
Workgroup: TBD

Internet-Draft:

draft-ietf-scitt-architecture-00

Published: 8 December 2022

Intended Status: Standards Track

Expires: 11 June 2023

Authors: H. Birkholz

Fraunhofer SIT

A. Delignat-Lavaud

Microsoft Research

C. Fournet

Microsoft Research

Y. Deshpande

ARM

An Architecture for Trustworthy and Transparent Digital Supply Chains

Abstract

Traceability of physical and digital artifacts in supply chains is a

long-standing, but increasingly serious security concern. The rise

in popularity of verifiable data structures as a mechanism to make

actors more accountable for breaching their compliance promises has

found some successful applications to specific use cases (such as

the supply chain for digital certificates), but lacks a generic and

scalable architecture that can address a wider range of use cases.

This memo defines a generic and scalable architecture to enable

transparency across any supply chain with minimum adoption barriers

for producers (who can register their claims on any Transparency

Service (TS), with the guarantee that all consumers will be able to

verify them) and enough flexibility to allow different

implementations of Transparency Services with various auditing and

compliance requirements.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ietf-scitt-architecture/.

Discussion of this document takes place on the SCITT Working Group

mailing list (mailto:scitt@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/scitt/. Subscribe at https://

www.ietf.org/mailman/listinfo/scitt/.

Source for this draft and an issue tracker can be found at https://

github.com/ietf-wg-scitt/draft-ietf-scitt-architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ietf-scitt-architecture/
https://datatracker.ietf.org/doc/draft-ietf-scitt-architecture/
mailto:scitt@ietf.org
https://mailarchive.ietf.org/arch/browse/scitt/
https://mailarchive.ietf.org/arch/browse/scitt/
https://www.ietf.org/mailman/listinfo/scitt/
https://www.ietf.org/mailman/listinfo/scitt/
https://github.com/ietf-wg-scitt/draft-ietf-scitt-architecture
https://github.com/ietf-wg-scitt/draft-ietf-scitt-architecture

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Notation

2. Use Cases

2.1. Software Bill of Materials (SBOM)

2.2. Confidential Computing

2.3. Cold Chains for Seafood

3. Terminology

4. Definition of Transparency

5. Architecture Overview

5.1. Claim Issuance and Registration

5.1.1. Issuer Identity

5.1.2. Naming Artifacts

5.1.3. Claim Metadata

5.2. Transparency Service (TS)

5.2.1. Service Identity, Remote Attestation, and Keying

5.2.2. Registration Policies

5.2.3. Registry Security Requirements

5.3. Verifying Transparent Claims

6. Claim Issuance, Registration, and Verification

6.1. Envelope and Claim Format

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

6.2. Claim Issuance

6.3. Standard registration policies

6.4. Registering Signed Claims

6.5. Validation of Transparent Claims

7. Federation

8. Transparency Service API

8.1. Messages

8.1.1. Register Signed Claims

8.1.2. Retrieve Registration Receipt

9. Privacy Considerations

10. Security Considerations

10.1. Threat Model

10.1.1. Claim authentication and transparency.

10.1.2. Confidentiality and privacy.

10.1.3. Cryptographic Assumptions

10.1.4. TS Clients

10.1.5. Identity

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Attic

Authors' Addresses

1. Introduction

This document describes a scalable and flexible decentralized

architecture to enhance auditability and accountability in various

existing and emerging supply chains. It achieves this goal by

enforcing the following complementary security guarantees:

statements made by issuers about supply chain artifacts must be

identifiable, authentic, and non-repudiable;

such statements must be registered on a secure append-only

Registry so that their provenance and history can be

independently and consistently audited;

issuers can efficiently prove to any other party the

registration of their claims; verifying this proof ensures that

the issuer is consistent and non-equivocal when making claims.

The first guarantee is achieved by requiring issuers to sign their

statements and associated metadata using a distributed public key

infrastructure. The second guarantee is achieved by storing the

signed statement in an immutable, append-only, transparent Registry.

The last guarantee is achieved by implementing the Registry using a

verifiable data structure (such as a Merkle Tree), and by requiring

¶

1.

¶

2.

¶

3.

¶

a TS that operates the Registry to endorse its state at the time of

registration.

The guarantees and techniques used in this document generalize those

of Certificate Transparency [RFC9162], which can be re-interpreted

as an instance of this architecture for the supply chain of X.509

certificates. However, the range of use cases and applications in

this document is much broader, which requires much more flexibility

in how each TS implements and operates its Registry. Each service

may enforce its own policy for authorizing entities to register

their claims on the TS. Some TS may also enforce access control

policies to limit who can audit the full Registry, or keep some

information on the Registry encrypted. Nevertheless, it is critical

to provide global interoperability for all TS instances as the

composition and configuration of involved supply chain entities and

their system components is ever changing and always in flux.

A TS provides visibility into claims issued by supply chain entities

and their sub-systems. These claims are called Digital Supply Chain

Artifacts (DSCA). A TS vouches for specific and well-defined

metadata about these DSCAs. Some metadata is selected (and signed)

by the issuer, indicating, e.g., "who issued the DSCA" or "what type

of DSCA is described" or "what is the DSCA version"; whereas

additional metadata is selected (and countersigned) by the TS,

indicating, e.g., "when was the DSCA registered in the Registry".

The DSCA contents can be opaque to the TS, if so desired: it is the

metadata that must always be transparent in order to warrant trust.

Transparent claims provide a common basis for holding issuers

accountable for the DSCA they release and (more generally)

principals accountable for auxiliary claims they make about DSCAs.

Hence, issuers may register new claims about their artifacts, but

they cannot delete or alter earlier claims, or hide their claims

from third parties such as auditors.

Trust in the TS itself is supported both by protecting their

implementation (using, for instance, replication, trusted hardware,

and remote attestation of systems) and by enabling independent

audits of the correctness and consistency of its Registry, thereby

holding the organization accountable that operates it. Unlike CT,

where independent auditors are responsible for enforcing the

consistency of multiple independent instances of the same global

Registry, we require each TS to guarantee the consistency of its own

Registry (for instance, through the use of a consensus algorithm

between replicas of the Registry), but assume no consistency between

different transparency services.

¶

¶

¶

¶

¶

The TS specified in this architecture caters to two types of

audiences:

DSCA Issuers: entities, stakeholders, and users involved in

supply chain interactions that need to release DSCAs to a

definable set of peers; and

DSCA Consumers: entities, stakeholders, and users involved in

supply chain interactions that need to access, validate, and

trust DSCAs.

DSCA Issuers rely on being discoverable and represented as the

responsible parties for released DSCAs by the TS in a believable

manner. Analogously, DSCA Consumers rely on verifiable

trustworthiness assertions associated with DSCAs and their

processing in a believable manner. If trust can be put into the

operations that record DSCAs in a secure, append-only Registry via

an online operation, the same trust can be put into a corresponding

receipt that is the result of these online operations issued by the

TS and that can be validated in offline operations.

The TS specified in this architecture can be implemented by various

different types of services in various types of languages provided

via various variants of API layouts.

The global interoperability enabled and guaranteed by the TS is

enabled via core components (architectural constituents) that come

with prescriptive requirements (that are typically hidden away from

the user audience via APIs). The core components are based on the

Concise Signing and Encryption standard specified in [RFC8152],

which is used to sign released DSCAs and to build and maintain a

Merkle tree that functions as the append-only Registry for DSCAs.

The format and verification process for Registry-based transparency

receipts are described in [I-D.birkholz-scitt-receipts].

1.1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Use Cases

This section presents representative and solution-agnostic use cases

to illustrate the scope of SCITT and the processing of Digital

Supply Chain Artifacts.

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

2.1. Software Bill of Materials (SBOM)

As the ever increasing complexity of large software projects

requires more modularity and abstractions to manage them, keeping

track of their full Trusted Computing Base (TCB) is becoming

increasingly difficult. Each component may have its own set of

dependencies and libraries. Some of these dependencies are binaries,

which means their TCB depends not only on their source, but also on

their build environment (compilers and tool-chains). Besides, many

source and binary packages are distributed through various channels

and repositories that may not be trustworthy.

Software Bills of Materials (SBOM) help the authors, packagers,

distributors, auditors and users of software understand its

provenance and who may have the ability to introduce a vulnerability

that can affect the supply chain downstream. However, the usefulness

of SBOM in protecting end users is limited if supply chain actors

cannot be held accountable for their contents. For instance,

consider a package repository for an open source operating system

distribution. The operator of this repository may decide to provide

a malicious version of a package only to users who live in a

specific country. They can write two equivocal SBOMs for the honest

and backdoored versions of the package, so that nobody outside the

affected country can discover the malicious version, but victims are

not aware they are being targeted.

2.2. Confidential Computing

Confidential Computing can leverage hardware-protected trusted

execution environments (TEEs) to operate cloud services that protect

the confidentiality of data that they process. It relies on remote

attestation, which allows the service to prove to remote users what

is the hash of its software, as measured and signed by the hardware.

For instance, consider a speech recognition service that implements

machine learning inference using a deep neural network model. The

operator of the service wants to prove to its users that the service

preserves the user's privacy, that is, the submitted recordings can

only be used to detect voice commands but no other purpose (such as

storing the recordings or detecting mentions of brand names for

advertisement purposes). When the user connects to the TEE

implementing the service, the TEE presents attestation evidence that

includes a hardware certificate and a software measurement for their

task; the user verifies this evidence before sending its recording.

But how can users verify the software measurement for their task?

And how can operators update their service, e.g., to mitigate

security vulnerabilities or improve accuracy, without first

convincing all users to update the measurements they trust?

¶

¶

¶

¶

¶

Artifact:

Statement:

Claim:

Issuer:

A supply chain that maintains a transparent record of the successive

software releases for machine-learning models and runtimes,

recording both their software measurements and their provenance

(source code, build reports, audit reports,...) can provide users

with the information they need to authorize these tasks, while

holding the service operator accountable for the software they

release for them.

2.3. Cold Chains for Seafood

Once seafood is caught, its quality is determined -- amongst other

criteria -- via the integrity of a cold chain that ensures a

regulatory perspective freshness mandating a continuous storing

temperature between 1 °C and 0 °C (or -18 °C and lower for frozen

seafood). The temperature is recorded by cooling units adhering to

certain compliance standards automatically. Batches of seafood can

be split or aggregated before arriving in a shelf so that each unit

can potentially have a potentially unique cold chain record whose

transparency impacts the accuracy of the shelf-life associated with

it. Especially in early links of the supply chain, Internet

connection or sophisticated IT equipment are typically not available

and sometimes temperature measurements are recorded manually and

digital records are created in hindsight.

3. Terminology

The terms defined in this section have special meaning in the

context of Supply Chain Integrity, Transparency, and Trust

throughout this document. When used in text, the corresponding terms

are capitalized. To ensure readability, only a core set of terms is

included in this section.

a physical or non-physical item that is moving along the

supply chain.

any serializable information about an Artifact. To help

interpretation of Statements, they must be tagged with a media

type (as specified in [RFC6838]). For example, a statement may

represent a Software Bill Of Materials (SBOM) that lists the

ingredients of a software Artifact, or some endorsement or

attestation about an Artifact.

an identifiable and non-repudiable Statement about an

Artifact made by an Issuer. In SCITT, Claims are encoded as COSE

signed objects; the payload of the COSE structure contains the

Statement.

an entity that makes Claims about Artifacts in the supply

chain. The Issuer may be the owner or author of the Artifact, or

an independent third party such as a reviewer or an endorser.

¶

¶

¶

¶

¶

¶

¶

Envelope:

Feed:

Registry:

Transparency Service:

Receipt:

Registration:

Registration Policy:

Transparent Claim:

Verifier:

the metadata added to the Statement by the Issuer to make

it a Claim. It contains the identity of the Issuer and other

information to help Verifiers identify the Artifact referred in

the Statement. A Claim binds the Envelope to the Statement. In

COSE, the Envelope consists of protected headers.

an identifier chosen by the Issuer for the Artifact. For

every Issuer and Feed, the Registry on a Transparency Service

contains a sequence of Claims about the same Artifact. In COSE,

Feed is a dedicated header attribute in the protected header of

the Envelope.

the verifiable append-only data structure that stores

Claims in a Transparency Service often referred to by the synonym

log or ledger. SCITT supports multiple Registry and Receipt

formats to accommodate different Transparency Service

implementations, such as historical Merkle Trees and sparse

Merkle Trees.

an entity that maintains and extends the

Registry, and endorses its state. A Transparency Service is often

referred to by its synonym Notary. A Transparency Service can be

a complex distributed system, and SCITT requires the TS to

provide many security guarantees about its Registry . The

identity of a TS is captured by a public key that must be known

by Verifiers in order to validate Receipts.

a Receipt is a special form of COSE countersignature for

Claims that embeds cryptographic evidence that the Claim is

recorded in the Registry . It consists of a Registry -specific

inclusion proof, a signature by the Transparency Service of the

state of the Registry , and additional metadata (contained in the

countersignature protected headers) to assist in auditing.

the process of submitting a Claim to a Transparency

Service, applying its registration policy, storing it in the

Registry, producing a Receipt, and returning it to the submitter.

the pre-condition enforced by the TS before

registering a Claim, based on its Envelope (notably the identity

of its Issuer) and on prior claims already in the Registry.

a Claim that is augmented with a Receipt of its

registration. A Transparent Claim remains a valid Claim (as the

Receipt is carried in the countersignature), and may be

registered again in a different TS.

an entity that consumes Transparent Claims (a

specialization of Claim Consumer), verifying their proofs and

¶

¶

¶

¶

¶

¶

¶

¶

Auditor:

inspecting their Statements, either before using their Artifacts,

or later to audit their provenance on the supply chain.

an entity that checks the correctness and consistency of

all Claim registered by a TS (a specialization of Claim

Consumer).

4. Definition of Transparency

In this document, we use a definition of transparency built over

abstract notions of Registry and Receipts. Existing transparency

systems such as Certificate Transparency are instances of this

definition.

A Claim is an identifiable and non-repudiable Statement made by an

Issuer. The Issuer selects additional metadata and attaches a proof

of endorsement (in most cases, a signature) using the identity key

of the Issuer that binds the Statement and its metadata. Claims can

be made transparent by attaching a proof of Registration by a TS, in

the form of a Receipt that countersigns the Claim and witnesses its

inclusion in the Registry of a TS. By extension, we may say an

Artifact (e.g. a firmware binary) is transparent if it comes with

one or more Transparent Claims from its author or owner, though the

context should make it clear what type of Claim is expected for a

given Artifact.

Transparency does not prevent dishonest or compromised Issuers, but

it holds them accountable: any Artifact that may be used to target a

particular user that checks for Receipts must have been recorded in

the tamper-proof Registry, and will be subject to scrutiny and

auditing by other parties.

Transparency is implemented by a Registry that provides a

consistent, append-only, cryptographically verifiable, publicly

available record of entries. Implementations of TS may protect their

Registry using a combination of trusted hardware, replication and

consensus protocols, and cryptographic evidence. A Receipt is an

offline, universally-verifiable proof that an entry is recorded in

the Registry. Receipts do not expire, but it is possible to append

new entries that subsume older entries.

Anyone with access to the Registry can independently verify its

consistency and review the complete list of Claims registered by

each Issuer. However, the Registry of separate Transparency Services

are generally disjoint, though it is possible to take a Claim from

one Registry and register it again on another (if its policy allows

it), so the authorization of the Issuer and of the Registry by the

Verifier of the Receipt are generally independent.

¶

¶

¶

¶

¶

¶

¶

Reputable Issuers are thus incentivized to carefully review their

Statements before signing them into Claims. Similarly, reputable TS

are incentivized to secure their Registry, as any inconsistency can

easily be pinpointed by any auditor with read access to the

Registry. Some Registry formats may also support consistency

auditing through Receipts, that is, given two valid Receipts the TS

may be asked to produce a cryptographic proof that they are

consistent. Failure to produce this proof can indicate that the TS

operator misbehaved.

5. Architecture Overview

Artifact

Issuer Statement Envelope

DID Key Manifest
(decentralized)

Sign Claim
Claim

Transparency

Transparency Receipt Registry
Service

Transparent
Claim

Verifier Verify Claim

Auditor Collect Receipts Replay Registry

The SCITT architecture consists of a very loose federation of

Transparency Services, and a set of common formats and protocols for

¶

¶

issuing, registering and auditing Claims. In order to accommodate as

many TS implementations as possible, this document only specifies

the format of Claims (which must be used by all Issuers) and a very

thin wrapper format for Receipts, which specifies the TS identity

and the Registry algorithm. Most of the details of the Receipt's

contents are specific to the Registry algorithm. The

[I-D.birkholz-scitt-receipts] document defines two initial Registry

algorithms (for historical and sparse Merkle Trees), but other

Registry formats (such as blockchains, or hybrid historical and

indexed Merkle Trees) may be proposed later.

In this section, we describe at a high level the three main roles

and associated processes in SCITT: Issuers and the Claim issuance

process, transparency Registry and the Claim Registration process,

and Verifiers and the Receipt validation process.

5.1. Claim Issuance and Registration

5.1.1. Issuer Identity

Before an Issuer is able to produce Claims, it must first create its

decentralized identifier (also known as a DID). A DID can be

resolved into a key manifest (a list of public keys indexed by a key

identifier) using many different DID methods.

Issuers MAY choose the DID method they prefer, but with no guarantee

that all TS will be able to register their Claim. To facilitate

interoperability, all Transparency Service implementations SHOULD

support the did:web method from [https://w3c-ccg.github.io/did-

method-web/]. For instance, if the Issuer publishes its manifest at

https://sample.issuer/user/alice/did.json, the DID of the Issuer is

did:web:sample.issuer:user:alice.

Issuers SHOULD use consistent decentralized identifiers for all

their Artifacts, to simplify authorization by Verifiers and

auditing. They MAY update their DID manifest, for instance to

refresh their signing keys or algorithms, but they SHOULD NOT remove

or change any prior keys unless they intend to revoke all Claims

issued with those keys. This DID appears in the Issuer header of the

Claim's Envelope, while the version of the key from the manifest

used to sign the Claim is written in the kid header.

5.1.2. Naming Artifacts

Many Issuers issue Claims about different Artifacts under the same

DID, so it is important for everyone to be able to immediately

recognize by looking at the Envelope of a Claim what Artifact it is

referring to. This information is stored in the Feed header of the

Envelope. Issuers MAY use different signing keys (identified by kid

¶

¶

¶

¶

¶

https://www.w3.org/TR/did-core

in the resolved key manifest) for different Artifacts, or sign all

Claims under the same key.

5.1.3. Claim Metadata

Besides Issuer, Feed and kid, the only other mandatory metadata in

the Claim is the type of the Payload, indicated in the cty Envelope

header. However, this set of mandatory metadata is not sufficient to

express many important Registration policies. For example, a

Registry may only allow a Claim to be registered if it was signed

recently. While the Issuer is free to add any information in the

payload of the Claim, the TS (and most of its auditor) can only be

expected to interpret information in the Envelope.

Such metadata, meant to be interpreted by the TS during Registration

policy evaluation, should be added to the reg_info header. While the

header MUST be present in all Claims, its contents consist of a map

of named attributes. Some attributes (such as the Issuer's

timestamp) are standardized with a defined type, to help uniformize

their semantics across TS. Others are completely customizable and

may have arbitrary types. In any case, all attributes are optional

so the map MAY be empty.

5.2. Transparency Service (TS)

The role of TS can be decomposed into several major functions. The

most important is maintaining a Registry, the verifiable data

structure that records Claims, and enforcing a Registration policy.

It also maintains a service key, which is used to endorse the state

of the Registry in Receipts. All TS MUST expose standard endpoints

for Registration of Claims and Receipt issuance, which is described

in Section 8.1. Each TS also defines its Registration policy, which

MUST apply to all entries in the Registry.

The combination of Registry, identity, Registration policy

evaluation, and Registration endpoint constitute the trusted part of

the TS. Each of these components SHOULD be carefully protected

against both external attacks and internal misbehavior by some or

all of the operators of the TS. For instance, the code for policy

evaluation, Registry extension and endorsement may be protected by

running in a TEE; the Registry may be replicated and a consensus

algorithm such as Practical Byzantine Fault Tolerance (pBFT [PBFT])

may be used to protect against malicious or vulnerable replicas;

threshold signatures may be use to protect the service key, etc.

Beyond the trusted components, Transparency Services may operate

additional endpoints for auditing, for instance to query for the

history of Claims made by a given Issuer and Feed. Implementations

of TS SHOULD avoid using the service identity and extending the

¶

¶

¶

¶

¶

Registry in auditing endpoints; as much as practical, the Registry

SHOULD contain enough evidence to re-construct verifiable proofs

that the results returned by the auditing endpoint are consistent

with a given state of the Registry.

5.2.1. Service Identity, Remote Attestation, and Keying

Every TS MUST have a public service identity, associated with

public/private key pairs for signing on behalf of the service. In

particular, this identity must be known by Verifiers when validating

a Receipt

This identity should be stable for the lifetime of the service, so

that all Receipts remain valid and consistent. The TS operator MAY

use a distributed identifier as their public service identity if

they wish to rotate their keys, if the Registry algorithm they use

for their Receipt supports it. Other types of cryptographic

identities, such as parameters for non-interactive zero-knowledge

proof systems, may also be used in the future.

The TS SHOULD provide evidence that it is securely implemented and

operated, enabling remote authentication of the hardware platforms

and/or software TCB that run the TS. This additional evidence SHOULD

be recorded in the Registry and presented on demand to Verifiers and

auditors.

For example, consider a TS implemented using a set of replicas, each

running within its own hardware-protected trusted execution

environments (TEEs). Each replica SHOULD provide a recent

attestation report for its TEE, binding their hardware platform to

the software that runs the Transparency Service, the long-term

public key of the service, and the key used by the replica for

signing Receipts. This attestation evidence SHOULD be supplemented

with transparency Receipts for the software and configuration of the

service, as measured in its attestation report.

5.2.2. Registration Policies

A TS that accepts to register any valid claim offered by an issuer

would end up providing only limited value to verifiers. In

consequence, a baseline transparency guarantee policing the

registration of claims is required to ensure completeness of audit,

which can help detect equivocation. Most advanced SCITT scenarios

rely on the TS performing additional domain-specific checks before a

claim is accepted: TS may only allow trusted authenticated users to

register claims, TS may try to check that a new claim is consistent

with previous claims from the same issuers or that claims are

registered in the correct order and cannot be re-played; some TS may

even interpret and validate the payload of claims.

¶

¶

¶

¶

¶

¶

In general, registration policies are applied at the discretion of

the TS, and verifiers use receipts as witnesses that confirm that

the registration policy of the TS was satisfied at the time claim

registration. TS implementations SHOULD make their full registration

policy public and auditable, e.g. by recording stateful policy

inputs at evaluation time in the registry to ensure that policy can

be independently validated later. From an interoperability point of

view, the policy that was applied by the TS is opaque to the

verifier, who is forced to trust the associated registration policy.

If the policy of the TS evolves over time, or is different across

issuers, the guarantee derived from receipt validation may not be

uniform across all claims over time.

To help verifiers interpret the semantics of claim registration,

SCITT defines a standard mechanism for signalling in the claim

itself which policies have been applied by the TS from a defined set

of registration policies with standardized semantics. Each policy

that is expected to be enforced by the TS is represented by an entry

in the registration policy info map (reg_info) in the envelope. The

key of the map corresponds to the name of the policy, while its

value (including its type) is policy-specific. For instance, the

register_by policy defines the maximum timestamp by which a claim

can be registered, hence the associated value contains an unsigned

integer.

While this design ensures that all verifiers get the same guarantee

regardless of where a claim is registered, its main downside is that

it requires the issuer to include the necessary policies in the

envelope when the claim is signed. Furthermore, it makes it

impossible to register the same claim on two different TS if their

required registration policies are incompatible.

Editor's note

The technical design for signalling and verifying registration

policies is a work in progress. An alternative design would be to

include the registration policies in the receipt/countersignature

rather than in the envelope. This improves the portability of

claims but requires the verifier to be more aware of the

particular policies at the TS where the claim is registered.

5.2.3. Registry Security Requirements

There are many different candidate verifiable data structures that

may be used to implement the Registry, such as chronological Merkle

Trees, sparse/indexed Merkle Trees, full blockchains, and many other

variants. We only require the Registry to support concise Receipts

(i.e. whose size grows at most logarithmically in the number of

entries in the Registry). This does not necessarily rule out

¶

¶

¶

¶

¶

blockchains as a Registry, but may necessitate advanced Receipt

schemes that use arguments of knowledge and other verifiable

computing techniques.

Since the details of how to verify a Receipt are specific to the

data structure, we do not specify any particular Registry format in

this document. Instead, we propose two initial formats for Registry

in [I-D.birkholz-scitt-receipts] using historical and sparse Merkle

Trees. Beyond the format of Receipts, we require generic properties

that should be satisfied by the components in the TS that have the

ability to write to the Registry.

5.2.3.1. Finality

The Registry is append-only: once a Claim is registered, it cannot

be modified, deleted, or moved. In particular, once a Receipt is

returned for a given Claim, the Claim and any preceding entry in the

Registry become immutable, and the Receipt provides universally-

verifiable evidence of this property.

5.2.3.2. Consistency

There is no fork in the Registry: everyone with access to its

contents sees the same sequence of entries, and can check its

consistency with any Receipts they have collected. TS

implementations SHOULD provide a mechanism to verify that the state

of the Registry encoded in an old Receipt is consistent with the

current Registry state.

5.2.3.3. Replayability and Auditing

Everyone with access to the Registry can check the correctness of

its contents. In particular,

the TS defines and enforces deterministic Registration policies

that can be re-evaluated based solely on the contents of the

Registry at the time of registraton, and must then yield the same

result.

The ordering of entries, their cryptographic contents, and the

Registry governance may be non-deterministic, but they must be

verifiable.

The TS SHOULD store evidence about the resolution of distributed

identifiers into manifests.

The TS MAY additionally support verifiability of client

authentication and access control.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

5.2.3.4. Governance and Bootstrapping

The TS needs to support governance, with well-defined procedures for

allocating resources to operate the Registry (e.g., for provisioning

trusted hardware and registering their attestation materials in the

Registry) and for updating its code (e.g., relying on Transparent

Claims about code updates, secured on the Registry itself, or on

some auxiliary TS).

Governance procedures, their auditing, and their transparency are

implementation specific. The TS SHOULD document them.

Governance may be based on a consortium of members that are

jointly responsible for the TS, or automated based on the

contents of an auxiliary governance TS.

Governance typically involves additional records in the Registry

to enable its auditing. Hence, the Registry may contain both

Transparent Claims and governance entries.

Issuers, Verifiers, and third-party auditors may review the TS

governance before trusting the service, or on a regular basis.

5.3. Verifying Transparent Claims

For a given Artifact, Verifiers take as trusted inputs:

the distributed identifier of the Issuer (or its resolved key

manifest),

the expected name of the Artifact (i.e. the Feed),

the list of service identities of trusted TS.

When presented with a Transparent Claim for the Artifact, they

verify its Issuer identity, signature, and Receipt. They may

additionally apply a validation policy based on the protected

headers present both in the Envelope or in the countersignature and

the Statement itself, which may include security-critical Artifact-

specific details.

Some Verifiers may systematically resolve the Issuer DID to fetch

their latest DID document. This strictly enforces the revocation of

compromised keys: once the Issuer has updated its document to remove

a key identifier, all Claims signed with this kid will be rejected.

However, others may delegate DID resolution to a trusted third party

and/or cache its results.

Some Verifiers may decide to skip the DID-based signature

verification, relying on the TS's Registration policy and the

¶

¶

*

¶

*

¶

*

¶

¶

1.

¶

2. ¶

3. ¶

¶

¶

scrutiny of other Verifiers. Although this weakens their guarantees

against key revocation, or against a corrupt TS, they can still keep

the Receipt and blame the Issuer or the TS at a later point.

6. Claim Issuance, Registration, and Verification

This section details the interoperability requirements for

implementers of Claim issuance and validation libraries, and of

Transparency Services.

6.1. Envelope and Claim Format

The formats of Claims and Receipts are based on CBOR Object Signing

and Encryption (COSE). The choice of CBOR is a trade-off between

safety (in particular, non-malleability: each Claim has a unique

serialization), ease of processing and availability of

implementations.

At a high-level that is the context of this architecture, a Claim is

a COSE single-signed object (i.e. COSE_Sign1) that contains the

correct set of protected headers. Although Issuers and relays may

attach unprotected headers to Claims, Transparency Services and

Verifiers MUST NOT rely on the presence or value of additional

unprotected headers in Claims during Registration and validation.

All Claims MUST include the following protected headers:

algorithm (label: 1): Asymmetric signature algorithm used by the

Claim Issuer, as an integer, for example -35 for ECDSA with

SHA-384, see COSE Algorithms registry;

Issuer (label: TBD, temporary: 391): DID (Decentralized

Identifier, see W3C Candidate Recommendation) of the signer, as a

string, for example did:web:example.com;

Feed (label: TBD, temporary: 392): the Issuer's name for the

Artifact, as a string;

payload type (label: 3): Media type of payload as a string, for

example application/spdx+json

Registration policy info (label: TBD, temporary: 393): a map of

additional attributes to help enforce Registration policies;

Key ID (label: 4): Key ID, as a bytestring.

Additionally, Claims MAY carry the following unprotected headers:

Receipts (label: TBD, temporary: 394): Array of Receipts, defined

in [I-D.birkholz-scitt-receipts]

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

https://www.iana.org/assignments/cose/cose.xhtml
https://www.w3.org/TR/did-core/

In CDDL [RFC8610] notation, the Envelope is defined as follows:

6.2. Claim Issuance

There are many types of Statements (such as SBOMs, malware scans,

audit reports, policy definitions) that Issuers may want to turn

into Claims. The Issuer must first decide on a suitable format to

serialize the Statement, such as:

JSON-SPDX

CBOR-SPDX

SWID

¶

SCITT_Envelope = COSE_Sign1_Tagged

COSE_Sign1_Tagged = #6.18(COSE_Sign1)

COSE_Sign1 = [

 protected : bstr .cbor Protected_Header,

 unprotected : Unprotected_Header,

 payload : bstr,

 signature : bstr

]

Reg_Info = {

 ? "register_by": uint,

 ? "sequence_no": uint,

 ? "issuance_ts": uint,

 * tstr => any

}

; All protected headers are mandatory, to protect against faulty implementations of COSE

; that may accidentally read a missing protected header from the unprotected headers.

Protected_Header = {

 1 => int ; algorithm identifier

 3 => tstr ; payload type

 4 => bstr ; Key ID

 ; TBD, Labels are temporary

 391 => tstr ; DID of Issuer

 392 => tstr ; Feed

 393 => Reg_Info ; Registration policy info

}

Unprotected_Header = {

 ; TBD, Labels are temporary

 ? 394 => [+ SCITT_Receipt]

}

¶

¶

* ¶

* ¶

* ¶

CoSWID

CycloneDX

in-toto

SLSA

Once the Statement is serialized with the correct content type, the

Issuer should fill in the attributes for the Registration policy

information header. From the Issuer's perspective, using attributes

from named policies ensures that the Claim may only be registered on

Transparency Services that implement the associated policy. For

instance, if a Claim is frequently updated, and it is important for

Verifiers to always consider the latest version, Issuers SHOULD use

the sequence_no or issuer_ts attributes.

Once all the Envelope headers are set, the Issuer MAY use a standard

COSE implementation to produce the serialized Claim (the SCITT tag

of COSE_Sign1_Tagged is outside the scope of COSE, and used to

indicate that a signed object is a Claim).

6.3. Standard registration policies

Editor's note

The technical design for signalling and verifying registration

policies is a work in progress. We expect that once the formats

and semantics of the registration policy headers are finalized,

standardized policies may be moved to a separate draft. For now,

we inline some significant policies to illustrate the most common

use cases.

TS implementations MUST indicate their support for registration

policies and MUST check that all the policies indicated as defined

in the reg_info map are supported and are satisfied before a claim

can be registered. Any unsupported claims MUST be indicated

separately and corresponding unknown policy entries in the map of a

claim MUST be rejected. This is to ensure that all verifiers get the

same guarantee out of the registration policies regardless of where

it is registered.

Policy Name
Required

attributes
Implementation

TimeLimited
register_by:

uint

Returns true if now () < register_by at

registration time. The ledger MUST store

the ledger time at registration along

with the claim, and SHOULD indicate it in

receipts

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

Policy Name
Required

attributes
Implementation

Sequential
sequence_no:

uint

First, lookup in the ledger for claims

with the same issuer and feed. If at

least one is found, returns true if and

only if the sequence_no of the new claim

is the highest sequence_no in the

existing claims incremented by one.

Otherwise, returns true if and only if

sequence_no = 0.

Temporal
issuance_ts:

uint

Returns true if and only if there is no

claim in the ledger with the same issuer

and feed with a greater issuance_ts

NoReplay None
Returns true if and only if the claim

doesn't already appear in the ledger

Table 1: An Initial Set of Named Policies

6.4. Registering Signed Claims

The same Claim may be independently registered in multiple TS. To

register a Claim, the service performs the following steps:

Client authentication. This is implementation-specific, and MAY

be unrelated to the Issuer identity. Claims may be registered

by a different party than their Issuer.

Issuer identification. The TS MUST store evidence of the DID

resolution for the Issuer protected header of the Envelope and

the resolved key manifest at the time of Registration for

auditing. This MAY require that the service resolve the Issuer

DID and record the resulting document, or rely on a cache of

recent resolutions.

Envelope signature verification, as described in COSE

signature, using the signature algorithm and verification key

of the Issuer DID document.

Envelope validation. The service MUST check that the Envelope

has a payload and the protected headers listed above. The

service MAY additionally verify the payload format and content.

Apply Registration policy: for named policies, the TS should

check that the required Registration info attributes are

present in the Envelope and apply the check described in Table

1. A TS MUST reject Claims that contain an attribute used for a

named policy that is not enforced by the service. Custom Claims

are evaluated given the current Registry state and the entire

Envelope, and MAY use information contained in the attributes

of named policies.

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

Commit the new Claim to the Registry

Sign and return the Receipt.

The last two steps MAY be shared between a batch of Claims recorded

in the Registry.

The service MUST ensure that the Claim is committed before releasing

its Receipt, so that it can always back up the Receipt by releasing

the corresponding entry in the Registry. Conversely, the service MAY

re-issue Receipts for the Registry content, for instance after a

transient fault during Claim Registration.

6.5. Validation of Transparent Claims

This section provides additional implementation considerations, the

high-level validation algorithm is described in Section 5.3, with

the Registry-specific details of checking Receipts are covered in

[I-D.birkholz-scitt-receipts].

Before checking a Claim, the Verifier must be configured with one or

more identities of trusted Transparency Services. If more than one

service is configured, the Verifier MUST return which service the

Claim is registered on.

In some scenarios, the Verifier already expects a specific Issuer

and Feed for the Claim, while in other cases they are not known in

advance and can be an output of validation. Verifiers SHOULD offer a

configuration to decide if the Issuer's signature should be locally

verified (which may require a DID resolution, and may fail if the

manifest is not available or if the key is revoked), or if it should

trust the validation done by the TS during Registration.

Some Verifiers MAY decide to locally re-apply some or all of the

Registration policies if they have limited trust in the TS. In

addition, Verifiers MAY apply arbitrary validation policies after

the signature and Receipt have been checked. Such policies may use

as input all information in the Envelope, the Receipt, and the

payload, as well as any local state.

Verifiers SHOULD offer options to store or share Receipts in case

they are needed to audit the TS in case of a dispute.

7. Federation

Editor's note: This section needs work.

Multiple, independently-operated transparency services can help

secure distributed supply chains, without the need for a single,

centralized service trusted by all parties. For example, multiple

6. ¶

7. ¶

¶

¶

¶

¶

¶

¶

¶

¶

SCITT instances may be governed and operated by different

organizations that do not trust one another.

This may involve registering the same Claims at different

transparency services, each with their own purpose and registration

policy. This may also involve attaching multiple Receipts to the

same Claims, each Receipt endorsing the Issuer signature and a

subset of prior Receipts, and each TS verifying prior Receipts as

part of their registration policy.

For example, a supplier TS may provide a complete, authoritative

Registry for some kind of Claims, whereas a consumer TS may collect

different kinds of Claims to ensure complete auditing for a specific

use case, and possibly require additional reviews before registering

some of these claims.

8. Transparency Service API

Editor's Note: This may be moved to appendix.

8.1. Messages

8.1.1. Register Signed Claims

8.1.1.1. Request

Body: SCITT COSE_Sign1 message

8.1.1.2. Response

One of the following:

HTTP Status 201 - Registration was tentatively successful pending

service consensus.

HTTP Status 400 - Registration was unsuccessful.

Error code AwaitingDIDResolutionTryLater

Error code InvalidInput

[TODO] Use 5xx for AwaitingDIDResolutionTryLater

The 201 response contains the x-ms-ccf-transaction-id HTTP header

which can be used to retrieve the Registration Receipt with the

given transaction ID. [TODO] this has to be made generic

¶

¶

¶

¶

POST <Base URL>/entries¶

¶

¶

*

¶

* ¶

- ¶

- ¶

¶

¶

[TODO] probably a bad idea to define a new header, or is it ok? can

we register a new one? https://www.iana.org/assignments/http-fields/

http-fields.xhtml

The 400 response has a Content-Type: application/json header and a

body containing details about the error:

json { "error": { "code": "<error code>", "message": "<message>" } }

AwaitingDIDResolutionTryLater means the service does not have an up-

to-date DID document of the DID referenced in the Signed Claims but

is performing or will perform a DID resolution after which the

client may retry the request. The response may contain the HTTP

header Retry-After to inform the client about the expected wait

time.

InvalidInput means either the Signed Claims message is syntactically

malformed, violates the signing profile (e.g. signing algorithm), or

has an invalid signature relative to the currently resolved DID

document.

8.1.2. Retrieve Registration Receipt

8.1.2.1. Request

8.1.2.2. Response

One of the following:

HTTP Status 200 - Registration was successful and the Receipt is

returned.

HTTP Status 400 - Transaction exists but does not correspond to a

Registration Request.

Error code TransactionMismatch

HTTP Status 404 - Transaction is pending, unknown, or invalid.

Error code TransactionPendingOrUnknown

Error code TransactionInvalid

The 200 response contains the SCITT_Receipt in the body.

The 400 and 404 responses return the error details as described

earlier.

¶

¶

¶

¶

¶

GET <Base URL>/entries/<Transaction ID>/receipt¶

¶

*

¶

*

¶

- ¶

* ¶

- ¶

- ¶

¶

¶

The retrieved Receipt may be embedded in the corresponding

COSE_Sign1 document in the unprotected header, see TBD.

[TODO] There's also the GET <Base URL>/entries/<Transaction ID>

endpoint which returns the submitted COSE_Sign1 with the Receipt

already embedded. Is this useful?

9. Privacy Considerations

Unless advertised by the TS, every Issuer should treat its Claims as

public. In particular, their Envelope and Statement should not carry

any private information in plaintext.

10. Security Considerations

On its own, verifying a Transparent Claim does not guarantee that

its Envelope or contents are trustworthy---just that they have been

signed by the apparent Issuer and counter-signed by the TS. If the

Verifier trusts the Issuer, it can infer that the Claim was issued

with this Envelope and contents, which may be interpreted as the

Issuer saying the Artifact is fit for its intended purpose. If the

Verifier trusts the TS, it can independently infer that the Claim

passed the TS Registration policy and that has been persisted in the

Registry. Unless advertised in the TS Registration policy, the

Verifier should not assume that the ordering of Transparent Claims

in the Registry matches the ordering of their issuance.

Similarly, the fact that an Issuer can be held accountable for its

Transparent Claims does not on its own provide any mitigation or

remediation mechanism in case one of these Claims turned out to be

misleading or malicious---just that signed evidence will be

available to support them.

Issuers SHOULD ensure that the Statements in their Claims are

correct and unambiguous, for example by avoiding ill-defined or

ambiguous formats that may cause Verifiers to interpret the Claim as

valid for some other purpose.

Issuers and Transparency Services SHOULD carefully protect their

private signing keys and avoid these keys for any purpose not

described in this architecture. In case key re-use is unavoidable,

they MUST NOT sign any other message that may be verified as an

Envelope.

10.1. Threat Model

We provide a generic threat model for SCITT, describing its residual

security properties when some of its actors (identity providers,

Issuers, TS, and Auditors) are corrupt or compromised.

¶

¶

¶

¶

¶

¶

¶

¶

This model may need to be refined to account for specific supply

chains and use cases.

10.1.1. Claim authentication and transparency.

SCITT primarily supports evidence of Claim integrity, both from the

Issuer (authentication) and from the TS (transparency). These

guarantees are meant to hold for the long term, possibly decades.

We conservatively suppose that some issuers and some TS will be

corrupt.

SCITT entities explicitly trust one another on the basis of their

long-term identity, which maps to shorter-lived cryptographic

credentials. Hence, a Verifier would usually validate a transparent

signed Claim from a given Issuer, registered at a given TS (both

identified in the Verifier's local authorization policy) and would

not depend on any other Issuer or TS.

We cannot stop authorized supply chain actors from making false

claims (either by mistake or by corruption) but we can make them

accountable by ensuring their Claims are systematically registered

at a trustworthy TS.

Similarly, we aim to provide strong residual guarantees against a

faulty/corrupt TS. We cannot stop a TS from registering Claims that

do not meet its stated Registration Policy, or to issue Receipts

that are not consistent with their append-only Registry, but we can

hold it accountable and guarantee that it will be blamed by any

Auditor that replays their Registry against any contested Receipt.

Note that SCITT does not require trust in a single centralized TS:

different actors may rely on different TS, each registering a subset

of claims subject to their own policy.

In both cases, SCITT provides generic, universally-verifiable

cryptographic evidence to individually blame the Issuer or the TS.

This enables valid actors to detect and disambiguate malicious

actors who make contradictory Claims to different entities

(Verifiers, Auditors, Issuers). On the other hand, their liability

and the resulting damage to their reputation are application

specific, and out of scope for SCITT.

Verifiers and Auditors need not be trusted by other actors. In

particular, they cannot "frame" an Issuer or a TS for claims they

did not issue or register.

Append-only log

If a TS is honest, then a transparent signed Claim with a correct

Receipt of registration at a given position ensures that the signed

¶

¶

¶

¶

¶

¶

¶

¶

¶

claim passed its Registration Policy and was recorded at that

position in its Registry.

Conversely, a corrupt TS may 1. refuse or delay the registration of

Claims; 2. register Claims that do not pass its Registration Policy

(e.g. Claims with Issuer identities and signatures that do not

verify.) 3. issue verifiable Receipts for Claims that do not match

its Registry; 4. refuse access to its Registry (e.g. to Auditors,

possibly after storage loss)

An Auditor granted (partial) access to the Registry and to a

collection of disputed Receipts will be able to replay it, detect

any invalid Registration (2) or incorrect receipt in this collection

(3), and blame the TS for them. This ensures any Verifier that trust

at least one such Auditor that (2,3) will be blamed to the TS.

Due to the operational challenge of maintaining a globally

consistent append-only Registry, some TS may provide limited support

for historical queries on the Claims they have registered, and

accept the risk of being blamed for inconsistent Registration or

Issuer equivocation.

Verifier and Auditors may also witness (1,4) but may not be able to

collect verifiable evidence for it.

Availability of Transparent Signed Claims

Networking and Storage are trusted only for availability.

Auditing may involve access to data beyond what is persisted in the

TS log. For example, the registered TS may include only the hash of

a detailed SBOM, which may limit the scope of auditing.

Resistance to denial-of-service is implementation specific.

Actors should independently keep their own record of the Claims they

issue, endorse, verify, or audit.

10.1.2. Confidentiality and privacy.

The network is untrusted. All contents exchanged between actors is

protected using secure authenticated channels (TLS) but, as usual,

this may not exclude network traffic analysis.

Claims and their registration

The TS is trusted with the confidentiality of the claims presented

for registration. Some TS may publish every claim in their logs, to

facilitate their dissemination and auditing. Others may just return

receipts to the client that present claims for registration, and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

disclose the ledger only to auditors trusted with the

confidentiality of its contents.

A collection of transparent Claims leaks no information about the

contents of other Claims registered at the TS.

Nonetheless, Issuers should carefully review the inclusion of

private/confidential materials in their Claims; they may for

instance remove any PII, or include instead opaque cryptographic

commitments, such as hashes.

Queries to the Registry

The confidentiality of queries is implementation-specific, and

generally not guaranteed. For example, while offline Claim

verification is private, a TS may monitor which of its Claims are

being verified from lookups to ensure their freshness.

10.1.3. Cryptographic Assumptions

We rely on standard cryptographic security for signing schemes (EUF-

CMA: for a given key, given the public key and any number of signed

messages, the attacker cannot forge a valid signature for any other

message) and for receipts schemes (log collision-resistance: for a

given commitment such as a Merkle-tree root, there is a unique log

such that any valid path authenticates a claim in this log.)

SCITT supports cryptographic agility: the actors depend only on the

subset of signing and receipt schemes they trust. This enables the

gradual transition to stronger algorithms, including e.g. post-

quantum signature algorithms.

10.1.4. TS Clients

Trust in clients that submit Claims for registration is

implementation-specific. Hence, an attacker may attempt to register

any Claim it has obtained, at any TS that accepts them, possibly

multiple times and out of order. This may be mitigated by a TS that

enforces restrictive access control and registration policies.

10.1.5. Identity

The identity resolution mechanism is trusted to associate long-term

identifiers with their public signature-verification keys. (The TS

and other parties may record identity-resolution evidence to

facilitate its auditing.)

If one of the credentials of an Issuer gets compromised, SCITT still

guarantee the authenticity of all claims signed with this credential

that have been registered on a TS before the compromise. It is up to

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC6838]

[RFC8152]

[RFC8174]

[RFC8610]

[RFC9162]

[I-D.birkholz-scitt-receipts]

the Issuer to notify TS of credential revocation to stop Verifiers

from accepting Claims signed with compromised credentials. [See the

thread of revocation for additional details.]

The confidentiality of any identity lookup during Claim Registration

or Claim Verification is out of scope.

11. IANA Considerations

See Body Section 4.

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Freed, N., Klensin, J., and T. Hansen, "Media Type

Specifications and Registration Procedures", BCP 13, RFC

6838, DOI 10.17487/RFC6838, January 2013, <https://

www.rfc-editor.org/info/rfc6838>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Birkholz, H., Vigano, C., and C. Bormann, "Concise Data

Definition Language (CDDL): A Notational Convention to

Express Concise Binary Object Representation (CBOR) and

JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,

June 2019, <https://www.rfc-editor.org/info/rfc8610>.

Laurie, B., Messeri, E., and R. Stradling, "Certificate

Transparency Version 2.0", RFC 9162, DOI 10.17487/

RFC9162, December 2021, <https://www.rfc-editor.org/info/

rfc9162>.

12.2. Informative References

Birkholz, H., Riechert, M., Delignat-

Lavaud, A., and C. Fournet, "Countersigning COSE

Envelopes in Transparency Services", Work in Progress,

Internet-Draft, draft-birkholz-scitt-receipts-02, 24

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8610
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9162

[PBFT]

October 2022, <https://www.ietf.org/archive/id/draft-

birkholz-scitt-receipts-02.txt>.

Castro, M. and B. Liskov, "Practical byzantine fault

tolerance and proactive recovery", ACM Transactions on

Computer Systems, Volume 20, Issue 4 , November 2002,

<https://doi:10.1145/571637.571640>.

Appendix A. Attic

Not ready to throw these texts into the trash bin yet.

Authors' Addresses

Henk Birkholz

Fraunhofer SIT

Rheinstrasse 75

64295 Darmstadt

Germany

Email: henk.birkholz@sit.fraunhofer.de

Antoine Delignat-Lavaud

Microsoft Research

21 Station Road

Cambridge

CB1 2FB

United Kingdom

Email: antdl@microsoft.com

Cedric Fournet

Microsoft Research

21 Station Road

Cambridge

CB1 2FB

United Kingdom

Email: fournet@microsoft.com

Yogesh Deshpande

ARM

110 Fulbourn Road

Cambridge

CB1 9NJ

United Kingdom

Email: yogesh.deshpande@arm.com

¶

https://www.ietf.org/archive/id/draft-birkholz-scitt-receipts-02.txt
https://www.ietf.org/archive/id/draft-birkholz-scitt-receipts-02.txt
https://doi:10.1145/571637.571640
mailto:henk.birkholz@sit.fraunhofer.de
mailto:antdl@microsoft.com
mailto:fournet@microsoft.com
mailto:yogesh.deshpande@arm.com

	An Architecture for Trustworthy and Transparent Digital Supply Chains
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Use Cases
	2.1. Software Bill of Materials (SBOM)
	2.2. Confidential Computing
	2.3. Cold Chains for Seafood

	3. Terminology
	4. Definition of Transparency
	5. Architecture Overview
	5.1. Claim Issuance and Registration
	5.1.1. Issuer Identity
	5.1.2. Naming Artifacts
	5.1.3. Claim Metadata

	5.2. Transparency Service (TS)
	5.2.1. Service Identity, Remote Attestation, and Keying
	5.2.2. Registration Policies
	5.2.3. Registry Security Requirements
	5.2.3.1. Finality
	5.2.3.2. Consistency
	5.2.3.3. Replayability and Auditing
	5.2.3.4. Governance and Bootstrapping

	5.3. Verifying Transparent Claims

	6. Claim Issuance, Registration, and Verification
	6.1. Envelope and Claim Format
	6.2. Claim Issuance
	6.3. Standard registration policies
	6.4. Registering Signed Claims
	6.5. Validation of Transparent Claims

	7. Federation
	8. Transparency Service API
	8.1. Messages
	8.1.1. Register Signed Claims
	8.1.1.1. Request
	8.1.1.2. Response

	8.1.2. Retrieve Registration Receipt
	8.1.2.1. Request
	8.1.2.2. Response

	9. Privacy Considerations
	10. Security Considerations
	10.1. Threat Model
	10.1.1. Claim authentication and transparency.
	10.1.2. Confidentiality and privacy.
	10.1.3. Cryptographic Assumptions
	10.1.4. TS Clients
	10.1.5. Identity

	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Attic
	Authors' Addresses

