
Network Working Group A. Melnikov
Internet Draft Editor
Document: draft-ietf-sasl-rfc2222bis-09.txt October 2004
Obsoletes: RFC 2222 Expires in six months

Simple Authentication and Security Layer (SASL)

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet Drafts are working documents of the Internet Engineering
 Task Force (IETF), its Areas, and its Working Groups. Note that
 other groups may also distribute working documents as Internet
 Drafts. Internet Drafts are draft documents valid for a maximum of
 six months. Internet Drafts may be updated, replaced, or obsoleted
 by other documents at any time. It is not appropriate to use
 Internet Drafts as reference material or to cite them other than as
 ``work in progress''.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 A revised version of this draft document will be submitted to the RFC
 editor as a Standards Track RFC for the Internet Community.
 Discussion and suggestions for improvement are requested.
 Distribution of this draft is unlimited.

 When published as an RFC this document will obsolete RFC 2222.

A. Melnikov FORMFEED[Page i]

https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2222bis-09.txt
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2222

Internet DRAFT SASL 25 October 2004

Abstract

 The Simple Authentication and Security Layer (SASL) is a framework
 for providing authentication and data security services in
 connection-oriented protocols via replaceable mechanisms. It provides
 a structured interface between protocols and mechanisms. The
 resulting framework allows new protocols to reuse existing mechanisms
 and allows old protocols to make use of new mechanisms. The
 framework also provides a protocol for securing subsequent protocol
 exchanges within a data security layer.

 This document describes how a SASL mechanism is structured, describes
 how protocols add support for SASL, and defines the protocol for
 carrying a data security layer over a connection. Additionally, this
 document defines one SASL mechanism, the EXTERNAL mechanism.

1. Conventions used in this document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

 Character names in this document use the notation for code points and
 names from the Unicode Standard [Unicode]. For example, the letter
 "a" may be represented as either <U+0061> or <LATIN SMALL LETTER A>.

 This document uses terms "integrity protection" and "confidentiality
 protection". The former refers to a security layer (see Section
 "Introduction" below for the definition) designed to provide "data
 integrity service" as defined in [Sec-Glossary]. Confidentiality
 protection is a security layer that provides "data confidentiality
 service" as defined in [Sec-Glossary]. The term "confidentiality
 protection" implies "integrity protection". Security layers may offer
 other kinds of security services.

2. Introduction

 The Simple Authentication and Security Layer (SASL) is a framework
 for providing authentication and data security services in
 connection-oriented protocols via replaceable mechanisms. SASL
 provides a structured interface between protocols and mechanisms.
 SASL also provides a protocol for securing subsequent protocol
 exchanges within a data security layer.

A. Melnikov FORMFEED[Page 2]

Internet DRAFT SASL 25 October 2004

 SASL's design is intended to allow new protocols to reuse existing
 mechanisms without requiring redesign of the mechanisms and allows
 existing protocols to make use of new mechanisms without redesign of
 protocols.

 The SASL is conceptually a framework which provides a layer between
 protocols and mechanisms, as illustrated in the following diagram.

 SMTP Protocol LDAP Protocol Other Protocols
 Profile Profile . . .
 \----- | -----/
 \ | /
 SASL framework
 / | \
 /----- | -----\
 DIGEST-MD5 EXTERNAL Other Mechanisms
 SASL mechanism SASL mechanism . . .

 It is through the interfaces of this layer that the framework allows
 any protocol to be utilized with any mechanism. While the layer does
 generally hide the particulars of protocols from mechanisms and the
 particulars of mechanisms from protocols, the layer does not
 generally hide the particulars of mechanisms from protocol
 implementations. For example, different mechanisms require different
 information to operate, some of them use password based
 authentication, some of then require realm information, others make
 use of Kerberos tickets, certificates, etc. Also, in order to
 perform authorization, server implementations have to implement a
 mapping from a mechanism-specific authentication identity format to a
 protocol-specific format.

 It is possible to design and implement this framework in ways which
 do abstract away particulars of similar mechanisms. Such
 implementation could also be designed to be shared by multiple
 implementations of various protocols.

 As illustrated above, the SASL framework interfaces with both
 protocols and mechanisms.

 To use SASL, a protocol includes a command for identifying and
 authenticating a user to a server and for optionally negotiating a
 security layer for subsequent protocol interactions. If the use of a
 security layer is negotiated, that security layer is inserted between
 the protocol and the connection. Section 4 ("Protocol profile
 requirements") profiles the requirements that a protocol
 specification must fulfill to make use of SASL. A SASL protocol
 profile is a part of the protocol specification that satisfies the

A. Melnikov FORMFEED[Page 3]

Internet DRAFT SASL 25 October 2004

 requirements of Section 4.

 A SASL mechanism is a series of server challenges and client
 responses specific to the mechanism. Each SASL mechanism is
 identified by a registered name. Section 5 ("Mechanism profile
 guidelines") profiles the requirements that a mechanism specification
 must fulfill to define a SASL mechanism.

 This document is written to serve several different audiences:

 - protocol designers using this specification to support
 authentication in their protocol,

 - mechanism designers that define new SASL mechanisms, and

 - implementors of clients or servers for those protocols using this
 specification.

 The sections "Authentication mechanisms", "Protocol profile
 requirements", "Specific issues", and "Security considerations" cover
 issues that protocol designers need to understand and address in
 profiling this specification for use in a specific protocol.

 The sections "Authentication mechanisms", "Mechanism profile
 guidelines", "Security considerations" and "Registration procedure"
 cover issues that mechanism designers need to understand and address
 in designing new SASL mechanisms.

 The sections "Authentication mechanisms", "Protocol profile
 requirements", "Specific issues" and "Security considerations" cover
 issues that implementors of a protocol that uses SASL framework need
 to understand. The implementors will also need to understand a
 specification of a SASL profile specific to the protocol, as well as
 aspects of mechanism specifications they intend to use (regardless of
 whether they are implementing the mechanisms themselves or using an
 existing implementation) to understand, for instance, the mechanism-
 specific authentication identity forms, the offered services, and
 security and other considerations.

2.1. Relationship to other documents

 This document obsoletes RFC 2222. It replaces all portions of RFC
2222 excepting sections 7.1 (Kerberos version 4 mechanism), 7.2

 (GSSAPI mechanism), 7.3 (S/Key mechanism). The Kerberos version 4
 (KERBEROS_IV) and S/Key (SKEY) mechanisms are now viewed as obsolete.
 The GSSAPI mechanism is now separately specified [SASL-GSSAPI].

https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222

A. Melnikov FORMFEED[Page 4]

Internet DRAFT SASL 25 October 2004

3. Authentication mechanisms

 SASL mechanisms are named by strings, from 1 to 20 characters in
 length, consisting of ASCII [ASCII] upper-case letters, digits,
 hyphens, and/or underscores. Names of SASL mechanisms or families of
 mechanisms must be registered with the Internet Assigned Numbers
 Authority (IANA) as described in section 8.2.

 The "sasl-mech" ABNF production below defines the syntax of a SASL
 mechanism name. This uses the Augmented Backus-Naur Form (ABNF)
 notation as specified in [ABNF].

 sasl-mech = 1*20mech-char
 mech-char = UPPER-ALPHA / DIGIT / HYPHEN / UNDERSCORE
 ; mech-char is restricted to "A"-"Z", "0"-"9", "-",
 ; and "_" from ASCII character set.

 UPPER-ALPHA = %x41-5A
 ; "A"-"Z"

 DIGIT = %x30-39
 ; "0"-"9"

 HYPHEN = %x2D
 ; "-"

 UNDERSCORE = %x5F
 ; "_"

3.1. Authentication Exchange

 A SASL mechanism is responsible for conducting an authentication
 exchange. This consists of a series of server challenges and client
 responses, the contents of which are specific to and defined by the
 mechanism. To the application protocol, the challenges and responses
 are opaque binary tokens of arbitrary length (including 0-length).
 The protocol's profile then specifies how these binary tokens are
 encoded for transfer over the connection.

 After receiving an authentication command or any client response, a
 server mechanism may issue a challenge, indicate failure, or indicate
 completion. The server mechanism may return additional data with a
 completion indication. The protocol's profile specifies how each of
 these is then represented over the connection.

 After receiving a challenge, a client mechanism may issue a response
 or abort the exchange. The protocol's profile specifies how each of

A. Melnikov FORMFEED[Page 5]

Internet DRAFT SASL 25 October 2004

 these are then represented over the connection.

 During the authentication exchange, the mechanism performs
 authentication, transmits an authorization identity (sometimes known
 as a username<<>>) from the client to server, and may negotiate the
 use of a mechanism-specific security layer. If the use of a security
 layer is agreed upon, then the mechanism must also define or
 negotiate the maximum security layer buffer size that each side is
 able to receive.

3.2. Identity Concepts

 Conceptually, SASL framework involves two identities:
 1) an identity associated with the authentication
 credentials (termed the authentication identity), and
 2) an identity to act as (termed the authorization
 identity).

 The client provides its credentials and, optionally, a
 string representing the requested authorization identity
 as part of the SASL exchange. When this string is omitted or empty,
 the client is requesting to act as the identity
 associated with the credentials (e.g., the user is
 requesting to act as the authentication identity).

 The server is responsible for verifying the client's
 credentials and verifying that the client is allowed to
 act as the authorization identity. A SASL exchange
 fails if either (or both) of these verifications fails.

 SASL mechanism specifications describe the form of credentials
 used to authenticate clients, and SASL application
 profiles describe the form of authorization identities
 transferred as part of authentication exchange.
 However, the
 precise form(s) of the authentication identities (used
 within the server in its verifications, or otherwise)
 and the precise form(s) of the authorization identities
 (used in making authorization decisions, or otherwise) is
 beyond the scope of the SASL and this specification. In
 some circumstances, the precise identity forms used
 outside of the SASL exchange may be dictated by other
 specifications. For instance, the authorization policy
 specification for an application protocol may dictate the
 precise form that an authorization identity is to be
 represented in the authorization policy.

A. Melnikov FORMFEED[Page 6]

Internet DRAFT SASL 25 October 2004

 <<Need to address few issues in the two remaining paragraphs>>
 Any normalization of the authentication identity (for the purposes
 of conducting authentication exchange) is defined by a particular
 SASL mechanism, the protocol profile doesn't influence it.
 Note, that the mechanism specification doesn't control how
 authentication identity information is represented elsewhere
 <<need to add few examples>>.

 The mechanism MUST preserve Unicode codepoints when transferring
 authorization identity (e.g. the mechanism can't apply any form
 of normalization).

3.2.1. Authorization identities and proxy authentication

 A mechanism which is incapable of transmitting an authorization identity
 must be treated as if it always transmits an authorization identity of an
 empty string. <<Is this redundant?>>

 If the authorization identity transmitted during the authentication
 exchange is not the empty string, this is typically referred
 to as "proxy authentication". This feature permits agents such as
 proxy servers to authenticate using their own credentials, yet request
 the access privileges of the identity for which they are proxying.

 The server makes an implementation-defined policy decision as to
 whether the authentication identity is permitted to have the access
 privileges of the authorization identity and whether the authorization
 identity is permitted to receive service. If it is not, the server
 indicates failure of the authentication exchange.

 As a client might not have the same information as the server,
 clients SHOULD NOT derive authorization identities from authentication
 identities. Instead, clients SHOULD provide no (or empty) authorization
 identity when the user<<client?>> has not provided an authorization
identity.

 The server SHOULD verify that a received authorization identity is in the
 correct form. Protocol profiles whose authorization identities are simple
user
 names (e.g. IMAP [RFC 3501]) SHOULD use "SASLprep"
 profile [SASLprep] of the "stringprep" algorithm [StringPrep] to prepare
 these names for matching. The profiles MAY use a stringprep profile
 that is more strict than "SASLprep". If the preparation of
 the authorization identity fails or results in an empty string,
 the server MUST fail the authentication exchange. The only exception to
 this rule is when the received authorization identity is already the empty
 string.

https://datatracker.ietf.org/doc/html/rfc3501

A. Melnikov FORMFEED[Page 7]

Internet DRAFT SASL 25 October 2004

3.2.2. Authorization Identity Format

 An authorization identity is a string of zero or more Unicode [Unicode]
 coded characters. The NUL <U+0000> character is prohibited
 in authorization identities.

 The character encoding scheme used for transmitting an authorization
 identity over the protocol is specified in each authentication mechanism.
 All IETF-defined mechanisms MUST, and all other mechanisms SHOULD,
 use UTF-8 [UTF-8]. (See [CHARSET-POLICY] for IETF policy regarding character
 sets and encoding schemes.)

 Mechanisms are expected to be capable of carrying the entire Unicode
 repertoire (with the exception of the NUL character). An authorization
 identity of the empty string and an absent authorization identity
 MUST be treated as equivalent. A mechanism
 which provides an optional field for an authorization identity,
 SHOULD NOT allow that field, when present, to be empty.
 The meaning of the empty string as an authorization identity is described
 in Section 3.2.

3.3. Security layers

 If use of a security layer is negotiated by the authentication
 protocol exchange, the security layer is applied to all subsequent
 data sent over the connection (until another security layer is negotiated (
 see also section 6.3) or underlying connection is closed). The security
 layer takes effect
 immediately following the last response of the authentication exchange
 for data sent by the client and the completion indication for data
 sent by the server. The exact position MUST be defined by the protocol
profile
 (see section 4 part 5).

 Once the security layer is in effect the
 protocol stream is processed by the security layer into buffers of
 protected data. If the security layer is not able to produce a buffer,
 the connection MUST be closed. If the security layer is not able to
 decode a received buffer, the connection MUST be closed. In both cases the
 underlying connection SHOULD be closed gracefully.

 Each buffer of protected data is
 transferred over the connection as a stream of octets prepended with a
 four octet field in network byte order that represents the length of
 the buffer. The length of the protected data buffer
 MUST be no larger than the maximum size that was either defined in the
 mechanism specification or negotiated by
 the other side during the authentication exchange.

 Upon the receipt of a data buffer which is larger than the defined/
negotiated

A. Melnikov FORMFEED[Page 8]

Internet DRAFT SASL 25 October 2004

 maximal buffer size the receiver SHOULD close the connection,
 as this might be a sign of an attack.

 SASL mechanisms which are unable to negotiate a security layer
 are treated as selecting no security layer.

4. Protocol profile requirements

 In order to use this specification, a protocol definition MUST supply
 the following information:

 1) A service name, to be selected from the IANA registry of "service"
 elements for the GSSAPI host-based service name form [GSSAPI]. This
 service name is made available to the authentication mechanism.

 The registry is available at the URL
 <http://www.iana.org/assignments/gssapi-service-names>.

 2) A definition of the command to initiate the authentication protocol
 exchange. This command must have as a parameter the
 name of the mechanism being selected by the client.

 The command SHOULD have an optional parameter giving an initial
 response. If the protocol allows for the initial response,
 the protocol profile MUST also describe how an empty initial response is
 encoded. This optional parameter allows the client to avoid a round
 trip when using a mechanism which is defined to have the client send
 data first. When this initial response is sent by the client and the
 selected mechanism is defined to have the server start with an initial
 challenge, the command fails. See section 6.1 of this document for
 further information.

 3) A definition of the method by which the authentication protocol
 exchange is carried out, including how the challenges and responses
 are encoded, how the server indicates completion or failure of the
 exchange, how the client aborts an exchange, and how the exchange method
 interacts with any line length limits in the protocol.

 The exchange method SHOULD allow the server to include an
 optional data ("optional challenge") with a success notification. This
allows the
 server to avoid a round trip when using a mechanism which is defined
 to have the server send additional data along with the indication of
 successful completion. Note that if additional data is sent with success,
 it can not be empty. See section 6.2 of this document for further
information.

 4) A protocol profile SHOULD specify a mechanism through
 which a client may obtain the names of the SASL mechanisms available

http://www.iana.org/assignments/gssapi-service-names

 to it. This is typically done through the protocol's extensions or

A. Melnikov FORMFEED[Page 9]

Internet DRAFT SASL 25 October 2004

 capabilities mechanism.

 5) Identification of the octet where any negotiated security layer starts
 to take effect, in both directions.

 6) Specify if the protocol profile supports "multiple authentications"
 (see section 6.3).

 7) If both a Transport Layer Security [TLS] and a SASL security layer are
 allowed to be negotiated by
 the protocol, the protocol profile MUST define in which order they are
 applied to a cleartext data sent over the connection.

 8) A protocol profile MAY further refine the definition of an
 authorization identity by adding additional syntactic restrictions and
 protocol-specific semantics. A protocol profile MUST specify the form
 of the authorization identity (since it is protocol-specific, as opposed
 to the authentication identity, which is mechanism-specific) and how
 authorization identities are to be compared. Profiles whose authorization
 identities are simple user names (e.g. IMAP [RFC 3501]) SHOULD use
 "SASLprep" profile [SASLprep] of the "stringprep" algorithm [StringPrep]
 to prepare these names for matching. The profiles MAY use a stringprep
profile
 that is more strict than SASLprep.

 9) Where the application-layer protocol does not precisely state
 how identities established through SASL relate to identities
 used elsewhere (e.g., access controls) in the application-layer
 protocol, it may be useful for the application-layer protocol
 to provide a facility which the client may use to discover the
 identity used.

 A protocol profile SHOULD NOT attempt to amend the definition of
 mechanisms or create mechanism-specific encodings. This breaks the
 separation between protocol and mechanism that is fundamental to the
 design of SASL. (Likewise, SASL mechanisms are intended to be profile
neutral.)

5. Mechanism profile guidelines

 Designers of new SASL mechanism should be aware of the following issues:

 1) Authorization identity

 While some legacy mechanisms are incapable of transmitting an authorization
 identity (which means that for these mechanisms the authorization identity
 is always the empty string), newly defined mechanisms SHOULD be

https://datatracker.ietf.org/doc/html/rfc3501

 capable of transmitting a non-empty authorization identity. See also
section 3.2.

A. Melnikov FORMFEED[Page 10]

Internet DRAFT SASL 25 October 2004

 2) Character string issues

 Authentication mechanisms SHOULD encode character strings in UTF-8 [UTF-8]
 (see [CHARSET-POLICY] for IETF policy regarding character sets in IETF
protocols).
 In order to avoid interoperability problems due to differing normalizations,
 when a mechanism specifies that character data is to be used as input to a
 cryptographic and/or comparison function, the mechanism specification MUST
 detail how the data is to be represented, including any normalizations or
 other preparations, to ensure proper function. Designers of mechanisms
SHOULD use
 the "SASLprep" profile [SASLprep] of the "stringprep" algorithm [StringPrep]
where applicable.
 This recommendation does not apply to authorization identities as their
handling is protocol-specific.

 The preparation can be potentially performed on the client side (upon
getting user input
 or retrieving a value from configuration) or on the server side (upon
receiving the value
 from the client, retrieving a value from its authentication database or
generating a
 new value in order to store in in the authentication database).
 SASL mechanisms MUST define which entity (or entities) must perform the
 preparation. If preparation fails or turns a non-empty string into the empty
string, the entity
 doing the preparation MUST fail the authentication exchange.

 Implementation note:
 A server side can be represented by multiple processes. For example, the
server side may
 consist of the server process itself that communicated with a client and a
 utility (a server agent) that is able to store passwords/hashes (or
derivitives) in a
 database that can be later used by the server. For the server agent the
 requirement to "fail the authentication exchange" should be interpreted
 as a requirement to refuse to store the data in the database.

 3) If the underlying cryptographic technology used by a mechanism supports
 data integrity, then the mechanism specification MUST integrity protect
 the transmission of an authorization identity and the negotiation of
 the security layer.

 4) The mechanism SHOULD NOT use the authorization identity in generation of
any
 long-term cryptographic keys/hashes. The reason is that different protocols
 (and sometimes even different implementations of the same protocol) may use
 multiple forms of an authorization identity that are semantically equivalent

 and some clients may use one form while other clients use a different form.

 5) SASL mechanisms should be designed to minimize the number of round
 trips required, because SASL can be used with protocols where connections
 are short-lived.

 6) SASL does not provide for re-keying (see Section 9.1), but SASL
mechanisms may.

 <<Original Nico's text follows:>>
 SASL mechanisms that support re-keying SHOULD:
 - indicate that re-keying is or will be needed immediately; <<Alexey: HOW?
>>

A. Melnikov FORMFEED[Page 11]

Internet DRAFT SASL 25 October 2004

 - provide re-keying messages or transparently include re-keying
 messages in the security layers; the latter can happen without
 application involvement, but only as long as the application is
 engaged in timely bidirectional exchanges with its peer.

 <<Alternative text by Alexey:>>
 A SASL mechanism supports re-keying if it is able to generate/process
 messages that request immediate re-keying and it is able to carry out
 re-keying exchange. (Note that the mechanism MAY use a single message
 type to do both). SASL mechanisms that support re-keying MAY also be
 able to indicate that re-keying will be needed in the future.
 A re-keying exchange can be conducted transparently by the mechanism,
 or the mechanism should be able to provide/accept re-keying messages
 to/from the application. The former can happen without application
 involvement, but only as long as the application is engaged in timely
 bidirectional exchanges with its peer.

 7) SASL mechanisms SHOULD be profile neutral.

6. Specific issues

6.1. Client sends data first

 Some mechanisms specify that the first data sent in the
 authentication exchange is from the client to the server.

 If a protocol's profile permits the command which initiates an
 authentication exchange to contain an initial client
 response, this parameter SHOULD be used with such mechanisms.

 If the initial client response parameter is not given, or if a
 protocol's profile does not permit the command which initiates an
 authentication exchange to contain an initial client
 response, then the server issues a challenge with no data. The
 client's response to this challenge is then used as the initial client
 response. (The server then proceeds to send the next challenge,
 indicates completion, or indicates failure.)

6.1.1. Client sends data first examples

 The following are two examples of the SECURID authentication [SASL-SECURID]
in the SMTP
 protocol [SMTP]. In the first example below, the client is trying fast
reauthentication
 by sending the initial response:

 S: 220-smtp.example.com ESMTP Server
 C: EHLO client.example.com

 S: 250-smtp.example.com Welcome client.example.com

A. Melnikov FORMFEED[Page 12]

Internet DRAFT SASL 25 October 2004

 S: 250-AUTH GSSAPI SECURID
 S: 250 DSN
 C: AUTH SECURID AG1hZ251cwAxMjM0NTY3OAA=
 S: 235 Authentication successful

 The example below is almost identical to the previous, but here the
 client chooses not to use the initial response parameter.

 S: 220-smtp.example.com ESMTP Server
 C: EHLO client.example.com
 S: 250-smtp.example.com Welcome client.example.com
 S: 250-AUTH GSSAPI SECURID
 S: 250 DSN
 C: AUTH SECURID
 S: 334
 C: AG1hZ251cwAxMjM0NTY3OAA=
 S: 235 Authentication successful

 Additonal examples that show usage of initial response can be found
 in section 7.2.

6.2. Server returns success with additional data

 Some mechanisms may specify that additional data be sent to the
 client along with an indication of successful completion of the
 exchange. This data would, for example, authenticate the server to
 the client.

 If a protocol's profile does not permit this additional data to be
 returned with a success indication, then the server issues the data
 as a server challenge, without an indication of successful
 completion. The client then responds with no data. After receiving
 this empty response, the server then indicates successful completion
 (with no additional data).

 Client implementors should be aware of an additional failure case
 that might occur when the profile supports sending the additional
 data with success. Imagine that an active attacker is trying to
 impersonate the server and sends faked data, which should be used to
 authenticate the server to the client, with success. (A similar
 situation can happen when either the server and/or the client has a
 bug and they calculate different responses.) After checking the data,
 the client will think that the authentication exchange has failed,
 however the server will think that the authentication exchange has
 completed successfully. At this point the client can not abort the
 authentication exchange; it SHOULD close the connection instead.
 However, if the profile did not support sending of additional data

A. Melnikov FORMFEED[Page 13]

Internet DRAFT SASL 25 October 2004

 with success, the client could have aborted the exchange at the very
 last step of the authentication exchange.

6.2.1. Server returns success with additional data examples

 The following are two examples of a DIGEST-MD5 authentication [SASL-
 DIGEST] in the Extensible Messaging and Presence Protocol [XMPP]. In
 the first example below, the server is sending mutual authentication
 data with success.

 C: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>
 S: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_234'
 from='example.com'
 version='1.0'>
 S: <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>CRAM-MD5</mechanism>
 </mechanisms>
 </stream:features>
 C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>
 S: <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9
 ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNzCg==
 </challenge>
 C: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVub2RlIixyZWFsbT0ic29tZXJlYWxtIixub25jZT0i
 T0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5jPTAw
 MDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5jb20i
 LHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3LGNo
 YXJzZXQ9dXRmLTgK
 </response>
 S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
 </success>

 The example below is almost identical to the previous, but here
 the server chooses not to use the additional data with success.

A. Melnikov FORMFEED[Page 14]

Internet DRAFT SASL 25 October 2004

 C: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 to='example.com'
 version='1.0'>
 S: <stream:stream
 xmlns='jabber:client'
 xmlns:stream='http://etherx.jabber.org/streams'
 id='c2s_234'
 from='example.com'
 version='1.0'>
 S: <stream:features>
 <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>CRAM-MD5</mechanism>
 </mechanisms>
 </stream:features>
 C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl'
 mechanism='DIGEST-MD5'/>
 S: <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cmVhbG09InNvbWVyZWFsbSIsbm9uY2U9Ik9BNk1HOXRFUUdtMmhoIixxb3A9
 ImF1dGgiLGNoYXJzZXQ9dXRmLTgsYWxnb3JpdGhtPW1kNS1zZXNzCg==
 </challenge>
 C: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 dXNlcm5hbWU9InNvbWVub2RlIixyZWFsbT0ic29tZXJlYWxtIixub25jZT0i
 T0E2TUc5dEVRR20yaGgiLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLG5jPTAw
 MDAwMDAxLHFvcD1hdXRoLGRpZ2VzdC11cmk9InhtcHAvZXhhbXBsZS5jb20i
 LHJlc3BvbnNlPWQzODhkYWQ5MGQ0YmJkNzYwYTE1MjMyMWYyMTQzYWY3LGNo
 YXJzZXQ9dXRmLTgK
 </response>
 S: <challenge xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
 cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZAo=
 </challenge>
 C: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
 S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>

6.3. Multiple authentications

 Unless otherwise stated by the protocol's profile, only one
 successful SASL negotiation may occur in a protocol session. In this
 case, once an authentication exchange has successfully completed,
 further attempts to initiate an authentication exchange fail.

 If a profile explicitly permits multiple successful SASL negotiations
 to occur, then in no case may multiple security layers be
 simultaneously in effect. If a security layer is in effect and a
 subsequent SASL negotiation selects a second security layer, then the
 second security layer replaces the first; this can be used as a form

A. Melnikov FORMFEED[Page 15]

Internet DRAFT SASL 25 October 2004

 of re-keying, where SASL mechanisms that provide security layers fail
 to provide for re-keying, provided that the authenticated identity
 remains the same. If a security layer is in effect and a subsequent
 SASL negotiation selects no security layer, the original security
 layer remains in effect.

 Where a protocol profile permits multiple successful SASL
 negotiations, the profile MUST detail the effect of a failed SASL
 negotiation upon the previously established authentication state.
 In particular, it MUST state whether the previously established
 authenticated state remains in force or whether the connection is to
 revert to an non-authenticated state. Regardless of the specified
 effect upon authentication state, the previously negotiated security
 layer remains in effect.

7. The EXTERNAL mechanism

 The mechanism name associated with external authentication is
 "EXTERNAL".

 The client sends a single message containing the UTF-8 encoding of
 the requested authorization identity. The message may be empty. The
 form of the authorization identity may be restricted by the
 application protocol's SASL profile.

 Some system external to SASL must authenticate the client. If that
 succeeds, the server determines the authentication identity from
 information from this system. If the requested authorization
 identity is empty, the authorization identity is derived from the
 authentication identity. The server determines if the authentication
 identity is allowed to act as the authorization identity. If all
 that succeeds, the server indicates successful completion of the
 authentication exchange; otherwise it indicates failure.

 The system providing this external information may be, for example,
 IPSec [IPSec] or TLS [TLS]. However, the client can make no
 assumptions as to what information the server can use in determining
 client authorization. For example, just because TLS was established,
 doesn't mean that the server will use the information provided by
 TLS.

7.1. Formal syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in [ABNF]. Non-terminals referenced
 but not defined below are as defined by [UTF-8].

 The "extern-resp" rule below defines the message sent from client to

A. Melnikov FORMFEED[Page 16]

Internet DRAFT SASL 25 October 2004

 server.

 extern-resp = *(UTF8-char-no-nul)

 UTF8-char-no-nul = UTF8-1-no-nul / UTF8-2 / UTF8-3 / UTF8-4

 UTF8-1-no-nul = %x01-7F

7.2. Examples of SASL EXTERNAL

 The following is an example of an EXTERNAL authentication in the SMTP
 protocol [SMTP]. In this example, the client is proxy authenticating,
 sending the authorization identity "fred@example.com" in the
 (optional) initial response. The server has obtained the client's
 (authentication) identity from an external service, such as IPsec,
 and has a security policy that permits that identity to assume the
 identity of the asserted authorization identity.

 To the protocol profile, the sequence "fred@example.com" is an opaque
 binary data. The SASL protocol profile for SMTP [SMTP-AUTH] specifies
 that server challenges and client responses are encoded in BASE64
 [BASE64, section 3]; the BASE64 encoding of "fred@example.com" is
 "ZnJlZEBleGFtcGxlLmNvbQ==".

 S: 220 smtp.example.com ESMTP server ready
 C: EHLO jgm.example.com
 S: 250-smtp.example.com
 S: 250 AUTH DIGEST-MD5 EXTERNAL
 C: AUTH EXTERNAL ZnJlZEBleGFtcGxlLmNvbQ==
 S: 235 Authentication successful.

 The following example is almost identical to the one above, but the
 client doesn't request proxy authentication.

 S: 220 smtp.example.com ESMTP server ready
 C: EHLO jgm.example.com
 S: 250-smtp.example.com
 S: 250 AUTH DIGEST-MD5 EXTERNAL
 C: AUTH EXTERNAL
 S: 235 Authentication successful.

 The following is an example of an EXTERNAL authentication in the
 IMAP4 protocol [IMAP]. IMAP4 doesn't support the initial response
 feature of SASL. As in the previous example, the client doesn't
 request proxy authentication.

 S: * OK IMAP4rev1 Server

A. Melnikov FORMFEED[Page 17]

Internet DRAFT SASL 25 October 2004

 C: C01 CAPABILITY
 S: * CAPABILITY IMAP4 IMAP4rev1 AUTH=DIGEST-MD5 AUTH=EXTERNAL
 [...]
 C: A01 AUTHENTICATE EXTERNAL
 (note that there is a space following the "+" in the following line)
 S: +
 C:
 S: A01 OK Success

8. IANA Considerations

8.1. Guidelines for IANA

 It is requested that IANA updates the SASL mechanisms registry as
 follows:

 Change the "Intended usage" of the KERBEROS_V4 and SKEY mechanism
 registrations to OBSOLETE. Change the "Published specification"
 of the EXTERNAL mechanism to this document. Updated registration
 information is provided in Section 8.6.

8.2. Registration procedure

 Registration of a SASL mechanism is done by filling in the template
 in section 8.5 and sending it via electronic mail to <iana@iana.org>.
 IANA has the right to reject obviously bogus registrations, but will
 perform no review of claims made in the registration form. SASL
 mechanism registrations are currently available at the URL
 <http://www.iana.org/assignments/sasl-mechanisms>.

 There is no naming convention for SASL mechanisms; any name that
 conforms to the syntax of a SASL mechanism name can be registered.
 However an IETF Standards Track document may reserve a portion of the
 SASL mechanism namespace ("family of SASL mechanisms") for its own
 use, amending the registration rules for that portion of the
 namespace. Each family of SASL mechanisms MUST be identified by a
 prefix.

 While the registration procedures do not require expert review,
 authors of SASL mechanisms are encouraged to seek community review
 and comment whenever that is feasible. Authors may seek community
 review by posting a specification of their proposed mechanism as an
 Internet-Draft. SASL mechanisms intended for widespread use should

http://www.iana.org/assignments/sasl-mechanisms

A. Melnikov FORMFEED[Page 18]

Internet DRAFT SASL 25 October 2004

 be standardized through the normal IETF process, when appropriate.

8.3. Comments on SASL mechanism registrations

 Comments on registered SASL mechanisms should first be sent to the
 "owner" of the mechanism and/or to the SASL WG mailing list.
 Submitters of comments may, after a reasonable attempt to contact the
 owner, request IANA to attach their comment to the SASL mechanism
 registration itself. If IANA approves of this, the comment will be
 made accessible in conjunction with the SASL mechanism registration
 itself.

8.4. Change control

 Once a SASL mechanism registration has been published by IANA, the
 author may request a change to its definition. The change request
 follows the same procedure as the registration request.

 The owner of a SASL mechanism may pass responsibility for the SASL
 mechanism to another person or agency by informing IANA; this can be
 done without discussion or review.

 The IESG may reassign responsibility for a SASL mechanism. The most
 common case of this will be to enable changes to be made to
 mechanisms where the author of the registration has died, moved out
 of contact or is otherwise unable to make changes that are important
 to the community.

 SASL mechanism registrations may not be deleted; mechanisms which are
 no longer believed appropriate for use can be declared OBSOLETE by a
 change to their "intended usage" field; such SASL mechanisms will be
 clearly marked in the lists published by IANA.

 The IESG is considered to be the owner of all SASL mechanisms which
 are on the IETF standards track.

8.5. Registration template

 Subject: Registration of SASL mechanism X

 Family of SASL mechanisms: (YES or NO)

 SASL mechanism name (or prefix for the family):

 Security considerations:

 Published specification (optional, recommended):

A. Melnikov FORMFEED[Page 19]

Internet DRAFT SASL 25 October 2004

 Person & email address to contact for further information:

 Intended usage:

 (One of COMMON, LIMITED USE or OBSOLETE)

 Owner/Change controller:

 (Any other information that the author deems interesting may be
 added below this line.)

8.6. The EXTERNAL mechanism registration

 It is requested that the SASL Mechanism registry [IANA-SASL] entry
 for the EXTERNAL mechanism be updated to reflect that this document
 now provides its technical specification.

 Subject: Updated Registration of SASL mechanism EXTERNAL

 Family of SASL mechanisms: NO

 SASL mechanism name: EXTERNAL

 Security considerations: See RFC XXXX, section 9.

 Published specification (optional, recommended): RFC XXXX

 Person & email address to contact for further information:
 Alexey Melnikov <Alexey.Melnikov@isode.com>

 Intended usage: COMMON

 Owner/Change controller: IESG <iesg@ietf.org>

 Note: Updates existing entry for EXTERNAL

9. Security considerations

 Security issues are discussed throughout this memo.

 When the client selects a security layer with at least integrity
 protection, this protects against an active attacker hijacking the
 connection and modifying the authentication exchange to negotiate a
 plaintext connection.

 When a server or client supports multiple authentication mechanisms,

A. Melnikov FORMFEED[Page 20]

Internet DRAFT SASL 25 October 2004

 each of which has a different security strength, it is possible for
 an active attacker to cause a party to use the least secure mechanism
 supported. To protect against this sort of attack, a client or
 server which supports mechanisms of different strengths should have a
 configurable minimum strength that it will use. It is not sufficient
 for this minimum strength check to only be on the server, since an
 active attacker can change which mechanisms the client sees as being
 supported, causing the client to send authentication credentials for
 its weakest supported mechanism.

 The client's selection of a SASL mechanism is done in the clear and
 may be modified by an active attacker. It is important for any new
 SASL mechanisms to be designed such that an active attacker cannot
 obtain an authentication with weaker security properties by modifying
 the SASL mechanism name and/or the challenges and responses.

 In order to detect Man-in-the-middle (MITM) attacks the client MAY
 list available SASL mechanisms both before and after the SASL
 security layer is negotiated. This allows the client to detect
 active attacks that remove mechanisms from the server's list of
 supported mechanisms, and allows the client to ensure that it is
 using the best mechanism supported by both client and server. New
 protocol profiles SHOULD require servers to make the list of SASL
 mechanisms available for the initial authentication available to the
 client after security layers are established. Some older protocols
 do not require this (or don't support listing of SASL mechanisms once
 authentication is complete); for these protocols clients MUST NOT
 treat an empty list of SASL mechanisms after authentication as a MITM
 attack.

 Any protocol interactions prior to authentication are performed in
 the clear and may be modified by an active attacker. In the case
 where a client selects integrity protection, it is important that any
 security-sensitive protocol negotiations be performed after
 authentication is complete. Protocols should be designed such that
 negotiations performed prior to authentication should be either
 ignored or revalidated once authentication is complete.

 Clients should be admonished to validate TLS server IDs to prevent
 MITM attacks when using SASL-over-TLS. The same recommendation
 applies to other protocols providing security services.

 When use of a security layer is negotiated by the authentication
 protocol exchange, the receiver should handle gracefully any
 protected data buffer larger than the defined/negotiated maximal
 size. In particular, it must not blindly allocate the amount of
 memory specified in the buffer size field, as this might cause the
 "out of memory" condition. If the receiver detects a large block, it

A. Melnikov FORMFEED[Page 21]

Internet DRAFT SASL 25 October 2004

 SHOULD close the connection.

 Distributed server implementations need to be careful in how they
 trust other parties. In particular, authentication secrets should
 only be disclosed to other parties that are trusted to manage and use
 those secrets in manner acceptable to disclosing party. Applications
 using SASL assume that SASL security layers providing data
 confidentiality are secure even when an attacker chooses the text to
 be protected by the security layer. Similarly applications assume
 that the SASL security layer is secure even if the attacker can
 manipulate the ciphertext output of the security layer. New SASL
 mechanisms MUST meet these assumptions.

 "stringprep" and Unicode security considerations apply to
 authentication identities, authorization identities and passwords.

 The EXTERNAL mechanism provides no security protection; it is
 vulnerable to spoofing by either client or server, active attack, and
 eavesdropping. It should only be used when external security
 mechanisms are present and have sufficient strength.

9.1. Re-keying

 The secure or administratively permitted lifetimes of SASL
 mechanisms' security layers are finite. Cryptographic keys weaken as
 they are used and as time passes; the more time and/or ciphertext
 that a cryptanalyst has after the first use of the a key, the easier
 it is for the cryptanalyst to mount attacks on the key.

 Administrative limits on security layers lifetime may take the form
 of time limits expressed in x.509 certificates, Kerberos V tickets,
 or in directories, and are often desired. <<In practice one likely
 effect of administrative security layers lifetime limits is that
 applications may find that security layers stop working in the middle
 of application protocol operation, such as, perhaps, during large
 data transfers. As the result of this the connection will be closed
 (see section 3.3), which will result in unpleasant user experience.>>

 Re-keying (key renegotiation process) is a<<>> way of addressing the
 weakening of cryptographic keys. SASL framework does not provide for
 re-keying. SASL mechanisms may; all future SASL mechanisms that
 provide security layers should provide for re-keying.

 Applications that wish to re-key SASL security layers where the
 mechanism does not provide for re-keying should reauthenticate the
 same IDs and replace the expired or soon-to-expire security layers.

A. Melnikov FORMFEED[Page 22]

Internet DRAFT SASL 25 October 2004

 This approach requires support for re-keying in the application
 protocols. See section 6.3.

10. References

10.1. Normative References

 [ABNF] Crocker, D. (Ed.), Overell, P., "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997

 [ASCII] American National Standards Institute, "Code Extension
 Techniques for Use with the 7-bit Coded Character Set of American
 National Standard Code (ASCII) for Information Interchange", FIPS PUB
 35, 1974

 [CHARSET-POLICY] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", RFC 2277, BCP 18, January 1998

 [GSSAPI] Linn, J., "Generic Security Service Application Program
 Interface, Version 2, Update 1", RFC 2743, January 2000

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, BCP 19, March 1997

 [Unicode] The Unicode Consortium, "The Unicode Standard, Version
 3.2.0" is defined by "The Unicode Standard, Version 3.0" (Reading,
 MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), as amended by the
 "Unicode Standard Annex #27: Unicode 3.1"
 (http://www.unicode.org/reports/tr27/) and by the "Unicode Standard
 Annex #28: Unicode 3.2" (http://www.unicode.org/reports/tr28/).

 [Stringprep] Hoffman, P., Blanchet, M., "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454, December 2002.

 [SASLprep] Zeilenga, K., "SASLprep: Stringprep profile for user names
 and passwords", Work in progress, draft-ietf-sasl-saslprep-XX.txt.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
RFC 3629, STD 63, November 2003.

10.2. Informative References

 [SASL-GSSAPI] Melnikov, A., "SASL GSSAPI mechanisms", work in
 progress, draft-ietf-sasl-gssapi-XX.txt, November 2003

 [SASL-DIGEST] Leach, P., Newman, C., Melnikov, A., "Using Digest

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp19
http://www.unicode.org/reports/tr27/
http://www.unicode.org/reports/tr28/
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-saslprep-XX.txt
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-gssapi-XX.txt

A. Melnikov FORMFEED[Page 23]

Internet DRAFT SASL 25 October 2004

 Authentication as a SASL Mechanism", work in progress, draft-ietf-
sasl-rfc2831bis-XX.txt, replaces RFC 2831

 [SASL-OTP] Newman, C., "The One-Time-Password SASL Mechanism", RFC
2444, October 1998.

 [SASL-SECURID] Nystrom, M., "The SecurID(r) SASL Mechanism", RFC
2808, April 2000.

 [SMTP] Klensin, J., "Simple Mail Transfer Protocol", RFC 2821, April
 2001.

 [SMTP-AUTH] Myers, J., "SMTP Service Extension for Authentication",
RFC 2554, March 1999.

 Being revised by Siemborski, R., "SMTP Service Extension for
 Authentication", work in progress, draft-siemborski-rfc2554bis-

XX.txt.

 [XMPP] Saint-Andre, P., "Extensible Messaging and Presence Protocol
 (XMPP): Core", work in progress, draft-ietf-xmpp-core-XX.txt.

 [BASE64] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 3548, July 2003.

 [RFC-INSTRUCTIONS] Postel, J., Reynolds, J., "Instructions to RFC
 Authors", RFC 2223, October 1997.

 [IANA-SASL] IANA, "SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL)
 MECHANISMS", http://www.iana.org/assignments/sasl-mechanisms.

 [TLS] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

 [IPSec] Kent, S., and R. Atkinson, "Security Architecture for the
 Internet Protocol", RFC 2401, November 1998.

 [Sec-Glossary] Shirey, R., "Internet Security Glossary", RFC 2828,
 May 2000.

11. Editor's Address

 Alexey Melnikov
 Isode Limited
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex,

https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2831bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2831bis-XX.txt
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc2444
https://datatracker.ietf.org/doc/html/rfc2444
https://datatracker.ietf.org/doc/html/rfc2808
https://datatracker.ietf.org/doc/html/rfc2808
https://datatracker.ietf.org/doc/html/rfc2821
https://datatracker.ietf.org/doc/html/rfc2554
https://datatracker.ietf.org/doc/html/draft-siemborski-rfc2554bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-siemborski-rfc2554bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-core-XX.txt
https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/rfc2223
http://www.iana.org/assignments/sasl-mechanisms
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2828

A. Melnikov FORMFEED[Page 24]

Internet DRAFT SASL 25 October 2004

 TW12 2BX, United Kingdom

 Email: Alexey.Melnikov@isode.com
 URI: http://www.melnikov.ca/

12. Acknowledgments

 This document is a revision of RFC 2222 written by John G. Myers. He
 also contributed significantly to this revision.

 Contributions of many members of the SASL mailing list are gratefully
 acknowledged, in particular that of Kurt Zeilenga, Peter Saint-Andre,
 Rob Siemborski, Magnus Nystrom, Jeffrey Hutzelman, Hallvard B
 Furuseth, Tony Hansen, Simon Josefsson, Abhijit Menon-Sen, RL 'Bob'
 Morgan, Sam Hartman, Nicolas Williams, Tim Alsop and Luke Howard.

Appendix A. Relation of SASL to transport security

 Questions have been raised about the relationship between SASL and
 various services (such as IPsec and TLS) which provide a secured
 connection.

 Two of the key features of SASL are:

 The separation of the authorization identity from the identity in
 the client's credentials. This permits agents such as proxy
 servers to authenticate using their own credentials, yet request
 the access privileges of the identity for which they are proxying.

 Upon successful completion of an authentication exchange, the
 server knows the authorization identity the client wishes to use.
 This allows servers to move to a "user is authenticated" state in
 the protocol.

 These features are extremely important to some application protocols,
 yet Transport Security services do not always provide them. To
 define SASL mechanisms based on these services would be a very messy
 task, as the framing of these services would be redundant with the
 framing of SASL and some method of providing these important SASL
 features would have to be devised.

 Sometimes it is desired to enable within an existing connection the
 use of a security service which does not fit the SASL model. (TLS is
 an example of such a service.) This can be done by adding a command,
 for example "STARTTLS", to the protocol. Such a command is outside
 the scope of SASL, and should be different from the command which
 starts a SASL authentication protocol exchange.

http://www.melnikov.ca/
https://datatracker.ietf.org/doc/html/rfc2222

A. Melnikov FORMFEED[Page 25]

Internet DRAFT SASL 25 October 2004

 In certain situations, it is reasonable to use SASL underneath one of
 these Transport Security services. The transport service would
 secure the connection, either service would authenticate the client,
 and SASL would negotiate the authorization identity. The SASL
 negotiation would be what moves the protocol from "unauthenticated"
 to "authenticated" state. The "EXTERNAL" SASL mechanism is
 explicitly intended to handle the case where the transport service
 secures the connection and authenticates the client and SASL
 negotiates the authorization identity.

Appendix B. Changes since RFC 2222

 The GSSAPI mechanism was removed. It is now specified in a separate
 document [SASL-GSSAPI].

 The "KERBEROS_V4" mechanism defined in RFC 2222 is obsolete and has
 been removed.

 The "SKEY" mechanism described in RFC 2222 is obsolete and has been
 removed. It has been replaced by the OTP mechanism [SASL-OTP].

 The introduction has been substantially reorganized and clarified.

 Clarified the definition and semantics of the authorization identity.

 Prohibited the NUL character in authorization identities.

 Added a section on character string issues.

 The word "must" in the first paragraph of the "Protocol profile
 requirements" section was changed to "MUST".

 Specified that protocol profiles SHOULD provide a way for clients to
 discover available SASL mechanisms.

 Made the requirement that protocol profiles specify the semantics of
 the authorization identity optional to the protocol profile.
 Clarified that such a specification is a refinement of the definition
 in the base SASL spec.

 Added a requirement discouraging protocol profiles from breaking the
 separation between protocol and mechanism.

 Mentioned that standards track documents may carve out their own
 portions of the SASL mechanism namespace and may amend registration
 rules for the portion. However registration of individual SASL
 mechanisms is still required.

https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222

A. Melnikov FORMFEED[Page 26]

Internet DRAFT SASL 25 October 2004

 Clarified that authorization identity should be encoded in UTF-8.

 Specified that the authorization identity in the EXTERNAL mechanism
 is encoded in UTF-8.

 Added a statement that a protocol profile SHOULD allow challenge data
 to be sent with a success indication.

 Added a security consideration for the EXTERNAL mechanism.

 Clarified sections concerning success with additional data.

 Cleaned up IANA considerations/registrations and assembled them in
 one place.

 Updated references and split them into Informative and Normative.

 Added text to the Security considerations section regarding handling
 of extremely large SASL blocks.

 Added text about SASLprep for authentication identities and
 passwords. Described where SASLprep preparation should take place.

 Added paragraph about verifying authorization identities.

 Added a protocol profile requirement to specify interaction between
 SASL and TLS security layers.

 Added a protocol profile requirement to specify if it supports
 reauthentication.

 Removed the text that seemed to suggest that SASL security layer must
 not be used when TLS is available.

 Created two subsections in 3.2 to talk separately about proxy
 authorization and format of the authorization identities.

 Made requirement to verify that an authorization identity is correct
 by performing SASLprep.

 Clarified that each SASL mechanism must decide where SASLprep is
 taking place.

 Added 4 new examples for initial response and additional data with
 success.

 Added text on checking the list of available SASL mechanisms after
 negotiating a security layer.

A. Melnikov FORMFEED[Page 27]

Internet DRAFT SASL 25 October 2004

 Added definition of "integrity protection" and "confidentiality
 protection".

 Added warning about negotiating no layer once a security layer is
 negotiated.

 Added new section with guidelines to a SASL mechanism designer.

 Added a requirement to specify how an empty initial challenge is
 encoded if initial response is supported by a protocol.

 Clarified that empty "additional data with success" is not allowed.

 Replaced "buffers of cipher-text" with "buffers of protected data"
 for clarity.

 Clarified that SASL EXTERNAL can be used even with SASL profiles that
 don't support initial client response.

 Changed "authentication protocol exchange" to "authentication
 exchange" everywhere.

Appendix C. Full Copyright Statement and Intellectual Property Statement

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

https://datatracker.ietf.org/doc/html/bcp78

A. Melnikov FORMFEED[Page 28]

Internet DRAFT SASL 25 October 2004

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

A. Melnikov FORMFEED[Page 29]

Internet DRAFT SASL 25 October 2004

 Status of this Memo i
 Abstract . 2

1. Conventions used in this document .. 2
 2. Introduction . 2

2.1. Relationship to other documents .. 4
3. Authentication mechanisms ... 5
3.1. Authentication Exchange 5

 3.2. Identity Concepts . 6
3.2.1. Authorization identities and proxy authentication

 7
3.2.2. Authorization Identity Format

 8
3.3. Security layers

 8
4. Protocol profile requirements

 9
5. Mechanism profile guidelines

 10
6. Specific issues

 12
6.1. Client sends data first

 12
6.1.1. Client sends data first examples

 12
6.2. Server returns success with additional data 13
6.2.1. Server returns success with additional data examples 14
6.3. Multiple authentications 15

 7. The EXTERNAL mechanism . 16
7.1. Formal syntax 16
7.2. Examples of SASL EXTERNAL ... 17
8. IANA Considerations 18
8.1. Guidelines for IANA 18

 8.2. Registration procedure . 18
8.3. Comments on SASL mechanism registrations ... 19
8.4. Change control 19
8.5. Registration template .. 19
8.6. The EXTERNAL mechanism registration ... 20

 9. Security considerations . 20
9.1. Re-keying 22
10. References .. 23
10.1. Normative References .. 23
10.2. Informative References 23
11. Editor's Address .. 24
12. Acknowledgments ... 25
Appendix A. Relation of SASL to transport security 25
Appendix B. Changes since RFC 2222 26
Appendix C. Full Copyright Statement and Intellectual Property Statement

 28

https://datatracker.ietf.org/doc/html/rfc2222

A. Melnikov FORMFEED[Page ii]

Internet DRAFT SASL 25 October 2004

 Full Copyright Statement 28
 Intellectual Property ... 29

A. Melnikov FORMFEED[Page iii]

