
NETWORK WORKING GROUP A. Menon-Sen
Internet-Draft Oryx Mail Systems GmbH
Intended status: Standards Track A. Melnikov
Expires: January 31, 2010 Isode Ltd
 C. Newman
 N. Williams
 Sun Microsystems
 July 30, 2009

Salted Challenge Response (SCRAM) SASL Mechanism
draft-ietf-sasl-scram-03.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 31, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Menon-Sen, et al. Expires January 31, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SCRAM July 2009

Abstract

 The secure authentication mechanism most widely deployed and used by
 Internet application protocols is the transmission of clear-text
 passwords over a channel protected by Transport Layer Security (TLS).
 There are some significant security concerns with that mechanism,
 which could be addressed by the use of a challenge response
 authentication mechanism protected by TLS. Unfortunately, the
 challenge response mechanisms presently on the standards track all
 fail to meet requirements necessary for widespread deployment, and
 have had success only in limited use.

 This specification describes a family of Simple Authentication and
 Security Layer (SASL, RFC 4422) authentication mechanisms called the
 Salted Challenge Response Authentication Mechanism (SCRAM), which
 addresses the security concerns and meets the deployability
 requirements. When used in combination with TLS or an equivalent
 security layer, a mechanism from this family could improve the
 status-quo for application protocol authentication and provide a
 suitable choice for a mandatory-to-implement mechanism for future
 application protocol standards.

https://datatracker.ietf.org/doc/html/rfc4422

Menon-Sen, et al. Expires January 31, 2010 [Page 2]

Internet-Draft SCRAM July 2009

Table of Contents

1. Conventions Used in This Document 4
1.1. Terminology . 4
1.2. Notation . 5
2. Introduction . 7
3. SCRAM Algorithm Overview 9
4. SCRAM Mechanism Names 10
5. SCRAM Authentication Exchange 11
5.1. SCRAM Attributes 12
6. Channel Binding 15
6.1. Default Channel Binding 16
7. Formal Syntax . 17
8. SCRAM as a GSS-API Mechanism 20
8.1. GSS-API Principal Name Types for SCRAM 20
8.2. GSS-API Per-Message Tokens for SCRAM 20
8.3. GSS_Pseudo_random() for SCRAM 21
9. Security Considerations 22
10. IANA Considerations 24
11. Acknowledgements 26
Appendix A. Other Authentication Mechanisms 27
Appendix B. Design Motivations 28
Appendix C. Internet-Draft Change History 29
12. References . 31
12.1. Normative References 31
12.2. Normative References for GSS-API implementors 31
12.3. Informative References 32

 Authors' Addresses 34

Menon-Sen, et al. Expires January 31, 2010 [Page 3]

Internet-Draft SCRAM July 2009

1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Formal syntax is defined by [RFC5234] including the core rules
 defined in Appendix B of [RFC5234].

 Example lines prefaced by "C:" are sent by the client and ones
 prefaced by "S:" by the server. If a single "C:" or "S:" label
 applies to multiple lines, then the line breaks between those lines
 are for editorial clarity only, and are not part of the actual
 protocol exchange.

1.1. Terminology

 This document uses several terms defined in [RFC4949] ("Internet
 Security Glossary") including the following: authentication,
 authentication exchange, authentication information, brute force,
 challenge-response, cryptographic hash function, dictionary attack,
 eavesdropping, hash result, keyed hash, man-in-the-middle, nonce,
 one-way encryption function, password, replay attack and salt.
 Readers not familiar with these terms should use that glossary as a
 reference.

 Some clarifications and additional definitions follow:

 o Authentication information: Information used to verify an identity
 claimed by a SCRAM client. The authentication information for a
 SCRAM identity consists of salt, iteration count, the "StoredKey"
 and "ServerKey" (as defined in the algorithm overview) for each
 supported cryptographic hash function.

 o Authentication database: The database used to look up the
 authentication information associated with a particular identity.
 For application protocols, LDAPv3 (see [RFC4510]) is frequently
 used as the authentication database. For network-level protocols
 such as PPP or 802.11x, the use of RADIUS is more common.

 o Base64: An encoding mechanism defined in [RFC4648] which converts
 an octet string input to a textual output string which can be
 easily displayed to a human. The use of base64 in SCRAM is
 restricted to the canonical form with no whitespace.

 o Octet: An 8-bit byte.

 o Octet string: A sequence of 8-bit bytes.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc4648

Menon-Sen, et al. Expires January 31, 2010 [Page 4]

Internet-Draft SCRAM July 2009

 o Salt: A random octet string that is combined with a password
 before applying a one-way encryption function. This value is used
 to protect passwords that are stored in an authentication
 database.

1.2. Notation

 The pseudocode description of the algorithm uses the following
 notations:

 o ":=": The variable on the left hand side represents the octet
 string resulting from the expression on the right hand side.

 o "+": Octet string concatenation.

 o "[]": A portion of an expression enclosed in "[" and "]" may not
 be included in the result under some circumstances. See the
 associated text for a description of those circumstances.

 o HMAC(key, str): Apply the HMAC keyed hash algorithm (defined in
 [RFC2104]) using the octet string represented by "key" as the key
 and the octet string "str" as the input string. The size of the
 result is the hash result size for the hash function in use. For
 example, it is 20 octets for SHA-1 (see [RFC3174]).

 o H(str): Apply the cryptographic hash function to the octet string
 "str", producing an octet string as a result. The size of the
 result depends on the hash result size for the hash function in
 use.

 o XOR: Apply the exclusive-or operation to combine the octet string
 on the left of this operator with the octet string on the right of
 this operator. The length of the output and each of the two
 inputs will be the same for this use.

 o Hi(str, salt):

 U0 := HMAC(str, salt + INT(1))
 U1 := HMAC(str, U0)
 U2 := HMAC(str, U1)
 ...
 Ui-1 := HMAC(str, Ui-2)
 Ui := HMAC(str, Ui-1)

 Hi := U0 XOR U1 XOR U2 XOR ... XOR Ui

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3174

Menon-Sen, et al. Expires January 31, 2010 [Page 5]

Internet-Draft SCRAM July 2009

 where "i" is the iteration count, "+" is the string concatenation
 operator and INT(g) is a four-octet encoding of the integer g,
 most significant octet first.

 o This is, essentially, PBKDF2 [RFC2898] with HMAC() as the PRF and
 with dkLen == output length of HMAC() == output length of H().

Menon-Sen, et al. Expires January 31, 2010 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2898

Internet-Draft SCRAM July 2009

2. Introduction

 This specification describes a family of authentication mechanisms
 called the Salted Challenge Response Authentication Mechanism (SCRAM)
 which addresses the requirements necessary to deploy a challenge-
 response mechanism more widely than past attempts. When used in
 combination with Transport Layer Security (TLS, see [RFC5246]) or an
 equivalent security layer, a mechanism from this family could improve
 the status-quo for application protocol authentication and provide a
 suitable choice for a mandatory-to-implement mechanism for future
 application protocol standards.

 For simplicity, this family of mechanisms does not presently include
 negotiation of a security layer [RFC4422]. It is intended to be used
 with an external security layer such as that provided by TLS or SSH,
 with optional channel binding [RFC5056] to the external security
 layer.

 SCRAM is specified herein as a pure Simple Authentication and
 Security Layer (SASL) [RFC4422] mechanism, but it conforms to the new
 bridge between SASL and the Generic Security Services Application
 Programming Interface (GSS-API) called "GS2" [I-D.ietf-sasl-gs2].
 This means that this document defines both, a SASL mechanism and a
 GSS-API mechanism.

 SCRAM provides the following protocol features:

 o The authentication information stored in the authentication
 database is not sufficient by itself to impersonate the client.
 The information is salted to prevent a pre-stored dictionary
 attack if the database is stolen.

 o The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies).

 o The mechanism permits the use of a server-authorized proxy without
 requiring that proxy to have super-user rights with the back-end
 server.

 o Mutual authentication is supported, but only the client is named
 (i.e., the server has no name).

 For an in-depth discussion of why other challenge response mechanisms
 are not considered sufficient, see appendix A. For more information
 about the motivations behind the design of this mechanism, see

appendix B.

 Comments regarding this draft may be sent either to the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc4422

Menon-Sen, et al. Expires January 31, 2010 [Page 7]

Internet-Draft SCRAM July 2009

 ietf-sasl@imc.org mailing list or to the authors.

Menon-Sen, et al. Expires January 31, 2010 [Page 8]

Internet-Draft SCRAM July 2009

3. SCRAM Algorithm Overview

 Note that this section omits some details, such as client and server
 nonces. See Section 5 for more details.

 To begin with, the SCRAM client is in possession of a username and
 password. It sends the username to the server, which retrieves the
 corresponding authentication information, i.e. a salt, StoredKey,
 ServerKey and the iteration count i. (Note that a server
 implementation may chose to use the same iteration count for all
 accounts.) The server sends the salt and the iteration count to the
 client, which then computes the following values and sends a
 ClientProof to the server:

 SaltedPassword := Hi(password, salt)
 ClientKey := HMAC(SaltedPassword, "Client Key")
 StoredKey := H(ClientKey)
 AuthMessage := client-first-message-bare + "," +
 server-first-message + "," +
 client-final-message-without-proof
 ClientSignature := HMAC(StoredKey, AuthMessage)
 ClientProof := ClientKey XOR ClientSignature
 ServerKey := HMAC(SaltedPassword, "Server Key")
 ServerSignature := HMAC(ServerKey, AuthMessage)

 The server authenticates the client by computing the ClientSignature,
 exclusive-ORing that with the ClientProof to recover the ClientKey
 and verifying the correctness of the ClientKey by applying the hash
 function and comparing the result to the StoredKey. If the ClientKey
 is correct, this proves that the client has access to the user's
 password.

 Similarly, the client authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server. If
 the two are equal, it proves that the server had access to the user's
 ServerKey.

 The AuthMessage is computed by concatenating messages from the
 authentication exchange. The format of these messages is defined in

Section 7.

Menon-Sen, et al. Expires January 31, 2010 [Page 9]

Internet-Draft SCRAM July 2009

4. SCRAM Mechanism Names

 A SCRAM mechanism name is a string "SCRAM-" followed by the
 uppercased name of the underlying hash function taken from the IANA
 "Hash Function Textual Names" registry (see http://www.iana.org),
 optionally followed by the suffix "-PLUS" (see below). Note that
 SASL mechanism names are limited to 20 characters, which means that
 only hash function names with lengths shorter or equal to 9
 characters (20-length("SCRAM-")-length("-PLUS") can be used. For
 cases when the underlying hash function name is longer than 9
 characters, an alternative 9 character (or shorter) name can be used
 to construct the corresponding SCRAM mechanism name, as long as this
 alternative name doesn't conflict with any other hash function name
 from the IANA "Hash Function Textual Names" registry.

 For interoperability, all SCRAM clients and servers MUST implement
 the SCRAM-SHA-1 authentication mechanism, i.e. an authentication
 mechanism from the SCRAM family that uses the SHA-1 hash function as
 defined in [RFC3174].

 The "-PLUS" suffix is used only when the server supports channel
 binding to the external channel. In this case the server will
 advertise both, SCRAM-SHA-1 and SCRAM-SHA-1-PLUS, otherwise the
 server will advertise only SCRAM-SHA-1. The "-PLUS" exists to allow
 negotiation of the use of channel binding. See Section 6.

http://www.iana.org
https://datatracker.ietf.org/doc/html/rfc3174

Menon-Sen, et al. Expires January 31, 2010 [Page 10]

Internet-Draft SCRAM July 2009

5. SCRAM Authentication Exchange

 SCRAM is a SASL mechanism whose client response and server challenge
 messages are text-based messages containing one or more attribute-
 value pairs separated by commas. Each attribute has a one-letter
 name. The messages and their attributes are described in

Section 5.1, and defined in Section 7.

 This is a simple example of a SCRAM-SHA-1 authentication exchange
 when the client doesn't support channel bindings:

 C: n,,n=Chris Newman,r=ClientNonce
 S: r=ClientNonceServerNonce,s=PxR/wv+epq,i=128
 C: c=biwsCg==,r=ClientNonceServerNonce,p=WxPv/siO5l+qxN4
 S: v=WxPv/siO5l+qxN4

 [[anchor5: Note that the all hashes above are fake and will be fixed
 during AUTH48.]]

 With channel-binding data sent by the client this might look like
 this (see [tls-server-end-point] for the definition of tls-server-
 end-point TLS channel binding):

 C: p=tls-server-end-point,,n=Chris Newman,r=ClientNonce
 S: r=ClientNonceServerNonce,s=PxR/wv+epq,i=128
 C: c=cD10bHMtc2VydmVyLWVuZC1wb2ludCwsy1hFtXOnZ+ySrQM6srFp
 l/77uqvtxrg7nBY1BetEr/g=,r=ClientNonceServerNonce,p=Wx
 Pv/siO5l+qxN4
 S: v=WxPv/siO5l+qxN4

 [[anchor6: Note that all hashes above are fake and will be fixed
 during AUTH48.]]

 First, the client sends a message containing:

 o a GS2 header consisting of a flag indicating whether channel
 binding is supported-but-not-used, not supported, or used, and an
 optional SASL authorization identity;

 o SCRAM username and a random, unique nonce attributes.

 Note that the client's first message will always start with "n", "y"
 or "p", otherwise the message is invalid and authentication MUST
 fail. This is important, as it allows for GS2 extensibility (e.g.,

Menon-Sen, et al. Expires January 31, 2010 [Page 11]

Internet-Draft SCRAM July 2009

 to add support for security layers).

 In response, the server sends the user's iteration count i, the
 user's salt, and appends its own nonce to the client-specified one.
 The client then responds with the same nonce and a ClientProof
 computed using the selected hash function as explained earlier. The
 server verifies the nonce and the proof, verifies that the
 authorization identity (if supplied by the client in the first
 message) is authorized to act as the authentication identity, and,
 finally, it responds with a ServerSignature, concluding the
 authentication exchange. The client then authenticates the server by
 computing the ServerSignature and comparing it to the value sent by
 the server. If the two are different, the client MUST consider the
 authentication exchange to be unsuccessful and it might have to drop
 the connection.

5.1. SCRAM Attributes

 This section describes the permissible attributes, their use, and the
 format of their values. All attribute names are single US-ASCII
 letters and are case-sensitive.

 Note that the order of attributes in client or server messages is
 fixed, with the exception of extension attributes (described by the
 "extensions" ABNF production), which can appear in any order in the
 designated positions. See the ABNF section for authoritative
 reference.

 o a: This is an optional attribute, and is part of the GS2
 [I-D.ietf-sasl-gs2] bridge between the GSS-API and SASL. This
 attribute specifies an authorization identity. A client may
 include it in its first message to the server if it wants to
 authenticate as one user, but subsequently act as a different
 user. This is typically used by an administrator to perform some
 management task on behalf of another user, or by a proxy in some
 situations.

 Upon the receipt of this value the server verifies its
 correctness according to the used SASL protocol profile.
 Failed verification results in failed authentication exchange.

 If this attribute is omitted (as it normally would be), the
 authorization identity is assumed to be derived from the
 username specified with the (required) "n" attribute.

 The server always authenticates the user specified by the "n"
 attribute. If the "a" attribute specifies a different user,
 the server associates that identity with the connection after

Menon-Sen, et al. Expires January 31, 2010 [Page 12]

Internet-Draft SCRAM July 2009

 successful authentication and authorization checks.

 The syntax of this field is the same as that of the "n" field
 with respect to quoting of '=' and ','.

 o n: This attribute specifies the name of the user whose password is
 used for authentication (a.k.a. "authentication identity"
 [RFC4422]). A client MUST include it in its first message to the
 server. If the "a" attribute is not specified (which would
 normally be the case), this username is also the identity which
 will be associated with the connection subsequent to
 authentication and authorization.

 Before sending the username to the server, the client MUST
 prepare the username using the "SASLPrep" profile [RFC4013] of
 the "stringprep" algorithm [RFC3454]. If the preparation of
 the username fails or results in an empty string, the client
 SHOULD abort the authentication exchange (*).

 (*) An interactive client can request a repeated entry of the
 username value.

 Upon receipt of the username by the server, the server SHOULD
 prepare it using the "SASLPrep" profile [RFC4013] of the
 "stringprep" algorithm [RFC3454]. If the preparation of the
 username fails or results in an empty string, the server SHOULD
 abort the authentication exchange.

 The characters ',' or '=' in usernames are sent as '=2C' and
 '=3D' respectively. If the server receives a username which
 contains '=' not followed by either '2C' or '3D', then the
 server MUST fail the authentication.

 o m: This attribute is reserved for future extensibility. In this
 version of SCRAM, its presence in a client or a server message
 MUST cause authentication failure when the attribute is parsed by
 the other end.

 o r: This attribute specifies a sequence of random printable
 characters excluding ',' which forms the nonce used as input to
 the hash function. No quoting is applied to this string. As
 described earlier, the client supplies an initial value in its
 first message, and the server augments that value with its own
 nonce in its first response. It is important that this value be
 different for each authentication. The client MUST verify that
 the initial part of the nonce used in subsequent messages is the
 same as the nonce it initially specified. The server MUST verify
 that the nonce sent by the client in the second message is the

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454

Menon-Sen, et al. Expires January 31, 2010 [Page 13]

Internet-Draft SCRAM July 2009

 same as the one sent by the server in its first message.

 o c: This REQUIRED attribute specifies base64-encoded of a header
 and the channel-binding data. It is sent by the client in its
 second authentication message. The header consist of:

 * the GS2 header from the client's first message (recall: a
 channel binding flag and an optional authzid). This header is
 going to include channel binding type prefix (see [RFC5056]),
 if and only if the client is using channel binding;

 * followed by the external channel's channel binding data, if and
 only if the client is using channel binding.

 o s: This attribute specifies the base64-encoded salt used by the
 server for this user. It is sent by the server in its first
 message to the client.

 o i: This attribute specifies an iteration count for the selected
 hash function and user, and MUST be sent by the server along with
 the user's salt.

 For SCRAM-SHA-1/SCRAM-SHA-1-PLUS SASL mechanism servers SHOULD
 announce a hash iteration-count of at least 4096. Note that a
 client implementation MAY cache SaltedPassword/ClientKey for
 later reauthentication to the same service, as it is likely
 that the server is going to advertise the same salt value upon
 reauthentication. This might be useful for mobile clients
 where CPU usage is a concern.

 o p: This attribute specifies a base64-encoded ClientProof. The
 client computes this value as described in the overview and sends
 it to the server.

 o v: This attribute specifies a base64-encoded ServerSignature. It
 is sent by the server in its final message, and is used by the
 client to verify that the server has access to the user's
 authentication information. This value is computed as explained
 in the overview.

https://datatracker.ietf.org/doc/html/rfc5056

Menon-Sen, et al. Expires January 31, 2010 [Page 14]

Internet-Draft SCRAM July 2009

6. Channel Binding

 SCRAM supports channel binding to external secure channels, such as
 TLS. Clients and servers may or may not support channel binding,
 therefore the use of channel binding is negotiable. SCRAM does not
 provide security layers, however, therefore it is imperative that
 SCRAM provide integrity protection for the negotiation of channel
 binding.

 Use of channel binding is negotiated as follows:

 o Servers SHOULD advertise both non-PLUS (SCRAM-<hash-function>) and
 the PLUS-variant (SCRAM-<hash-function>-PLUS) SASL mechanism
 names. If the server cannot support channel binding, it MAY
 advertise only the non-PLUS variant. If the server would never
 succeed authentication of the non-PLUS variant due to policy
 reasons, it MAY advertise only the PLUS-variant.

 o If the client negotiates mechanisms then the client MUST select
 SCRAM-<hash-function>-PLUS if offered by the server and the client
 wants to select SCRAM with the given hash function. Otherwise
 (the client does not negotiate mechanisms), if the client has no
 prior knowledge about mechanisms supported by the server and
 wasn't explicitly configured to use a particular variant of the
 SCRAM mechanism, then it MUST select only SCRAM-<hash-function>
 (not suffixed with "-PLUS").

 o If the client supports channel binding and the server appears to
 support it (i.e., the client sees SCRAM-<hash-function>-PLUS), or
 if the client wishes to use channel binding but the client does
 not negotiate mechanisms, then the client MUST set the GS2 channel
 binding flag to "p" in order to indicate the channel binding type
 it is using and it MUST include the channel binding data for the
 external channel in the computation of the "c=" attribute (see

Section 5.1).

 o If the client supports channel binding but the server does not
 appear to (i.e., the client did not see SCRAM-<hash-function>-
 PLUS) then the client MUST either fail authentication or it MUST
 choose the non-PLUS mechanism and set the GS2 channel binding flag
 to "y" and MUST NOT include channel binding data for the external
 channel in the computation of the "c=" attribute (see

Section 5.1).

 o If the client does not support channel binding then the client
 MUST set the GS2 channel binding flag to "n" and MUST NOT include
 channel binding data for the external channel in the computation
 of the "c=" attribute (see Section 5.1).

Menon-Sen, et al. Expires January 31, 2010 [Page 15]

Internet-Draft SCRAM July 2009

 o Upon receipt of the client first message the server checks the GS2
 channel binding flag (gs2-cb-flag).

 * If the flag is set to "y" and the server supports channel
 binding the server MUST fail authentication. This is because
 if the client sets the GS2 channel binding flag set to "y" then
 the client must have believed that the server did not support
 channel binding -- if the server did in fact support channel
 binding then this is an indication that there has been a
 downgrade attack (e.g., an attacker changed the server's
 mechanism list to exclude the -PLUS suffixed SCRAM mechanism
 name(s)).

 * If the channel binding flag was "p" and the server does not
 support the indicated channel binding type then the server MUST
 fail authentication.

 The server MUST always validate the client's "c=" field. The server
 does this by constructing the value of the "c=" attribute and then
 checking that it matches the client's c= attribute value.

 For more discussions of channel bindings, and the syntax of the
 channel binding data for various security protocols, see [RFC5056].

6.1. Default Channel Binding

 A default channel binding type agreement process for all SASL
 application protocols that do not provide their own channel binding
 type agreement is provided as follows.

 Clients and servers MUST implement the "tls-unique" [tls-unique]
 channel binding type. Clients and servers SHOULD choose the highest-
 layer/innermost end-to-end TLS channel as the channel to bind to.

 Clients SHOULD choose the tls-unique channel binding type.
 Conversely, clients MAY choose a different channel binding type based
 on user input, configuration, or a future, as-yet undefined channel
 binding type negotiation protocol. Servers MUST choose the channel
 binding type indicated by the client, if they support it.

https://datatracker.ietf.org/doc/html/rfc5056

Menon-Sen, et al. Expires January 31, 2010 [Page 16]

Internet-Draft SCRAM July 2009

7. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [RFC5234]. "UTF8-2", "UTF8-3"
 and "UTF8-4" non-terminal are defined in [RFC3629].

 ALPHA = <as defined in RFC 5234 appendix B.1>
 DIGIT = <as defined in RFC 5234 appendix B.1>
 UTF8-2 = <as defined in RFC 3629 (STD 63)>
 UTF8-3 = <as defined in RFC 3629 (STD 63)>
 UTF8-4 = <as defined in RFC 3629 (STD 63)>

 attr-val = ALPHA "=" value
 ;; Generic syntax of any attribute sent
 ;; by server or client

 value = 1*value-char

 value-safe-char = %x01-2B / %x2D-3C / %x3E-7F /
 UTF8-2 / UTF8-3 / UTF8-4
 ;; UTF8-char except NUL, "=", and ",".

 value-char = value-safe-char / "="

 base64-char = ALPHA / DIGIT / "/" / "+"

 base64-4 = 4base64-char

 base64-3 = 3base64-char "="

 base64-2 = 2base64-char "=="

 base64 = *base64-4 [base64-3 / base64-2]

 posit-number = %x31-39 *DIGIT
 ;; A positive number

 saslname = 1*(value-safe-char / "=2C" / "=3D")
 ;; Conforms to <value>

 authzid = "a=" saslname
 ;; Protocol specific.

 cb-name = 1*(ALPHA / DIGIT / "." / "-")
 ;; See RFC 5056 section 7.
 ;; E.g. "tls-server-end-point" or
 ;; "tls-unique"

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5056#section-7

Menon-Sen, et al. Expires January 31, 2010 [Page 17]

Internet-Draft SCRAM July 2009

 gs2-cbind-flag = "p=" cb-name / "n" / "y"
 ;; "n" -> client doesn't support channel binding
 ;; "y" -> client does support channel binding
 ;; but thinks the server does not.
 ;; "p" -> client requires channel binding.
 ;; The selected channel binding follows "p=".

 gs2-header = gs2-cbind-flag "," [authzid] ","
 ;; GS2 header for SCRAM
 ;; (the actual GS2 header includes an optional
 ;; flag to indicate that the GSS mechanism is not
 ;; "standard" but since SCRAM is "standard" we
 ;; don't include that flag).

 username = "n=" saslname
 ;; Usernames are prepared using SASLPrep.

 reserved-mext = "m=" 1*(value-char)
 ;; Reserved for signalling mandatory extensions.
 ;; The exact syntax will be defined in
 ;; the future.

 channel-binding = "c=" base64
 ;; base64 encoding of cbind-input

 proof = "p=" base64

 nonce = "r=" c-nonce [s-nonce]
 ;; Second part provided by server.

 c-nonce = value

 s-nonce = value

 salt = "s=" base64

 verifier = "v=" base64
 ;; base-64 encoded ServerSignature.

 iteration-count = "i=" posit-number
 ;; A positive number

 client-first-message-bare =
 [reserved-mext ","]
 username "," nonce ["," extensions]

 client-first-message =
 gs2-header client-first-message-bare

Menon-Sen, et al. Expires January 31, 2010 [Page 18]

Internet-Draft SCRAM July 2009

 server-first-message =
 [reserved-mext ","] nonce "," salt ","
 iteration-count ["," extensions]

 client-final-message-without-proof =
 channel-binding "," nonce [","
 extensions]

 client-final-message =
 client-final-message-without-proof "," proof

 gss-server-error = "e=" value
 server-final-message = gss-server-error /
 verifier ["," extensions]
 ;; The error message is only for the GSS-API
 ;; form of SCRAM, and it is OPTIONAL to
 ;; implement it.

 extensions = attr-val *("," attr-val)
 ;; All extensions are optional,
 ;; i.e. unrecognized attributes
 ;; not defined in this document
 ;; MUST be ignored.

 cbind-data = 1*OCTET

 cbind-input = gs2-header [cbind-data]
 ;; cbind-data MUST be present for
 ;; gs2-cbind-flag of "p" and MUST be absent
 ;; for "y" or "n".

Menon-Sen, et al. Expires January 31, 2010 [Page 19]

Internet-Draft SCRAM July 2009

8. SCRAM as a GSS-API Mechanism

 This section and its sub-sections and all normative references of it
 not referenced elsewhere in this document are INFORMATIONAL for SASL
 implementors, but they are NORMATIVE for GSS-API implementors.

 SCRAM is actually also GSS-API mechanism. The messages are the same,
 but a) the GS2 header on the client's first message and channel
 binding data is excluded when SCRAM is used as a GSS-API mechanism,
 and b) the RFC2743 section 3.1 initial context token header is
 prefixed to the client's first authentication message (context
 token).

 The GSS-API mechanism OID for SCRAM is <TBD> (see Section 10).

8.1. GSS-API Principal Name Types for SCRAM

 SCRAM does not name acceptors. Therefore only GSS_C_NO_NAME and
 names of type GSS_C_NT_ANONYMOUS shall be allowed as the target name
 input of GSS_Init_sec_context() when using a SCRAM mechanism.

 SCRAM supports only a single name type for initiators:
 GSS_C_NT_USER_NAME. GSS_C_NT_USER_NAME is the default name type for
 SCRAM.

 There is no name canonicalization procedure for SCRAM beyond applying
 SASLprep as described in Section 5.1.

 The query, display and exported name syntax for SCRAM principal names
 is the same: there is no syntax -- SCRAM principal names are free-
 form. (The exported name token does, of course, conform to [RFC2743]
 section 3.2, but the "NAME" part of the token is just a SCRAM user
 name.)

8.2. GSS-API Per-Message Tokens for SCRAM

 The per-message tokens for SCRAM as a GSS-API mechanism SHALL be the
 same as those for the Kerberos V GSS-API mechanism [RFC4121], using
 the Kerberos V "aes128-cts-hmac-sha1-96" enctype [RFC3962].

 The 128-bit session key SHALL be derived by using the least
 significant (right-most) 128 bits of HMAC(StoredKey, "GSS-API session
 key" || ClientKey || AuthMessage).

 SCRAM does support PROT_READY, and is PROT_READY on the initiator
 side first upon receipt of the server's reply to the initial security
 context token.

https://datatracker.ietf.org/doc/html/rfc2743#section-3.1
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2
https://datatracker.ietf.org/doc/html/rfc2743#section-3.2
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc3962

Menon-Sen, et al. Expires January 31, 2010 [Page 20]

Internet-Draft SCRAM July 2009

8.3. GSS_Pseudo_random() for SCRAM

 The GSS_Pseudo_random() [RFC4401] for SCRAM SHALL be the same as for
 the Kerberos V GSS-API mechanism [RFC4402]. There is no acceptor-
 asserted sub-session key for SCRAM, thus GSS_C_PRF_KEY_FULL and
 GSS_C_PRF_KEY_PARTIAL are equivalent for SCRAM's GSS_Pseudo_random().

Menon-Sen, et al. Expires January 31, 2010 [Page 21]

https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc4402

Internet-Draft SCRAM July 2009

9. Security Considerations

 If the authentication exchange is performed without a strong security
 layer, then a passive eavesdropper can gain sufficient information to
 mount an offline dictionary or brute-force attack which can be used
 to recover the user's password. The amount of time necessary for
 this attack depends on the cryptographic hash function selected, the
 strength of the password and the iteration count supplied by the
 server. An external security layer with strong encryption will
 prevent this attack.

 If the external security layer used to protect the SCRAM exchange
 uses an anonymous key exchange, then the SCRAM channel binding
 mechanism can be used to detect a man-in-the-middle attack on the
 security layer and cause the authentication to fail as a result.
 However, the man-in-the-middle attacker will have gained sufficient
 information to mount an offline dictionary or brute-force attack.
 For this reason, SCRAM includes the ability to increase the iteration
 count over time.

 If the authentication information is stolen from the authentication
 database, then an offline dictionary or brute-force attack can be
 used to recover the user's password. The use of salt mitigates this
 attack somewhat by requiring a separate attack on each password.
 Authentication mechanisms which protect against this attack are
 available (e.g., the EKE class of mechanisms).

 If an attacker obtains the authentication information from the
 authentication repository and either eavesdrops on one authentication
 exchange or impersonates a server, the attacker gains the ability to
 impersonate that user to all servers providing SCRAM access using the
 same hash function, password, iteration count and salt. For this
 reason, it is important to use randomly-generated salt values.

 SCRAM does not negotiate a hash function to use. Hash function
 negotiation is left to the SASL mechanism negotiation. It is
 important that clients be able to sort a locally available list of
 mechanisms by preference so that the client may pick the most
 preferred of a server's advertised mechanism list. This preference
 order is not specified here as it is a local matter. The preference
 order should include objective and subjective notions of mechanism
 cryptographic strength (e.g., SCRAM with a successor to SHA-1 may be
 preferred over SCRAM with SHA-1).

 Note that to protect the SASL mechanism negotiation applications
 normally must list the server mechs twice: once before and once after
 authentication, the latter using security layers. Since SCRAM does
 not provide security layers the only ways to protect the mechanism

Menon-Sen, et al. Expires January 31, 2010 [Page 22]

Internet-Draft SCRAM July 2009

 negotiation are: a) use channel binding to an external channel, or b)
 use an external channel that authenticates a user-provided server
 name.

 A hostile server can perform a computational denial-of-service attack
 on clients by sending a big iteration count value.

 See [RFC4086] for more information about generating randomness.

Menon-Sen, et al. Expires January 31, 2010 [Page 23]

https://datatracker.ietf.org/doc/html/rfc4086

Internet-Draft SCRAM July 2009

10. IANA Considerations

 IANA is requested to add the following family of SASL mechanisms to
 the SASL Mechanism registry established by [RFC4422]:

 To: iana@iana.org
 Subject: Registration of a new SASL family SCRAM

 SASL mechanism name (or prefix for the family): SCRAM-*
 Security considerations: Section 7 of [RFCXXXX]
 Published specification (optional, recommended): [RFCXXXX]
 Person & email address to contact for further information:
 IETF SASL WG <ietf-sasl@imc.org>
 Intended usage: COMMON
 Owner/Change controller: IESG <iesg@ietf.org>
 Note: Members of this family must be explicitly registered
 using the "IETF Consensus" registration procedure.
 Reviews must be requested on the SASL WG mailing list.

 "IETF Consensus" registration procedure MUST be used for registering
 new mechanisms in this family. The SASL mailing list
 <ietf-sasl@imc.org> (or a successor designated by the responsible
 Security AD) MUST be used for soliciting reviews on such
 registrations.

 Note to future SCRAM- mechanism designers: each new SCRAM- SASL
 mechanism MUST be explicitly registered with IANA and MUST comply
 with SCRAM- mechanism naming convention defined in Section 4 of this
 document.

 IANA is requested to add the following entries to the SASL Mechanism
 registry established by [RFC4422]:

 To: iana@iana.org
 Subject: Registration of a new SASL mechanism SCRAM-SHA-1

 SASL mechanism name (or prefix for the family): SCRAM-SHA-1
 Security considerations: Section 7 of [RFCXXXX]
 Published specification (optional, recommended): [RFCXXXX]
 Person & email address to contact for further information:
 IETF SASL WG <ietf-sasl@imc.org>
 Intended usage: COMMON
 Owner/Change controller: IESG <iesg@ietf.org>
 Note:

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4422

Menon-Sen, et al. Expires January 31, 2010 [Page 24]

Internet-Draft SCRAM July 2009

 To: iana@iana.org
 Subject: Registration of a new SASL mechanism SCRAM-SHA-1-PLUS

 SASL mechanism name (or prefix for the family): SCRAM-SHA-1-PLUS
 Security considerations: Section 7 of [RFCXXXX]
 Published specification (optional, recommended): [RFCXXXX]
 Person & email address to contact for further information:
 IETF SASL WG <ietf-sasl@imc.org>
 Intended usage: COMMON
 Owner/Change controller: IESG <iesg@ietf.org>
 Note:

 This document also requests IANA to assign a GSS-API mechanism OID
 for SCRAM.

Menon-Sen, et al. Expires January 31, 2010 [Page 25]

Internet-Draft SCRAM July 2009

11. Acknowledgements

 This document benefited from discussions on the SASL WG mailing list.
 The authors would like to specially thank Dave Cridland, Simon
 Josefsson and Jeffrey Hutzelman for their contributions to this
 document.

Menon-Sen, et al. Expires January 31, 2010 [Page 26]

Internet-Draft SCRAM July 2009

Appendix A. Other Authentication Mechanisms

 The DIGEST-MD5 [I-D.ietf-sasl-digest-to-historic] mechanism has
 proved to be too complex to implement and test, and thus has poor
 interoperability. The security layer is often not implemented, and
 almost never used; everyone uses TLS instead. For a more complete
 list of problems with DIGEST-MD5 which lead to the creation of SCRAM
 see [I-D.ietf-sasl-digest-to-historic].

 The CRAM-MD5 SASL mechanism, while widely deployed has also some
 problems, in particular it is missing some modern SASL features such
 as support for internationalized usernames and passwords, support for
 passing of authorization identity, support for channel bindings. It
 also doesn't support server authentication. For a more complete list
 of problems with CRAM-MD5 see [I-D.ietf-sasl-crammd5-to-historic].

 The PLAIN [RFC4616] SASL mechanism allows a malicious server or
 eavesdropper to impersonate the authenticating user to any other
 server for which the user has the same password. It also sends the
 password in the clear over the network, unless TLS is used. Server
 authentication is not supported.

https://datatracker.ietf.org/doc/html/rfc4616

Menon-Sen, et al. Expires January 31, 2010 [Page 27]

Internet-Draft SCRAM July 2009

Appendix B. Design Motivations

 The following design goals shaped this document. Note that some of
 the goals have changed since the initial version of the document.

 o The SASL mechanism has all modern SASL features: support for
 internationalized usernames and passwords, support for passing of
 authorization identity, support for channel bindings.

 o The protocol supports mutual authentication.

 o The authentication information stored in the authentication
 database is not sufficient by itself to impersonate the client.

 o The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies),
 unless such other servers allow SCRAM authentication and use the
 same salt and iteration count for the user.

 o The mechanism is extensible, but [hopefully] not overengineered in
 this respect.

 o Easier to implement than DIGEST-MD5 in both clients and servers.

Menon-Sen, et al. Expires January 31, 2010 [Page 28]

Internet-Draft SCRAM July 2009

Appendix C. Internet-Draft Change History

 (RFC Editor: Please delete everything after this point)

 Changes since -10

 o Converted the source for this I-D to XML.

 o Added text to make SCRAM compliant with the new GS2 design.

 o Added text on channel binding negotiation.

 o Added text on channel binding, including a reference to RFC5056.

 o Added text on SCRAM as a GSS-API mechanism. This noted as not
 relevant to SASL-only implementors -- the normative references for
 SCRAM as a GSS-API mechanism are segregated as well.

 Changes since -07

 o Updated References.

 o Clarified purpose of the m= attribute.

 o Fixed a problem with authentication/authorization identity's ABNF
 not allowing for some characters.

 o Updated ABNF for nonce to show client-generated and server-
 generated parts.

 o Only register SCRAM-SHA-1 with IANA and require explicit
 registrations of all other SCRAM- mechanisms.

 Changes since -06

 o Removed hash negotiation from SCRAM and turned it into a family of
 SASL mechanisms.

 o Start using "Hash Function Textual Names" IANA registry for SCRAM
 mechanism naming.

 o Fixed definition of Hi(str, salt) to be consistent with [RFC2898].

 o Clarified extensibility of SCRAM: added m= attribute (for future
 mandatory extensions) and specified that all unrecognized
 attributes must be ignored.

 Changes since -05

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc2898

Menon-Sen, et al. Expires January 31, 2010 [Page 29]

Internet-Draft SCRAM July 2009

 o Changed the mandatory to implement hash algorithm to SHA-1 (as per
 WG consensus).

 o Added text about use of SASLPrep for username canonicalization/
 validation.

 o Clarified that authorization identity is canonicalized/verified
 according to SASL protocol profile.

 o Clarified that iteration count is per-user.

 o Clarified how clients select the authentication function.

 o Added IANA registration for the new mechanism.

 o Added missing normative references (UTF-8, SASLPrep).

 o Various editorial changes based on comments from Hallvard B
 Furuseth, Nico William and Simon Josefsson.

 Changes since -04

 o Update Base64 and Security Glossary references.

 o Add Formal Syntax section.

 o Don't bother with "v=".

 o Make MD5 mandatory to implement. Suggest i=128.

 Changes since -03

 o Seven years have passed, in which it became clear that DIGEST-MD5
 suffered from unacceptably bad interoperability, so SCRAM-MD5 is
 now back from the dead.

 o Be hash agnostic, so MD5 can be replaced more easily.

 o General simplification.

Menon-Sen, et al. Expires January 31, 2010 [Page 30]

Internet-Draft SCRAM July 2009

12. References

12.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

12.2. Normative References for GSS-API implementors

 [I-D.ietf-sasl-gs2]
 Josefsson, S. and N. Williams, "Using GSS-API Mechanisms
 in SASL: The GS2 Mechanism Family", draft-ietf-sasl-gs2-12
 (work in progress), April 2009.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3962] Raeburn, K., "Advanced Encryption Standard (AES)
 Encryption for Kerberos 5", RFC 3962, February 2005.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-gs2-12
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3962

Menon-Sen, et al. Expires January 31, 2010 [Page 31]

Internet-Draft SCRAM July 2009

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [tls-unique]
 Zhu, L., "Registration of TLS unique channel binding
 (generic)", IANA http://www.iana.org/assignments/

channel-binding-types/tls-unique, July 2008.

12.3. Informative References

 [I-D.ietf-sasl-crammd5-to-historic]
 Zeilenga, K., "CRAM-MD5 to Historic",

draft-ietf-sasl-crammd5-to-historic-00 (work in progress),
 November 2008.

 [I-D.ietf-sasl-digest-to-historic]
 Melnikov, A., "Moving DIGEST-MD5 to Historic",

draft-ietf-sasl-digest-to-historic-00 (work in progress),
 July 2008.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, September 2000.

 [RFC4510] Zeilenga, K., "Lightweight Directory Access Protocol
 (LDAP): Technical Specification Road Map", RFC 4510,
 June 2006.

 [RFC4616] Zeilenga, K., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616, August 2006.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
RFC 4949, August 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc4402
http://www.iana.org/assignments/channel-binding-types/tls-unique
http://www.iana.org/assignments/channel-binding-types/tls-unique
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-crammd5-to-historic-00
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-digest-to-historic-00
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc4616
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc5246

Menon-Sen, et al. Expires January 31, 2010 [Page 32]

Internet-Draft SCRAM July 2009

 [tls-server-end-point]
 Zhu, L., "Registration of TLS server end-point channel
 bindings", IANA http://www.iana.org/assignments/

channel-binding-types/tls-server-end-point, July 2008.

Menon-Sen, et al. Expires January 31, 2010 [Page 33]

http://www.iana.org/assignments/channel-binding-types/tls-server-end-point
http://www.iana.org/assignments/channel-binding-types/tls-server-end-point

Internet-Draft SCRAM July 2009

Authors' Addresses

 Abhijit Menon-Sen
 Oryx Mail Systems GmbH

 Email: ams@oryx.com

 Alexey Melnikov
 Isode Ltd

 Email: Alexey.Melnikov@isode.com

 Chris Newman
 Sun Microsystems
 1050 Lakes Drive
 West Covina, CA 91790
 USA

 Email: chris.newman@sun.com

 Nicolas Williams
 Sun Microsystems
 5300 Riata Trace Ct
 Austin, TX 78727
 USA

 Email: Nicolas.Williams@sun.com

Menon-Sen, et al. Expires January 31, 2010 [Page 34]

