
Network Working Group T. Ylonen
Internet-Draft T. Kivinen
Expires: May 10, 2002 SSH Communications Security Corp
 M. Saarinen
 University of Jyvaskyla
 T. Rinne
 S. Lehtinen
 SSH Communications Security Corp
 November 9, 2001

SSH Protocol Architecture
draft-ietf-secsh-architecture-10.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 10, 2002.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network. This document describes the
 architecture of the SSH protocol, as well as the notation and
 terminology used in SSH protocol documents. It also discusses the
 SSH algorithm naming system that allows local extensions. The SSH
 protocol consists of three major components: The Transport Layer

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Ylonen, et. al. Expires May 10, 2002 [Page 1]

Internet-Draft SSH Protocol Architecture November 2001

 Protocol provides server authentication, confidentiality, and
 integrity with perfect forward secrecy. The User Authentication
 Protocol authenticates the client to the server. The Connection
 Protocol multiplexes the encrypted tunnel into several logical
 channels. Details of these protocols are described in separate
 documents.

Table of Contents

1. Introduction . 3
2. Specification of Requirements 3
3. Architecture . 3
3.1 Host Keys . 3
3.2 Extensibility . 5
3.3 Policy Issues . 5
3.4 Security Properties . 6
3.5 Packet Size and Overhead 6
3.6 Localization and Character Set Support 7
4. Data Type Representations Used in the SSH Protocols 8
5. Algorithm Naming . 10
6. Message Numbers . 10
7. IANA Considerations . 11
8. Security Considerations 12
9. Trademark Issues . 12
10. Additional Information . 12

 References . 12
 Authors' Addresses . 13
 Full Copyright Statement 15

Ylonen, et. al. Expires May 10, 2002 [Page 2]

Internet-Draft SSH Protocol Architecture November 2001

1. Introduction

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network. It consists of three major
 components:
 o The Transport Layer Protocol [SSH-TRANS] provides server
 authentication, confidentiality, and integrity. It may optionally
 also provide compression. The transport layer will typically be
 run over a TCP/IP connection, but might also be used on top of any
 other reliable data stream.
 o The User Authentication Protocol [SSH-USERAUTH] authenticates the
 client-side user to the server. It runs over the transport layer
 protocol.
 o The Connection Protocol [SSH-CONNECT] multiplexes the encrypted
 tunnel into several logical channels. It runs over the user
 authentication protocol.

 The client sends a service request once a secure transport layer
 connection has been established. A second service request is sent
 after user authentication is complete. This allows new protocols to
 be defined and coexist with the protocols listed above.

 The connection protocol provides channels that can be used for a wide
 range of purposes. Standard methods are provided for setting up
 secure interactive shell sessions and for forwarding ("tunneling")
 arbitrary TCP/IP ports and X11 connections.

2. Specification of Requirements

 All documents related to the SSH protocols shall use the keywords
 "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" to describe
 requirements. They are to be interpreted as described in [RFC-2119].

3. Architecture

3.1 Host Keys

 Each server host SHOULD have a host key. Hosts MAY have multiple
 host keys using multiple different algorithms. Multiple hosts MAY
 share the same host key. If a host has keys at all, it MUST have at
 least one key using each REQUIRED public key algorithm (currently DSS
 [FIPS-186]).

 The server host key is used during key exchange to verify that the
 client is really talking to the correct server. For this to be
 possible, the client must have a priori knowledge of the server's
 public host key.

https://datatracker.ietf.org/doc/html/rfc2119

Ylonen, et. al. Expires May 10, 2002 [Page 3]

Internet-Draft SSH Protocol Architecture November 2001

 Two different trust models can be used:
 o The client has a local database that associates each host name (as
 typed by the user) with the corresponding public host key. This
 method requires no centrally administered infrastructure, and no
 third-party coordination. The downside is that the database of
 name-to-key associations may become burdensome to maintain.
 o The host name-to-key association is certified by some trusted
 certification authority. The client only knows the CA root key,
 and can verify the validity of all host keys certified by accepted
 CAs.

 The second alternative eases the maintenance problem, since
 ideally only a single CA key needs to be securely stored on the
 client. On the other hand, each host key must be appropriately
 certified by a central authority before authorization is possible.
 Also, a lot of trust is placed on the central infrastructure.

 The protocol provides the option that the server name - host key
 association is not checked when connecting to the host for the first
 time. This allows communication without prior communication of host
 keys or certification. The connection still provides protection
 against passive listening; however, it becomes vulnerable to active
 man-in-the-middle attacks. Implementations SHOULD NOT normally allow
 such connections by default, as they pose a potential security
 problem. However, as there is no widely deployed key infrastructure
 available on the Internet yet, this option makes the protocol much
 more usable during the transition time until such an infrastructure
 emerges, while still providing a much higher level of security than
 that offered by older solutions (e.g. telnet [RFC-854] and rlogin
 [RFC-1282]).

 Implementations SHOULD try to make the best effort to check host
 keys. An example of a possible strategy is to only accept a host key
 without checking the first time a host is connected, save the key in
 a local database, and compare against that key on all future
 connections to that host.

 Implementations MAY provide additional methods for verifying the
 correctness of host keys, e.g. a hexadecimal fingerprint derived
 from the SHA-1 hash of the public key. Such fingerprints can easily
 be verified by using telephone or other external communication
 channels.

 All implementations SHOULD provide an option to not accept host keys
 that cannot be verified.

 We believe that ease of use is critical to end-user acceptance of
 security solutions, and no improvement in security is gained if the

https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc1282

Ylonen, et. al. Expires May 10, 2002 [Page 4]

Internet-Draft SSH Protocol Architecture November 2001

 new solutions are not used. Thus, providing the option not to check
 the server host key is believed to improve the overall security of
 the Internet, even though it reduces the security of the protocol in
 configurations where it is allowed.

3.2 Extensibility

 We believe that the protocol will evolve over time, and some
 organizations will want to use their own encryption, authentication
 and/or key exchange methods. Central registration of all extensions
 is cumbersome, especially for experimental or classified features.
 On the other hand, having no central registration leads to conflicts
 in method identifiers, making interoperability difficult.

 We have chosen to identify algorithms, methods, formats, and
 extension protocols with textual names that are of a specific format.
 DNS names are used to create local namespaces where experimental or
 classified extensions can be defined without fear of conflicts with
 other implementations.

 One design goal has been to keep the base protocol as simple as
 possible, and to require as few algorithms as possible. However, all
 implementations MUST support a minimal set of algorithms to ensure
 interoperability (this does not imply that the local policy on all
 hosts would necessary allow these algorithms). The mandatory
 algorithms are specified in the relevant protocol documents.

 Additional algorithms, methods, formats, and extension protocols can
 be defined in separate drafts. See Section Algorithm Naming (Section

5) for more information.

3.3 Policy Issues

 The protocol allows full negotiation of encryption, integrity, key
 exchange, compression, and public key algorithms and formats.
 Encryption, integrity, public key, and compression algorithms can be
 different for each direction.

 The following policy issues SHOULD be addressed in the configuration
 mechanisms of each implementation:
 o Encryption, integrity, and compression algorithms, separately for
 each direction. The policy MUST specify which is the preferred
 algorithm (e.g. the first algorithm listed in each category).
 o Public key algorithms and key exchange method to be used for host
 authentication. The existence of trusted host keys for different
 public key algorithms also affects this choice.
 o The authentication methods that are to be required by the server
 for each user. The server's policy MAY require multiple

Ylonen, et. al. Expires May 10, 2002 [Page 5]

Internet-Draft SSH Protocol Architecture November 2001

 authentication for some or all users. The required algorithms MAY
 depend on the location where the user is trying to log in from.
 o The operations that the user is allowed to perform using the
 connection protocol. Some issues are related to security; for
 example, the policy SHOULD NOT allow the server to start sessions
 or run commands on the client machine, and MUST NOT allow
 connections to the authentication agent unless forwarding such
 connections has been requested. Other issues, such as which
 TCP/IP ports can be forwarded and by whom, are clearly issues of
 local policy. Many of these issues may involve traversing or
 bypassing firewalls, and are interrelated with the local security
 policy.

3.4 Security Properties

 The primary goal of the SSH protocol is improved security on the
 Internet. It attempts to do this in a way that is easy to deploy,
 even at the cost of absolute security.
 o All encryption, integrity, and public key algorithms used are
 well-known, well-established algorithms.
 o All algorithms are used with cryptographically sound key sizes
 that are believed to provide protection against even the strongest
 cryptanalytic attacks for decades.
 o All algorithms are negotiated, and in case some algorithm is
 broken, it is easy to switch to some other algorithm without
 modifying the base protocol.

 Specific concessions were made to make wide-spread fast deployment
 easier. The particular case where this comes up is verifying that
 the server host key really belongs to the desired host; the protocol
 allows the verification to be left out (but this is NOT RECOMMENDED).
 This is believed to significantly improve usability in the short
 term, until widespread Internet public key infrastructures emerge.

3.5 Packet Size and Overhead

 Some readers will worry about the increase in packet size due to new
 headers, padding, and MAC. The minimum packet size is in the order
 of 28 bytes (depending on negotiated algorithms). The increase is
 negligible for large packets, but very significant for one-byte
 packets (telnet-type sessions). There are, however, several factors
 that make this a non-issue in almost all cases:
 o The minimum size of a TCP/IP header is 32 bytes. Thus, the
 increase is actually from 33 to 51 bytes (roughly).
 o The minimum size of the data field of an Ethernet packet is 46
 bytes [RFC-894]. Thus, the increase is no more than 5 bytes.
 When Ethernet headers are considered, the increase is less than 10
 percent.

https://datatracker.ietf.org/doc/html/rfc894

Ylonen, et. al. Expires May 10, 2002 [Page 6]

Internet-Draft SSH Protocol Architecture November 2001

 o The total fraction of telnet-type data in the Internet is
 negligible, even with increased packet sizes.

 The only environment where the packet size increase is likely to have
 a significant effect is PPP [RFC-1134] over slow modem lines (PPP
 compresses the TCP/IP headers, emphasizing the increase in packet
 size). However, with modern modems, the time needed to transfer is
 in the order of 2 milliseconds, which is a lot faster than people can
 type.

 There are also issues related to the maximum packet size. To
 minimize delays in screen updates, one does not want excessively
 large packets for interactive sessions. The maximum packet size is
 negotiated separately for each channel.

3.6 Localization and Character Set Support

 For the most part, the SSH protocols do not directly pass text that
 would be displayed to the user. However, there are some places where
 such data might be passed. When applicable, the character set for
 the data MUST be explicitly specified. In most places, ISO 10646
 with UTF-8 encoding is used [RFC-2279]. When applicable, a field is
 also provided for a language tag [RFC-1766].

 One big issue is the character set of the interactive session. There
 is no clear solution, as different applications may display data in
 different formats. Different types of terminal emulation may also be
 employed in the client, and the character set to be used is
 effectively determined by the terminal emulation. Thus, no place is
 provided for directly specifying the character set or encoding for
 terminal session data. However, the terminal emulation type (e.g.
 "vt100") is transmitted to the remote site, and it implicitly
 specifies the character set and encoding. Applications typically use
 the terminal type to determine what character set they use, or the
 character set is determined using some external means. The terminal
 emulation may also allow configuring the default character set. In
 any case, the character set for the terminal session is considered
 primarily a client local issue.

 Internal names used to identify algorithms or protocols are normally
 never displayed to users, and must be in US-ASCII.

 The client and server user names are inherently constrained by what
 the server is prepared to accept. They might, however, occasionally
 be displayed in logs, reports, etc. They MUST be encoded using ISO
 10646 UTF-8, but other encodings may be required in some cases. It
 is up to the server to decide how to map user names to accepted user
 names. Straight bit-wise binary comparison is RECOMMENDED.

https://datatracker.ietf.org/doc/html/rfc1134
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires May 10, 2002 [Page 7]

Internet-Draft SSH Protocol Architecture November 2001

 For localization purposes, the protocol attempts to minimize the
 number of textual messages transmitted. When present, such messages
 typically relate to errors, debugging information, or some externally
 configured data. For data that is normally displayed, it SHOULD be
 possible to fetch a localized message instead of the transmitted
 message by using a numerical code. The remaining messages SHOULD be
 configurable.

4. Data Type Representations Used in the SSH Protocols
 byte

 A byte represents an arbitrary 8-bit value (octet) [RFC-1700].
 Fixed length data is sometimes represented as an array of bytes,
 written byte[n], where n is the number of bytes in the array.

 boolean

 A boolean value is stored as a single byte. The value 0
 represents FALSE, and the value 1 represents TRUE. All non-zero
 values MUST be interpreted as TRUE; however, applications MUST NOT
 store values other than 0 and 1.

 uint32

 Represents a 32-bit unsigned integer. Stored as four bytes in the
 order of decreasing significance (network byte order). For
 example, the value 699921578 (0x29b7f4aa) is stored as 29 b7 f4
 aa.

 uint64

 Represents a 64-bit unsigned integer. Stored as eight bytes in
 the order of decreasing significance (network byte order).

 string

 Arbitrary length binary string. Strings are allowed to contain
 arbitrary binary data, including null characters and 8-bit
 characters. They are stored as a uint32 containing its length
 (number of bytes that follow) and zero (= empty string) or more
 bytes that are the value of the string. Terminating null
 characters are not used.

 Strings are also used to store text. In that case, US-ASCII is
 used for internal names, and ISO-10646 UTF-8 for text that might
 be displayed to the user. The terminating null character SHOULD
 NOT normally be stored in the string.

https://datatracker.ietf.org/doc/html/rfc1700

Ylonen, et. al. Expires May 10, 2002 [Page 8]

Internet-Draft SSH Protocol Architecture November 2001

 For example, the US-ASCII string "testing" is represented as 00 00
 00 07 t e s t i n g. The UTF8 mapping does not alter the encoding
 of US-ASCII characters.

 mpint

 Represents multiple precision integers in two's complement format,
 stored as a string, 8 bits per byte, MSB first. Negative numbers
 have the value 1 as the most significant bit of the first byte of
 the data partition. If the most significant bit would be set for
 a positive number, the number MUST be preceded by a zero byte.
 Unnecessary leading bytes with the value 0 or 255 MUST NOT be
 included. The value zero MUST be stored as a string with zero
 bytes of data.

 By convention, a number that is used in modular computations in
 Z_n SHOULD be represented in the range 0 <= x < n.

 Examples:
 value (hex) representation (hex)

 0 00 00 00 00
 9a378f9b2e332a7 00 00 00 08 09 a3 78 f9 b2 e3 32 a7
 80 00 00 00 02 00 80
 -1234 00 00 00 02 ed cc
 -deadbeef 00 00 00 05 ff 21 52 41 11

 name-list

 A string containing a comma separated list of names. A name list
 is represented as a uint32 containing its length (number of bytes
 that follow) followed by a comma-separated list of zero or more
 names. A name MUST be non-zero length, and it MUST NOT contain a
 comma (','). Context may impose additional restrictions on the
 names; for example, the names in a list may have to be valid
 algorithm identifier (see Algorithm Naming below), or [RFC-1766]
 language tags. The order of the names in a list may or may not be
 significant, also depending on the context where the list is is
 used. Terminating NUL characters are not used, neither for the
 individual names, nor for the list as a whole.

 Examples:
 value representation (hex)

 (), the empty list 00 00 00 00
 ("zlib") 00 00 00 04 7a 6c 69 62

https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires May 10, 2002 [Page 9]

Internet-Draft SSH Protocol Architecture November 2001

 ("zlib", "none") 00 00 00 09 7a 6c 69 62 2c 6e 6f 6e 65

5. Algorithm Naming

 The SSH protocols refer to particular hash, encryption, integrity,
 compression, and key exchange algorithms or protocols by names.
 There are some standard algorithms that all implementations MUST
 support. There are also algorithms that are defined in the protocol
 specification but are OPTIONAL. Furthermore, it is expected that
 some organizations will want to use their own algorithms.

 In this protocol, all algorithm identifiers MUST be printable US-
 ASCII non-empty strings no longer than 64 characters. Names MUST be
 case-sensitive.

 There are two formats for algorithm names:
 o Names that do not contain an at-sign (@) are reserved to be
 assigned by IETF consensus (RFCs). Examples include `3des-cbc',
 `sha-1', `hmac-sha1', and `zlib' (the quotes are not part of the
 name). Names of this format MUST NOT be used without first
 registering them. Registered names MUST NOT contain an at-sign
 (@) or a comma (,).
 o Anyone can define additional algorithms by using names in the
 format name@domainname, e.g. "ourcipher-cbc@ssh.com". The format
 of the part preceding the at sign is not specified; it MUST
 consist of US-ASCII characters except at-sign and comma. The part
 following the at-sign MUST be a valid fully qualified internet
 domain name [RFC-1034] controlled by the person or organization
 defining the name. It is up to each domain how it manages its
 local namespace.

6. Message Numbers

 SSH packets have message numbers in the range 1 to 255. These
 numbers have been allocated as follows:

 Transport layer protocol:

 1 to 19 Transport layer generic (e.g. disconnect, ignore, debug,
 etc.)
 20 to 29 Algorithm negotiation
 30 to 49 Key exchange method specific (numbers can be reused for
 different authentication methods)

https://datatracker.ietf.org/doc/html/rfc1034

Ylonen, et. al. Expires May 10, 2002 [Page 10]

Internet-Draft SSH Protocol Architecture November 2001

 User authentication protocol:

 50 to 59 User authentication generic
 60 to 79 User authentication method specific (numbers can be
 reused for different authentication methods)

 Connection protocol:

 80 to 89 Connection protocol generic
 90 to 127 Channel related messages

 Reserved for client protocols:

 128 to 191 Reserved

 Local extensions:

 192 to 255 Local extensions

7. IANA Considerations

 Allocation of the following types of names in the SSH protocols is
 assigned by IETF consensus:
 o encryption algorithm names,
 o MAC algorithm names,
 o public key algorithm names (public key algorithm also implies
 encoding and signature/encryption capability),
 o key exchange method names, and
 o protocol (service) names.

 These names MUST be printable US-ASCII strings, and MUST NOT contain
 the characters at-sign ('@'), comma (','), or whitespace or control
 characters (ASCII codes 32 or less). Names are case-sensitive, and
 MUST NOT be longer than 64 characters.

 Names with the at-sign ('@') in them are allocated by the owner of
 DNS name after the at-sign (hierarchical allocation in [RFC-2343]),
 otherwise the same restrictions as above.

 Each category of names listed above has a separate namespace.
 However, using the same name in multiple categories SHOULD be avoided
 to minimize confusion.

 Message numbers (see Section Message Numbers (Section 6)) in the
 range of 0..191 should be allocated via IETF consensus; message
 numbers in the 192..255 range (the "Local extensions" set) are

https://datatracker.ietf.org/doc/html/rfc2343

Ylonen, et. al. Expires May 10, 2002 [Page 11]

Internet-Draft SSH Protocol Architecture November 2001

 reserved for private use.

8. Security Considerations

 Special care should be taken to ensure that all of the random numbers
 are of good quality. The random numbers SHOULD be produced with safe
 mechanisms discussed in [RFC-1750].

 When displaying text, such as error or debug messages to the user,
 the client software SHOULD replace any control characters (except
 tab, carriage return and newline) with safe sequences to avoid
 attacks by sending terminal control characters.

 Not using MAC or encryption SHOULD be avoided. The user
 authentication protocol is subject to man-in-the-middle attacks if
 the encryption is disabled. The SSH protocol does not protect
 against message alteration if no MAC is used.

9. Trademark Issues

 As of this writing, SSH Communications Security Oy claims ssh as its
 trademark. As with all IPR claims the IETF takes no position
 regarding the validity or scope of this trademark claim.

10. Additional Information

 The current document editor is: Darren.Moffat@Sun.COM. Comments on
 this internet draft should be sent to the IETF SECSH working group,
 details at: http://ietf.org/html.charters/secsh-charter.html

References

 [FIPS-186] Federal Information Processing Standards Publication,
 ., "FIPS PUB 186, Digital Signature Standard", May
 1994.

 [RFC0854] Postel, J. and J. Reynolds, "Telnet Protocol
 Specification", STD 8, RFC 854, May 1983.

 [RFC0894] Hornig, C., "Standard for the transmission of IP
 datagrams over Ethernet networks", STD 41, RFC 894,
 Apr 1984.

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, Nov 1987.

 [RFC1134] Perkins, D., "Point-to-Point Protocol: A proposal for
 multi-protocol transmission of datagrams over Point-

https://datatracker.ietf.org/doc/html/rfc1750
http://ietf.org/html.charters/secsh-charter.html
https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc894
https://datatracker.ietf.org/doc/html/rfc1034

Ylonen, et. al. Expires May 10, 2002 [Page 12]

Internet-Draft SSH Protocol Architecture November 2001

 to-Point links", RFC 1134, Nov 1989.

 [RFC1282] Kantor, B., "BSD Rlogin", RFC 1282, December 1991.

 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", STD
 2, RFC 1700, October 1994.

 [RFC1750] Eastlake, D., Crocker, S. and J. Schiller,
 "Randomness Recommendations for Security", RFC 1750,
 December 1994.

 [RFC1766] Alvestrand, H., "Tags for the Identification of
 Languages", RFC 1766, March 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26, RFC

2434, October 1998.

 [SSH-ARCH] Ylonen, T., "SSH Protocol Architecture", I-D draft-
ietf-architecture-09.txt, July 2001.

 [SSH-TRANS] Ylonen, T., "SSH Transport Layer Protocol", I-D
draft-ietf-transport-11.txt, July 2001.

 [SSH-USERAUTH] Ylonen, T., "SSH Authentication Protocol", I-D draft-
ietf-userauth-11.txt, July 2001.

 [SSH-CONNECT] Ylonen, T., "SSH Connection Protocol", I-D draft-
ietf-connect-11.txt, July 2001.

Authors' Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: ylo@ssh.com

https://datatracker.ietf.org/doc/html/rfc1134
https://datatracker.ietf.org/doc/html/rfc1282
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-09.txt
https://datatracker.ietf.org/doc/html/draft-ietf-transport-11.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-11.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-11.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-11.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-11.txt

Ylonen, et. al. Expires May 10, 2002 [Page 13]

Internet-Draft SSH Protocol Architecture November 2001

 Tero Kivinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: kivinen@ssh.com

 Markku-Juhani O. Saarinen
 University of Jyvaskyla

 Timo J. Rinne
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: tri@ssh.com

 Sami Lehtinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: sjl@ssh.com

Ylonen, et. al. Expires May 10, 2002 [Page 14]

Internet-Draft SSH Protocol Architecture November 2001

Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ylonen, et. al. Expires May 10, 2002 [Page 15]

