
INTERNET-DRAFT A. Melnikov (Ed.)
Obsoletes: RFC 2831 (if approved) Isode Ltd.
Intended status: Standards track March 2007
Expires: September 2007

Using Digest Authentication as a SASL Mechanism
draft-ietf-sasl-rfc2831bis-12.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet
 Engineering Task Force (IETF), its areas, and its
 working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by
 other documents at any time. It is inappropriate to use
 Internet-Drafts as reference material or to cite them other
 than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This specification defines how HTTP Digest Authentication (RFC 2617)
 can be used as a Simple Authentication and Security Layer (SASL, RFC

4422) mechanism for any protocol that has a SASL profile. It is
 intended both as an improvement over CRAM-MD5 (RFC 2195) and as a
 convenient way to support a single authentication mechanism for web,
 mail, LDAP, and other protocols.

Melnikov (Ed.) Expires: September 2007 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2195

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

Table of Contents

1 INTRODUCTION...3
1.1 CONVENTIONS AND NOTATION......................................3
1.2 CHANNEL BINDINGS..4
2 AUTHENTICATION...5
2.1 INITIAL AUTHENTICATION..5
2.1.1 Step One...5
2.1.2 Step Two...9
2.1.3 Step Three..16
2.2 SUBSEQUENT AUTHENTICATION....................................17
2.2.1 Step one..17
2.2.2 Step Two..17
2.3 INTEGRITY PROTECTION...18
2.4 CONFIDENTIALITY PROTECTION...................................18
3 SECURITY CONSIDERATIONS...21
3.1 AUTHENTICATION OF CLIENTS USING DIGEST AUTHENTICATION........21
3.2 COMPARISON OF DIGEST WITH PLAINTEXT PASSWORDS................21
3.3 REPLAY ATTACKS...21
3.4 ONLINE DICTIONARY ATTACKS....................................22
3.5 OFFLINE DICTIONARY ATTACKS...................................22
3.6 MAN IN THE MIDDLE..22
3.7 CHOSEN PLAINTEXT ATTACKS.....................................22

 3.8 CBC MODE ATTACKS...
3.9 SPOOFING BY COUNTERFEIT SERVERS..............................23
3.10 STORING PASSWORDS...23
3.11 MULTIPLE REALMS...24
3.12 SUMMARY...24
4 EXAMPLE...24
5 REFERENCES..26
5.1 NORMATIVE REFERENCES...26
5.2 INFORMATIVE REFERENCES.......................................27
6 IANA CONSIDERATIONS...28
7 HBNF..29
7.1 Enhanced BNF...29
7.2 BASIC RULES..31
8 SAMPLE CODE...33

 9 AUTHORS' ADDRESSES..XX
10 ACKNOWLEDGEMENTS..34
11 FULL COPYRIGHT STATEMENT.......................................35
Appendix A: Changes from 2831.....................................36
Appendix B: Open Issues...37

 <<Page numbers are all wrong, sorry.
 Section ordering should be changed too>>

Melnikov (Ed.) Expires: September 2007 [Page 2]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

1 Introduction

 This specification describes the use of HTTP Digest Access
 Authentication as a SASL mechanism. The authentication type
 associated with the Digest SASL mechanism is "DIGEST-MD5".

 This specification is intended to be upward compatible with the
 "md5-sess" algorithm of HTTP/1.1 Digest Access Authentication
 specified in [Digest]. The only difference in the "md5-sess"
 algorithm is that some directives not needed in a SASL mechanism have
 had their values defaulted.

 There is <<one new feature for use as a SASL mechanism>>: integrity
 and confidentiality protection on application protocol messages after
 an authentication exchange.

 Also, compared to CRAM-MD5, DIGEST-MD5 prevents chosen plaintext
 attacks, and permits the use of third party authentication servers,
 mutual authentication, and optimized reauthentication if a client has
 recently authenticated to a server.

1.1 Conventions and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC 2119].

 This specification uses the same EnHanced BNF notation (referred to
 as HBNF in this document) and lexical conventions as HTTP/1.1
 specification; see section 7.

 Let { a, b, ... } be the concatenation of the octet strings a, b, ...

 Let ** denote the power operation.

 Let H(s) be the 16 octet MD5 hash [RFC 1321] of the octet string s.

 Let KD(k, s) be H({k, ":", s}), i.e., the 16 octet hash of the string
 k, a colon and the string s.

 Let HEX(n) be the representation of the 16 octet MD5 hash n as a
 string of 32 hex digits (with alphabetic characters always in lower
 case, since MD5 is case sensitive).

 Let HMAC(k, s) be the 16 octet HMAC-MD5 [RFC 2104] of the octet
 string s using the octet string k as a key.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

Melnikov (Ed.) Expires: September 2007 [Page 3]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 Let unq(X) be the value of the quoted-string X without the
 surrounding quotes and with all escape characters "\\" removed. For
 example for the quoted-string "Babylon" the value of unq("Babylon")
 is Babylon; for the quoted string "ABC\"123\\" the value of
 unq("ABC\"123\\") is ABC"123\.

 The value of a quoted string constant as an octet string does not
 include any terminating nul (0x00) character.

 Let prep(X) be the value returned by the preparation function (see
 description of "prep" directive in section 2.1.1).

 Other terms like "protocol profile" are defined in RFC4422.

1.2 Channel Bindings

 "Channel binding" is a concept described in [GSS-API] and which
 refers to the act of cryptographically binding authentication at one
 network layer to a secure channel at another layer and where the end-
 points at both layers are the same entities. In the context of the
 DIGEST-MD5 SASL mechanism this means ensuring that the challenge and
 response messages include the "channel bindings" of any cryptographic
 channel (e.g. TLS) over which the DIGEST-MD5 exchange is transported,
 and that the inputs to the digest function include the same as well.
 The "channel bindings" of a channel here refer to information which
 securely identifies one instance of such a channel to both endpoints
 such that MITM attacks are detectable. For more discussions of
 channel bindings, and the syntax of the channel binding data for
 various security protocols, see [CHANNEL-BINDINGS].

 Channel bindings are herein added to DIGEST-MD5 by overloading the
 nonce and cnonce fields of the digest-challenge and digest-response
 messages, respectively. Because these nonces are treated as opaque
 octet strings in previous versions of this mechanism such overloading
 is backwards compatible. Because these nonces are used in the
 construction of the response-value (i.e., as input to the digest
 function) using these fields for carrying channel bindings data makes
 the channel binding operation possible without requiring incompatible
 changes to the message formats. The fact that the odds that older
 implementations may select random nonces that resemble actual channel
 bindings data are so low allows new implementations to detect old
 peers and to decide whether to allow such peers or reject them
 according to local policy.

https://datatracker.ietf.org/doc/html/rfc4422

Melnikov (Ed.) Expires: September 2007 [Page 4]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

2 Authentication

 DIGEST-MD5 can operate in two modes. Initial authentication (section
2.1) is usually used when a client authenticates to a server for the

 first time. If protocol profile supports initial client response
 (see "Protocol profile requirements" in [SASL]) and the client
 supports reauthentication and it has successfully authenticated to
 the server before, the client may be able to use the more efficient
 fast reauthentication mode as described in section 2.2.

 The following sections describe these two modes in details.

2.1 Initial Authentication

 If the client has not recently authenticated to the server, then it
 must perform "initial authentication", as defined in this section. If
 it has recently authenticated, then a more efficient form is
 available, defined in the next section.

2.1.1 Step One

 The server starts by sending a challenge. The data encoded in the
 challenge is formatted according to the rules for the "digest-
 challenge" defined as follows:

Melnikov (Ed.) Expires: September 2007 [Page 5]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 digest-challenge =
 1#(realm / nonce / qop-options / stale / server-maxbuf /
 charset / prep-opts / algorithm / cipher-opts /
 auth-param)

 realm = "realm" "=" realm-value
 realm-value = quoted-string
 nonce = "nonce" "=" nonce-value
 nonce-value = quoted-string
 ;; contains data described by "nonce-data"
 qop-options = "qop" "=" DQUOTE qop-list DQUOTE
 qop-list = 1#qop-value
 qop-value = "auth" / "auth-int" / "auth-conf" /
 qop-token
 ;; qop-token is reserved for identifying
 ;; future extensions to DIGEST-MD5
 qop-token = token
 stale = "stale" "=" "true"
 server-maxbuf = "maxbuf" "=" maxbuf-value
 maxbuf-value = 1*DIGIT
 charset = "charset" "=" "utf-8"
 prep-opts = "prep" "=" DQUOTE prep-mechs DQUOTE
 prep-mechs = 1#prep-mech
 prep-mech = "rfc4013"
 algorithm = "algorithm" "=" "md5-sess"
 cipher-opts = "cipher" "=" DQUOTE cipher-list DQUOTE
 cipher-list = 1#cipher-value
 cipher-value = "rc4-40" / "rc4" / "rc4-56" /
 "aes-ctr" / cipher-token
 ;; cipher-token is reserved for
 ;; new ciphersuites
 cipher-token = token
 auth-param = token "=" (token / quoted-string)
 nonce-data = new-nonce-data / obs-nonce-data
 new-nonce-data = "CB-" channel-type ":" channel-bindings
 ":" qop-list ":" cipher-list
 ":" nonce-octets
 obs-nonce-data = nonce-octets
 ;; nonce value as defined in RFC 2831.
 ;; SHOULD be accepted. MUST NOT be
 ;; generated.
 <<channel-type = "TLS" / channel-type-ext
 ;; Should be taken from
 ;; [CHANNEL-BINDINGS].
 channel-type-ext = 1*(ALPHA / DIGIT)
 ;; for future channel bindings>>
 channel-bindings = 1*TEXTCHAR
 ;; channel binding data as defined by

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc2831

Melnikov (Ed.) Expires: September 2007 [Page 6]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 ;; the channel type
 nonce-octets = 1*TEXTCHAR

 The meanings of the values of the directives used above are as
 follows:

 realm
 Mechanistically, a string which enables users to decide which
 username and password to use, in case they have different ones for
 different servers. Conceptually, it is the name of a collection
 of accounts that might include the user's account. This string
 should contain the name of the host performing the authentication
 and might additionally indicate the collection of users who might
 have access. An example might be
 "registered_users@gotham.news.example.com". Note that the server
 MAY not advertise (hide) some or all realms it supports.

 Other examples:

 1) "dc=gotham, dc=news, dc=example, dc=com".

 2) If there are two servers (e.g. server1.example.com and
 server2.example.com) that share authentication database, they
 both may advertise "example.com" as the realm.

 A server implementation that uses a fixed string as the advertised
 realm is compliant with this specification, however this is not
 recommended. See also sections 3.10 "Storing passwords" and 3.11
 "Multiple realms" for discussion.

 The value of this directive is case-sensitive. This directive is
 optional; if not present, the client SHOULD solicit it from the
 user or be able to compute a default; a plausible default might be
 the realm supplied by the user when they logged in to the client
 system. Multiple realm directives are allowed, in which case the
 user or client must choose one as the realm for which to supply
 username and password.

 Requirements on UIs: UIs MUST allow users to enter arbitrary user
 names and realm names. In order to achieve this, UIs MAY present
 two separate edit boxes. Alternatively, UIs MAY present a single
 edit box and allow user to enter a special character that
 separates user name from the realm name. In the latter case, UIs
 MUST be able to escape the special character and they need to
 present their escape rules to the user. UIs MUST also present the
 list of realms advertised by the server.

 nonce

Melnikov (Ed.) Expires: September 2007 [Page 7]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 A server-specified string erstwhile intended to add entropy to the
 challenge. The nonce field may be used to exchange channel
 binding data.

 This directive is required and MUST appear exactly once; if not
 present, or if multiple instances are present, the client should
 abort the authentication exchange.

 Older implementations typically generate some random or pseudo-
 random data and base64 [RFC 4648] or hexadecimally encode it.
 When channel binding is not used the nonce string MUST be
 different each time a digest-challenge is sent as part of initial
 authentication. It is RECOMMENDED that the random data contain at
 least 64 bits of entropy.

 When channel binding is performed, the nonce must be generated
 from: the channel type, the bindings to the channel being bound
 to, copy of the server specified qop-list (*), copy of the server
 specified list of ciphers or empty string if none were specified
 and an actual nonce consisting of 64-bits or more of entropy and
 base64-encoded, and formatted as follows:

 "CB-" <channel type> ":" <channel bindings> ":" <qop-list> ":"
 <cipher-list> ":" <nonce octets>

 See [CHANNEL-BINDINGS] for the syntax of the channel binding data
 for various security protocols.

 An actual nonce is included in order to allow for channel bindings
 to possible future channels with channel bindings data which is
 not necessarily unique for each instance.

 When channel bindings are in use, clients MUST reject challenges
 that contain server nonce values of this form and whose channel
 bindings do not match those of the actual underlying channel as
 observed by the client. Also clients MUST reject challenges that
 contain server nonce values of this form and that contain qop-list
 and/or cipher-list that don't match the values sent in the
 qop/cipher directives respectively.

 (*) - Note that if the server specified multiple "qop" directives,
 this field MUST be constructed by extracting all qop-list values
 (in the order they were specified) and inserting "," between them.
 For example, if the server sent:
 qop="auth",qop="auth-int" this field must have the value
 "auth,auth-int" (with no quotes).

 qop-options

https://datatracker.ietf.org/doc/html/rfc4648

Melnikov (Ed.) Expires: September 2007 [Page 8]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 A quoted string of one or more comma-separated tokens indicating
 the "quality of protection" values supported by the server. The
 value "auth" indicates authentication; the value "auth-int"
 indicates authentication with integrity protection; the value
 "auth-conf" indicates authentication with integrity protection and
 encryption. This directive is optional; if not present it
 defaults to "auth". The client MUST ignore unrecognized options;
 if the client recognizes no option, it MUST abort the
 authentication exchange.

 If this directive is present multiple times the client MUST treat
 it as if it received a single qop directive containing a comma
 separated value from all instances. I.e., 'qop="auth",qop="auth-
 int"' is the same as 'qop="auth,auth-int"'.

 stale
 The "stale" directive is not used in initial authentication. See
 the next section for its use in subsequent authentications. This
 directive may appear at most once; if multiple instances are
 present, the client MUST abort the authentication exchange.

 server-maxbuf ("maximal ciphertext buffer size")
 A number indicating the size of the largest buffer (in bytes) the
 server is able to receive when using "auth-int" or "auth-conf".
 The value MUST be bigger than 16 and smaller or equal to 16777215
 (i.e. 2**24-1). If this directive is missing, the default value is
 65536. This directive may appear at most once; if multiple
 instances are present, or the value is out of range the client
 MUST abort the authentication exchange.

 Let "maximal cleartext buffer size" (or "maximal sender size") be
 the maximal size of a cleartext buffer that, after being
 transformed by integrity (section 2.3) or confidentiality (section

2.4) protection function, will produce a SASL block of the maxbuf
 size. As it should be clear from the name, the sender MUST never
 pass a block of data bigger than the "maximal sender size" through
 the selected protection function. This will guarantee that the
 receiver will never get a block bigger than the maxbuf.

 charset
 This directive, if present, specifies that the server supports
 UTF-8 [UTF-8] encoding for the username, realm and password. If
 present, the username, realm and password are encoded as UTF-8
 [UTF-8]. If not present, the username, realm and password used by
 the client in Step 2 MUST be encoded in ISO 8859-1 [ISO-8859] (of
 which US-ASCII [USASCII] is a subset). The directive is needed for
 backwards compatibility with HTTP Digest<<, which only supports
 ISO 8859-1>>. This directive may appear at most once; if multiple

Melnikov (Ed.) Expires: September 2007 [Page 9]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 instances are present, the client MUST abort the authentication
 exchange.

 Note, that this directive doesn't affect authorization id
 ("authzid").

 prep-opts
 Servers compliant with this specification MUST include this
 directive.

 If present, it contains a comma separated list of
 username/password preparation algorithms supported by the server.
 That is, if user credentials are stored as one or more "SS" (see

section 2.1.2.1) values, then the server signals to the client
 which username/password preparation algorithms were used when the
 "SS" value(s) were created. If cleartext user password is stored,
 the server returns "rfc4013" (see below) as the value of this
 directive.

 This document defines only a single value "rfc4013", which means
 that the server supports "SASLPrep" profile [SASLPrep] of the
 "stringprep" algorithm [RFC 3454].

 <<This directive MUST be ignored, unless the "charset" directive
 is also present and contains the value "utf-8".

 <<An alternative: if this directive is present and the charset is
 not, abort authentication exchange.>>

 <<Another alternative: this directive implies charset=utf-8.
 However this would mean that an older client (which doesn't
 recognize the prep-opts directive will think that the server
 doesn't support UTF-8.>> >>

 If this directive is missing, the server doesn't support any
 preparation algorithm, i.e. the server is an RFC 2831 only server.

 If this directive is present multiple times the client MUST treat
 it as if it received a single prep-opts directive containing a
 comma separated value from all instances.

 algorithm
 This directive is required for backwards compatibility with HTTP
 Digest, which supports other algorithms. This directive is
 required and MUST appear exactly once; if not present, or if
 multiple instances are present, the client SHOULD abort the
 authentication exchange.

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc2831

Melnikov (Ed.) Expires: September 2007 [Page 10]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 cipher-opts
 A list of ciphers that the server supports. This directive must be
 present exactly once if "auth-conf" is offered in the
 "qop-options" directive, in which case the "aes-ctr" cipher is
 mandatory-to-implement. The client MUST ignore unrecognized
 ciphers; if the client recognizes no cipher, it MUST behave as if
 "auth-conf" qop option wasn't provided by the server. If the
 client recognizes no cipher and the server only advertised "auth-
 conf" in the qop option, the client MUST abort the authentication
 exchange. See section 2.4 for more detailed description of the
 ciphers.

 rc4, rc4-40, rc4-56
 the RC4 cipher with a 128 bit, 40 bit, and 56 bit key,
 respectively.

 aes-ctr
 the Advanced Encryption Standard (AES) cipher [AES] in counter
 (CTR) mode with a 128 bit key. This mode requires an IV that
 has the same size as the block size.

 auth-param
 This construct allows for future extensions; it may appear more
 than once. The client MUST ignore any unrecognized directives.

 For use as a SASL mechanism, note that the following changes are made
 to "digest-challenge" from HTTP: the following Digest options (called
 "directives" in HTTP terminology) are unused (i.e., MUST NOT be sent,
 and MUST be ignored if received):

 opaque
 domain

 The size of a "digest-challenge" MUST be less than 2048 bytes.

2.1.2 Step Two

 The client validates "digest-challenge" as described in the previous
 section. In particular, when channel bindings are in use, client MUST
 reject "digest-challenge" that contain server nonce whose channel
 bindings do not match those of the actual underlying channel as
 observed by the client.

 The client makes note of the "digest-challenge" and then responds
 with a string formatted and computed according to the rules for a
 "digest-response" defined as follows:

 digest-response = 1#(username / realm / nonce / cnonce /

Melnikov (Ed.) Expires: September 2007 [Page 11]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 nonce-count / qop / digest-uri / response /
 response-v2 / client-maxbuf / charset / prep /
 cipher / authzid / auth-param)

 username = "username" "=" username-value
 username-value = quoted-string
 cnonce = "cnonce" "=" cnonce-value
 cnonce-value = nonce-value
 nonce-count = "nc" "=" nc-value
 nc-value = 8LHEX
 client-maxbuf = "maxbuf" "=" maxbuf-value
 qop = "qop" "=" qop-value
 digest-uri = "digest-uri" "="
 DQUOTE digest-uri-value DQUOTE
 digest-uri-value = serv-type "/" host ["/" serv-name]
 serv-type = 1*ALPHA
 serv-name = host
 prep = "prep" "=" prep-mech
 response = "response" "=" response-value
 response-v2 = "response-v2" "=" response-value
 response-value = 32LHEX
 LHEX = DIGIT / "a" / "b" /
 "c" / "d" / "e" / "f"
 cipher = "cipher" "=" cipher-value
 authzid = "authzid" "=" authzid-value
 authzid-value = quoted-string

 The 'host' non-terminal is defined in [RFC 3986] as

 host = IP-literal / IPv4address / reg-name

 username
 The user's name in the specified realm, encoded according to the
 value of the "charset" directive. This directive is REQUIRED and
 MUST be present exactly once; otherwise, authentication fails.

 <<If the "charset" directive is also specified (which means that
 the username is encoded as UTF-8) and the "prep" directive is not,
 the server behaves as described in RFC 2831. This mode of
 operation SHOULD be supported for backward compatibility with RFC

2831, however it is not required to be compliant with this
 specification.>>

 realm
 The realm containing the user's account, encoded according to the
 value of the "charset" directive. This directive MUST appear at
 most once and SHOULD contain one of the realms provided by the
 server in the "digest-challenge". If the directive is missing,

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc2831

Melnikov (Ed.) Expires: September 2007 [Page 12]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 "realm-value" will set to the empty string when computing A1 (see
 below for details).

 <<If the realm value was provided by the client, if the "charset"
 directive is also specified (which means that the realm is encoded
 as UTF-8) and the "prep" directive is not, the server behaves as
 described in RFC 2831. This mode of operation SHOULD be supported
 for backward compatibility with RFC 2831, however it is not
 required to be compliant with this specification.>>

 nonce
 The server-specified data string received in the preceding digest-
 challenge. This directive is required and MUST be present exactly
 once; otherwise, authentication fails.

 cnonce
 A client-specified string erstwhile intended to add entropy to the
 challenge. The cnonce field may be used to exchange channel
 binding data.

 This directive is required and MUST be present exactly once;
 otherwise, authentication fails.

 Older implementations typically generate some random or pseudo-
 random data and base64 [RFC 4648] or hexadecimally encode it.
 When channel binding is not used the cnonce string MUST be
 different each time a digest-challenge is sent as part of initial
 authentication. It is RECOMMENDED that the random data contain at
 least 64 bits of entropy.

 When channel binding is performed, the cnonce must be generated
 from: the channel type, the bindings to the channel being bound
 to, copy of the client selected qop, copy of the client selected
 cipher or cipher="" if none were selected (i.e. for qop=auth or
 qop=auth-int), and an actual nonce consisting of 64-bits or more
 of entropy and base64-encoded, and formatted as follows:

 "CB-" <channel type> ":" <channel bindings> ":" <qop-value> ":"
 [<cipher-value>] ":" <nonce octets>

 See [CHANNEL-BINDINGS] for the syntax of the channel binding data
 for various security protocols.

 An actual nonce is included in order to allow for channel bindings
 to possible future channels with channel bindings data which is
 not necessarily unique for each instance. It is used by both
 client and server to avoid chosen plaintext attacks, and to
 provide mutual authentication.

https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc4648

Melnikov (Ed.) Expires: September 2007 [Page 13]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 When channel bindings are in use, servers MUST reject responses
 that contain client nonce values of this form and whose channel
 bindings do not match those of the actual underlying channel as
 observed by the server. Also servers MUST reject responses that
 contain client nonce values of this form and that contain qop-list
 and/or cipher-list that don't match the values sent in the
 qop/cipher directives respectively.

 <<Add examples>>

 nonce-count
 The nc-value is the hexadecimal count of the number of requests
 (including the current request) that the client has sent with the
 nonce value in this request. For example, in the first request
 sent in response to a given nonce value, the client sends
 "nc=00000001". The purpose of this directive is to allow the
 server to detect request replays by maintaining its own copy of
 this count - if the same nc-value is seen twice, then the request
 is a replay. See the description below of the construction of the
 response value. This directive is required and MUST be present
 exactly once; otherwise, or if the value is 0, authentication
 fails.

 qop
 Indicates what "quality of protection" the client accepted. If
 present, it may appear exactly once and its value MUST be one of
 the alternatives in qop-options. If not present, it defaults to
 "auth". These values affect the computation of the response. Note
 that this is a single token, not a quoted list of alternatives.

 serv-type
 Indicates the type of service, such as "http" for web service,
 "ftp" for FTP service, "smtp" for mail delivery service, etc. The
 service name as defined in the SASL profile for the protocol see
 section 4 of [SASL], registered in the IANA registry of "service"
 elements for the GSSAPI host-based service name form [GSS-API].

 host
 The DNS host name or IP (IPv4 or IPv6) address for the service
 requested. The DNS host name must be the fully-qualified
 canonical name of the host. The DNS host name is the preferred
 form; see notes on server processing of the digest-uri.

 serv-name
 Indicates the name of the service if it is replicated. The service
 is considered to be replicated if the client's service-location
 process involves resolution using standard DNS lookup operations,
 and if these operations involve DNS records (such as SRV

Melnikov (Ed.) Expires: September 2007 [Page 14]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 [RFC-2782], or MX) which resolve one DNS name into a set of other
 DNS names. In this case, the initial name used by the client is
 the "serv-name", and the final name is the "host" component. For
 example, the incoming mail service for "example.com" may be
 replicated through the use of MX records stored in the DNS, one of
 which points at an SMTP server called "mail3.example.com"; it's
 "serv-name" would be "example.com", it's "host" would be
 "mail3.example.com". If the service is not replicated, or the
 serv-name is identical to the host, then the serv-name component
 MUST be omitted.

 digest-uri
 Indicates the principal name of the service with which the client
 wishes to connect, formed from the serv-type, host, and serv-name.
 For example, the FTP service on "ftp.example.com" would have a
 "digest-uri" value of "ftp/ftp.example.com"; the SMTP server from
 the example above would have a "digest-uri" value of
 "SMTP/mail3.example.com/example.com".

 Servers SHOULD check that the supplied value is correct. This will
 detect accidental connection to the incorrect server, as well as
 some redirection attacks. It is also so that clients will be
 trained to provide values that will work with implementations that
 use a shared back-end authentication service that can provide
 server authentication.

 The serv-type component should match the service being offered.
 The host component should match one of the host names of the host
 on which the service is running, or it's IP address. Servers
 SHOULD NOT normally support the IP address form, because server
 authentication by IP address is not very useful; they should only
 do so if the DNS is unavailable or unreliable. The serv-name
 component should match one of the service's configured service
 names.

 This directive is required and MUST be present exactly once; if
 multiple instances are present, the server MUST abort the
 authentication exchange.

 Note: In the HTTP use of Digest authentication, the digest-uri is
 the URI (usually a URL) of the resource requested -- hence the
 name of the directive.

 response
 A string of 32 hex digits computed as defined below, which proves
 that the user knows a password. This directive is REQUIRED and
 MUST be present exactly once; otherwise, authentication fails.

https://datatracker.ietf.org/doc/html/rfc2782

Melnikov (Ed.) Expires: September 2007 [Page 15]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 response-v2
 A string of 32 hex digits computed as defined below, which proves
 that the user knows a password. This directive MUST be present at
 most once; if it is present multiple times, then authentication
 fails. If during SS calculation (see section 2.1.2.1) preparation
 of the username and/or the password fails or results in an empty
 string (*), then the client MUST NOT send this directive. Also, if
 none of the values in the server's "prep-opts" directive is
 recognized, then this directive MUST NOT be sent.

 (*) In this case an interactive client can request a repeated
 entry of the username and/or the password.

 client-maxbuf
 A number indicating the size of the largest ciphertext buffer the
 client is able to receive when using "auth-int" or "auth-conf". If
 this directive is missing, the default value is 65536. This
 directive may appear at most once; if multiple instances are
 present, the server MUST abort the authentication exchange. If the
 value is less or equal to 16, or bigger than 16777215 (i.e.
 2**24-1), the server MUST abort the authentication exchange.

 Upon processing/sending of the client-maxbuf value both the server
 and the client calculate their "maximal ciphertext buffer size" as
 the minimum of the server-maxbuf (Step One) and the client-maxbuf
 (Step Two). The "maximal sender size" can be calculated by
 subtracting 16 from the calculated "maximal ciphertext buffer
 size".

 When sending a block of data the client/server MUST NOT pass more
 than the "maximal sender size" bytes of data to the selected
 protection function (2.3 or 2.4).

 charset
 This directive, if present, specifies that the client has used
 UTF-8 [UTF-8] encoding for the username, realm and password. If
 present, the username, realm and password are encoded as UTF-8
 [UTF-8]. If not present, the username, realm and password MUST be
 encoded in ISO 8859-1 [ISO-8859] (of which US-ASCII [USASCII] is a
 subset). The client should send this directive only if the server
 has indicated that it supports UTF-8 [UTF-8]. The directive is
 needed for backwards compatibility with HTTP Digest<<, which only
 supports ISO 8859-1>>.

 This directive may appear at most once; if multiple instances are
 present, the server MUST abort the authentication exchange.

 Note, that this directive doesn't affect the authorization

Melnikov (Ed.) Expires: September 2007 [Page 16]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 identity ("authzid").

 prep
 This directive, if present, specifies which username/password
 preparation algorithms has been used by the client when
 calculating response-v2. This directive MUST contain one of the
 values specified in the "prep-opts" directive from the digest-
 challenge, or authentication exchange fails. This document
 defines only a single possible value "rfc4013", which means
 support for [SASLPrep]. Future Standard Track or Experimantal
 documents may define other values for this directive. <<If this
 directive is missing, then the "response-v2" directive MUST be
 absent.>>

 <<This directive MUST be ignored, unless the "charset" directive
 is also present.>>

 <<Alternative: if this directive is present, but the "charset"
 directive is not, then charset=utf-8 is implied. However this
 might be bad when dealing with old (2831) servers which don't
 recognize the "prep" directive.>>

 This directive may appear at most once; if multiple instances are
 present, the server MUST abort the authentication exchange.

 LHEX
 32 hex digits, where the alphabetic characters MUST be lower case,
 because MD5 is case sensitive.

 cipher
 The cipher chosen by the client. This directive MUST appear
 exactly once if "auth-conf" is negotiated; if required and not
 present, authentication fails. If the cipher chosen by the client
 is not one of the ciphers advertised by the server, authentication
 fails.

 authzid
 The "authorization ID" (authzid) directive may appear at most
 once; if multiple instances are present, the server MUST abort the
 authentication exchange. If present, and the authenticating user
 has sufficient privilege, and the server supports it, then after
 authentication the server will use this identity for making all
 accesses and access checks. If the client specifies it, and the
 server does not support it, then the response-value calculated on
 the server will not match the one calculated on the client and
 authentication will fail.

 The authorization identifier is always in UTF-8, in particular the

https://datatracker.ietf.org/doc/html/rfc4013

Melnikov (Ed.) Expires: September 2007 [Page 17]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 "charset" directive doesn't affect how this value is encoded.

 The authzid MUST NOT be an empty string.

 Upon the receipt of this value the server verifies its correctness
 according to the used SASL protocol profile.

 The size of a digest-response MUST be less than 4096 bytes.

2.1.2.1 Response-value

 The definition of "response-value" above indicates the encoding for
 its value -- 32 lower case hex characters. The following definitions
 show how the value is computed.

 Note that the algorithm described below applies to both "response"
 and "response-v2" options. The only difference between the two is in
 how "SS" value is calculated.

 Although qop-value and components of digest-uri-value may be
 case-insensitive, the case which the client supplies in step two is
 preserved for the purpose of computing and verifying the
 response-value.

 response-value =
 HEX(KD (HEX(H(A1)),
 { unq(nonce-value), ":" nc-value, ":",
 unq(cnonce-value), ":", qop-value, ":",
 HEX(H(A2)) }))

 If authzid is specified, then A1 is

 A1 = { SS, ":", unq(nonce-value), ":",
 unq(cnonce-value), ":", unq(authzid-value) }

 If authzid is not specified, then A1 is

 A1 = { SS, ":", unq(nonce-value), ":", unq(cnonce-value) }

 where

 password = *OCTET

 For "response" option, SS is calculated as follows:

 SS = H({ unq(username-value), ":",
 unq(realm-value), ":", password })

Melnikov (Ed.) Expires: September 2007 [Page 18]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 For "response-v2" option, SS is calculated as follows:

 SS = H({ prep(unq(username-value)), ":",
 unq(realm-value)), ":", prep(password) })

 where prep(X) is the preparation function described by the "prep"
 directive.
 <<This assumes that both input and result are in UTF-8>>

 <<Note that client/server behavior in absence of the "prep-
 opts"/"prep" directive is described in RFC 2831. This behavior SHOULD
 be supported for backward compatibility with RFC 2831, however it is
 not required for compliance with this specification.>>

 If the "qop" directive's value is "auth", then A2 is:

 A2 = { "AUTHENTICATE:", digest-uri-value }

https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc2831

Melnikov (Ed.) Expires: September 2007 [Page 19]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 If the "qop" value is "auth-int" or "auth-conf" then A2 is:

 A2 = { "AUTHENTICATE:", digest-uri-value,
 ":00000000000000000000000000000000" }

 Note that "AUTHENTICATE:" must be in upper case, and the second
 string constant is a string with a colon followed by 32 zeros.

 These apparently strange values of A2 are for compatibility with
 HTTP; they were arrived at by setting "Method" to "AUTHENTICATE" and
 the hash of the entity body to zero in the HTTP digest calculation of
 A2.

 Also, in the HTTP usage of Digest, several directives in the
 "digest-challenge" sent by the server have to be returned by the
 client in the "digest-response". These are:

 opaque
 algorithm

 These directives are not needed when Digest is used as a SASL
 mechanism (i.e., MUST NOT be sent, and MUST be ignored if received).

2.1.3 Step Three

 The server receives and validates the "digest-response". In
 particular, the server verifies that all required directives are
 present and they don't appear more times than expected. See section

2.1.2 for details.

 The server also does the following checks:

 1) When channel bindings are in use, server MUST reject "digest-
 response" that contain client nonce whose channel bindings do not
 match those of the actual underlying channel as observed by the
 server.

 2) The server checks that the nonce-count is "00000001". If it
 supports subsequent authentication (see section 2.2), it saves the
 value of the "nonce-octets" part of the nonce and the nonce-count.

 3) The server verifies the received "response" and "response-v2"
 values. (Note that the "response-v2" might be absent). If either
 one of them matches the corresponding value calculated by the server,
 then the server can assume that the client proved that it knows its
 password.

 4) If the client sent the "authzid" directive, the server verifies

Melnikov (Ed.) Expires: September 2007 [Page 20]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 its correctness according to the used SASL protocol profile. If the
 "authzid" directive is not present or its correctness is verified,
 then the server can consider the client to be successfully
 authenticated.

 Upon successful client authentication the server sends a message
 formatted as follows:

 auth-info = 1#(response-auth / response-v2-auth / auth-param)

 response-auth = "rspauth" "=" response-value
 response-v2-auth = "rspauth-v2" "=" response-value

 where response-value is calculated as above (the "rspauth" is
 calculated as client's "response" and the "rspauth-v2" is calculated
 as client's "response-v2"), using the values sent in step two, except
 that if qop is "auth", then A2 is

 A2 = { ":", digest-uri-value }

 And if qop is "auth-int" or "auth-conf" then A2 is

 A2 = { ":", digest-uri-value,
 ":00000000000000000000000000000000" }

 The server sends one of response-auth, response-v2-auth, depending on
 whether it was able to match client's "response" or "response-v2".
 Note that only one occurance of the "response-auth"/"response-
 v2-auth" is allowed. If more than one is found, the client MUST
 treat this as an authentication error.

 Compared to its use in HTTP, the following Digest directives in the
 "auth-info" are unused:

 nextnonce
 qop
 cnonce
 nonce-count

 The size of an auth-info MUST be less than 2048 bytes.

2.2 Subsequent Authentication

 If the client has previously authenticated to the server, and
 remembers the values of username, realm, nonce, nonce-count, cnonce,
 and qop that it used in that authentication, and the SASL profile for
 a protocol permits an initial client response, then it MAY perform
 "subsequent authentication" (also known as "fast reauthentication"),

Melnikov (Ed.) Expires: September 2007 [Page 21]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 as defined in this section. Note, that a subsequent authentication
 can be done on a different connection, or on the same connection, if
 the protocol profile also permits multiple authentications.

2.2.1 Step one

 The client uses the values from the previous authentication and sends
 an initial response with a string formatted and computed according to
 the rules for a "digest-response", as defined in section 2.1.2, after
 applying the following changes:

 1) the nonce-count value is one greater than used in the last
 "digest-response"

 2) if nonce/cnonce values contained any channel bindings information,
 it
 MUST be replaced with the channel bindings, qop and cipher lists
 relevant
 for the new connection.
 In other words, only the "nonce-octets" part of nonce/cnonce
 "nonce-data"
 MUST be preserved on reauthentication.

2.2.2 Step Two

 The server receives the "digest-response". If the server does not
 support subsequent authentication, then it sends a
 "digest-challenge", and authentication proceeds as in initial
 authentication. If the server has no saved nonce, cnone and nonce-
 count from a previous authentication, then it sends a "digest-
 challenge", and authentication proceeds as in initial authentication.
 Otherwise, the server validates the "digest-response"; checks that
 values of the username, the realm, the qop and nonce-octets part of
 the nonce and the cnonce are the same as in the original
 authentication attempt; checks that the nonce-count is one greater
 than that used in the previous authentication using that nonce, and
 saves the new value of nonce-count.

 If the response is invalid, then the server sends a
 "digest-challenge", and authentication proceeds as in initial
 authentication (and should be configurable to log an authentication
 failure in some sort of security audit log, since the failure may be
 a symptom of an attack). The nonce-count MUST NOT be incremented in
 this case: to do so would allow a denial of service attack by sending
 an out-of-order nonce-count.

 If the response is valid, the server MAY choose to deem that
 authentication has succeeded. However, if it has been too long since

Melnikov (Ed.) Expires: September 2007 [Page 22]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 the previous authentication, or for any other reason, the server MAY
 send a new "digest-challenge" with a new value for nonce. The
 challenge MAY contain a "stale" directive with value "true", which
 says that the client may respond to the challenge using the password
 it used in the previous response; otherwise, the client must solicit
 the password anew from the user. This permits the server to make sure
 that the user has presented their password recently. (The directive
 name refers to the previous nonce being stale, not to the last use of
 the password.) Except for the handling of "stale", after sending the
 "digest-challenge" authentication proceeds as in the case of initial
 authentication.

2.3 Integrity Protection

 If the server offered "qop=auth-int" and the client responded
 "qop=auth-int", then subsequent messages, up to but not including the
 next subsequent authentication, between the client and the server
 MUST be integrity protected. Using as a base session key the value of
 H(A1), as defined above the client and server calculate a pair of
 message integrity keys as follows.

 The key for integrity protecting messages from client to server is:

 Kic = H({H(A1),
 "Digest session key to client-to-server signing key magic constant"})

 The key for integrity protecting messages from server to client is:

 Kis = H({H(A1),
 "Digest session key to server-to-client signing key magic constant"})

 where MD5 is as specified in [RFC 1321]. If message integrity is
 negotiated, a MAC block for each message is appended to the message.
 The MAC block is 16 bytes: the first 10 bytes of the HMAC-MD5 [RFC
 2104] of the message, a 2-byte message type number in network byte
 order with value 1, and the 4-byte sequence number in network byte
 order. The message type is to allow for future extensions such as
 rekeying.

 MAC(Ki, SeqNum, msg) = (HMAC(Ki, {SeqNum, msg})[0..9], 0x0001,
 SeqNum)

 where Ki is Kic for messages sent by the client and Kis for those
 sent by the server. The sequence number (SeqNum) is an unsigned
 number initialized to zero after initial or subsequent
 authentication, and incremented by one for each message
 sent/successfully verified. (Note, that there are two independent
 counters for sending and receiving.) The sequence number wraps around

https://datatracker.ietf.org/doc/html/rfc1321

Melnikov (Ed.) Expires: September 2007 [Page 23]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 to 0 after 2**32-1.

 Upon receipt, MAC(Ki, SeqNum, msg) is computed and compared with the
 received value; the message is discarded if they differ and as the
 result the connection being used MUST be dropped. The receiver's
 sequence counter is incremented if they match.

2.4 Confidentiality Protection

 If the server sent a "cipher-opts" directive and the client responded
 with a "cipher" directive, then subsequent messages between the
 client and the server MUST be confidentiality protected. Using as a
 base session key the value of H(A1) as defined above the client and
 server calculate a pair of message integrity keys as follows.

 The key for confidentiality protecting messages from client to server
 is:

 Kcc = H({H(A1)[0..n-1],
 "Digest H(A1) to client-to-server sealing key magic constant"})

 The key for confidentiality protecting messages from server to client
 is:

 Kcs = H({H(A1)[0..n-1],
 "Digest H(A1) to server-to-client sealing key magic constant"})

 where MD5 is as specified in [RFC 1321]. For cipher "rc4-40" n is 5;
 for "rc4-56" n is 7; for the rest n is 16. The key for the "rc4-*"
 and "aes-ctr" ciphers is all 16 bytes of Kcc or Kcs.

 "aes-ctr" cipher works as described in section 2.4.1.

 rc4 cipher state MUST NOT be reset before sending/receiving a next
 buffer of protected data.

 If the blocksize of the chosen cipher is not 1 byte, the padding
 prefix is one or more octets each containing the number of padding
 bytes, such that the total length of the encrypted part of the
 message is a multiple of the blocksize.

 The MAC block is 16 bytes formatted as follows: the first 10 bytes of
 the HMAC-MD5 [RFC 2104] of the message, a 2-byte message type number
 in network byte order with value 1, and the 4-byte sequence number in
 network byte order.

 The padding and first 10 bytes of the MAC block are encrypted with

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

Melnikov (Ed.) Expires: September 2007 [Page 24]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 the chosen cipher along with the message.

 SEAL(Ki, Kc, SeqNum, msg) = CIPHER(Kc, {msg, pad, MAC})

 MAC(Ki, SeqNum, msg) = {HMAC(Ki, {SeqNum, msg})[0..9],
 packet_type_data, SeqNum}

 packet_type_data = 0x0001

 where CIPHER is the chosen cipher, Ki and Kc are Kic and Kcc for
 messages sent by the client and Kis and Kcs for those sent by the
 server. The sequence number (SeqNum) is an unsigned number
 initialized to zero after initial or subsequent authentication, and
 incremented by one for each message sent/successfully verified.
 (Note, that there are two independent counters for sending and
 receiving.) The sequence number wraps around to 0 after 2**32-1.

 Upon receipt, the message is decrypted, HMAC(Ki, {SeqNum, msg}) is
 computed and compared with the received value; the padding and the
 packet type are verified. The message is discarded if the received
 and the calculated HMACs differ and/or the padding is invalid. See
 also section 3.8 for important information about MAC and padding
 verification. The receiver's sequence counter is then compared with
 the received SeqNum value; the message is discarded if they differ
 and, as the result, the connection being used MUST be dropped. The
 receiver's sequence counter is incremented if they match.

2.4.1 AES cipher in "stateful-decryption counter" mode ("aes-ctr")

 In stateful-decryption counter mode, both the sender and the receiver
 maintain an internal 128-bit counter CTRBLK.

 The initial value of the CTRLBLK is calculated as follows:

 The counter for the first SASL packet going from the client
 to the server consists of 16 bytes calculated as follows:

 CTRBLK = H({H(A1), "aes-128 counter client-to-server", nc-value})

 The counter for the first SASL packet going from the server
 to the client consists of 16 bytes calculated as follows:

 CTRBLK = H({H(A1), "aes-128 counter server-to-client", nc-value})

 <<An alternative is to add a new option containing 128bit of random
 data, which is sent with successful authentication and is used to
 construct the initial counter.>>

Melnikov (Ed.) Expires: September 2007 [Page 25]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 For each buffer of cleartext data to be encrypted the sender performs
 the following procedure:

 1) padding and MAC block are constructed (see section 2.4) and
 appended to the end of the plaintext. After this step the data
 to be encrypted will look like:

 {msg, pad, MAC}

 As the total length of the data will be multiple of AES block size
 (i.e. 128 bit), this can also be represented as

 {P[1], P[2], P[3], ..., P[m]}

 where P[i] is a chunk of data of the length 128 bit.

 2) Data is encrypted as follows:

 FOR i := 1 to m DO
 E[i] := P[i] XOR CIPHER (Kc, CTRBLK)
 CTRBLK := CTRBLK + 1
 END

 This will generate ciphertext {E[1], ..., E[m]} to be sent as a
 single
 SASL packet.

 The initial CTRBLK value is constructed as described at the
 beginning of
 this section. The last CTRBLK value produced after encrypting P[m]
 is
 used to encrypt the first 128bit chunk of the next sent SASL
 packet
 (if any), end so on.

 If CTRBLK = (2**128)-1, then "CTRBLK + 1" has the traditional
 semantics of "set CTRBLK to 0."

 The receiver performs the following steps:

 1) Data is decrypted as follows:

 FOR i := 1 to m DO
 P[i] := E[i] XOR CIPHER (Kc, CTRBLK)
 CTRBLK := CTRBLK + 1
 END

Melnikov (Ed.) Expires: September 2007 [Page 26]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 This will generate plaintext {P[1], ..., P[m]}, which is
 {msg, pad, MAC}.

 The initial CTRBLK value is constructed as described at the
 beginning of
 this section. The last CTRBLK value produced after decrypting P[m]
 is used to decrypt the first 128bit chunk of the next received
 SASL packet
 (if any), end so on.

 If CTRBLK = (2**128)-1, then "CTRBLK + 1" has the traditional
 semantics of "set CTRBLK to 0."

 2) pad and MAC block are verified as described in section 2.4.

Melnikov (Ed.) Expires: September 2007 [Page 27]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

3 Security Considerations

 General SASL security considerations apply to this mechanism.
 "stringprep" and Unicode security considerations also apply.

 Detailed discussion of other DIGEST-MD5 specific security issues is
 below.

3.1 Authentication of Clients using Digest Authentication

 Digest Authentication does not provide a strong authentication
 mechanism, when compared to public key based mechanisms, for example.
 However, since it prevents chosen plaintext attacks, it is stronger
 than (e.g.) CRAM-MD5, which has been proposed for use with ACAP
 [RFC-2244], POP and IMAP [RFC 2195]. It is intended to replace the
 much weaker and even more dangerous use of plaintext passwords;
 however, since it is still a password based mechanism it avoids some
 of the potential deployability issues with public-key, OTP or similar
 mechanisms.

 Digest Authentication offers no confidentiality protection beyond
 protecting the actual password. All of the rest of the challenge and
 response are available to an eavesdropper, including the user's name
 and authentication realm.

3.2 Comparison of Digest with Plaintext Passwords

 The greatest threat to the type of transactions for which these
 protocols are used is network snooping. This kind of transaction
 might involve, for example, online access to a mail service whose use
 is restricted to paying subscribers. With plaintext password
 authentication an eavesdropper can obtain the password of the user.
 This not only permits him to access anything in the database, but,
 often worse, will permit access to anything else the user protects
 with the same password.

3.3 Replay Attacks

 Replay attacks are defeated if the client or the server chooses a
 fresh nonce for each authentication, as this specification requires.

 As a security precaution, the server, when verifying a response from
 the client, must use the original server nonce ("nonce") it sent, not
 the one returned by the client in the response, as it might have been
 modified by an attacker.

 To prevent some redirection attacks it is recommended that the server
 verifies that the "serv-type" part of the "digest-uri" matches the

https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2195

Melnikov (Ed.) Expires: September 2007 [Page 28]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 service name and that the hostname/IP address belongs to the server.

3.4 Online dictionary attacks

 If the attacker can eavesdrop, then it can test any overheard
 nonce/response pairs against a (potentially very large) list of
 common words. Such a list is usually much smaller than the total
 number of possible passwords. The cost of computing the response for
 each password on the list is paid once for each challenge.

 The server can mitigate this attack by not allowing users to select
 passwords that are in a dictionary.

3.5 Offline dictionary attacks

 If the attacker can choose the challenge, then it can precompute the
 possible responses to that challenge for a list of common words. Such
 a list is usually much smaller than the total number of possible
 passwords. The cost of computing the response for each password on
 the list is paid just once.

 Offline dictionary attacks are defeated if the client chooses a fresh
 nonce for each authentication, as this specification requires.

3.6 Man in the Middle

 Digest authentication is vulnerable to "man in the middle" (MITM)
 attacks. Clearly, a MITM would present all the problems of
 eavesdropping. But it also offers some additional opportunities to
 the attacker.

 A possible man-in-the-middle attack would be to substitute a weaker
 qop scheme for the one(s) sent by the server; the server will not be
 able to detect this attack. For this reason, the client should always
 use the strongest scheme that it understands from the choices
 offered, and should never choose a scheme that does not meet its
 minimum requirements.

 A man-in-the-middle attack may also make the client and the server
 that agreed to use confidentiality protection to use different (and
 possibly weaker) cipher's. This is because the chosen cipher is not
 used in the shared secret calculation.

3.7 Chosen plaintext attacks

 A chosen plaintext attack is where a MITM or a malicious server can
 arbitrarily choose the challenge that the client will use to compute
 the response. The ability to choose the challenge is known to make

Melnikov (Ed.) Expires: September 2007 [Page 29]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 cryptanalysis much easier [MD5].

 However, Digest does not permit the attack to choose the challenge as
 long as the client chooses a fresh nonce for each authentication, as
 this specification requires.

3.8 Attacks on padding

 In the past, implementations that treated bad padding differently
 from bad MACs during decryption were subject to different attacks.
 Note that such attacks are known for block ciphers in CBC mode, e.g.
 [VAUDENAY]. Even though this document doesn't define any ciphers in
 CBC mode, similar attacks might be used in the future against other
 ciphers.

 In order to mitigate risks of such attacks, it is recommended that
 implementations don't skip MAC verification when bad padding is found
 in order to obtain (nearly) uniform timing of sending failure
 responses.

3.9 Spoofing by Counterfeit Servers

 If a user can be led to believe that she is connecting to a host
 containing information protected by a password she knows, when in
 fact she is connecting to a hostile server, then the hostile server
 can obtain challenge/response pairs where it was able to partly
 choose the challenge. There is no known way that this can be
 exploited.

3.10 Storing passwords

 Digest authentication requires that the authenticating agent (usually
 the server) store some data derived from the user's name and password
 in a "password file" associated with a given realm. Normally this
 might contain pairs consisting of username and H({ username-value,
 ":", realm-value, ":", password }), which is adequate to compute
 H(A1) as described above without directly exposing the user's
 password.

 The security implications of this are that if this password file is
 compromised, then an attacker gains immediate access to documents on
 the server using this realm. Unlike, say a standard UNIX password
 file, this information need not be decrypted in order to access
 documents in the server realm associated with this file. On the other
 hand, decryption, or more likely a brute force attack, would be
 necessary to obtain the user's password. This is the reason that the
 realm is part of the digested data stored in the password file. It
 means that if one Digest authentication password file is compromised,

Melnikov (Ed.) Expires: September 2007 [Page 30]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 it does not automatically compromise others with the same username
 and password (though it does expose them to brute force attack).

 There are two important security consequences of this. First the
 password file must be protected as if it contained plaintext
 passwords, because for the purpose of accessing documents in its
 realm, it effectively does.

 A second consequence of this is that the realm string should be
 unique among all realms that any single user is likely to use. In
 particular a realm string should include the name of the host doing
 the authentication.

Melnikov (Ed.) Expires: September 2007 [Page 31]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

3.11 Multiple realms

 Use of multiple realms may mean both that compromise of a the
 security database for a single realm does not compromise all
 security, and that there are more things to protect in order to keep
 the whole system secure.

3.11 Summary

 By modern cryptographic standards Digest Authentication is weak,
 compared to (say) public key based mechanisms. But for a large range
 of purposes it is valuable as a replacement for plaintext passwords.
 Its strength may vary depending on the implementation.

4 Example

 This example shows the use of the Digest SASL mechanism with the
 IMAP4 AUTHENTICATE command [RFC 3501].

 In this example, "C:" and "S:" represent a line sent by the client or
 server respectively including a CRLF at the end. Linebreaks and
 indentation within a "C:" or "S:" are editorial and not part of the
 protocol. The password in this example was "secret". Note that the
 base64 encoding of the challenges and responses is part of the IMAP4
 AUTHENTICATE command, not part of the Digest specification itself.

 S: * OK elwood.innosoft.com PMDF IMAP4rev1 V6.0-9
 C: c CAPABILITY
 S: * CAPABILITY IMAP4 IMAP4rev1 ACL LITERAL+ NAMESPACE QUOTA
 UIDPLUS AUTH=CRAM-MD5 AUTH=DIGEST-MD5 AUTH=PLAIN
 S: c OK Completed
 C: a AUTHENTICATE DIGEST-MD5
 S: + cmVhbG09ImVsd29vZC5pbm5vc29mdC5jb20iLG5vbmNlPSJPQTZNRzl0
 RVFHbTJoaCIscW9wPSJhdXRoIixhbGdvcml0aG09bWQ1LXNlc3MsY2hh
 cnNldD11dGYtOA==
 C: Y2hhcnNldD11dGYtOCx1c2VybmFtZT0iY2hyaXMiLHJlYWxtPSJlbHdvb2
 QuaW5ub3NvZnQuY29tIixub25jZT0iT0E2TUc5dEVRR20yaGgiLG5jPTAw
 MDAwMDAxLGNub25jZT0iT0E2TUhYaDZWcVRyUmsiLGRpZ2VzdC11cmk9Im
 ltYXAvZWx3b29kLmlubm9zb2Z0LmNvbSIscmVzcG9uc2U9ZDM4OGRhZDkw
 ZDRiYmQ3NjBhMTUyMzIxZjIxNDNhZjcscW9wPWF1dGg=
 S: + cnNwYXV0aD1lYTQwZjYwMzM1YzQyN2I1NTI3Yjg0ZGJhYmNkZmZmZA==
 C:
 S: a OK User logged in

 The base64-decoded version of the SASL exchange is:

https://datatracker.ietf.org/doc/html/rfc3501

Melnikov (Ed.) Expires: September 2007 [Page 32]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 S: realm="elwood.innosoft.com",nonce="OA6MG9tEQGm2hh",qop="auth",
 algorithm=md5-sess,charset=utf-8
 C: charset=utf-8,username="chris",realm="elwood.innosoft.com",
 nonce="OA6MG9tEQGm2hh",nc=00000001,cnonce="OA6MHXh6VqTrRk",
 digest-uri="imap/elwood.innosoft.com",
 response=d388dad90d4bbd760a152321f2143af7,qop=auth
 S: rspauth=ea40f60335c427b5527b84dbabcdfffd

 The password in this example was "secret".

 This example shows the use of the Digest SASL mechanism with the
 ACAP, using the same notational conventions and password as in the
 previous example. Note that ACAP does not base64 encode and uses
 fewer round trips that IMAP4.

 S: * ACAP (IMPLEMENTATION "Test ACAP server") (SASL "CRAM-MD5"
 "DIGEST-MD5" "PLAIN")
 C: a AUTHENTICATE "DIGEST-MD5"
 S: + {94}
 S: realm="elwood.innosoft.com",nonce="OA9BSXrbuRhWay",qop="auth",
 algorithm=md5-sess,charset=utf-8
 C: {206}
 C: charset=utf-8,username="chris",realm="elwood.innosoft.com",
 nonce="OA9BSXrbuRhWay",nc=00000001,cnonce="OA9BSuZWMSpW8m",
 digest-uri="acap/elwood.innosoft.com",
 response=6084c6db3fede7352c551284490fd0fc,qop=auth
 S: a OK (SASL {40}
 S: rspauth=2f0b3d7c3c2e486600ef710726aa2eae) "AUTHENTICATE
 Completed"

 The server uses the values of all the directives, plus knowledge of
 the users password (or the hash of the user's name, server's realm
 and the user's password) to verify the computations above. If they
 check, then the user has authenticated.

Melnikov (Ed.) Expires: September 2007 [Page 33]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

5 References

5.1 Normative references

 [Digest] Franks, J., et al., "HTTP Authentication: Basic and Digest
 Access Authentication", RFC 2617, June 1999.

 [ISO-8859] ISO-8859. International Standard--Information Processing--
 8-bit Single-Byte Coded Graphic Character Sets --
 Part 1: Latin alphabet No. 1, ISO-8859-1:1987.
 Part 2: Latin alphabet No. 2, ISO-8859-2, 1987.
 Part 3: Latin alphabet No. 3, ISO-8859-3, 1988.
 Part 4: Latin alphabet No. 4, ISO-8859-4, 1988.
 Part 5: Latin/Cyrillic alphabet, ISO-8859-5, 1988.
 Part 6: Latin/Arabic alphabet, ISO-8859-6, 1987.
 Part 7: Latin/Greek alphabet, ISO-8859-7, 1987.
 Part 8: Latin/Hebrew alphabet, ISO-8859-8, 1988.
 Part 9: Latin alphabet No. 5, ISO-8859-9, 1990.

 [RFC 1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC 2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SASL] Melnikov, A. (editor) and K. Zeilenga "Simple Authentication
 and Security Layer (SASL)", RFC 4422, June 2006.

 [RFC 3454] Hoffman, P., Blanchet, M., "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [Unicode] The Unicode Consortium, "The Unicode Standard, Version
 3.2.0", defined by: The Unicode Standard, Version 3.0
 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5),
 as amended by the Unicode Standard Annex #28: Unicode 3.2
 (http://www.unicode.org/reports/tr28/tr28-3.html).

 [UTF-8] Yergeau, "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

 [USASCII] US-ASCII. Coded Character Set - 7-Bit American Standard
 Code for Information Interchange. Standard ANSI X3.4-1986,
 ANSI, 1986.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc3454
http://www.unicode.org/reports/tr28/tr28-3.html
https://datatracker.ietf.org/doc/html/rfc3629

Melnikov (Ed.) Expires: September 2007 [Page 34]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 [SASLPrep] Zeilenga, K., "SASLprep: Stringprep profile for user names
 and passwords", RFC 4013, February 2005.

 [RFC 3986] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", RFC 3986,
 January 2005.

 [AES] Daemen, J., Rijmen, V., "The Rijndael Block Cipher",
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf,

 3rd September 1999.

 [GSS-API] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [ABNF] Crocker, D. (Ed.) and P. Overell , "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [CHANNEL-BINDINGS] Williams, N., "On the Use of Channel Bindings to
 Secure Channels", work in progress, draft-williams-on-

channel-binding-00.txt.

5.2 Informative references

 [RFC-2782] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC 2195] Klensin, J., Catoe, R. and P. Krumviede, "IMAP/POP
 AUTHorize Extension for Simple Challenge/Response", RFC

2195, September 1997.

 [MD5] Kaliski, B.,Robshaw, M., "Message Authentication with
 MD5", CryptoBytes, Sping 1995, RSA Inc,
 (ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto1n1.pdf)

 [RFC 3501] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 3501, March 2003.

 [RFC-2244] Newman, C., Myers, J., "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [RFC 2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., Berners-Lee, T., "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [VAUDENAY] Serge Vaudenay, "Security Flaws Induced by CBC Padding -
 Applications to SSL, IPSEC, WTLS ...". L.R. Knudsen (Ed.):
 EUROCRYPT 2002, LNCS 2332, pp. 534-545, 2002.

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3986
http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/draft-williams-on-channel-binding-00.txt
https://datatracker.ietf.org/doc/html/draft-williams-on-channel-binding-00.txt
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc2195
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto1n1.pdf
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2616

Melnikov (Ed.) Expires: September 2007 [Page 35]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 [RFC 4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [IANA-SASL] IANA, "SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL)
 MECHANISMS", <http://www.iana.org/assignments/sasl-

mechanisms>.

Melnikov (Ed.) Expires: September 2007 [Page 36]

https://datatracker.ietf.org/doc/html/rfc4648
http://www.iana.org/assignments/sasl-mechanisms
http://www.iana.org/assignments/sasl-mechanisms

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

6 IANA Considerations

 It is requested that the SASL Mechanism registry [IANA-SASL] entry
 for the DIGEST-MD5 mechanism be updated to reflect that this document
 now provides its technical specification.

 To: iana@iana.org
 Subject: Updated Registration of SASL mechanism DIGEST-MD5

 Family of SASL mechanisms: NO
 SASL mechanism name: DIGEST-MD5
 Security considerations: See RFC XXXX.
 Published specification (optional, recommended): RFC XXXX
 Person & email address to contact for further information:
 Alexey Melnikov <alexey.melnikov@isode.com>
 IETF SASL WG <ietf-sasl@imc.org>
 Intended usage: COMMON
 Author/Change controller: IESG <iesg@ietf.org>
 Note: Updates existing entry for DIGEST-MD5

Melnikov (Ed.) Expires: September 2007 [Page 37]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

7 HBNF

 <<What follows is the definition of the notation as is used in the
 HTTP/1.1 specification [RFC 2616] and the HTTP authentication
 specification [Digest]; it is reproduced here for ease of reference.
 Since it is intended that a single Digest implementation can support
 both HTTP and SASL-based protocols, the same notation is used in both
 to facilitate comparison and prevention of unwanted differences.
 Since it is cut-and-paste from the HTTP specifications, not all
 productions may be used in this specification.>>

7.1 EnHanced BNF

 All of the mechanisms specified in this document are described in
 both prose and an EnHanced Backus-Naur Form (HBNF) which is a
 superset of the ABNF defined in [ABNF]. The Enhanced BNF used by this
 document defines the following extra syntactic rule:

 #rule
 A construct "#" is defined, similar to "*", for defining lists of
 elements. The full form is "<n>#<m>element" indicating at least
 <n> and at most <m> elements, each separated by one or more commas
 (",") and OPTIONAL linear white space (LWSP). This makes the usual
 form of lists very easy; a rule such as
 (LWSP element *(LWSP "," LWSP [element]) LWSP)
 can be shown as
 1#element
 Wherever this construct is used, null elements are allowed, but do
 not contribute to the count of elements present. That is,
 "(element), , (element) " is permitted, but counts as only two
 elements. Therefore, where at least one element is required, at
 least one non-null element MUST be present. Default values are 0
 and infinity so that "#element" allows any number, including zero;
 "1#element" requires at least one; and "1#2element" allows one or
 two.

 Other differences from [ABNF]:

 implied LWSP
 The grammar described by this specification is word-based. Except
 where noted otherwise, linear white space (LWSP) can be included
 between any two adjacent words (token or quoted-string), and
 between adjacent words and separators, without changing the
 interpretation of a field. At least one delimiter (LWSP and/or
 separators) MUST exist between any two tokens (for the definition
 of "token" below), since they would otherwise be interpreted as a
 single token.

https://datatracker.ietf.org/doc/html/rfc2616

Melnikov (Ed.) Expires: September 2007 [Page 38]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 Implementations SHOULD NOT insert LWSP when generating challenges/
 responses, but MUST accept them in any received data.
7.2 Basic Rules

 The following rules are used throughout this specification to
 describe basic parsing constructs. The US-ASCII coded character set
 is defined by ANSI X3.4-1986 [USASCII]. Non-terminals not defined in
 this document can be found in [ABNF].

 TEXTCHAR = <any OCTET except CTLs, but including HTAB>

 All linear white space, including folding, has the same semantics as
 SP. A recipient MAY replace any linear white space with a single SP
 before interpreting the field value or forwarding the message
 downstream.

 LWSP = *(WSP / CRLF WSP)

 Many HTTP/1.1 header field values consist of words separated by LWSP
 or special characters. These special characters MUST be in a quoted
 string to be used within a parameter value.

 token = 1*TOKENCHAR
 BACKSLASH = %x5C
 ; character
 separators = "(" / ")" / "<" / ">" / "@"
 / "," / ";" / ":" / BACKSLASH / DQUOTE
 / "/" / "[" / "]" / "?" / "="
 / "{" / "}" / SP / HTAB
 TOKENCHAR = <any CHAR except CTLs or separators>

 A string of text is parsed as a single word if it is quoted using
 double-quote marks.

 quoted-string = DQUOTE qdstr-val DQUOTE
 qdstr-val = *(qdtext / quoted-pair)
 qdtext = <any TEXTCHAR except DQUOTE and BACKSLASH>

 Note that LWSP is NOT implicit between the double-quote marks
 (DQUOTE) surrounding a qdstr-val and the qdstr-val; any LWSP will be
 considered part of the qdstr-val. This is also the case for
 quotation marks surrounding any other construct.

 The backslash character (BACKSLASH) MAY be used as a single-character
 quoting mechanism only within qdstr-val and comment constructs.

 quoted-pair = BACKSLASH CHAR

Melnikov (Ed.) Expires: September 2007 [Page 39]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 The value of this construct is CHAR. Note that an effect of this rule
 is that backslash itself MUST be quoted.

7.3 Collected grammar in ABNF

 <<This section is Informative in this revision. It was not checked
 for correctness.>>

 ;;; 2.1.1 Step One

 digest-challenge = LWSP d-c-e *(LWSP "," LWSP [d-c-e]) LWSP
 d-c-e = realm / nonce / qop-options / stale
 / server-maxbuf / charset / prep-opts / algorithm
 / cipher-opts / auth-param

 realm = "realm" EQU realm-value
 realm-value = quoted-string
 nonce = "nonce" EQU nonce-value
 nonce-value = quoted-string
 ;; contains data described by "nonce-data"
 qop-options = "qop" EQU DQUOTE qop-list DQUOTE
 qop-list = LWSP qop-value *(LWSP "," LWSP [qop-value]) LWSP
 qop-value = "auth" / "auth-int" / "auth-conf" /
 qop-token
 ;; qop-token is reserved for identifying
 ;; future extensions to DIGEST-MD5
 qop-token = token
 stale = "stale" EQU "true"
 server-maxbuf = "maxbuf" EQU maxbuf-value
 maxbuf-value = 1*DIGIT
 charset = "charset" EQU "utf-8"
 prep-opts = "prep" EQU DQUOTE prep-mechs DQUOTE
 prep-mechs = LWSP prep-mech *(LWSP "," LWSP [prep-mech]) LWSP
 prep-mech = "rfc4013"
 algorithm = "algorithm" EQU "md5-sess"
 cipher-opts = "cipher" EQU DQUOTE cipher-list DQUOTE
 cipher-list = LWSP cipher-value
 *(LWSP "," LWSP [cipher-value]) LWSP
 cipher-value = "rc4-40" / "rc4" / "rc4-56" /
 "aes-ctr" / cipher-token
 ;; cipher-token is reserved for
 ;; new ciphersuites
 cipher-token = token
 auth-param = token EQU (token / quoted-string)
 nonce-data = new-nonce-data / obs-nonce-data
 new-nonce-data = "CB-" channel-type ":" channel-bindings
 ":" qop-list ":" cipher-list
 ":" nonce-octets

https://datatracker.ietf.org/doc/html/rfc4013

Melnikov (Ed.) Expires: September 2007 [Page 40]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 obs-nonce-data = nonce-octets
 ;; nonce value as defined in RFC 2831.
 ;; SHOULD be accepted. MUST NOT be
 ;; generated.
 channel-type = "TLS" / channel-type-ext
 ;; Should be taken from
 ;; [CHANNEL-BINDINGS].
 channel-type-ext = 1*(ALPHA / DIGIT)
 ;; for future channel bindings>>
 channel-bindings = 1*TEXTCHAR
 ;; channel binding data as defined by
 ;; the channel type

 nonce-octets = 1*TEXTCHAR

 ;;; 2.1.2 Step Two

 digest-response = LWSP d-r-e *(LWSP "," LWSP [d-r-e]) LWSP
 d-r-e = username / realm / nonce / cnonce
 / nonce-count / qop / digest-uri / response
 / response-v2 / client-maxbuf / charset
 / prep / cipher / authzid / auth-param

 username = "username" EQU username-value
 username-value = quoted-string
 cnonce = "cnonce" EQU cnonce-value
 cnonce-value = nonce-value
 nonce-count = "nc" EQU nc-value
 nc-value = 8LHEX
 client-maxbuf = "maxbuf" EQU maxbuf-value
 qop = "qop" EQU qop-value
 digest-uri = "digest-uri" EQU
 DQUOTE digest-uri-value DQUOTE
 digest-uri-value = serv-type "/" host ["/" serv-name]
 serv-type = 1*ALPHA
 serv-name = host
 prep = "prep" EQU prep-mech
 response = "response" EQU response-value
 response-v2 = "response-v2" EQU response-value
 response-value = 32LHEX
 LHEX = DIGIT / "a" / "b" /
 "c" / "d" / "e" / "f"
 cipher = "cipher" EQU cipher-value
 authzid = "authzid" EQU authzid-value
 authzid-value = quoted-string

 host = IP-literal / IPv4address / reg-name
 IP-literal = <see RFC 3986>

https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc3986

Melnikov (Ed.) Expires: September 2007 [Page 41]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 IPv4address = <see RFC 3986>
 reg-name = <see RFC 3986>

 ;;; 2.1.2.1 Response-value

 password = *OCTET

 ;;; 2.1.3 Step Three

 auth-info = LWSP a-i-e *(LWSP "," LWSP [a-i-e]) LWSP
 a-i-e = response-auth / response-v2-auth / auth-param

 response-auth = "rspauth" EQU response-value
 response-v2-auth = "rspauth-v2" EQU response-value

 ;;; 7.2 Basic rules

 TEXTCHAR = HTAB / %x20-7E / %x80-FF
 LWSP = *(WSP / CRLF WSP)

 token = 1*TOKENCHAR
 BACKSLASH = %x5C
 ; character
 separators = "(" / ")" / "<" / ">" / "@"
 / "," / ";" / ":" / BACKSLASH / DQUOTE
 / "/" / "[" / "]" / "?" / "="
 / "{" / "}" / SP / HTAB
 TOKENCHAR = <any CHAR except CTLs or separators>

 quoted-string = DQUOTE qdstr-val DQUOTE
 qdstr-val = *(qdtext / quoted-pair)
 qdtext = HTAB / %x20-21 / %x23-5B / %x5D-7E / %x80-FF

 quoted-pair = BACKSLASH CHAR

 EQU = LWSP "=" LWSP

 ;;; The following non-terminals were imported from RFC 4234:
 ;;DIGIT, DQUOTE, ALPHA, OCTET, WSP, CRLF, HTAB, SP, CHAR and CTL

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4234

Melnikov (Ed.) Expires: September 2007 [Page 42]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

8 Authors' Addresses

 Paul Leach
 Microsoft
 1 Microsoft Way
 Redmond, WA 98052, USA

 EMail: paulle@microsoft.com

 Chris Newman
 Sun Microsystems
 1050 Lakes Drive
 West Covina, CA 91790, USA

 EMail: Chris.Newman@Sun.COM

 Alexey Melnikov
 Isode Ltd.
 5 Castle Business Village,
 36 Station Road,
 Hampton,
 Middlesex,
 TW12 2BX,
 United Kingdom

 Email: Alexey.Melnikov@isode.com

9 Acknowledgements

 The following people had substantial contributions to the development
 and/or refinement of this document:

 Lawrence Greenfield
 John Gardiner Myers
 Simon Josefsson
 RL Bob Morgan
 Jeff Hodges
 Claus Assmann
 Tony Hansen
 Ken Murchison
 Sam Hartman
 Kurt D. Zeilenga
 Hallvard B. Furuseth
 Abhijit Menon-Sen
 Nicolas Williams

Melnikov (Ed.) Expires: September 2007 [Page 43]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 Jeffrey Hutzelman
 Tom Yu
 Dave Cridland
 Frank Ellermann

 as well as other members of the SASL mailing list.

Melnikov (Ed.) Expires: September 2007 [Page 44]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

10 Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

11 Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Melnikov (Ed.) Expires: September 2007 [Page 45]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

Appendix A: Changes from 2831

 1). Fixed various typos in formulas.

 2). Tighten ABNF. Fixed some bugs.

 3). Replace RFC 822 ABNF with [ABNF].

 4). Clarified nc-value verification and which side is aborting
 exchange.

 5). Removed downconversion to ISO-8859-1.

 6). Clarified that unquoted version of the username, etc. used in A1
 calculation.

 7). Various cleanup to References section. Split all references into
 Normative and Informative.

 8). Added minimal and maximal limits on maxbuf. Clarified how to
 calculate "maximal sender size".

 9). Change ABNF for host to allow for IPv6 addresses. ABNF now
 references RFC 3986.

 10). Added man-in-the-middle considerations for ciphers.

 11). Clarified how sequence counters are updated.

 12). Addition warnings about preventing reply/redirection attacks.

 13). Specified that "charset" directive affects "realm" and doesn't
 affect "authzid".

 14). Removed text that described that "authzid" is in Unicode in
 Normalization Form KC, encoded as UTF-8.

 15). Clarified that rc4 state is not reset between two consecutive
 sent/received buffers of protected data.

 16). Allow for extensibility in step 3. Use "auth-info" as in RFC
2617.

 17). Prohibit an empty authzid, as this caused interoperability
 problems.

 18). Clarified that 'qop="auth",qop="auth-int"' is the same as
 'qop="auth,auth-int"'.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617

Melnikov (Ed.) Expires: September 2007 [Page 46]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 19). Clarified client behavior, if it recognizes no ciphers.

 20). Clarified that the server is not required to advertise all
 realms it supports.

 21). Clarified how UIs should present realms.

 22). Changed some informative text to normative MUST/SHOULDs.

 23). Changed nonce/cnonce to allow for channel bindings.

 24). Added new "prep" directive, that allows to specify preparation
 algorithms for username/password. Defined a single preparation
 mechanism - SASLPrep [SASLPrep].
 Added another directive (response-v2) confirming that a user
 knows
 its password. A corresponding directive (rspauth-v2) was added
 for
 the server.

 25). Cleaned up Confidentiality protection section.

 26). Added AES cipher defined in "AES Ciphersuite for DIGEST-MD5 SASL
 mechanism" document (expired draft-ietf-sasl-digest-aes-00.txt).
 Use aes cipher in CTR mode ("aes-ctr").

 27). Dropped DES as mandatory to implement cipher (aes-ctr is
 mandatory to
 implement). Removed "des" and "3des" ciphers because of known
 interoperability problems and vulnerability to CBC mode attack.

 And other minor text clarifications.

Appendix B: Differences between HTTP Digest and DIGEST-MD5

 <<The following list is probably not complete>>

 1) On reauthentication, DIGEST-MD5 requires that cnonce is to be the
 same, while HTTP Digest doesn't have this restriction

 2) Integrity and confidentiality security layers are very specific to
 SASL and DIGEST-MD5

 3) HTTP Digest doesn't support channel bindings

 4) HTTP Digest doesn't have the "charset" and the "prep" options

https://datatracker.ietf.org/doc/html/draft-ietf-sasl-digest-aes-00.txt

Melnikov (Ed.) Expires: September 2007 [Page 47]

INTERNET DRAFT DIGEST-MD5 SASL Mechanism March 2007

 5) DIGEST-MD5 doesn't use the following HTTP Digest options in
 "digest-challenge": "opaque" and "domain"

 6) DIGEST-MD5 doesn't use the following HTTP Digest options in
 "digest-response": "opaque" and "algorithm"

 7) DIGEST-MD5 doesn't use the following HTTP Digest options in "auth-
 info": "nextnonce", "qop", "cnonce" and "nonce-count"

 8) A second directive (response-v2) confirming that a user knows its
 password was added. A corresponding directive (rspauth-v2) was added
 for the server.

Appendix C: Open Issues/ToDo List

 1). Normative vs. Informative references must be carefully rechecked.

 2). The charset directive is kind of optional, but in practice it is
 not.
 Should it just be made mandatory?

 3). Need to clarify behaviour when the prep directive is present,
 but the charset directive is not.

 4). Update example to match the updated draft, in particular need
 to add channel binding, qop & cipher lists into nonce/cnonce.
 Also need to use example.{com|net} in examples.

 5). Frank Ellermann asked if the procedure for unescaping is actually
 correct and consistent with HTTP Digest.
 He suggested that simple removal of surrounding quotes is what
 people actually implement. Need to perform some interop testing.

 6). Need to clarify backward compatibility with RFC 2831 in several
 places.

https://datatracker.ietf.org/doc/html/rfc2831

Melnikov (Ed.) Expires: September 2007 [Page 48]

