
Network Working Group T. Ylonen
Internet-Draft T. Kivinen
Expires: January 12, 2004 SSH Communications Security Corp
 M. Saarinen
 University of Jyvaskyla
 T. Rinne
 S. Lehtinen
 SSH Communications Security Corp
 July 14, 2003

SSH Protocol Architecture
draft-ietf-secsh-architecture-14.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network. This document describes the
 architecture of the SSH protocol, as well as the notation and
 terminology used in SSH protocol documents. It also discusses the
 SSH algorithm naming system that allows local extensions. The SSH

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Ylonen, et. al. Expires January 12, 2004 [Page 1]

Internet-Draft SSH Protocol Architecture July 2003

 protocol consists of three major components: The Transport Layer
 Protocol provides server authentication, confidentiality, and
 integrity with perfect forward secrecy. The User Authentication
 Protocol authenticates the client to the server. The Connection
 Protocol multiplexes the encrypted tunnel into several logical
 channels. Details of these protocols are described in separate
 documents.

Table of Contents

1. Introduction . 4
2. Specification of Requirements 4
3. Architecture . 4
3.1 Host Keys . 4
3.2 Extensibility . 6
3.3 Policy Issues . 6
3.4 Security Properties . 7
3.5 Packet Size and Overhead 7
3.6 Localization and Character Set Support 8
4. Data Type Representations Used in the SSH Protocols 9
5. Algorithm Naming . 11
6. Message Numbers . 12
7. IANA Considerations . 12
8. Security Considerations 13
8.1 Pseudo-Random Number Generation 13
8.2 Transport . 14
8.2.1 Confidentiality . 14
8.2.2 Data Integrity . 17
8.2.3 Replay . 17
8.2.4 Man-in-the-middle . 18
8.2.5 Denial-of-service . 20
8.2.6 Covert Channels . 21
8.2.7 Forward Secrecy . 21
8.3 Authentication Protocol 21
8.3.1 Weak Transport . 22
8.3.2 Debug messages . 22
8.3.3 Local security policy 23
8.3.4 Public key authentication 23
8.3.5 Password authentication 24
8.3.6 Host based authentication 24
8.4 Connection protocol . 24
8.4.1 End point security . 24
8.4.2 Proxy forwarding . 24
8.4.3 X11 forwarding . 25
9. Intellectual Property 25
10. Additional Information 26

 References . 26
 Authors' Addresses . 29

Ylonen, et. al. Expires January 12, 2004 [Page 2]

Internet-Draft SSH Protocol Architecture July 2003

 Full Copyright Statement 31

Ylonen, et. al. Expires January 12, 2004 [Page 3]

Internet-Draft SSH Protocol Architecture July 2003

 1. Introduction

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network. It consists of three major
 components:
 o The Transport Layer Protocol [SSH-TRANS] provides server
 authentication, confidentiality, and integrity. It may
 optionally also provide compression. The transport layer will
 typically be run over a TCP/IP connection, but might also be
 used on top of any other reliable data stream.
 o The User Authentication Protocol [SSH-USERAUTH] authenticates
 the client-side user to the server. It runs over the transport
 layer protocol.
 o The Connection Protocol [SSH-CONNECT] multiplexes the encrypted
 tunnel into several logical channels. It runs over the user
 authentication protocol.

 The client sends a service request once a secure transport layer
 connection has been established. A second service request is sent
 after user authentication is complete. This allows new protocols
 to be defined and coexist with the protocols listed above.

 The connection protocol provides channels that can be used for a
 wide range of purposes. Standard methods are provided for setting
 up secure interactive shell sessions and for forwarding
 ("tunneling") arbitrary TCP/IP ports and X11 connections.

 2. Specification of Requirements

 All documents related to the SSH protocols shall use the keywords
 "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" to describe
 requirements. They are to be interpreted as described in [RFC-
 2119].

 3. Architecture

 3.1 Host Keys

 Each server host SHOULD have a host key. Hosts MAY have multiple
 host keys using multiple different algorithms. Multiple hosts MAY
 share the same host key. If a host has keys at all, it MUST have
 at least one key using each REQUIRED public key algorithm
 (currently DSS [FIPS-186]).

 The server host key is used during key exchange to verify that the
 client is really talking to the correct server. For this to be
 possible, the client must have a priori knowledge of the server's

Ylonen, et. al. Expires January 12, 2004 [Page 4]

Internet-Draft SSH Protocol Architecture July 2003

 public host key.

 Two different trust models can be used:
 o The client has a local database that associates each host name
 (as typed by the user) with the corresponding public host key.
 This method requires no centrally administered infrastructure,
 and no third-party coordination. The downside is that the
 database of name-to-key associations may become burdensome to
 maintain.
 o The host name-to-key association is certified by some trusted
 certification authority. The client only knows the CA root
 key, and can verify the validity of all host keys certified by
 accepted CAs.

 The second alternative eases the maintenance problem, since
 ideally only a single CA key needs to be securely stored on the
 client. On the other hand, each host key must be appropriately
 certified by a central authority before authorization is
 possible. Also, a lot of trust is placed on the central
 infrastructure.

 The protocol provides the option that the server name - host key
 association is not checked when connecting to the host for the
 first time. This allows communication without prior communication
 of host keys or certification. The connection still provides
 protection against passive listening; however, it becomes
 vulnerable to active man-in-the-middle attacks. Implementations
 SHOULD NOT normally allow such connections by default, as they
 pose a potential security problem. However, as there is no widely
 deployed key infrastructure available on the Internet yet, this
 option makes the protocol much more usable during the transition
 time until such an infrastructure emerges, while still providing a
 much higher level of security than that offered by older solutions
 (e.g. telnet [RFC-854] and rlogin [RFC-1282]).

 Implementations SHOULD try to make the best effort to check host
 keys. An example of a possible strategy is to only accept a host
 key without checking the first time a host is connected, save the
 key in a local database, and compare against that key on all
 future connections to that host.

 Implementations MAY provide additional methods for verifying the
 correctness of host keys, e.g. a hexadecimal fingerprint derived
 from the SHA-1 hash of the public key. Such fingerprints can
 easily be verified by using telephone or other external
 communication channels.

 All implementations SHOULD provide an option to not accept host

https://datatracker.ietf.org/doc/html/rfc854
https://datatracker.ietf.org/doc/html/rfc1282

Ylonen, et. al. Expires January 12, 2004 [Page 5]

Internet-Draft SSH Protocol Architecture July 2003

 keys that cannot be verified.

 We believe that ease of use is critical to end-user acceptance of
 security solutions, and no improvement in security is gained if
 the new solutions are not used. Thus, providing the option not to
 check the server host key is believed to improve the overall
 security of the Internet, even though it reduces the security of
 the protocol in configurations where it is allowed.

 3.2 Extensibility

 We believe that the protocol will evolve over time, and some
 organizations will want to use their own encryption,
 authentication and/or key exchange methods. Central registration
 of all extensions is cumbersome, especially for experimental or
 classified features. On the other hand, having no central
 registration leads to conflicts in method identifiers, making
 interoperability difficult.

 We have chosen to identify algorithms, methods, formats, and
 extension protocols with textual names that are of a specific
 format. DNS names are used to create local namespaces where
 experimental or classified extensions can be defined without fear
 of conflicts with other implementations.

 One design goal has been to keep the base protocol as simple as
 possible, and to require as few algorithms as possible. However,
 all implementations MUST support a minimal set of algorithms to
 ensure interoperability (this does not imply that the local policy
 on all hosts would necessary allow these algorithms). The
 mandatory algorithms are specified in the relevant protocol
 documents.

 Additional algorithms, methods, formats, and extension protocols
 can be defined in separate drafts. See Section Algorithm Naming
 (Section 5) for more information.

 3.3 Policy Issues

 The protocol allows full negotiation of encryption, integrity, key
 exchange, compression, and public key algorithms and formats.
 Encryption, integrity, public key, and compression algorithms can
 be different for each direction.

 The following policy issues SHOULD be addressed in the
 configuration mechanisms of each implementation:
 o Encryption, integrity, and compression algorithms, separately
 for each direction. The policy MUST specify which is the

Ylonen, et. al. Expires January 12, 2004 [Page 6]

Internet-Draft SSH Protocol Architecture July 2003

 preferred algorithm (e.g. the first algorithm listed in each
 category).
 o Public key algorithms and key exchange method to be used for
 host authentication. The existence of trusted host keys for
 different public key algorithms also affects this choice.
 o The authentication methods that are to be required by the
 server for each user. The server's policy MAY require multiple
 authentication for some or all users. The required algorithms
 MAY depend on the location where the user is trying to log in
 from.
 o The operations that the user is allowed to perform using the
 connection protocol. Some issues are related to security; for
 example, the policy SHOULD NOT allow the server to start
 sessions or run commands on the client machine, and MUST NOT
 allow connections to the authentication agent unless forwarding
 such connections has been requested. Other issues, such as
 which TCP/IP ports can be forwarded and by whom, are clearly
 issues of local policy. Many of these issues may involve
 traversing or bypassing firewalls, and are interrelated with
 the local security policy.

 3.4 Security Properties

 The primary goal of the SSH protocol is improved security on the
 Internet. It attempts to do this in a way that is easy to deploy,
 even at the cost of absolute security.
 o All encryption, integrity, and public key algorithms used are
 well-known, well-established algorithms.
 o All algorithms are used with cryptographically sound key sizes
 that are believed to provide protection against even the
 strongest cryptanalytic attacks for decades.
 o All algorithms are negotiated, and in case some algorithm is
 broken, it is easy to switch to some other algorithm without
 modifying the base protocol.

 Specific concessions were made to make wide-spread fast deployment
 easier. The particular case where this comes up is verifying that
 the server host key really belongs to the desired host; the
 protocol allows the verification to be left out (but this is NOT
 RECOMMENDED). This is believed to significantly improve usability
 in the short term, until widespread Internet public key
 infrastructures emerge.

 3.5 Packet Size and Overhead

 Some readers will worry about the increase in packet size due to
 new headers, padding, and MAC. The minimum packet size is in the
 order of 28 bytes (depending on negotiated algorithms). The

Ylonen, et. al. Expires January 12, 2004 [Page 7]

Internet-Draft SSH Protocol Architecture July 2003

 increase is negligible for large packets, but very significant for
 one-byte packets (telnet-type sessions). There are, however,
 several factors that make this a non-issue in almost all cases:
 o The minimum size of a TCP/IP header is 32 bytes. Thus, the
 increase is actually from 33 to 51 bytes (roughly).
 o The minimum size of the data field of an Ethernet packet is 46
 bytes [RFC-894]. Thus, the increase is no more than 5 bytes.
 When Ethernet headers are considered, the increase is less than
 10 percent.
 o The total fraction of telnet-type data in the Internet is
 negligible, even with increased packet sizes.

 The only environment where the packet size increase is likely to
 have a significant effect is PPP [RFC-1134] over slow modem lines
 (PPP compresses the TCP/IP headers, emphasizing the increase in
 packet size). However, with modern modems, the time needed to
 transfer is in the order of 2 milliseconds, which is a lot faster
 than people can type.

 There are also issues related to the maximum packet size. To
 minimize delays in screen updates, one does not want excessively
 large packets for interactive sessions. The maximum packet size
 is negotiated separately for each channel.

 3.6 Localization and Character Set Support

 For the most part, the SSH protocols do not directly pass text
 that would be displayed to the user. However, there are some
 places where such data might be passed. When applicable, the
 character set for the data MUST be explicitly specified. In most
 places, ISO 10646 with UTF-8 encoding is used [RFC-2279]. When
 applicable, a field is also provided for a language tag [RFC-
 1766].

 One big issue is the character set of the interactive session.
 There is no clear solution, as different applications may display
 data in different formats. Different types of terminal emulation
 may also be employed in the client, and the character set to be
 used is effectively determined by the terminal emulation. Thus,
 no place is provided for directly specifying the character set or
 encoding for terminal session data. However, the terminal
 emulation type (e.g. "vt100") is transmitted to the remote site,
 and it implicitly specifies the character set and encoding.
 Applications typically use the terminal type to determine what
 character set they use, or the character set is determined using
 some external means. The terminal emulation may also allow
 configuring the default character set. In any case, the character
 set for the terminal session is considered primarily a client

https://datatracker.ietf.org/doc/html/rfc894
https://datatracker.ietf.org/doc/html/rfc1134
https://datatracker.ietf.org/doc/html/rfc2279

Ylonen, et. al. Expires January 12, 2004 [Page 8]

Internet-Draft SSH Protocol Architecture July 2003

 local issue.

 Internal names used to identify algorithms or protocols are
 normally never displayed to users, and must be in US-ASCII.

 The client and server user names are inherently constrained by
 what the server is prepared to accept. They might, however,
 occasionally be displayed in logs, reports, etc. They MUST be
 encoded using ISO 10646 UTF-8, but other encodings may be required
 in some cases. It is up to the server to decide how to map user
 names to accepted user names. Straight bit-wise binary comparison
 is RECOMMENDED.

 For localization purposes, the protocol attempts to minimize the
 number of textual messages transmitted. When present, such
 messages typically relate to errors, debugging information, or
 some externally configured data. For data that is normally
 displayed, it SHOULD be possible to fetch a localized message
 instead of the transmitted message by using a numerical code. The
 remaining messages SHOULD be configurable.

 4. Data Type Representations Used in the SSH Protocols
 byte

 A byte represents an arbitrary 8-bit value (octet) [RFC-1700].
 Fixed length data is sometimes represented as an array of
 bytes, written byte[n], where n is the number of bytes in the
 array.

 boolean

 A boolean value is stored as a single byte. The value 0
 represents FALSE, and the value 1 represents TRUE. All non-
 zero values MUST be interpreted as TRUE; however, applications
 MUST NOT store values other than 0 and 1.

 uint32

 Represents a 32-bit unsigned integer. Stored as four bytes in
 the order of decreasing significance (network byte order). For
 example, the value 699921578 (0x29b7f4aa) is stored as 29 b7 f4
 aa.

 uint64

 Represents a 64-bit unsigned integer. Stored as eight bytes in
 the order of decreasing significance (network byte order).

https://datatracker.ietf.org/doc/html/rfc1700

Ylonen, et. al. Expires January 12, 2004 [Page 9]

Internet-Draft SSH Protocol Architecture July 2003

 string

 Arbitrary length binary string. Strings are allowed to contain
 arbitrary binary data, including null characters and 8-bit
 characters. They are stored as a uint32 containing its length
 (number of bytes that follow) and zero (= empty string) or more
 bytes that are the value of the string. Terminating null
 characters are not used.

 Strings are also used to store text. In that case, US-ASCII is
 used for internal names, and ISO-10646 UTF-8 for text that
 might be displayed to the user. The terminating null character
 SHOULD NOT normally be stored in the string.

 For example, the US-ASCII string "testing" is represented as 00
 00 00 07 t e s t i n g. The UTF8 mapping does not alter the
 encoding of US-ASCII characters.

 mpint

 Represents multiple precision integers in two's complement
 format, stored as a string, 8 bits per byte, MSB first.
 Negative numbers have the value 1 as the most significant bit
 of the first byte of the data partition. If the most
 significant bit would be set for a positive number, the number
 MUST be preceded by a zero byte. Unnecessary leading bytes
 with the value 0 or 255 MUST NOT be included. The value zero
 MUST be stored as a string with zero bytes of data.

 By convention, a number that is used in modular computations in
 Z_n SHOULD be represented in the range 0 <= x < n.

 Examples:
 value (hex) representation (hex)

 0 00 00 00 00
 9a378f9b2e332a7 00 00 00 08 09 a3 78 f9 b2 e3 32 a7
 80 00 00 00 02 00 80
 -1234 00 00 00 02 ed cc
 -deadbeef 00 00 00 05 ff 21 52 41 11

 name-list

 A string containing a comma separated list of names. A name
 list is represented as a uint32 containing its length (number
 of bytes that follow) followed by a comma-separated list of

Ylonen, et. al. Expires January 12, 2004 [Page 10]

Internet-Draft SSH Protocol Architecture July 2003

 zero or more names. A name MUST be non-zero length, and it
 MUST NOT contain a comma (','). Context may impose additional
 restrictions on the names; for example, the names in a list may
 have to be valid algorithm identifier (see Algorithm Naming
 below), or [RFC-1766] language tags. The order of the names in
 a list may or may not be significant, also depending on the
 context where the list is is used. Terminating NUL characters
 are not used, neither for the individual names, nor for the
 list as a whole.

 Examples:
 value representation (hex)

 (), the empty list 00 00 00 00
 ("zlib") 00 00 00 04 7a 6c 69 62
 ("zlib", "none") 00 00 00 09 7a 6c 69 62 2c 6e 6f 6e 65

 5. Algorithm Naming

 The SSH protocols refer to particular hash, encryption, integrity,
 compression, and key exchange algorithms or protocols by names.
 There are some standard algorithms that all implementations MUST
 support. There are also algorithms that are defined in the
 protocol specification but are OPTIONAL. Furthermore, it is
 expected that some organizations will want to use their own
 algorithms.

 In this protocol, all algorithm identifiers MUST be printable US-
 ASCII non-empty strings no longer than 64 characters. Names MUST
 be case-sensitive.

 There are two formats for algorithm names:
 o Names that do not contain an at-sign (@) are reserved to be
 assigned by IETF consensus (RFCs). Examples include `3des-
 cbc', `sha-1', `hmac-sha1', and `zlib' (the quotes are not part
 of the name). Names of this format MUST NOT be used without
 first registering them. Registered names MUST NOT contain an
 at-sign (@) or a comma (,).
 o Anyone can define additional algorithms by using names in the
 format name@domainname, e.g. "ourcipher-cbc@ssh.com". The
 format of the part preceding the at sign is not specified; it
 MUST consist of US-ASCII characters except at-sign and comma.
 The part following the at-sign MUST be a valid fully qualified
 internet domain name [RFC-1034] controlled by the person or
 organization defining the name. It is up to each domain how it

https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1034

Ylonen, et. al. Expires January 12, 2004 [Page 11]

Internet-Draft SSH Protocol Architecture July 2003

 manages its local namespace.

 6. Message Numbers

 SSH packets have message numbers in the range 1 to 255. These
 numbers have been allocated as follows:

 Transport layer protocol:

 1 to 19 Transport layer generic (e.g. disconnect, ignore, debug,
 etc.)
 20 to 29 Algorithm negotiation
 30 to 49 Key exchange method specific (numbers can be reused for
 different authentication methods)

 User authentication protocol:

 50 to 59 User authentication generic
 60 to 79 User authentication method specific (numbers can be
 reused for different authentication methods)

 Connection protocol:

 80 to 89 Connection protocol generic
 90 to 127 Channel related messages

 Reserved for client protocols:

 128 to 191 Reserved

 Local extensions:

 192 to 255 Local extensions

 7. IANA Considerations

 Allocation of the following types of names in the SSH protocols is
 assigned by IETF consensus:
 o encryption algorithm names,
 o MAC algorithm names,
 o public key algorithm names (public key algorithm also implies
 encoding and signature/encryption capability),
 o key exchange method names, and
 o protocol (service) names.

Ylonen, et. al. Expires January 12, 2004 [Page 12]

Internet-Draft SSH Protocol Architecture July 2003

 These names MUST be printable US-ASCII strings, and MUST NOT
 contain the characters at-sign ('@'), comma (','), or whitespace
 or control characters (ASCII codes 32 or less). Names are case-
 sensitive, and MUST NOT be longer than 64 characters.

 Names with the at-sign ('@') in them are allocated by the owner of
 DNS name after the at-sign (hierarchical allocation in [RFC-
 2343]), otherwise the same restrictions as above.

 Each category of names listed above has a separate namespace.
 However, using the same name in multiple categories SHOULD be
 avoided to minimize confusion.

 Message numbers (see Section Message Numbers (Section 6)) in the
 range of 0..191 should be allocated via IETF consensus; message
 numbers in the 192..255 range (the "Local extensions" set) are
 reserved for private use.

 8. Security Considerations

 In order to make the entire body of Security Considerations more
 accessible, Security Considerations for the transport,
 authentication, and connection documents have been gathered here.

 The transport protocol [1] provides a confidential channel over an
 insecure network. It performs server host authentication, key
 exchange, encryption, and integrity protection. It also derives a
 unique session id that may be used by higher-level protocols.

 The authentication protocol [2] provides a suite of mechanisms
 which can be used to authenticate the client user to the server.
 Individual mechanisms specified in the in authentication protocol
 use the session id provided by the transport protocol and/or
 depend on the security and integrity guarantees of the transport
 protocol.

 The connection protocol [3] specifies a mechanism to multiplex
 multiple streams [channels] of data over the confidential and
 authenticated transport. It also specifies channels for accessing
 an interactive shell, for 'proxy-forwarding' various external
 protocols over the secure transport (including arbitrary TCP/IP
 protocols), and for accessing secure 'subsystems' on the server
 host.

 8.1 Pseudo-Random Number Generation

 This protocol binds each session key to the session by including
 random, session specific data in the hash used to produce session

Ylonen, et. al. Expires January 12, 2004 [Page 13]

Internet-Draft SSH Protocol Architecture July 2003

 keys. Special care should be taken to ensure that all of the
 random numbers are of good quality. If the random data here
 (e.g., DH parameters) are pseudo-random then the pseudo-random
 number generator should be cryptographically secure (i.e., its
 next output not easily guessed even when knowing all previous
 outputs) and, furthermore, proper entropy needs to be added to the
 pseudo-random number generator. RFC 1750 [1750] offers
 suggestions for sources of random numbers and entropy.
 Implementors should note the importance of entropy and the well-
 meant, anecdotal warning about the difficulty in properly
 implementing pseudo-random number generating functions.

 The amount of entropy available to a given client or server may
 sometimes be less than what is required. In this case one must
 either resort to pseudo-random number generation regardless of
 insufficient entropy or refuse to run the protocol. The latter is
 preferable.

 8.2 Transport

 8.2.1 Confidentiality

 It is beyond the scope of this document and the Secure Shell
 Working Group to analyze or recommend specific ciphers other than
 the ones which have been established and accepted within the
 industry. At the time of this writing, ciphers commonly in use
 include 3DES, ARCFOUR, twofish, serpent and blowfish. AES has
 been accepted by The published as a US Federal Information
 Processing Standards [FIPS-197] and the cryptographic community as
 being acceptable for this purpose as well has accepted AES. As
 always, implementors and users should check current literature to
 ensure that no recent vulnerabilities have been found in ciphers
 used within products. Implementors should also check to see which
 ciphers are considered to be relatively stronger than others and
 should recommend their use to users over relatively weaker
 ciphers. It would be considered good form for an implementation
 to politely and unobtrusively notify a user that a stronger cipher
 is available and should be used when a weaker one is actively
 chosen.

 The "none" cipher is provided for debugging and SHOULD NOT be used
 except for that purpose. It's cryptographic properties are
 sufficiently described in RFC 2410, which will show that its use
 does not meet the intent of this protocol.

 The relative merits of these and other ciphers may also be found
 in current literature. Two references that may provide
 information on the subject are [SCHNEIER] and

https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc2410

Ylonen, et. al. Expires January 12, 2004 [Page 14]

Internet-Draft SSH Protocol Architecture July 2003

 [KAUFMAN,PERLMAN,SPECINER]. Both of these describe the CBC mode
 of operation of certain ciphers and the weakness of this scheme.
 Essentially, this mode is theoretically vulnerable to chosen
 cipher-text attacks because of the high predictability of the
 start of packet sequence. However, this attack is still deemed
 difficult and not considered fully practicable especially if
 relatively longer block sizes are used.

 Additionally, another CBC mode attack may be mitigated through the
 insertion of packets containing SSH_MSG_IGNORE. Without this
 technique, a specific attack may be successful. For this attack
 (commonly known as the Rogaway attack
 [ROGAWAY],[DAI],[BELLARE,KOHNO,NAMPREMPRE]) to work, the attacker
 would need to know the IV of the next block that is going to be
 encrypted. In CBC mode that is the output of the encryption of
 the previous block. If the attacker does not have any way to see
 the packet yet (i.e it is in the internal buffers of the ssh
 implementation or even in the kernel) then this attack will not
 work. If the last packet has been sent out to the network (i.e
 the attacker has access to it) then he can use the attack.

 In the optimal case an implementor would need to add an extra
 packet only if the packet has been sent out onto the network and
 there are no other packets waiting for transmission. Implementors
 may wish to check to see if there are any unsent packets awaiting
 transmission, but unfortunately it is not normally easy to obtain
 this information from the kernel or buffers. If there are not,
 then a packet containing SSH_MSG_IGNORE SHOULD be sent. If a new
 packet is added to the stream every time the attacker knows the IV
 that is supposed to be used for the next packet, then the attacker
 will not be able to guess the correct IV, thus the attack will
 never be successfull.

 As an example, consider the following case:

 Client Server
 ------ ------
 TCP(seq=x, len=500) ->
 contains Record 1

 [500 ms passes, no ACK]

 TCP(seq=x, len=1000) ->
 contains Records 1,2

 ACK

Ylonen, et. al. Expires January 12, 2004 [Page 15]

Internet-Draft SSH Protocol Architecture July 2003

 1. The Nagle algorithm + TCP retransmits mean that the two
 records get coalesced into a single TCP segment
 2. Record 2 is *not* at the beginning of the TCP segment and
 never will be, since it gets ACKed.
 3. Yet, the attack is possible because Record 1 has already been
 seen.

 As this example indicates, it's totally unsafe to use the
 existence of unflushed data in the TCP buffers proper as a guide
 to whether you need an empty packet, since when you do the second
 write(), the buffers will contain the un-ACKed Record 1.

Ylonen, et. al. Expires January 12, 2004 [Page 16]

Internet-Draft SSH Protocol Architecture July 2003

 On the other hand, it's perfectly safe to have the following
 situation:

 Client Server
 ------ ------
 TCP(seq=x, len=500) ->
 contains SSH_MSG_IGNORE

 TCP(seq=y, len=500) ->
 contains Data

 Provided that the IV for second SSH Record is fixed after the data for
 the Data packet is determined -i.e. you do:
 read from user
 encrypt null packet
 encrypt data packet

 8.2.2 Data Integrity

 This protocol does allow the Data Integrity mechanism to be
 disabled. Implementors SHOULD be wary of exposing this feature
 for any purpose other than debugging. Users and administrators
 SHOULD be explicitly warned anytime the "none" MAC is enabled.

 So long as the "none" MAC is not used, this protocol provides data
 integrity.

 Because MACs use a 32 bit sequence number, they might start to
 leak information after 2**32 packets have been sent. However,
 following the rekeying recommendations should prevent this attack.
 The transport protocol [1] recommends rekeying after one gigabyte
 of data, and the smallest possible packet is 16 bytes. Therefore,
 rekeying SHOULD happen after 2**28 packets at the very most.

 8.2.3 Replay

 The use of a MAC other than 'none' provides integrity and
 authentication. In addition, the transport protocol provides a
 unique session identifier (bound in part to pseudo-random data
 that is part of the algorithm and key exchange process) that can
 be used by higher level protocols to bind data to a given session
 and prevent replay of data from prior sessions. For example, the
 authentication protocol uses this to prevent replay of signatures
 from previous sessions. Because public key authentication
 exchanges are cryptographically bound to the session (i.e., to the
 initial key exchange) they cannot be successfully replayed in

Ylonen, et. al. Expires January 12, 2004 [Page 17]

Internet-Draft SSH Protocol Architecture July 2003

 other sessions. Note that the session ID can be made public
 without harming the security of the protocol.

 If two session happen to have the same session ID [hash of key
 exchanges] then packets from one can be replayed against the
 other. It must be stressed that the chances of such an occurrence
 are, needless to say, minimal when using modern cryptographic
 methods. This is all the more so true when specifying larger hash
 function outputs and DH parameters.

 Replay detection using monotonically increasing sequence numbers
 as input to the MAC, or HMAC in some cases, is described in RFC

2085 [2085], RFC 2246 [2246], RFC 2743 [2743], RFC 1964 [1964],
RFC 2025 [2025], and RFC 1510 [1510]. The underlying construct is

 discussed in RFC 2104 [2104]. Essentially a different sequence
 number in each packet ensures that at least this one input to the
 MAC function will be unique and will provide a nonrecurring MAC
 output that is not predictable to an attacker. If the session
 stays active long enough, however, this sequence number will wrap.
 This event may provide an attacker an opportunity to replay a
 previously recorded packet with an identical sequence number but
 only if the peers have not rekeyed since the transmission of the
 first packet with that sequence number. If the peers have
 rekeyed, then the replay will be detected as the MAC check will
 fail. For this reason, it must be emphasized that peers MUST
 rekey before a wrap of the sequence numbers. Naturally, if an
 attacker does attempt to replay a captured packet before the peers
 have rekeyed, then the receiver of the duplicate packet will not
 be able to validate the MAC and it will be discarded. The reason
 that the MAC will fail is because the receiver will formulate a
 MAC based upon the packet contents, the shared secret, and the
 expected sequence number. Since the replayed packet will not be
 using that expected sequence number (the sequence number of the
 replayed packet will have already been passed by the receiver)
 then the calculated MAC will not match the MAC received with the
 packet.

 8.2.4 Man-in-the-middle

 This protocol makes no assumptions nor provisions for an
 infrastructure or means for distributing the public keys of hosts.
 It is expected that this protocol will sometimes be used without
 first verifying the association between the server host key and
 the server host name. Such usage is vulnerable to man-in-the-
 middle attacks. This section describes this and encourages
 administrators and users to understand the importance of verifying
 this association before any session is initiated.

https://datatracker.ietf.org/doc/html/rfc2085
https://datatracker.ietf.org/doc/html/rfc2085
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2025
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc2104

Ylonen, et. al. Expires January 12, 2004 [Page 18]

Internet-Draft SSH Protocol Architecture July 2003

 There are three cases of man-in-the-middle attacks to consider.
 The first is where an attacker places a device between the client
 and the server before the session is initiated. In this case, the
 attack device is trying to mimic the legitimate server and will
 offer its public key to the client when the client initiates a
 session. If it were to offer the public key of the server, then
 it would not be able to decrypt or sign the transmissions between
 the legitimate server and the client unless it also had access to
 the private-key of the host. The attack device will also,
 simultaneously to this, initiate a session to the legitimate
 server masquerading itself as the client. If the public key of
 the server had been securely distributed to the client prior to
 that session initiation, the key offered to the client by the
 attack device will not match the key stored on the client. In
 that case, the user SHOULD be given a warning that the offered
 host key does not match the host key cached on the client. As
 described in Section 3.1 of [ARCH], the user may be free to accept
 the new key and continue the session. It is RECOMMENDED that the
 warning provide sufficient information to the user of the client
 device so they may make an informed decision. If the user chooses
 to continue the session with the stored public-key of the server
 (not the public-key offered at the start of the session), then the
 session specific data between the attacker and server will be
 different between the client-to-attacker session and the attacker-
 to-server sessions due to the randomness discussed above. From
 this, the attacker will not be able to make this attack work since
 the attacker will not be able to correctly sign packets containing
 this session specific data from the server since he does not have
 the private key of that server.

 The second case that should be considered is similar to the first
 case in that it also happens at the time of connection but this
 case points out the need for the secure distribution of server
 public keys. If the server public keys are not securely
 distributed then the client cannot know if it is talking to the
 intended server. An attacker may use social engineering
 techniques to pass off server keys to unsuspecting users and may
 then place a man-in-the-middle attack device between the
 legitimate server and the clients. If this is allowed to happen
 then the clients will form client-to-attacker sessions and the
 attacker will form attacker-to-server sessions and will be able to
 monitor and manipulate all of the traffic between the clients and
 the legitimate servers. Server administrators are encouraged to
 make host key fingerprints available for checking by some means
 whose security does not rely on the integrity of the actual host
 keys. Possible mechanisms are discussed in Section 3.1 of [SSH-
 ARCH] and may also include secured Web pages, physical pieces of
 paper, etc. Implementors SHOULD provide recommendations on how

Ylonen, et. al. Expires January 12, 2004 [Page 19]

Internet-Draft SSH Protocol Architecture July 2003

 best to do this with their implementation. Because the protocol
 is extensible, future extensions to the protocol may provide
 better mechanisms for dealing with the need to know the server's
 host key before connecting. For example, making the host key
 fingerprint available through a secure DNS lookup, or using
 kerberos over gssapi during key exchange to authenticate the
 server are possibilities.

 In the third man-in-the-middle case, attackers may attempt to
 manipulate packets in transit between peers after the session has
 been established. As described in the Replay part of this
 section, a successful attack of this nature is very improbable.
 As in the Replay section, this reasoning does assume that the MAC
 is secure and that it is infeasible to construct inputs to a MAC
 algorithm to give a known output. This is discussed in much
 greater detail in Section 6 of RFC 2104. If the MAC algorithm has
 a vulnerability or is weak enough, then the attacker may be able
 to specify certain inputs to yield a known MAC. With that they
 may be able to alter the contents of a packet in transit.
 Alternatively the attacker may be able to exploit the algorithm
 vulnerability or weakness to find the shared secret by reviewing
 the MACs from captured packets. In either of those cases, an
 attacker could construct a packet or packets that could be
 inserted into an SSH stream. To prevent that, implementors are
 encouraged to utilize commonly accepted MAC algorithms and
 administrators are encouraged to watch current literature and
 discussions of cryptography to ensure that they are not using a
 MAC algorithm that has a recently found vulnerability or weakness.

 In summary, the use of this protocol without a reliable
 association of the binding between a host and its host keys is
 inherently insecure and is NOT RECOMMENDED. It may however be
 necessary in non-security critical environments, and will still
 provide protection against passive attacks. Implementors of
 protocols and applications running on top of this protocol should
 keep this possibility in mind.

 8.2.5 Denial-of-service

 This protocol is designed to be used over a reliable transport.
 If transmission errors or message manipulation occur, the
 connection is closed. The connection SHOULD be re-established if
 this occurs. Denial of service attacks of this type ("wire
 cutter") are almost impossible to avoid.

 In addition, this protocol is vulnerable to Denial of Service
 attacks because an attacker can force the server to go through the
 CPU and memory intensive tasks of connection setup and key

https://datatracker.ietf.org/doc/html/rfc2104#section-6

Ylonen, et. al. Expires January 12, 2004 [Page 20]

Internet-Draft SSH Protocol Architecture July 2003

 exchange without authenticating. Implementors SHOULD provide
 features that make this more difficult. For example, only
 allowing connections from a subset of IPs known to have valid
 users.

 8.2.6 Covert Channels

 The protocol was not designed to eliminate covert channels. For
 example, the padding, SSH_MSG_IGNORE messages, and several other
 places in the protocol can be used to pass covert information, and
 the recipient has no reliable way to verify whether such
 information is being sent.

 8.2.7 Forward Secrecy

 It should be noted that the Diffie-Hellman key exchanges may
 provide perfect forward secrecy (PFS). PFS is essentially defined
 as the cryptographic property of a key-establishment protocol in
 which the compromise of a session key or long-term private key
 after a given session does not cause the compromise of any earlier
 session. [ANSI T1.523-2001] SSHv2 sessions resulting from a key
 exchange using diffie-hellman-group1-sha1 are secure even if
 private keying/authentication material is later revealed, but not
 if the session keys are revealed. So, given this definition of
 PFS, SSHv2 does have PFS. It is hoped that all other key exchange
 mechanisms proposed and used in the future will also provide PFS.
 This property is not commuted to any of the applications or
 protocols using SSH as a transport however. The transport layer
 of SSH provides confidentiality for password authentication and
 other methods that rely on secret data.

 Of course, if the DH private parameters for the client and server
 are revealed then the session key is revealed, but these items can
 be thrown away after the key exchange completes. It's worth
 pointing out that these items should not be allowed to end up on
 swap space and that they should be erased from memory as soon as
 the key exchange completes.

 8.3 Authentication Protocol

 The purpose of this protocol is to perform client user
 authentication. It assumes that this run over a secure transport
 layer protocol, which has already authenticated the server
 machine, established an encrypted communications channel, and
 computed a unique session identifier for this session.

 Several authentication methods with different security
 characteristics are allowed. It is up to the server's local

Ylonen, et. al. Expires January 12, 2004 [Page 21]

Internet-Draft SSH Protocol Architecture July 2003

 policy to decide which methods (or combinations of methods) it is
 willing to accept for each user. Authentication is no stronger
 than the weakest combination allowed.

 The server may go into a "sleep" period after repeated
 unsuccessful authentication attempts to make key search more
 difficult for attackers. Care should be taken so that this
 doesn't become a self-denial of service vector.

 8.3.1 Weak Transport

 If the transport layer does not provide confidentiality,
 authentication methods that rely on secret data SHOULD be
 disabled. If it does not provide strong integrity protection,
 requests to change authentication data (e.g. a password change)
 SHOULD be disabled to prevent an attacker from modifying the
 ciphertext without being noticed, or rendering the new
 authentication data unusable (denial of service).

 The assumption as stated above that the Authentication Protocol
 only run over a secure transport that has previously authenticated
 the server is very important to note. People deploying SSH are
 reminded of the consequences of man-in-the-middle attacks if the
 client does not have a very strong a priori association of the
 server with the host key of that server. Specifically for the
 case of the Authentication Protocol the client may form a session
 to a man-in-the-middle attack device and divulge user credentials
 such as their username and password. Even in the cases of
 authentication where no user credentials are divulged, an attacker
 may still gain information they shouldn't have by capturing key-
 strokes in much the same way that a honeypot works.

 8.3.2 Debug messages

 Special care should be taken when designing debug messages. These
 messages may reveal surprising amounts of information about the
 host if not properly designed. Debug messages can be disabled
 (during user authentication phase) if high security is required.
 Administrators of host machines should make all attempts to
 compartmentalize all event notification messages and protect them
 from unwarranted observation. Developers should be aware of the
 sensitive nature of some of the normal event messages and debug
 messages and may want to provide guidance to administrators on
 ways to keep this information away from unauthorized people.
 Developers should consider minimizing the amount of sensitive
 information obtainable by users during the authentication phase in
 accordance with the local policies. For this reason, it is
 RECOMMENDED that debug messages be initially disabled at the time

Ylonen, et. al. Expires January 12, 2004 [Page 22]

Internet-Draft SSH Protocol Architecture July 2003

 of deployment and require an active decision by an administrator
 to allow them to be enabled. It is also RECOMMENDED that a
 message expressing this concern be presented to the administrator
 of a system when the action is taken to enable debugging messages.

 8.3.3 Local security policy

 Implementer MUST ensure that the credentials provided validate the
 professed user and also MUST ensure that the local policy of the
 server permits the user the access requested. In particular,
 because of the flexible nature of the SSH connection protocol, it
 may not be possible to determine the local security policy, if
 any, that should apply at the time of authentication because the
 kind of service being requested is not clear at that instant. For
 example, local policy might allow a user to access files on the
 server, but not start an interactive shell. However, during the
 authentication protocol, it is not known whether the user will be
 accessing files or attempting to use an interactive shell, or even
 both. In any event, where local security policy for the server
 host exists, it MUST be applied and enforced correctly.

 Implementors are encouraged to provide a default local policy and
 make its parameters known to administrators and users. At the
 discretion of the implementors, this default policy may be along
 the lines of 'anything goes' where there are no restrictions
 placed upon users, or it may be along the lines of 'excessively
 restrictive' in which case the administrators will have to
 actively make changes to this policy to meet their needs.
 Alternatively, it may be some attempt at providing something
 practical and immediately useful to the administrators of the
 system so they don't have to put in much effort to get SSH
 working. Whatever choice is made MUST be applied and enforced as
 required above.

 8.3.4 Public key authentication

 The use of public-key authentication assumes that the client host
 has not been compromised.

 This risk can be mitigated by the use of passphrases on private
 keys; however, this is not an enforceable policy. The use of
 smartcards, or other technology to make passphrases an enforceable
 policy is suggested.

 The server could require both password and public-key
 authentication, however, this requires the client to expose its
 password to the server (see section on password authentication
 below.)

Ylonen, et. al. Expires January 12, 2004 [Page 23]

Internet-Draft SSH Protocol Architecture July 2003

 8.3.5 Password authentication

 The password mechanism as specified in the authentication protocol
 assumes that the server has not been compromised. If the server
 has been compromised, using password authentication will reveal a
 valid username / password combination to the attacker, which may
 lead to further compromises.

 This vulnerability can be mitigated by using an alternative form
 of authentication. For example, public-key authentication makes
 no assumptions about security on the server.

 8.3.6 Host based authentication

 Host based authentication assumes that the client has not been
 compromised. There are no mitigating strategies, other than to
 use host based authentication in combination with another
 authentication method.

 8.4 Connection protocol

 8.4.1 End point security

 End point security is assumed by the connection protocol. If the
 server has been compromised, any terminal sessions, port
 forwarding, or systems accessed on the host are compromised.
 There are no mitigating factors for this.

 If the client end point has been compromised, and the server fails
 to stop the attacker at the authentication protocol, all services
 exposed (either as subsystems or through forwarding) will be
 vulnerable to attack. Implementors SHOULD provide mechanisms for
 administrators to control which services are exposed to limit the
 vulnerability of other services.

 These controls might include controlling which machines and ports
 can be target in 'port-forwarding' operations, which users are
 allowed to use interactive shell facilities, or which users are
 allowed to use exposed subsystems.

 8.4.2 Proxy forwarding

 The SSH connection protocol allows for proxy forwarding of other
 protocols such as SNMP, POP3, and HTTP. This may be a concern for
 network administrators who wish to control the access of certain
 applications by users located outside of their physical location.
 Essentially, the forwarding of these protocols may violate site
 specific security policies as they may be undetectably tunneled

Ylonen, et. al. Expires January 12, 2004 [Page 24]

Internet-Draft SSH Protocol Architecture July 2003

 through a firewall. Implementors SHOULD provide an administrative
 mechanism to control the proxy forwarding functionality so that
 site specific security policies may be upheld.

 In addition, a reverse proxy forwarding functionality is
 available, which again can be used to bypass firewall controls.

 As indicated above, end-point security is assumed during proxy
 forwarding operations. Failure of end-point security will
 compromise all data passed over proxy forwarding.

 8.4.3 X11 forwarding

 Another form of proxy forwarding provided by the ssh connection
 protocol is the forwarding of the X11 protocol. If end-point
 security has been compromised, X11 forwarding may allow attacks
 against the X11 server. Users and administrators should, as a
 matter of course, use appropriate X11 security mechanisms to
 prevent unauthorized use of the X11 server. Implementors,
 administrators and users who wish to further explore the security
 mechanisms of X11 are invited to read [SCHEIFLER] and analyze
 previously reported problems with the interactions between SSH
 forwarding and X11 in CERT vulnerabilities VU#363181 and VU#118892
 [CERT].

 X11 display forwarding with SSH, by itself, is not sufficient to
 correct well known problems with X11 security [VENEMA]. However,
 X11 display forwarding in SSHv2 (or other, secure protocols),
 combined with actual and pseudo-displays which accept connections
 only over local IPC mechanisms authorized by permissions or ACLs,
 does correct many X11 security problems as long as the "none" MAC
 is not used. It is RECOMMENDED that X11 display implementations
 default to allowing display opens only over local IPC. It is
 RECOMMENDED that SSHv2 server implementations that support X11
 forwarding default to allowing display opens only over local IPC.
 On single-user systems it might be reasonable to default to
 allowing local display opens over TCP/IP.

 Implementors of the X11 forwarding protocol SHOULD implement the
 magic cookie access checking spoofing mechanism as described in
 [ssh-connect] as an additional mechanism to prevent unauthorized
 use of the proxy.

 9. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described

Ylonen, et. al. Expires January 12, 2004 [Page 25]

Internet-Draft SSH Protocol Architecture July 2003

 in this document or the extent to which any license under such
 rights might or might not be available; neither does it represent
 that it has made any effort to identify any such rights.
 Information on the IETF's procedures with respect to rights in
 standards-track and standards-related documentation can be found
 in BCP-11. Copies of claims of rights made available for
 publication and any assurances of licenses to be made available,
 or the result of an attempt made to obtain a general license or
 permission for the use of such proprietary rights by implementers
 or users of this specification can be obtained from the IETF
 Secretariat.

 The IETF has been notified of intellectual property rights claimed
 in regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

 10. Additional Information

 The current document editor is: Darren.Moffat@Sun.COM. Comments
 on this internet draft should be sent to the IETF SECSH working
 group, details at: http://ietf.org/html.charters/secsh-

charter.html

References

 [FIPS-186] Federal Information Processing
 Standards Publication, ., "FIPS PUB
 186, Digital Signature Standard", May
 1994.

 [FIPS-197] National Institue of Standards and
 Technology, ., "FIPS 197,
 Specification for the Advanced
 Encryption Standard", November 2001.

 [ANSI T1.523-2001] American National Standards Insitute,
 Inc., "Telecom Glossary 2000",
 February 2001.

 [SCHEIFLER] Scheifler, R., "X Window System : The
 Complete Reference to Xlib, X
 Protocol, Icccm, Xlfd, 3rd edition.",
 Digital Press ISBN 1555580882,
 Feburary 1992.

 [RFC0854] Postel, J. and J. Reynolds, "Telnet
 Protocol Specification", STD 8, RFC

https://datatracker.ietf.org/doc/html/bcp11
http://ietf.org/html.charters/secsh-charter.html
http://ietf.org/html.charters/secsh-charter.html

Ylonen, et. al. Expires January 12, 2004 [Page 26]

Internet-Draft SSH Protocol Architecture July 2003

 854, May 1983.

 [RFC0894] Hornig, C., "Standard for the
 transmission of IP datagrams over
 Ethernet networks", STD 41, RFC 894,
 Apr 1984.

 [RFC1034] Mockapetris, P., "Domain names -
 concepts and facilities", STD 13, RFC

1034, Nov 1987.

 [RFC1134] Perkins, D., "Point-to-Point Protocol:
 A proposal for multi-protocol
 transmission of datagrams over Point-
 to-Point links", RFC 1134, Nov 1989.

 [RFC1282] Kantor, B., "BSD Rlogin", RFC 1282,
 December 1991.

 [RFC1510] Kohl, J. and C. Neuman, "The Kerberos
 Network Authentication Service (V5)",

RFC 1510, September 1993.

 [RFC1700] Reynolds, J. and J. Postel, "Assigned
 Numbers", STD 2, RFC 1700, October
 1994.

 [RFC1750] Eastlake, D., Crocker, S. and J.
 Schiller, "Randomness Recommendations
 for Security", RFC 1750, December
 1994.

 [RFC1766] Alvestrand, H., "Tags for the
 Identification of Languages", RFC

1766, March 1995.

 [RFC1964] Linn, J., "The Kerberos Version 5 GSS-
 API Mechanism", RFC 1964, June 1996.

 [RFC2025] Adams, C., "The Simple Public-Key GSS-
 API Mechanism (SPKM)", RFC 2025,
 October 1996.

 [RFC2085] Oehler, M. and R. Glenn, "HMAC-MD5 IP
 Authentication with Replay
 Prevention", RFC 2085, February 1997.

 [RFC2104] Krawczyk, H., Bellare, M. and R.

https://datatracker.ietf.org/doc/html/rfc894
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1134
https://datatracker.ietf.org/doc/html/rfc1282
https://datatracker.ietf.org/doc/html/rfc1510
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1964
https://datatracker.ietf.org/doc/html/rfc2025
https://datatracker.ietf.org/doc/html/rfc2085

Ylonen, et. al. Expires January 12, 2004 [Page 27]

Internet-Draft SSH Protocol Architecture July 2003

 Canetti, "HMAC: Keyed-Hashing for
 Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in
 RFCs to Indicate Requirement Levels",

BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS
 Protocol Version 1.0", RFC 2246,
 January 1999.

 [RFC2279] Yergeau, F., "UTF-8, a transformation
 format of ISO 10646", RFC 2279,
 January 1998.

 [RFC2410] Glenn, R. and S. Kent, "The NULL
 Encryption Algorithm and Its Use With
 IPsec", RFC 2410, November 1998.

 [RFC2434] Narten, T. and H. Alvestrand,
 "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP

26, RFC 2434, October 1998.

 [RFC2743] Linn, J., "Generic Security Service
 Application Program Interface Version
 2, Update 1", RFC 2743, January 2000.

 [SSH-ARCH] Ylonen, T., "SSH Protocol
 Architecture", I-D draft-ietf-

architecture-14.txt, July 2003.

 [SSH-TRANS] Ylonen, T., "SSH Transport Layer
 Protocol", I-D draft-ietf-transport-

16.txt, July 2003.

 [SSH-USERAUTH] Ylonen, T., "SSH Authentication
 Protocol", I-D draft-ietf-userauth-

17.txt, July 2003.

 [SSH-CONNECT] Ylonen, T., "SSH Connection Protocol",
 I-D draft-ietf-connect-17.txt, July
 2003.

 [SSH-NUMBERS] Lehtinen, S. and D. Moffat, "SSH
 Protocol Assigned Numbers", I-D draft-

ietf-secsh-assignednumbers-03.txt,

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-14.txt
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-14.txt
https://datatracker.ietf.org/doc/html/draft-ietf-transport-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-transport-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-17.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-17.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-17.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-assignednumbers-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-assignednumbers-03.txt

Ylonen, et. al. Expires January 12, 2004 [Page 28]

Internet-Draft SSH Protocol Architecture July 2003

 July 2003.

 [SCHNEIER] Schneier, B., "Applied Cryptography
 Second Edition: protocols algorithms
 and source in code in C", 1996.

 [KAUFMAN,PERLMAN,SPECINER] Kaufman, C., Perlman, R. and M.
 Speciner, "Network Security: PRIVATE
 Communication in a PUBLIC World",
 1995.

 [CERT] CERT Coordination Center, The.,
 "http://www.cert.org/nav/index_red.html"
 .

 [VENEMA] Venema, W., "Murphy's Law and Computer
 Security", Proceedings of 6th USENIX
 Security Symposium, San Jose CA

http://www.usenix.org/publications/library/
proceedings/sec96/venema.html
 , July 1996.

 [ROGAWAY] Rogaway, P., "Problems with Proposed
 IP Cryptography", Unpublished paper

http://www.cs.ucdavis.edu/~rogaway/papers/
draft-rogaway-ipsec-comments-00.txt
 , 1996.

 [DAI] Dai, W., "An attack against SSH2
 protocol", Email to the SECSH Working
 Group ietf-ssh@netbsd.org

ftp://ftp.ietf.org/ietf-mail-
archive/secsh/2002-02.mail, Feb 2002.

 [BELLARE,KOHNO,NAMPREMPRE] Bellaire, M., Kohno, T. and C.
 Namprempre, "Authenticated Encryption
 in SSH: Fixing the SSH Binary Packet
 Protocol", , Sept 2002.

Authors' Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: ylo@ssh.com

http://www.usenix.org/publications/library/proceedings/sec96/venema.html
http://www.usenix.org/publications/library/proceedings/sec96/venema.html
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
http://www.cs.ucdavis.edu/~rogaway/papers/draft-rogaway-ipsec-comments-00.txt
ftp://ftp.ietf.org/ietf-mail-archive/secsh/2002-02.mail
ftp://ftp.ietf.org/ietf-mail-archive/secsh/2002-02.mail

Ylonen, et. al. Expires January 12, 2004 [Page 29]

Internet-Draft SSH Protocol Architecture July 2003

 Tero Kivinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: kivinen@ssh.com

 Markku-Juhani O. Saarinen
 University of Jyvaskyla

 Timo J. Rinne
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: tri@ssh.com

 Sami Lehtinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: sjl@ssh.com

Ylonen, et. al. Expires January 12, 2004 [Page 30]

Internet-Draft SSH Protocol Architecture July 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished
 to others, and derivative works that comment on or otherwise
 explain it or assist in its implementation may be prepared,
 copied, published and distributed, in whole or in part, without
 restriction of any kind, provided that the above copyright notice
 and this paragraph are included on all such copies and derivative
 works. However, this document itself may not be modified in any
 way, such as by removing the copyright notice or references to the
 Internet Society or other Internet organizations, except as needed
 for the purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards
 process must be followed, or as required to translate it into
 languages other than English.

 The limited permissions granted above are perpetual and will not
 be revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ylonen, et. al. Expires January 12, 2004 [Page 31]

