internet DRAFT SASL 14 February 2004

 Added definition of "integrity protection" and "confidentiality
 protection".

 Added warning about negotiating no layer once a security layer is
 negotiated.

 Added new section with guidelines to a SASL mechanism designer.

 Added a requirement to specify how an empty initial challenge is
 encoded if initial response is supported by a protocol.

A. Melnikov FORMFEED[Page 26]

Internet DRAFT SASL 14 February 2004

 Status of this Memo .. i
1. Abstract ... 2
2. Organization of this document 2
2.1. How to read this document 2
2.2. Conventions used in this document 2
3. Overview ... 3
4. Authentication mechanisms 3
4.1. Authentication protocol exchange 4
4.2. Authorization and authentication identities 4
4.2.1. Authorization identities and proxy authentication 5
4.2.2. Authorization Identity Format 6
4.3. Security layers .. 6
4.4. Character string issues 7
5. Protocol profile requirements 7
5. Protocol and mechanism profiles 7
5.1. Protocol profile requirements 7
5.2. Mechanism profile guidelines 8
6. Specific issues .. 9
6.1. Client sends data first 9
6.1.1. Examples ... 9
6.2. Server returns success with additional data 10
6.2.1. Examples .. 10
6.3. Multiple authentications 12
6.3.1. Description of Multiple Authentication attack 13
7. The EXTERNAL mechanism 14
7.1. Formal syntax ... 15
7.2. Example ... 15
8. IANA Considerations 15
8.1. Guidelines for IANA 16
8.2. Registration procedure 16
8.3. Comments on SASL mechanism registrations 16
8.4. Change control .. 17
8.5. Registration template 17
8.6. The EXTERNAL mechanism registration 18
9. Security considerations 18
10. References ... 20
10.1. Normative References 20
10.2. Informative References 21
11. Editor's Address 21
12. Acknowledgments 22
13. Full Copyright Statement 22
Appendix A. Relation of SASL to transport security 23
Appendix B. Changes since RFC 2222 24

https://datatracker.ietf.org/doc/html/rfc2222

A. Melnikov FORMFEED[Page ii]

