
Network Working Group T. Ylonen
Internet-Draft T. Kivinen
Expires: January 12, 2004 SSH Communications Security Corp
 M. Saarinen
 University of Jyvaskyla
 T. Rinne
 S. Lehtinen
 SSH Communications Security Corp
 July 14, 2003

SSH Connection Protocol
draft-ietf-secsh-connect-17.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network.

 This document describes the SSH Connection Protocol. It provides
 interactive login sessions, remote execution of commands,

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Ylonen, et. al. Expires January 12, 2004 [Page 1]

Internet-Draft SSH Connection Protocol July 2003

 forwarded TCP/IP connections, and forwarded X11 connections. All
 of these channels are multiplexed into a single encrypted tunnel.

 The SSH Connection Protocol has been designed to run on top of the
 SSH transport layer and user authentication protocols.

Table of Contents

1. Introduction . 3
2. Global Requests . 3
3. Channel Mechanism . 3
3.1 Opening a Channel . 4
3.2 Data Transfer . 5
3.3 Closing a Channel . 6
3.4 Channel-Specific Requests 7
4. Interactive Sessions . 8
4.1 Opening a Session . 8
4.2 Requesting a Pseudo-Terminal 8
4.3 X11 Forwarding . 9
4.3.1 Requesting X11 Forwarding 9
4.3.2 X11 Channels . 9
4.4 Environment Variable Passing 10
4.5 Starting a Shell or a Command 10
4.6 Session Data Transfer 11
4.7 Window Dimension Change Message 11
4.8 Local Flow Control . 12
4.9 Signals . 12
4.10 Returning Exit Status 12
5. TCP/IP Port Forwarding 14
5.1 Requesting Port Forwarding 14
5.2 TCP/IP Forwarding Channels 15
6. Encoding of Terminal Modes 16
7. Summary of Message Numbers 18
8. Security Considerations 18
9. Intellectual Property 18
10. Additional Information 19

 References . 19
 Authors' Addresses . 20
 Full Copyright Statement 22

Ylonen, et. al. Expires January 12, 2004 [Page 2]

Internet-Draft SSH Connection Protocol July 2003

 1. Introduction

 The SSH Connection Protocol has been designed to run on top of the
 SSH transport layer and user authentication protocols. It
 provides interactive login sessions, remote execution of commands,
 forwarded TCP/IP connections, and forwarded X11 connections. The
 service name for this protocol (after user authentication) is
 "ssh-connection".

 This document should be read only after reading the SSH
 architecture document [SSH-ARCH]. This document freely uses
 terminology and notation from the architecture document without
 reference or further explanation.

 2. Global Requests

 There are several kinds of requests that affect the state of the
 remote end "globally", independent of any channels. An example is
 a request to start TCP/IP forwarding for a specific port. All
 such requests use the following format.

 byte SSH_MSG_GLOBAL_REQUEST
 string request name (restricted to US-ASCII)
 boolean want reply
 ... request-specific data follows

 Request names follow the DNS extensibility naming convention
 outlined in [SSH-ARCH].

 The recipient will respond to this message with
 SSH_MSG_REQUEST_SUCCESS or SSH_MSG_REQUEST_FAILURE if `want reply'
 is TRUE.

 byte SSH_MSG_REQUEST_SUCCESS
 response specific data

 Usually the response specific data is non-existent.

 If the recipient does not recognize or support the request, it
 simply responds with SSH_MSG_REQUEST_FAILURE.

 byte SSH_MSG_REQUEST_FAILURE

 3. Channel Mechanism

 All terminal sessions, forwarded connections, etc. are channels.
 Either side may open a channel. Multiple channels are multiplexed

Ylonen, et. al. Expires January 12, 2004 [Page 3]

Internet-Draft SSH Connection Protocol July 2003

 into a single connection.

 Channels are identified by numbers at each end. The number
 referring to a channel may be different on each side. Requests to
 open a channel contain the sender's channel number. Any other
 channel-related messages contain the recipient's channel number
 for the channel.

 Channels are flow-controlled. No data may be sent to a channel
 until a message is received to indicate that window space is
 available.

 3.1 Opening a Channel

 When either side wishes to open a new channel, it allocates a
 local number for the channel. It then sends the following message
 to the other side, and includes the local channel number and
 initial window size in the message.

 byte SSH_MSG_CHANNEL_OPEN
 string channel type (restricted to US-ASCII)
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 ... channel type specific data follows

 The channel type is a name as described in the SSH architecture
 document, with similar extension mechanisms. `sender channel' is
 a local identifier for the channel used by the sender of this
 message. `initial window size' specifies how many bytes of
 channel data can be sent to the sender of this message without
 adjusting the window. `Maximum packet size' specifies the maximum
 size of an individual data packet that can be sent to the sender
 (for example, one might want to use smaller packets for
 interactive connections to get better interactive response on slow
 links).

 The remote side then decides whether it can open the channel, and
 responds with either

 byte SSH_MSG_CHANNEL_OPEN_CONFIRMATION
 uint32 recipient channel
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 ... channel type specific data follows

 where `recipient channel' is the channel number given in the

Ylonen, et. al. Expires January 12, 2004 [Page 4]

Internet-Draft SSH Connection Protocol July 2003

 original open request, and `sender channel' is the channel number
 allocated by the other side, or

 byte SSH_MSG_CHANNEL_OPEN_FAILURE
 uint32 recipient channel
 uint32 reason code
 string additional textual information (ISO-10646 UTF-8 [RFC2279])
 string language tag (as defined in [RFC1766])

 If the recipient of the SSH_MSG_CHANNEL_OPEN message does not
 support the specified channel type, it simply responds with
 SSH_MSG_CHANNEL_OPEN_FAILURE. The client MAY show the additional
 information to the user. If this is done, the client software
 should take the precautions discussed in [SSH-ARCH].

 The following reason codes are defined:

 #define SSH_OPEN_ADMINISTRATIVELY_PROHIBITED 1
 #define SSH_OPEN_CONNECT_FAILED 2
 #define SSH_OPEN_UNKNOWN_CHANNEL_TYPE 3
 #define SSH_OPEN_RESOURCE_SHORTAGE 4

 3.2 Data Transfer

 The window size specifies how many bytes the other party can send
 before it must wait for the window to be adjusted. Both parties
 use the following message to adjust the window.

 byte SSH_MSG_CHANNEL_WINDOW_ADJUST
 uint32 recipient channel
 uint32 bytes to add

 After receiving this message, the recipient MAY send the given
 number of bytes more than it was previously allowed to send; the
 window size is incremented.

 Data transfer is done with messages of the following type.

 byte SSH_MSG_CHANNEL_DATA
 uint32 recipient channel
 string data

 The maximum amount of data allowed is the current window size.
 The window size is decremented by the amount of data sent. Both
 parties MAY ignore all extra data sent after the allowed window is
 empty.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires January 12, 2004 [Page 5]

Internet-Draft SSH Connection Protocol July 2003

 Additionally, some channels can transfer several types of data.
 An example of this is stderr data from interactive sessions. Such
 data can be passed with SSH_MSG_CHANNEL_EXTENDED_DATA messages,
 where a separate integer specifies the type of the data. The
 available types and their interpretation depend on the type of the
 channel.

 byte SSH_MSG_CHANNEL_EXTENDED_DATA
 uint32 recipient_channel
 uint32 data_type_code
 string data

 Data sent with these messages consumes the same window as ordinary
 data.

 Currently, only the following type is defined.

 #define SSH_EXTENDED_DATA_STDERR 1

 3.3 Closing a Channel

 When a party will no longer send more data to a channel, it SHOULD
 send SSH_MSG_CHANNEL_EOF.

 byte SSH_MSG_CHANNEL_EOF
 uint32 recipient_channel

 No explicit response is sent to this message; however, the
 application may send EOF to whatever is at the other end of the
 channel. Note that the channel remains open after this message,
 and more data may still be sent in the other direction. This
 message does not consume window space and can be sent even if no
 window space is available.

 When either party wishes to terminate the channel, it sends
 SSH_MSG_CHANNEL_CLOSE. Upon receiving this message, a party MUST
 send back a SSH_MSG_CHANNEL_CLOSE unless it has already sent this
 message for the channel. The channel is considered closed for a
 party when it has both sent and received SSH_MSG_CHANNEL_CLOSE,
 and the party may then reuse the channel number. A party MAY send
 SSH_MSG_CHANNEL_CLOSE without having sent or received
 SSH_MSG_CHANNEL_EOF.

 byte SSH_MSG_CHANNEL_CLOSE
 uint32 recipient_channel

 This message does not consume window space and can be sent even if

Ylonen, et. al. Expires January 12, 2004 [Page 6]

Internet-Draft SSH Connection Protocol July 2003

 no window space is available.

 It is recommended that any data sent before this message is
 delivered to the actual destination, if possible.

 3.4 Channel-Specific Requests

 Many channel types have extensions that are specific to that
 particular channel type. An example is requesting a pty (pseudo
 terminal) for an interactive session.

 All channel-specific requests use the following format.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string request type (restricted to US-ASCII)
 boolean want reply
 ... type-specific data

 If want reply is FALSE, no response will be sent to the request.
 Otherwise, the recipient responds with either
 SSH_MSG_CHANNEL_SUCCESS or SSH_MSG_CHANNEL_FAILURE, or request-
 specific continuation messages. If the request is not recognized
 or is not supported for the channel, SSH_MSG_CHANNEL_FAILURE is
 returned.

 This message does not consume window space and can be sent even if
 no window space is available. Request types are local to each
 channel type.

 The client is allowed to send further messages without waiting for
 the response to the request.

 request type names follow the DNS extensibility naming convention
 outlined in [SSH-ARCH]

 byte SSH_MSG_CHANNEL_SUCCESS
 uint32 recipient_channel

 byte SSH_MSG_CHANNEL_FAILURE
 uint32 recipient_channel

 These messages do not consume window space and can be sent even if
 no window space is available.

Ylonen, et. al. Expires January 12, 2004 [Page 7]

Internet-Draft SSH Connection Protocol July 2003

 4. Interactive Sessions

 A session is a remote execution of a program. The program may be
 a shell, an application, a system command, or some built-in
 subsystem. It may or may not have a tty, and may or may not
 involve X11 forwarding. Multiple sessions can be active
 simultaneously.

 4.1 Opening a Session

 A session is started by sending the following message.

 byte SSH_MSG_CHANNEL_OPEN
 string "session"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size

 Client implementations SHOULD reject any session channel open
 requests to make it more difficult for a corrupt server to attack
 the client.

 4.2 Requesting a Pseudo-Terminal

 A pseudo-terminal can be allocated for the session by sending the
 following message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient_channel
 string "pty-req"
 boolean want_reply
 string TERM environment variable value (e.g., vt100)
 uint32 terminal width, characters (e.g., 80)
 uint32 terminal height, rows (e.g., 24)
 uint32 terminal width, pixels (e.g., 640)
 uint32 terminal height, pixels (e.g., 480)
 string encoded terminal modes

 The encoding of terminal modes is described in Section Encoding of
 Terminal Modes (Section 6). Zero dimension parameters MUST be
 ignored. The character/row dimensions override the pixel
 dimensions (when nonzero). Pixel dimensions refer to the drawable
 area of the window.

 The dimension parameters are only informational.

 The client SHOULD ignore pty requests.

Ylonen, et. al. Expires January 12, 2004 [Page 8]

Internet-Draft SSH Connection Protocol July 2003

 4.3 X11 Forwarding

 4.3.1 Requesting X11 Forwarding

 X11 forwarding may be requested for a session by sending

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "x11-req"
 boolean want reply
 boolean single connection
 string x11 authentication protocol
 string x11 authentication cookie
 uint32 x11 screen number

 It is recommended that the authentication cookie that is sent be a
 fake, random cookie, and that the cookie is checked and replaced
 by the real cookie when a connection request is received.

 X11 connection forwarding should stop when the session channel is
 closed; however, already opened forwardings should not be
 automatically closed when the session channel is closed.

 If `single connection' is TRUE, only a single connection should be
 forwarded. No more connections will be forwarded after the first,
 or after the session channel has been closed.

 The `x11 authentication protocol' is the name of the X11
 authentication method used, e.g. "MIT-MAGIC-COOKIE-1".

 The x11 authentication cookie MUST be hexadecimal encoded.

 X Protocol is documented in [SCHEIFLER].

 4.3.2 X11 Channels

 X11 channels are opened with a channel open request. The
 resulting channels are independent of the session, and closing the
 session channel does not close the forwarded X11 channels.

 byte SSH_MSG_CHANNEL_OPEN
 string "x11"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 string originator address (e.g. "192.168.7.38")
 uint32 originator port

Ylonen, et. al. Expires January 12, 2004 [Page 9]

Internet-Draft SSH Connection Protocol July 2003

 The recipient should respond with
 SSH_MSG_CHANNEL_OPEN_CONFIRMATION or SSH_MSG_CHANNEL_OPEN_FAILURE.

 Implementations MUST reject any X11 channel open requests if they
 have not requested X11 forwarding.

 4.4 Environment Variable Passing

 Environment variables may be passed to the shell/command to be
 started later. Uncontrolled setting of environment variables in a
 privileged process can be a security hazard. It is recommended
 that implementations either maintain a list of allowable variable
 names or only set environment variables after the server process
 has dropped sufficient privileges.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "env"
 boolean want reply
 string variable name
 string variable value

 4.5 Starting a Shell or a Command

 Once the session has been set up, a program is started at the
 remote end. The program can be a shell, an application program or
 a subsystem with a host-independent name. Only one of these
 requests can succeed per channel.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "shell"
 boolean want reply

 This message will request the user's default shell (typically
 defined in /etc/passwd in UNIX systems) to be started at the other
 end.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "exec"
 boolean want reply
 string command

 This message will request the server to start the execution of the
 given command. The command string may contain a path. Normal
 precautions MUST be taken to prevent the execution of unauthorized

Ylonen, et. al. Expires January 12, 2004 [Page 10]

Internet-Draft SSH Connection Protocol July 2003

 commands.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "subsystem"
 boolean want reply
 string subsystem name

 This last form executes a predefined subsystem. It is expected
 that these will include a general file transfer mechanism, and
 possibly other features. Implementations may also allow
 configuring more such mechanisms. As the user's shell is usually
 used to execute the subsystem, it is advisable for the subsystem
 protocol to have a "magic cookie" at the beginning of the protocol
 transaction to distinguish it from arbitrary output generated by
 shell initialization scripts etc. This spurious output from the
 shell may be filtered out either at the server or at the client.

 The server SHOULD not halt the execution of the protocol stack
 when starting a shell or a program. All input and output from
 these SHOULD be redirected to the channel or to the encrypted
 tunnel.

 It is RECOMMENDED to request and check the reply for these
 messages. The client SHOULD ignore these messages.

 Subsystem names follow the DNS extensibility naming convention
 outlined in [SSH-ARCH].

 4.6 Session Data Transfer

 Data transfer for a session is done using SSH_MSG_CHANNEL_DATA and
 SSH_MSG_CHANNEL_EXTENDED_DATA packets and the window mechanism.
 The extended data type SSH_EXTENDED_DATA_STDERR has been defined
 for stderr data.

 4.7 Window Dimension Change Message

 When the window (terminal) size changes on the client side, it MAY
 send a message to the other side to inform it of the new
 dimensions.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient_channel
 string "window-change"
 boolean FALSE
 uint32 terminal width, columns
 uint32 terminal height, rows

Ylonen, et. al. Expires January 12, 2004 [Page 11]

Internet-Draft SSH Connection Protocol July 2003

 uint32 terminal width, pixels
 uint32 terminal height, pixels

 No response SHOULD be sent to this message.

 4.8 Local Flow Control

 On many systems, it is possible to determine if a pseudo-terminal
 is using control-S/control-Q flow control. When flow control is
 allowed, it is often desirable to do the flow control at the
 client end to speed up responses to user requests. This is
 facilitated by the following notification. Initially, the server
 is responsible for flow control. (Here, again, client means the
 side originating the session, and server means the other side.)

 The message below is used by the server to inform the client when
 it can or cannot perform flow control (control-S/control-Q
 processing). If `client can do' is TRUE, the client is allowed to
 do flow control using control-S and control-Q. The client MAY
 ignore this message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "xon-xoff"
 boolean FALSE
 boolean client can do

 No response is sent to this message.

 4.9 Signals

 A signal can be delivered to the remote process/service using the
 following message. Some systems may not implement signals, in
 which case they SHOULD ignore this message.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "signal"
 boolean FALSE
 string signal name without the "SIG" prefix.

 Signal names will be encoded as discussed in the "exit-signal"
 SSH_MSG_CHANNEL_REQUEST.

 4.10 Returning Exit Status

 When the command running at the other end terminates, the
 following message can be sent to return the exit status of the

Ylonen, et. al. Expires January 12, 2004 [Page 12]

Internet-Draft SSH Connection Protocol July 2003

 command. Returning the status is RECOMMENDED. No acknowledgment
 is sent for this message. The channel needs to be closed with
 SSH_MSG_CHANNEL_CLOSE after this message.

 The client MAY ignore these messages.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient_channel
 string "exit-status"
 boolean FALSE
 uint32 exit_status

 The remote command may also terminate violently due to a signal.
 Such a condition can be indicated by the following message. A
 zero exit_status usually means that the command terminated
 successfully.

 byte SSH_MSG_CHANNEL_REQUEST
 uint32 recipient channel
 string "exit-signal"
 boolean FALSE
 string signal name without the "SIG" prefix.
 boolean core dumped
 string error message (ISO-10646 UTF-8)
 string language tag (as defined in [RFC1766])

 The signal name is one of the following (these are from [POSIX])

 ABRT
 ALRM
 FPE
 HUP
 ILL
 INT
 KILL
 PIPE
 QUIT
 SEGV
 TERM
 USR1
 USR2

 Additional signal names MAY be sent in the format "sig-name@xyz",
 where `sig-name' and `xyz' may be anything a particular
 implementor wants (except the `@' sign). However, it is suggested
 that if a `configure' script is used, the non-standard signal
 names it finds be encoded as "SIG@xyz.config.guess", where `SIG'
 is the signal name without the "SIG" prefix, and `xyz' be the host

https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires January 12, 2004 [Page 13]

Internet-Draft SSH Connection Protocol July 2003

 type, as determined by `config.guess'.

 The `error message' contains an additional explanation of the
 error message. The message may consist of multiple lines. The
 client software MAY display this message to the user. If this is
 done, the client software should take the precautions discussed in
 [SSH-ARCH].

 5. TCP/IP Port Forwarding

 5.1 Requesting Port Forwarding

 A party need not explicitly request forwardings from its own end
 to the other direction. However, if it wishes that connections to
 a port on the other side be forwarded to the local side, it must
 explicitly request this.

 byte SSH_MSG_GLOBAL_REQUEST
 string "tcpip-forward"
 boolean want reply
 string address to bind (e.g. "0.0.0.0")
 uint32 port number to bind

 `Address to bind' and `port number to bind' specify the IP address
 and port to which the socket to be listened is bound. The address
 should be "0.0.0.0" if connections are allowed from anywhere.
 (Note that the client can still filter connections based on
 information passed in the open request.)

 Implementations should only allow forwarding privileged ports if
 the user has been authenticated as a privileged user.

 Client implementations SHOULD reject these messages; they are
 normally only sent by the client.

 If a client passes 0 as port number to bind and has want reply
 TRUE then the server allocates the next available unprivileged
 port number and replies with the following message, otherwise
 there is no response specific data.

 byte SSH_MSG_GLOBAL_REQUEST_SUCCESS
 uint32 port that was bound on the server

 A port forwarding can be cancelled with the following message.
 Note that channel open requests may be received until a reply to

Ylonen, et. al. Expires January 12, 2004 [Page 14]

Internet-Draft SSH Connection Protocol July 2003

 this message is received.

 byte SSH_MSG_GLOBAL_REQUEST
 string "cancel-tcpip-forward"
 boolean want reply
 string address_to_bind (e.g. "127.0.0.1")
 uint32 port number to bind

 Client implementations SHOULD reject these messages; they are
 normally only sent by the client.

 5.2 TCP/IP Forwarding Channels

 When a connection comes to a port for which remote forwarding has
 been requested, a channel is opened to forward the port to the
 other side.

 byte SSH_MSG_CHANNEL_OPEN
 string "forwarded-tcpip"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 string address that was connected
 uint32 port that was connected
 string originator IP address
 uint32 originator port

 Implementations MUST reject these messages unless they have
 previously requested a remote TCP/IP port forwarding with the
 given port number.

 When a connection comes to a locally forwarded TCP/IP port, the
 following packet is sent to the other side. Note that these
 messages MAY be sent also for ports for which no forwarding has
 been explicitly requested. The receiving side must decide whether
 to allow the forwarding.

 byte SSH_MSG_CHANNEL_OPEN
 string "direct-tcpip"
 uint32 sender channel
 uint32 initial window size
 uint32 maximum packet size
 string host to connect
 uint32 port to connect
 string originator IP address
 uint32 originator port

 `Host to connect' and `port to connect' specify the TCP/IP host

Ylonen, et. al. Expires January 12, 2004 [Page 15]

Internet-Draft SSH Connection Protocol July 2003

 and port where the recipient should connect the channel. `Host to
 connect' may be either a domain name or a numeric IP address.

 `Originator IP address' is the numeric IP address of the machine
 where the connection request comes from, and `originator port' is
 the port on the originator host from where the connection came
 from.

 Forwarded TCP/IP channels are independent of any sessions, and
 closing a session channel does not in any way imply that forwarded
 connections should be closed.

 Client implementations SHOULD reject direct TCP/IP open requests
 for security reasons.

 6. Encoding of Terminal Modes

 Terminal modes (as passed in a pty request) are encoded into a
 byte stream. It is intended that the coding be portable across
 different environments.

 The tty mode description is a stream of bytes. The stream
 consists of opcode-argument pairs. It is terminated by opcode
 TTY_OP_END (0). Opcodes 1 to 159 have a single uint32 argument.
 Opcodes 160 to 255 are not yet defined, and cause parsing to stop
 (they should only be used after any other data).

 The client SHOULD put in the stream any modes it knows about, and
 the server MAY ignore any modes it does not know about. This
 allows some degree of machine-independence, at least between
 systems that use a POSIX-like tty interface. The protocol can
 support other systems as well, but the client may need to fill
 reasonable values for a number of parameters so the server pty
 gets set to a reasonable mode (the server leaves all unspecified
 mode bits in their default values, and only some combinations make
 sense).

 The following opcodes have been defined. The naming of opcodes
 mostly follows the POSIX terminal mode flags.

 0 TTY_OP_END Indicates end of options.
 1 VINTR Interrupt character; 255 if none. Similarly for the
 other characters. Not all of these characters are
 supported on all systems.
 2 VQUIT The quit character (sends SIGQUIT signal on POSIX
 systems).
 3 VERASE Erase the character to left of the cursor.
 4 VKILL Kill the current input line.

Ylonen, et. al. Expires January 12, 2004 [Page 16]

Internet-Draft SSH Connection Protocol July 2003

 5 VEOF End-of-file character (sends EOF from the terminal).
 6 VEOL End-of-line character in addition to carriage return
 and/or linefeed.
 7 VEOL2 Additional end-of-line character.
 8 VSTART Continues paused output (normally control-Q).
 9 VSTOP Pauses output (normally control-S).
 10 VSUSP Suspends the current program.
 11 VDSUSP Another suspend character.
 12 VREPRINT Reprints the current input line.
 13 VWERASE Erases a word left of cursor.
 14 VLNEXT Enter the next character typed literally, even if it
 is a special character
 15 VFLUSH Character to flush output.
 16 VSWTCH Switch to a different shell layer.
 17 VSTATUS Prints system status line (load, command, pid etc).
 18 VDISCARD Toggles the flushing of terminal output.
 30 IGNPAR The ignore parity flag. The parameter SHOULD be 0 if
 this flag is FALSE set, and 1 if it is TRUE.
 31 PARMRK Mark parity and framing errors.
 32 INPCK Enable checking of parity errors.
 33 ISTRIP Strip 8th bit off characters.
 34 INLCR Map NL into CR on input.
 35 IGNCR Ignore CR on input.
 36 ICRNL Map CR to NL on input.
 37 IUCLC Translate uppercase characters to lowercase.
 38 IXON Enable output flow control.
 39 IXANY Any char will restart after stop.
 40 IXOFF Enable input flow control.
 41 IMAXBEL Ring bell on input queue full.
 50 ISIG Enable signals INTR, QUIT, [D]SUSP.
 51 ICANON Canonicalize input lines.
 52 XCASE Enable input and output of uppercase characters by
 preceding their lowercase equivalents with `\'.
 53 ECHO Enable echoing.
 54 ECHOE Visually erase chars.
 55 ECHOK Kill character discards current line.
 56 ECHONL Echo NL even if ECHO is off.
 57 NOFLSH Don't flush after interrupt.
 58 TOSTOP Stop background jobs from output.
 59 IEXTEN Enable extensions.
 60 ECHOCTL Echo control characters as ^(Char).
 61 ECHOKE Visual erase for line kill.
 62 PENDIN Retype pending input.
 70 OPOST Enable output processing.
 71 OLCUC Convert lowercase to uppercase.
 72 ONLCR Map NL to CR-NL.
 73 OCRNL Translate carriage return to newline (output).
 74 ONOCR Translate newline to carriage return-newline

Ylonen, et. al. Expires January 12, 2004 [Page 17]

Internet-Draft SSH Connection Protocol July 2003

 (output).
 75 ONLRET Newline performs a carriage return (output).
 90 CS7 7 bit mode.
 91 CS8 8 bit mode.
 92 PARENB Parity enable.
 93 PARODD Odd parity, else even.

 128 TTY_OP_ISPEED Specifies the input baud rate in bits per second.
 129 TTY_OP_OSPEED Specifies the output baud rate in bits per second.

 7. Summary of Message Numbers

 #define SSH_MSG_GLOBAL_REQUEST 80
 #define SSH_MSG_REQUEST_SUCCESS 81
 #define SSH_MSG_REQUEST_FAILURE 82
 #define SSH_MSG_CHANNEL_OPEN 90
 #define SSH_MSG_CHANNEL_OPEN_CONFIRMATION 91
 #define SSH_MSG_CHANNEL_OPEN_FAILURE 92
 #define SSH_MSG_CHANNEL_WINDOW_ADJUST 93
 #define SSH_MSG_CHANNEL_DATA 94
 #define SSH_MSG_CHANNEL_EXTENDED_DATA 95
 #define SSH_MSG_CHANNEL_EOF 96
 #define SSH_MSG_CHANNEL_CLOSE 97
 #define SSH_MSG_CHANNEL_REQUEST 98
 #define SSH_MSG_CHANNEL_SUCCESS 99
 #define SSH_MSG_CHANNEL_FAILURE 100

 8. Security Considerations

 This protocol is assumed to run on top of a secure, authenticated
 transport. User authentication and protection against network-
 level attacks are assumed to be provided by the underlying
 protocols.

 It is RECOMMENDED that implementations disable all the potentially
 dangerous features (e.g. agent forwarding, X11 forwarding, and
 TCP/IP forwarding) if the host key has changed.

 Full security considerations for this protocol are provided in
 Section 8 of [SSH-ARCH]

 9. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described

Ylonen, et. al. Expires January 12, 2004 [Page 18]

Internet-Draft SSH Connection Protocol July 2003

 in this document or the extent to which any license under such
 rights might or might not be available; neither does it represent
 that it has made any effort to identify any such rights.
 Information on the IETF's procedures with respect to rights in
 standards-track and standards-related documentation can be found
 in BCP-11. Copies of claims of rights made available for
 publication and any assurances of licenses to be made available,
 or the result of an attempt made to obtain a general license or
 permission for the use of such proprietary rights by implementers
 or users of this specification can be obtained from the IETF
 Secretariat.

 The IETF has been notified of intellectual property rights claimed
 in regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

 10. Additional Information

 The current document editor is: Darren.Moffat@Sun.COM. Comments
 on this internet draft should be sent to the IETF SECSH working
 group, details at: http://ietf.org/html.charters/secsh-

charter.html

References

 [RFC1766] Alvestrand, H., "Tags for the Identification of
 Languages", RFC 1766, March 1995.

 [RFC1884] Hinden, R., Deering, S. and Editors, "IP Version 6
 Addressing Architecture", RFC 1884, December 1995.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of
 ISO 10646", RFC 2279, January 1998.

 [SCHEIFLER] Scheifler, R., "X Window System : The Complete
 Reference to Xlib, X Protocol, Icccm, Xlfd, 3rd
 edition.", Digital Press ISBN 1555580882, Feburary
 1992.

 [POSIX] ISO/IEC, 9945-1., "Information technology --
 Portable Operating System Interface (POSIX)-Part
 1: System Application Program Interface (API) C
 Language", ANSI/IEE Std 1003.1, July 1996.

 [SSH-ARCH] Ylonen, T., "SSH Protocol Architecture", I-D
draft-ietf-architecture-14.txt, July 2003.

https://datatracker.ietf.org/doc/html/bcp11
http://ietf.org/html.charters/secsh-charter.html
http://ietf.org/html.charters/secsh-charter.html
https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1884
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-14.txt

Ylonen, et. al. Expires January 12, 2004 [Page 19]

Internet-Draft SSH Connection Protocol July 2003

 [SSH-TRANS] Ylonen, T., "SSH Transport Layer Protocol", I-D
draft-ietf-transport-16.txt, July 2003.

 [SSH-USERAUTH] Ylonen, T., "SSH Authentication Protocol", I-D
draft-ietf-userauth-17.txt, July 2003.

 [SSH-CONNECT] Ylonen, T., "SSH Connection Protocol", I-D draft-
ietf-connect-17.txt, July 2003.

 [SSH-NUMBERS] Lehtinen, S. and D. Moffat, "SSH Protocol Assigned
 Numbers", I-D draft-ietf-secsh-assignednumbers-

03.txt, July 2003.

Authors' Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: ylo@ssh.com

 Tero Kivinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: kivinen@ssh.com

 Markku-Juhani O. Saarinen
 University of Jyvaskyla

 Timo J. Rinne
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: tri@ssh.com

https://datatracker.ietf.org/doc/html/draft-ietf-transport-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-17.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-17.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-17.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-assignednumbers-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-assignednumbers-03.txt

Ylonen, et. al. Expires January 12, 2004 [Page 20]

Internet-Draft SSH Connection Protocol July 2003

 Sami Lehtinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: sjl@ssh.com

Ylonen, et. al. Expires January 12, 2004 [Page 21]

Internet-Draft SSH Connection Protocol July 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished
 to others, and derivative works that comment on or otherwise
 explain it or assist in its implementation may be prepared,
 copied, published and distributed, in whole or in part, without
 restriction of any kind, provided that the above copyright notice
 and this paragraph are included on all such copies and derivative
 works. However, this document itself may not be modified in any
 way, such as by removing the copyright notice or references to the
 Internet Society or other Internet organizations, except as needed
 for the purpose of developing Internet standards in which case the
 procedures for copyrights defined in the Internet Standards
 process must be followed, or as required to translate it into
 languages other than English.

 The limited permissions granted above are perpetual and will not
 be revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on
 an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ylonen, et. al. Expires January 12, 2004 [Page 22]

