
Secure Shell Working Group J. Galbraith
Internet-Draft VanDyke Software
Expires: April 26, 2005 October 26, 2004

SSH File Transfer Protocol
draft-ietf-secsh-filexfer-06.txt

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 26, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004).

Abstract

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 The SSH File Transfer Protocol provides secure file transfer
 functionality over any reliable data stream. It is the standard file
 transfer protocol for use with the SSH2 protocol. This document
 describes the file transfer protocol and its interface to the SSH2
 protocol suite.

Galbraith Expires April 26, 2005 [Page 1]

Internet-Draft SSH File Transfer Protocol October 2004

Table of Contents

1. Introduction . 4
2. Use with the SSH Connection Protocol 5
2.1 The Use of 'stderr' in the server 5

3. General Packet Format . 6
3.1 Request Synchronization and Reordering 6
3.2 Packet Types . 7

4. Protocol Initialization 9
4.1 Client Initialization 9
4.2 Server Initialization 9
4.3 Determining Server Newline Convention 10
4.4 Supported Features . 11
4.5 Version re-negotiation 12

5. File Names . 14
6. File Attributes . 16
6.1 valid-attribute-flags 16
6.2 Type . 17
6.3 Size . 18
6.4 AllocationSize . 18
6.5 Owner and Group . 19
6.6 Permissions . 19
6.7 Times . 20
6.8 ACL . 20
6.9 attrib-bits . 21
6.10 Text Hint . 24
6.11 Mime type . 24
6.12 Link Count . 24
6.13 Extended Attributes 24

7. Requests From the Client to the Server 26
7.1 Opening and Closing Files and Directories 26
7.1.1 Opening a File . 26
7.1.2 Opening a Directory 30
7.1.3 Closing Handles 30

7.2 Reading and Writing 31
7.2.1 Reading Files . 31
7.2.2 Reading Directories 31
7.2.3 Writing Files . 32

7.3 Removing and Renaming Files 32
7.4 Creating and Deleting Directories 34
7.5 Retrieving File Attributes 34
7.6 Setting File Attributes 35
7.7 Dealing with Symbolic Links 36
7.8 Canonicalizing the Server-Side Path Name 37
7.8.1 Best Practice for Dealing with Paths 37

8. Responses from the Server to the Client 39

9. Extensions . 44
9.1 Checking File Contents 45

Galbraith Expires April 26, 2005 [Page 2]

Internet-Draft SSH File Transfer Protocol October 2004

9.2 Querying Available Space 46
10. Implementation Considerations 48
11. Security Considerations 49
12. Changes from Previous Protocol Versions 51
12.1 Changes Between Versions 6 and 5 51
12.2 Changes Between Versions 5 and 4 51
12.3 Changes Between Versions 4 and 3 52
12.4 Changes Between Versions 3 and 2 52
12.5 Changes Between Versions 2 and 1 52
12.6 Changes Between Versions 1 and 0 53

13. Trademark Issues . 54
14. References . 55
14.1 Normative References . 55
14.2 Informative References 55

 Author's Address . 56
 Intellectual Property and Copyright Statements 57

Galbraith Expires April 26, 2005 [Page 3]

Internet-Draft SSH File Transfer Protocol October 2004

1. Introduction

 This protocol provides secure file transfer (and more generally file
 system access.) It is designed so that it could be used to implement
 a secure remote file system service, as well as a secure file
 transfer service.

 This protocol assumes that it runs over a secure channel, such as a
 channel in the SSH2 protocol [1]. and that the server has already
 authenticated the client, and that the identity of the client user is
 available to the protocol.

 In general, this protocol follows a simple request-response model.
 Each request and response contains a sequence number and multiple
 requests may be pending simultaneously. There are a relatively large
 number of different request messages, but a small number of possible
 response messages. Each request has one or more response messages
 that may be returned in result (e.g., a read either returns data or
 reports error status).

 The packet format descriptions in this specification follow the
 notation presented in the secsh architecture draft. [1]

 Even though this protocol is described in the context of the SSH2
 protocol, this protocol is general and independent of the rest of the
 SSH2 protocol suite. It could be used in a number of different
 applications, such as secure file transfer over TLS RFC 2246 [7] and
 transfer of management information in VPN applications.

https://datatracker.ietf.org/doc/html/rfc2246

Galbraith Expires April 26, 2005 [Page 4]

Internet-Draft SSH File Transfer Protocol October 2004

2. Use with the SSH Connection Protocol

 When used with the SSH2 Protocol suite, this protocol is intended to
 be used from the SSH Connection Protocol [3] as a subsystem, as
 described in section ''Starting a Shell or a Command''. The
 subsystem name used with this protocol is "sftp".

2.1 The Use of 'stderr' in the server

 This protocol uses stdout and stdin to transmit binary protocol data.
 The "session" channel SSH Connection Protocol [3], which is used by
 the subsystem, also supports the use of stderr.

 Data sent on stderr by the server SHOULD be considered free format
 debug or supplemental error information, and MAY be displayed to the
 user.

 For example, during initialization, there is no client request
 active, so errors or warning information cannot be sent to the client
 as part of the SFTP protocol at this early stage. However, the
 errors or warnings MAY be sent as stderr text.

Galbraith Expires April 26, 2005 [Page 5]

Internet-Draft SSH File Transfer Protocol October 2004

3. General Packet Format

 All packets transmitted over the secure connection are of the
 following format:

 uint32 length
 byte type
 uint32 request-id
 ... type specific fields...
 byte[length] data payload

 'length' is the length of the entire packet, excluding the length
 field itself, such that, for example, for a packet type containing no
 type specific fields, the length field would be 5, and 9 bytes of
 data would be sent on the wire. (This is the packet format used in
 the secsh transport. [2]

 All packet descriptions in this document omit the length field for
 brevity; the length field MUST be included in any case.

 Each request from the client contains a 'request-id' field. Each
 response from the server includes that same 'request-id' from the
 request that the server is responding to. One possible
 implementation is for the client to us a monotonically increasing
 request sequence number (modulo 2^32). There is, however, no
 particular requirement the 'request-id' fields be unique.

 There is no limit on the number of outstanding (non-acknowledged)
 requests that the client may send to the server. In practice this is
 limited by the buffering available on the data stream and the queuing
 performed by the server. If the server's queues are full, it should
 not read any more data from the stream, and flow control will prevent
 the client from sending more requests. Note, however, that while
 there is no restriction on the protocol level, the client's API may
 provide a limit in order to prevent infinite queuing of outgoing
 requests at the client.

3.1 Request Synchronization and Reordering

 The protocol and implementations MUST process requests relating to

 the same file in the order in which they are received. In other
 words, if an application submits multiple requests to the server, the
 results in the responses will be the same as if it had sent the
 requests one at a time and waited for the response in each case. For
 example, the server may process non-overlapping read/write requests
 to the same file in parallel, but overlapping reads and writes cannot
 be reordered or parallelized. However, there are no ordering
 restrictions on the server for processing requests from two different

Galbraith Expires April 26, 2005 [Page 6]

Internet-Draft SSH File Transfer Protocol October 2004

 file transfer connections. The server may interleave and parallelize
 them at will.

 There are no restrictions on the order in which responses to
 outstanding requests are delivered to the client, except that the
 server must ensure fairness in the sense that processing of no
 request will be indefinitely delayed even if the client is sending
 other requests so that there are multiple outstanding requests all
 the time.

 A client MUST be prepared to recieve responses to multiple overlapped
 requests out of order.

 This document defines one data type in addition to those defined in
 secsh architecture draft. [1]

 int64
 Represents a 64-bit signed integer. Stored as eight bytes in the
 order of decreasing significance (network byte order).

 The maximum size of a packet is in practice determined by the client
 (the maximum size of read or write requests that it sends, plus a few
 bytes of packet overhead). All servers SHOULD support packets of at
 least 34000 bytes (where the packet size refers to the full length,
 including the header above). This should allow for reads and writes
 of at most 32768 bytes.

3.2 Packet Types

 The following values are defined for packet types.

Galbraith Expires April 26, 2005 [Page 7]

Internet-Draft SSH File Transfer Protocol October 2004

 #define SSH_FXP_INIT 1
 #define SSH_FXP_VERSION 2
 #define SSH_FXP_OPEN 3
 #define SSH_FXP_CLOSE 4
 #define SSH_FXP_READ 5
 #define SSH_FXP_WRITE 6
 #define SSH_FXP_LSTAT 7
 #define SSH_FXP_FSTAT 8
 #define SSH_FXP_SETSTAT 9
 #define SSH_FXP_FSETSTAT 10
 #define SSH_FXP_OPENDIR 11
 #define SSH_FXP_READDIR 12
 #define SSH_FXP_REMOVE 13
 #define SSH_FXP_MKDIR 14
 #define SSH_FXP_RMDIR 15
 #define SSH_FXP_REALPATH 16
 #define SSH_FXP_STAT 17
 #define SSH_FXP_RENAME 18
 #define SSH_FXP_READLINK 19
 #define SSH_FXP_SYMLINK 20

 #define SSH_FXP_STATUS 101
 #define SSH_FXP_HANDLE 102
 #define SSH_FXP_DATA 103
 #define SSH_FXP_NAME 104
 #define SSH_FXP_ATTRS 105

 #define SSH_FXP_EXTENDED 200
 #define SSH_FXP_EXTENDED_REPLY 201

 RESERVED_FOR_EXTENSIONS 210-255

 Additional packet types should only be defined if the protocol
 version number (see Section ''Protocol Initialization'') is
 incremented, and their use MUST be negotiated using the version
 number. However, the SSH_FXP_EXTENDED and SSH_FXP_EXTENDED_REPLY
 packets can be used to implement extensions, which can be vendor
 specific. See Section ''Extensions'' for more details.

Galbraith Expires April 26, 2005 [Page 8]

Internet-Draft SSH File Transfer Protocol October 2004

4. Protocol Initialization

 When the file transfer protocol starts, the client first sends a
 SSH_FXP_INIT (including its version number) packet to the server.
 The server responds with a SSH_FXP_VERSION packet, supplying the
 lowest of its own and the client's version number. Both parties
 should from then on adhere to particular version of the protocol.

 The version number of the protocol specified in this document is 6.
 The version number should be incremented for each incompatible
 revision of this protocol.

 ********************* DO NOT IMPLEMENT ***********************
 ********************* DO NOT IMPLEMENT ***********************
 ***** *****
 ***** There will be more edits after IETF 61. *****
 ***** *****
 ********************* DO NOT IMPLEMENT ***********************
 ********************* DO NOT IMPLEMENT ***********************

4.1 Client Initialization

 The SSH_FXP_INIT packet (from client to server) has the following
 data:

 uint32 version

 Version 3 of this protocol allowed clients to include extensions in
 the SSH_FXP_INIT packet; however, this can cause interoperability
 problems with version 1 and version 2 servers because the client must
 send this packet before knowing the servers version.

 In this version of the protocol, clients MUST use the
 SSH_FXP_EXTENDED packet to send extensions to the server after
 version exchange has completed. Clients MUST NOT include extensions
 in the version packet. This will prevent interoperability problems
 with older servers

4.2 Server Initialization

 The SSH_FXP_VERSION packet (from server to client) has the following
 data:

 uint32 version
 <extension data>

 'version' is the lower of the protocol version supported by the
 server and the version number received from the client.

Galbraith Expires April 26, 2005 [Page 9]

Internet-Draft SSH File Transfer Protocol October 2004

 The extension data may be empty, or may be a sequence of

 string extension_name
 string extension_data

 pairs (both strings MUST always be present if one is, but the
 'extension_data' string may be of zero length). If present, these
 strings indicate extensions to the baseline protocol. The
 'extension_name' field(s) identify the name of the extension. The
 name should be of the form "name@domain", where the domain is the DNS
 domain name of the organization defining the extension. Additional
 names that are not of this format may be defined later by the IETF.
 Implementations MUST silently ignore any extensions whose name they
 do not recognize.

4.3 Determining Server Newline Convention

 In order to correctly process text files in a cross platform
 compatible way, newline sequences must be converted between client
 and server conventions.

 The SSH_FXF_TEXT file open flag (Section 7.1.1) makes it possible to
 request that the server translate a file to a 'canonical' wire
 format. This format uses \r\n as the line separator.

 Servers for systems using multiple newline characters (for example,
 Mac OS X or VMS) or systems using counted records, MUST translate to
 the canonical form.

 However, to ease the burden of implementation on servers that use a
 single, simple separator sequence, the following extension allows the
 canonical format to be changed.

 string "newline"
 string new-canonical-separator (usually "\r" or "\n" or "\r\n")

 All clients MUST support this extension.

 When processing text files, clients SHOULD NOT translate any

 character or sequence that is not an exact match of the server's
 newline separator.

 In particular, if the newline sequence being used is the canonical
 "\r\n" sequence, a lone "\r" or a lone "\n" SHOULD be written through
 without change.

Galbraith Expires April 26, 2005 [Page 10]

Internet-Draft SSH File Transfer Protocol October 2004

4.4 Supported Features

 The sftp protocol has grown to be very rich, and now supports a
 number of features that may not be available on all servers.

 When a server receives a request for a feature it cannot support, it
 MUST return a SSH_FX_OP_UNSUPPORTED status code, unless otherwise
 specified. In order to facilitate clients being able to use the
 maximum available feature set, and yet not be overly burdened by
 dealing with SSH_FX_OP_UNSUPPORTED status codes, the following
 extension is introduced.

 string "supported"
 string supported-structure
 uint32 supported-attribute-mask
 uint32 supported-attribute-bits
 uint32 supported-open-flags
 uint32 supported-access-mask
 uint32 max-read-size
 string extension-names[0..n]

 supported-attribute-mask
 This mask MAY by applied to the 'File Attributes'
 valid-attribute-flags field (Section 6.1) to ensure that no
 unsupported attributes are present during a operation which writes
 attributes.

 supported-attribute-bits
 This mask MAY by applied to the 'File Attributes' attrib-bits
 field (Section 6.9) to ensure that no unsupported attrib-bits are
 present during a operation which writes attributes.

 supported-open-flags
 The supported-open-flags mask MAY be applied to the SSH_FXP_OPEN
 (Section 7.1.1) flags field.

 supported-access-mask
 The supported-access-mask mask MAY be applied to the SSH_FXP_OPEN
 (Section 7.1.1) desired-access field or the ace-mask field of an
 ACL.

 max-read-size
 This is the maximum read size that the server gaurantees to
 complete. For example, certain embedded server implementations
 only complete the first 4K of a read, even if there is additional
 data to be read from the file.

Galbraith Expires April 26, 2005 [Page 11]

Internet-Draft SSH File Transfer Protocol October 2004

 If the server specifies a non-zero value, it MUST return at least
 the max-read-size number of bytes for any read requesting
 max-read-size bytes. Failure to return max-read-size bytes in
 such a case indicates either EOF or another error condition
 occurred.

 extension names
 The extension names may be empty (contains zero strings), or it
 may contain any named extensions that the server wishes to
 advertise.

 The client must be able to differentiate between attribute
 extensions (Section 6.13) and extended requests (Section 9) by the
 extension name.

 Naturally, if a given attribute field, attribute mask bit, open flag,
 or extension is required for correct operation, the client MUST
 either not allow the bit to be masked off, or MUST fail the operation
 gracefully without sending the request to the server.

 The client MAY send requests that are not supported by the server;
 however, it is not normally expected to be productive to do so. The
 client SHOULD apply the mask even to attrib structures received from
 the server. The server MAY include attributes or attrib-bits that
 are not included in the mask. Such attributes or attrib-bits are
 effectively read-only.

4.5 Version re-negotiation

 The version exchange during protocol startup forces an implementation
 to support all versions up to it's highest supported version;
 however, there have been a number of SFTP protocol versions deployed,
 and it is supposed that more implementations will support the final
 version of this protocol if they don't have to support all versions
 between their currently deployed version and the final version.
 Furthermore, only the current version of this protocol is documented,
 so supporting earlier versions becomes problematic.

 Therefore, the server SHOULD send the following extension as part of
 it's INIT packet to inform the client of the versions it supports.

 string "versions"
 string comma-seperated-versions

 'comma-seperated-versions' is a string of comma seperated version
 numbers, for example, "3,6,7"

Galbraith Expires April 26, 2005 [Page 12]

Internet-Draft SSH File Transfer Protocol October 2004

 A client wishing to support two non-continigous version of the
 protocol must negotiate the lowest version for which it supports all
 previous versions. When the client recieves the servers INIT packet,
 if it includes the "versions" extension, it MAY send the following
 extended request:

 byte SSH_FXP_EXTENDED
 uint32 request-id
 string "version"
 uint32 version-from-list

 If the 'version-from-list' is one of the versions on the servers
 list, the server MUST respond with SSH_FX_OK. If the server did not
 send the "versions" extension, or the version-from-list was not
 included, the server MAY send a status response describing the
 failure, but MUST then close the channel.

 Although this request does take a full round trip, no client need
 wait for the response before continuing, because any valid request
 MUST succeed.

Galbraith Expires April 26, 2005 [Page 13]

Internet-Draft SSH File Transfer Protocol October 2004

5. File Names

 This protocol represents file names as strings. File names are
 assumed to use the slash ('/') character as a directory separator.

 File names starting with a slash are "absolute", and are relative to
 the root of the file system. Names starting with any other character
 are relative to the user's default directory (home directory). Note
 that identifying the user is assumed to take place outside of this
 protocol.

 Servers SHOULD interpret a path name component ".." (Section 11)as
 referring to the parent directory, and "." as referring to the
 current directory.

 An empty path name is valid, and it refers to the user's default
 directory (usually the user's home directory).

 Otherwise, no syntax is defined for file names by this specification.
 Clients should not make any other assumptions; however, they can
 splice path name components returned by SSH_FXP_READDIR together
 using a slash ('/') as the separator, and that will work as expected.

 It is understood that the lack of well-defined semantics for file
 names may cause interoperability problems between clients and servers
 using radically different operating systems. However, this approach
 is known to work acceptably with most systems, and alternative
 approaches that e.g. treat file names as sequences of structured
 components are quite complicated.

 The prefered encoding for filenames is UTF-8. This is consistant
 with IETF Policy on Character Sets and Languages [8] and it is
 further supposed that the server is more likely to support any local
 character set and be able to convert it to UTF-8.

 The shortest valid UTF-8 encoding of the UNICODE data MUST be used.
 The server is responsible for converting the UNICODE data to whatever
 canonical form it requires. For example, if the server requires that
 precomposed characters always be used, the server MUST NOT assume the
 filename as sent by the client has this attribute, but must do this

 normalization itself.

 However, because the server does not always know the encoding of
 filenames, it is not always possible for the server to preform a
 valid translation to UTF-8. When an invalid translation to UTF-8 is
 preformed, it becomes impossible to manipulate the file, because the
 translation is not reversable. Therefore, the following extensions
 are provided in order to make it possible for the server to

Galbraith Expires April 26, 2005 [Page 14]

Internet-Draft SSH File Transfer Protocol October 2004

 communicate it's abilities to the client, and to allow the client to
 control whether the server attempts the conversion.

 A server MAY include the following extension with it's version
 packet.

 string "filename-charset"
 string charset-name

 A server that can always provide a valid UTF-8 translation for
 filenames SHOULD NOT send this extension. Otherwise, the server
 SHOULD this extension and include the encoding most likely to be used
 for filenames. This value will most likely be derived from the
 LC_CTYPE on most unix-like systems.

 A server that does not send this extension MUST send all filenames
 encoded in UTF-8. All clients MUST support UTF-8 filenames.

 If the server included the 'filename-charset' extension with its
 VERSION packet, a client MAY send the following extension to turn off
 server translation to UTF-8.

 string "filename-translation-control"
 bool do-translate

 If the client does not send this extension, the server MUST continue
 to attempt translation to UTF-8. When a client sends this extension,
 the server MUST enable or disable filename translation according to
 the value of 'do-translate'

 The server MUST respond with a STATUS response; if the server sent a
 'filename-charset' extension, the status MUST be SUCCESS. Otherwise,
 the status MUST be UNSUPPORTED.

Galbraith Expires April 26, 2005 [Page 15]

Internet-Draft SSH File Transfer Protocol October 2004

6. File Attributes

 A new compound data type is defined for encoding file attributes.
 The same encoding is used both when returning file attributes from
 the server and when sending file attributes to the server.

 uint32 valid-attribute-flags
 byte type always present
 uint64 size present only if flag SIZE
 uint64 allocation-size present only if flag ALLOCATION_SIZE
 string owner present only if flag OWNERGROUP
 string group present only if flag OWNERGROUP
 uint32 permissions present only if flag PERMISSIONS
 int64 atime present only if flag ACCESSTIME
 uint32 atime_nseconds present only if flag SUBSECOND_TIMES
 int64 createtime present only if flag CREATETIME
 uint32 createtime_nseconds present only if flag SUBSECOND_TIMES
 int64 mtime present only if flag MODIFYTIME
 uint32 mtime_nseconds present only if flag SUBSECOND_TIMES
 string acl present only if flag ACL
 uint32 attrib-bits present only if flag BITS
 byte text-hint present only if flag TEXT_HINT
 string mime-type present only if flag MIME_TYPE
 uint32 link-count present only if flag LINK_COUNT
 string untranslated-name present only if flag UNTRANSLATED_NAME
 uint32 extended_count present only if flag EXTENDED
 string extended_type
 string extended_data
 ... more extended data (extended_type - extended_data pairs),
 so that number of pairs equals extended_count

6.1 valid-attribute-flags

 The 'valid-attribute-flags' specifies which of the fields are
 present. Those fields for which the corresponding flag is not set
 are not present (not included in the packet).

 The server generally includes all attributes it knows about; however,
 it may exclude attributes that are overly expensive to retrieve
 unless the client explicitly requests them.

 When writing attributes, the server SHOULD NOT modify attributes that
 are not present in the structure. However, if necessary, the server
 MAY use a default value for an absent attribute.

 In general, unless otherwise specified, if a server cannot support
 writing an attribute requested, it must fail the setstat operation.

Galbraith Expires April 26, 2005 [Page 16]

Internet-Draft SSH File Transfer Protocol October 2004

 In this case, none of the attributes SHOULD be changed.

 New fields can only be added by incrementing the protocol version
 number (or by using the extension mechanism described below).

 The following values are defined:

 #define SSH_FILEXFER_ATTR_SIZE 0x00000001
 #define SSH_FILEXFER_ATTR_PERMISSIONS 0x00000004
 #define SSH_FILEXFER_ATTR_ACCESSTIME 0x00000008
 #define SSH_FILEXFER_ATTR_CREATETIME 0x00000010
 #define SSH_FILEXFER_ATTR_MODIFYTIME 0x00000020
 #define SSH_FILEXFER_ATTR_ACL 0x00000040
 #define SSH_FILEXFER_ATTR_OWNERGROUP 0x00000080
 #define SSH_FILEXFER_ATTR_SUBSECOND_TIMES 0x00000100
 #define SSH_FILEXFER_ATTR_BITS 0x00000200
 #define SSH_FILEXFER_ATTR_ALLOCATION_SIZE 0x00000400
 #define SSH_FILEXFER_ATTR_TEXT_HINT 0x00000800
 #define SSH_FILEXFER_ATTR_MIME_TYPE 0x00001000
 #define SSH_FILEXFER_ATTR_LINK_COUNT 0x00002000
 #define SSH_FILEXFER_ATTR_UNTRANLATED_NAME 0x00004000
 #define SSH_FILEXFER_ATTR_EXTENDED 0x80000000

 0x00000002 was used in a previous version of this protocol. It is
 now a reserved value and MUST NOT appear in the mask. Some future
 version of this protocol may reuse this value.

6.2 Type

 The type field is always present. The following types are defined:

 #define SSH_FILEXFER_TYPE_REGULAR 1
 #define SSH_FILEXFER_TYPE_DIRECTORY 2
 #define SSH_FILEXFER_TYPE_SYMLINK 3
 #define SSH_FILEXFER_TYPE_SPECIAL 4
 #define SSH_FILEXFER_TYPE_UNKNOWN 5
 #define SSH_FILEXFER_TYPE_SOCKET 6
 #define SSH_FILEXFER_TYPE_CHAR_DEVICE 7
 #define SSH_FILEXFER_TYPE_BLOCK_DEVICE 8
 #define SSH_FILEXFER_TYPE_FIFO 9

 On a POSIX system, these values would be derived from the mode field
 of the stat structure. SPECIAL should be used for files that are of
 a known type which cannot be expressed in the protocol. UNKNOWN
 should be used if the type is not known.

Galbraith Expires April 26, 2005 [Page 17]

Internet-Draft SSH File Transfer Protocol October 2004

6.3 Size

 The 'size' field specifies the number of bytes that can be read from
 the file, or in other words, the location of the end-of-file. If it
 is present during file creation, the file MUST be created and then
 the EOF set to 'size'. A read from such a file SHOULD return nul
 bytes, but this is not required if the underlying filesystem has
 different characteristics.

 If this field is present during a setstat operation, the file MUST be
 extended or truncated to the specified size. Clients SHOULD
 therefore be careful specifying size during a setstat operation.

 Files opened with the SSH_FXF_TEXT flag may have a size that is
 greater or less than the value of the size field.

6.4 AllocationSize

 The 'allocation-size' field specifies the number of bytes that the
 file consumes on disk. This is normally greater than or equal to the
 'size' field. If it is present during file creation, it should be
 treated as a hint as to the eventual file size. The server MAY
 choose to preallocate the disk space to save the overhead of repeated
 extends. However, the file size MUST NOT be set to this value. In
 other words, a read from such a file MUST fail with an EOF error.
 (Unless 'size' was also set.)

 If the server is unable to honor this hint during create, the create
 should succeed regardless. Because this field is a hint, the field
 may be specified even if the server doesn't set the bit in it's
 supported-attribute-mask.

 If this field is present during a setstat operation, the file SHOULD
 be extended or truncated to the specified size. Clients SHOULD
 therefore be careful specifying size during a setstat operation.

 If the file is extended by this operation, 'size' MUST not be
 affected. If the file is truncated by this operation, 'size' will be
 changed ot match the new file allocation.

 If a server can not honor the setstat operation, it MUST NOT set
 allocation-size in it's supported-attribute-mask, though it MAY still
 send the allocation-size data if it can retrieve it. In addition,
 such a server MUST fail a setstat operaiton that has the
 allocation-size field present.

Galbraith Expires April 26, 2005 [Page 18]

Internet-Draft SSH File Transfer Protocol October 2004

6.5 Owner and Group

 The 'owner' and 'group' fields are represented as UTF-8 strings; this
 is the form used by NFS v4. See NFS version 4 Protocol [4]. The
 following text is selected quotations from section 5.6.

 To avoid a representation that is tied to a particular underlying
 implementation at the client or server, the use of UTF-8 strings has
 been chosen. The string should be of the form user@dns_domain".
 This will allow for a client and server that do not use the same
 local representation the ability to translate to a common syntax that
 can be interpreted by both. In the case where there is no
 translation available to the client or server, the attribute value
 must be constructed without the "@". Therefore, the absence of the @
 from the owner or owner_group attribute signifies that no translation
 was available and the receiver of the attribute should not place any
 special meaning with the attribute value. Even though the attribute
 value cannot be translated, it may still be useful. In the case of a
 client, the attribute string may be used for local display of
 ownership.

 user@localhost represents a user in the context of the server.

 If either the owner or group field is zero length, the field should
 be considered absent, and no change should be made to that specific
 field.

6.6 Permissions

 The 'permissions' field contains a bit mask specifying file
 permissions. These permissions correspond to the st_mode field of
 the stat structure defined by POSIX [5].

 This protocol uses the following values for the symbols declared in
 the posix standard.

 #define S_IRUSR 0000400 (octal)
 #define S_IWUSR 0000200
 #define S_IXUSR 0000100
 #define S_IRGRP 0000040

 #define S_IWGRP 0000020
 #define S_IXGRP 0000010
 #define S_IROTH 0000004
 #define S_IWOTH 0000002
 #define S_IXOTH 0000001
 #define S_ISUID 0004000
 #define S_ISGID 0002000
 #define S_ISVTX 0001000

Galbraith Expires April 26, 2005 [Page 19]

Internet-Draft SSH File Transfer Protocol October 2004

 Implementations MUST NOT send bits that are not defined.

6.7 Times

 The 'atime', 'createtime', and 'mtime' contain the accesses,
 creation, and modification times of the files, respectively. They
 are represented as seconds from Jan 1, 1970 in UTC.

 A negative value indicates number of seconds before Jan 1, 1970. In
 both cases, if the SSH_FILEXFER_ATTR_SUBSECOND_TIMES flag is set, the
 nseconds field is to be added to the seconds field for the final time
 representation. For example, if the time to be represented is
 one-half second before 0 hour January 1, 1970, the seconds field
 would have a value of negative one (-1) and the nseconds fields would
 have a value of one-half second (500000000). Values greater than
 999,999,999 for nseconds are considered invalid.

6.8 ACL

 The 'ACL' field contains an ACL similar to that defined in section
5.9 of NFS version 4 Protocol [4].

 uint32 ace-count

 repeated ace-count time:
 uint32 ace-type
 uint32 ace-flag
 uint32 ace-mask
 string who [UTF-8]

 ace-type is one of the following four values (taken from NFS Version
 4 Protocol [4]:

 #define ACE4_ACCESS_ALLOWED_ACE_TYPE 0x00000000;
 #define ACE4_ACCESS_DENIED_ACE_TYPE 0x00000001;
 #define ACE4_SYSTEM_AUDIT_ACE_TYPE 0x00000002;
 #define ACE4_SYSTEM_ALARM_ACE_TYPE 0x00000003;

 ace-flag is a combination of the following flag values. See NFS

 Version 4 Protocol [4] section 5.9.2:

 #define ACE4_FILE_INHERIT_ACE 0x00000001;
 #define ACE4_DIRECTORY_INHERIT_ACE 0x00000002;
 #define ACE4_NO_PROPAGATE_INHERIT_ACE 0x00000004;
 #define ACE4_INHERIT_ONLY_ACE 0x00000008;
 #define ACE4_SUCCESSFUL_ACCESS_ACE_FLAG 0x00000010;
 #define ACE4_FAILED_ACCESS_ACE_FLAG 0x00000020;
 #define ACE4_IDENTIFIER_GROUP 0x00000040;

Galbraith Expires April 26, 2005 [Page 20]

Internet-Draft SSH File Transfer Protocol October 2004

 ace-mask is any combination of the following flags (taken from NFS
 Version 4 Protocol [4] section 5.9.3:

 #define ACE4_READ_DATA 0x00000001;
 #define ACE4_LIST_DIRECTORY 0x00000001;
 #define ACE4_WRITE_DATA 0x00000002;
 #define ACE4_ADD_FILE 0x00000002;
 #define ACE4_APPEND_DATA 0x00000004;
 #define ACE4_ADD_SUBDIRECTORY 0x00000004;
 #define ACE4_READ_NAMED_ATTRS 0x00000008;
 #define ACE4_WRITE_NAMED_ATTRS 0x00000010;
 #define ACE4_EXECUTE 0x00000020;
 #define ACE4_DELETE_CHILD 0x00000040;
 #define ACE4_READ_ATTRIBUTES 0x00000080;
 #define ACE4_WRITE_ATTRIBUTES 0x00000100;
 #define ACE4_DELETE 0x00010000;
 #define ACE4_READ_ACL 0x00020000;
 #define ACE4_WRITE_ACL 0x00040000;
 #define ACE4_WRITE_OWNER 0x00080000;
 #define ACE4_SYNCHRONIZE 0x00100000;

 who is a UTF-8 string of the form described in 'Owner and Group'
 (Section 6.5)

 Also, as per '5.9.4 ACE who' [4] there are several identifiers that
 need to be understood universally. Some of these identifiers cannot
 be understood when an client access the server, but have meaning when
 a local process accesses the file. The ability to display and modify
 these permissions is permitted over SFTP.

 OWNER The owner of the file.
 GROUP The group associated with the file.
 EVERYONE The world.
 INTERACTIVE Accessed from an interactive terminal.
 NETWORK Accessed via the network.
 DIALUP Accessed as a dialup user to the server.
 BATCH Accessed from a batch job.
 ANONYMOUS Accessed without any authentication.
 AUTHENTICATED Any authenticated user (opposite of ANONYMOUS).
 SERVICE Access from a system service.

 To avoid conflict, these special identifiers are distinguish by an
 appended "@". For example: ANONYMOUS@.

6.9 attrib-bits

 These bits reflect various attributes of the file or directory on the
 server.

Galbraith Expires April 26, 2005 [Page 21]

Internet-Draft SSH File Transfer Protocol October 2004

 The following attrib-bits are defined:

 #define SSH_FILEXFER_ATTR_FLAGS_READONLY 0x00000001
 #define SSH_FILEXFER_ATTR_FLAGS_SYSTEM 0x00000002
 #define SSH_FILEXFER_ATTR_FLAGS_HIDDEN 0x00000004
 #define SSH_FILEXFER_ATTR_FLAGS_CASE_INSENSITIVE 0x00000008
 #define SSH_FILEXFER_ATTR_FLAGS_ARCHIVE 0x00000010
 #define SSH_FILEXFER_ATTR_FLAGS_ENCRYPTED 0x00000020
 #define SSH_FILEXFER_ATTR_FLAGS_COMPRESSED 0x00000040
 #define SSH_FILEXFER_ATTR_FLAGS_SPARSE 0x00000080
 #define SSH_FILEXFER_ATTR_FLAGS_APPEND_ONLY 0x00000100
 #define SSH_FILEXFER_ATTR_FLAGS_IMMUTABLE 0x00000200
 #define SSH_FILEXFER_ATTR_FLAGS_SYNC 0x00000400
 #define SSH_FILEXFER_ATTR_FLAGS_TRANSLATION_ERR 0x00000800

 SSH_FILEXFER_ATTR_FLAGS_READONLY
 Advisory, read-only bit. This bit is not part of the access
 control information on the file, but is rather an advisory field
 indicating that the file should not be written.

 SSH_FILEXFER_ATTR_FLAGS_SYSTEM
 The file is part of operating system.

 SSH_FILEXFER_ATTR_FLAGS_HIDDEN
 File SHOULD NOT be shown to user unless specifically requested.
 For example, most UNIX systems SHOULD set this bit if the filename
 begins with a 'period'. This bit may be read-only (Section 4.4).
 Most UNIX systems will not allow this to be changed.

 SSH_FILEXFER_ATTR_FLAGS_CASE_INSENSITIVE
 This attribute can only apply to directories. This attribute is
 always read-only, and cannot be modified. This attribute means
 that files and directory names in this directory should be
 compared without regard to case.

 It is recommended that where possible, the server's filesystem be
 allowed to do comparisons. For example, if a client wished to
 prompt a user before overwriting a file, it should not compare the
 new name with the previously retrieved list of names in the
 directory. Rather, it should first try to create the new file by
 specifying SSH_FXF_CREATE_NEW flag. Then, if this fails and
 returns SSH_FX_FILE_ALREADY_EXISTS, it should prompt the user and

 then retry the create specifying SSH_FXF_CREATE_TRUNCATE.

 Unless otherwise specified, filenames are assumed to be case
 sensitive.

Galbraith Expires April 26, 2005 [Page 22]

Internet-Draft SSH File Transfer Protocol October 2004

 SSH_FILEXFER_ATTR_FLAGS_ARCHIVE
 The file should be included in backup / archive operations.

 SSH_FILEXFER_ATTR_FLAGS_ENCRYPTED
 The file is stored on disk using file-system level transparent
 encryption. This flag does not affect the file data on the wire
 (for either READ or WRITE requests.)

 SSH_FILEXFER_ATTR_FLAGS_COMPRESSED
 The file is stored on disk using file-system level transparent
 compression. This flag does not affect the file data on the wire.

 SSH_FILEXFER_ATTR_FLAGS_SPARSE
 The file is a sparse file; this means that file blocks that have
 not been explicitly written are not stored on disk. For example,
 if a client writes a buffer at 10 M from the beginning of the
 file, the blocks between the previous EOF marker and the 10 M
 offset would not consume physical disk space.

 Some server may store all files as sparse files, in which case
 this bit will be unconditionally set. Other servers may not have
 a mechanism for determining if the file is sparse, and so the file
 MAY be stored sparse even if this flag is not set.

 SSH_FILEXFER_ATTR_FLAGS_APPEND_ONLY
 The file can only be opened for writing in append mode.

 SSH_FILEXFER_ATTR_FLAGS_IMMUTABLE
 The file cannot be deleted or renamed, no hard link can be created
 to this file and no data can be written to the file.

 This bit implies a stronger level of protection than
 SSH_FILEXFER_ATTR_FLAGS_READONLY, the file permission mask or
 ACLs. Typically even the superuser cannot write to immutable
 files, and only the superuser can set or remove the bit.

 SSH_FILEXFER_ATTR_FLAGS_SYNC
 When the file is modified, the changes are written synchronously
 to the disk.

 SSH_FILEXFER_ATTR_FLAGS_TRANSLATION_ERR
 The server MAY include this bit in a directory listing or realpath
 response. It indicates there was a failure in the translation to
 UTF-8. If this flag is included, the server SHOULD also include
 the UNTRANSLATED_NAME attribute.

Galbraith Expires April 26, 2005 [Page 23]

Internet-Draft SSH File Transfer Protocol October 2004

6.10 Text Hint

 The value is one of the following enumerations, and indicates what
 the server knows about the content of the file.

 #define SSH_FILEXFER_ATTR_KNOWN_TEXT 0x01
 #define SSH_FILEXFER_ATTR_GUESSED_TEXT 0x01
 #define SSH_FILEXFER_ATTR_KNOWN_BINARY 0x01
 #define SSH_FILEXFER_ATTR_GUESSED_BINARY 0x01

 SSH_FILEXFER_ATTR_KNOWN_TEXT
 The server knows the file is a text file, and should be opened
 using the SSH_FXF_ACCESS_TEXT_MODE flag.

 SSH_FILEXFER_ATTR_GUESSED_TEXT
 The server has applied a hueristic or other mechanism and believes
 that the file should be opened with the SSH_FXF_ACCESS_TEXT_MODE
 flag.

 SSH_FILEXFER_ATTR_KNOWN_BINARY
 The server knows the file has binary content.

 SSH_FILEXFER_ATTR_GUESSED_BINARY
 The server has applied a hueristic or other mechanism and believes
 has binary content, and should not be opened with the
 SSH_FXF_ACCESS_TEXT_MODE flag.

 This flag MUST NOT be present during a setstat operation. If this
 flag is present during an fsetstat operation, the file handle is
 converted to a text-mode handle, as if it had been opened with
 SSH_FXF_ACCESS_TEXT_MODE.

6.11 Mime type

 The 'mime-type' field contains the mime-type [9] string. Most
 servers will not know this information and should not set the bit in
 their supported-attribute-mask.

6.12 Link Count

 The 'link-count' field contains the hard link count of the file.
 This attribute MUST NOT be present during a setstat operation.

6.13 Extended Attributes

 The SSH_FILEXFER_ATTR_EXTENDED flag provides a general extension
 mechanism for the attrib structure. If the flag is specified, then

Galbraith Expires April 26, 2005 [Page 24]

Internet-Draft SSH File Transfer Protocol October 2004

 the 'extended_count' field is present. It specifies the number of
 extended_type-extended_data pairs that follow. Each of these pairs
 specifies an extended attribute. For each of the attributes, the
 extended_type field should be a string of the format "name@domain",
 where "domain" is a valid, registered domain name and "name"
 identifies the method. The IETF may later standardize certain names
 that deviate from this format (e.g., that do not contain the "@"
 sign). The interpretation of 'extended_data' depends on the type.
 Implementations SHOULD ignore extended data fields that they do not
 understand.

 Additional fields can be added to the attributes by either defining
 additional bits to the flags field to indicate their presence, or by
 defining extended attributes for them. The extended attributes
 mechanism is recommended for most purposes; additional flags bits
 should only be defined by an IETF standards action that also
 increments the protocol version number. The use of such new fields
 MUST be negotiated by the version number in the protocol exchange.
 It is a protocol error if a packet with unsupported protocol bits is
 received.

Galbraith Expires April 26, 2005 [Page 25]

Internet-Draft SSH File Transfer Protocol October 2004

7. Requests From the Client to the Server

 Requests from the client to the server represent the various file
 system operations.

7.1 Opening and Closing Files and Directories

 Many operations in the protocol operate on open files. The
 SSH_FXP_OPEN and SSH_FXP_OPENDIR requests return a handle (which is
 an opaque, variable-length string) which may be used to access the
 file or directory later. The client MUST NOT send requests to the
 server with bogus or closed handles. However, the server MUST
 perform adequate checks on the handle in order to avoid security
 risks due to fabricated handles.

 This design allows either stateful and stateless server
 implementation, as well as an implementation which caches state
 between requests but may also flush it. The contents of the file
 handle string are entirely up to the server and its design. The
 client should not modify or attempt to interpret the file handle
 strings.

 The file handle strings MUST NOT be longer than 256 bytes.

7.1.1 Opening a File

 Files are opened and created using the SSH_FXP_OPEN message:

 byte SSH_FXP_OPEN
 uint32 request-id
 string filename [UTF-8]
 uint32 desired-access
 uint32 flags
 ATTRS attrs

 The response to this message will be either SSH_FXP_HANDLE (if the
 operation is successful) or SSH_FXP_STATUS (if the operation fails).

 The 'request-id' field is the request identifier as for all requests.

 The 'filename' field specifies the file name. See Section ''File
 Names'' for more information.

 The 'desired-access' field is a bitmask containing a combination of
 values from the ace-mask flags from section 5.7.

 The 'flags' field controls various aspects of the operation,
 including whether or not the file is created and the kind of locking

Galbraith Expires April 26, 2005 [Page 26]

Internet-Draft SSH File Transfer Protocol October 2004

 desired.

 The following 'flags' are defined:

 SSH_FXF_ACCESS_DISPOSITION = 0x00000007
 SSH_FXF_CREATE_NEW = 0x00000000
 SSH_FXF_CREATE_TRUNCATE = 0x00000001
 SSH_FXF_OPEN_EXISTING = 0x00000002
 SSH_FXF_OPEN_OR_CREATE = 0x00000003
 SSH_FXF_TRUNCATE_EXISTING = 0x00000004
 SSH_FXF_ACCESS_APPEND_DATA = 0x00000008
 SSH_FXF_ACCESS_APPEND_DATA_ATOMIC = 0x00000010
 SSH_FXF_ACCESS_TEXT_MODE = 0x00000020
 SSH_FXF_ACCESS_READ_LOCK = 0x00000040
 SSH_FXF_ACCESS_WRITE_LOCK = 0x00000080
 SSH_FXF_ACCESS_DELETE_LOCK = 0x00000100
 SSH_FXF_NOFOLLOW = 0x00000200

 SSH_FXF_ACCESS_DISPOSITION
 Disposition is a 3 bit field that controls how the file is opened.
 The server MUST support these bits. Any one of the following
 enumeration is allowed:

 SSH_FXF_CREATE_NEW
 A new file is created; if the file already exists, the server
 MUST return status SSH_FX_FILE_ALREADY_EXISTS.

 SSH_FXF_CREATE_TRUNCATE
 A new file is created; if the file already exists, it is
 truncated.

 SSH_FXF_OPEN_EXISTING
 An existing file is opened. If the file does not exist, the
 server MUST return SSH_FX_NO_SUCH_FILE. If a directory in the
 path does not exist, the server SHOULD return
 SSH_FX_NO_SUCH_PATH. It is also acceptable if the server
 returns SSH_FX_NO_SUCH_FILE in this case.

 SSH_FXF_OPEN_OR_CREATE
 If the file exists, it is opened. If the file does not exist,
 it is created.

 SSH_FXF_TRUNCATE_EXISTING
 An existing file is opened and truncated. If the file does not
 exist, the server MUST return the same error codes as defined
 for SSH_FXF_OPEN_EXISTING.

Galbraith Expires April 26, 2005 [Page 27]

Internet-Draft SSH File Transfer Protocol October 2004

 SSH_FXF_ACCESS_APPEND_DATA
 Data is always written at the end of the file. The offset field
 of the SSH_FXP_WRITE requests are ignored.

 Data is not required to be appended atomically. This means that
 if multiple writers attempt to append data simultaneously, data
 from the first may be lost. However, data MAY be appended
 atomically.

 SSH_FXF_ACCESS_APPEND_DATA_ATOMIC
 Data is always written at the end of the file. The offset field
 of the SSH_FXP_WRITE requests are ignored.

 Data MUST be written atomically so that there is no chance that
 multiple appenders can collide and result in data being lost.

 If both append flags are specified, the server SHOULD use atomic
 append if it is available, but SHOULD use non-atomic appends
 otherwise. The server SHOULD NOT fail the request in this case.

 SSH_FXF_TEXT
 Indicates that the server should treat the file as text and
 convert it to the canonical newline convention in use. (See
 Determining Server Newline Convention. (Section 4.3)

 When a file is opened with the FXF_TEXT flag, the offset field in
 both the read and write function are ignored.

 Servers MUST correctly process multiple, parallel reads and writes
 correctly in this mode. Naturally, it is permissible for them to
 do this by serializing the requests.

 Clients SHOULD use the SSH_FXF_ACCESS_APPEND_DATA flag to append
 data to a text file rather then using write with a calculated
 offset.

 To support seeks on text files the following SSH_FXP_EXTENDED
 packet is defined.

 string "text-seek"
 string file-handle
 uint64 line-number

 line-number is the index of the line number to seek to, where byte
 0 in the file is line number 0, and the byte directly following
 the first newline sequence in the file is line number 1 and so on.

Galbraith Expires April 26, 2005 [Page 28]

Internet-Draft SSH File Transfer Protocol October 2004

 The response to a "text-seek" request is an SSH_FXP_STATUS
 message.

 An attempt to seek past the end-of-file should result in a
 SSH_FX_EOF status.

 Servers SHOULD support at least one "text-seek" in order to
 support resume. However, a client MUST be prepared to receive
 SSH_FX_OP_UNSUPPORTED when attempting a "text-seek" operation.
 The client can then try a fall-back strategy, if it has one.

 Clients MUST be prepared to handle SSH_FX_OP_UNSUPPORTED returned
 for read or write operations that are not sequential.

 SSH_FXF_ACCESS_READ_LOCK
 The file should be opened with a read lock. The server MUST
 gaurantee that the client will be the exclusive reader of the file
 until the client closes the handle. If there is a conflicting
 lock the server MUST return SSH_FX_LOCK_CONFlICT. If the server
 cannot make the locking gaurantee, it MUST return
 SSH_FX_OP_UNSUPPORTED.

 SSH_FXF_ACCESS_WRITE_LOCK
 The file should be opened with a write lock. The server MUST
 gaurantee that the client will be the exclusive writer of the file
 until the client closes the handle.

 SSH_FXF_ACCESS_DELETE_LOCK
 The file should be opened with a delete lock. The server MUST
 gaurantee that the file will not be deleted until the client
 closes the handle.

 SSH_FXF_NOFOLLOW
 If the final component of the path is a symlink, then the open
 MUST fail, and the error SSH_FX_LINK_LOOP MUST be returned.

 The 'attrs' field specifies the initial attributes for the file.
 Default values MUST be supplied by the server for those attributes
 that are not specified. See Section ''File Attributes'' for more
 information.

 The 'attrs' field is ignored if an exiting file is opened.

 The following table is provided to assist in mapping posix semantics
 to equivalent SFTP file open parameters:

Galbraith Expires April 26, 2005 [Page 29]

Internet-Draft SSH File Transfer Protocol October 2004

 O_RDONLY
 desired-access = READ_DATA|READ_ATTRIBUTES

 O_WRONLY
 desired-access = WRITE_DATA|WRITE_ATTRIBUTES

 O_RDWR
 desired-access =
 READ_DATA|READ_ATTRIBUTES|WRITE_DATA|WRITE_ATTRIBUTES

 O_APPEND
 desired-access = WRITE_DATA|WRITE_ATTRIBUTES|APPEND_DATA
 flags = SSH_FXF_ACCESS_APPEND_DATA and or
 SSH_FXF_ACCESS_APPEND_DATA_ATOMIC

 O_CREAT
 flags = SSH_FXF_OPEN_OR_CREATE

 O_TRUNC
 flags = SSH_FXF_TRUNCATE_EXISTING

 O_TRUNC|O_CREATE
 flags = SSH_FXF_CREATE_TRUNCATE

7.1.2 Opening a Directory

 To enumerate a directory, the client first obtains a handle and then
 issues directory read requests. When enumeration is complete, the
 handle MUST be closed.

 byte SSH_FXP_OPENDIR
 uint32 request-id
 string path [UTF-8]

 'request-id' is the request identifier.

 'path' is the path name of the directory to be listed (without any
 trailing slash). See Section 'File Names' for more information on

 file names.

 The response to this message will be either SSH_FXP_HANDLE (if the
 operation is successful) or SSH_FXP_STATUS (if the operation fails).

7.1.3 Closing Handles

 A handle is closed using the following request.

 byte SSH_FXP_CLOSE

Galbraith Expires April 26, 2005 [Page 30]

Internet-Draft SSH File Transfer Protocol October 2004

 uint32 request-id
 string handle

 'request-id' is the request identifier, and 'handle' is a handle
 previously returned in the response to SSH_FXP_OPEN or
 SSH_FXP_OPENDIR. The handle becomes invalid immediately after this
 request has been sent.

 The response to this request will be a SSH_FXP_STATUS message. Note
 that on some server platforms even a close can fail. For example, if
 the server operating system caches writes, and an error occurs while
 flushing cached writes, the close operation may fail.

7.2 Reading and Writing

7.2.1 Reading Files

 The following request can be used to read file data:

 byte SSH_FXP_READ
 uint32 request-id
 string handle
 uint64 offset
 uint32 length

 where 'request-id' is the request identifier, 'handle' is an open
 file handle returned by SSH_FXP_OPEN, 'offset' is the offset (in
 bytes) relative to the beginning of the file from where to start
 reading, and 'length' is the maximum number of bytes to read.

 In response to this request, the server will read as many bytes as it
 can from the file (up to 'length'), and return them in a SSH_FXP_DATA
 message. If an error occurs or EOF is encountered before reading any
 data, the server will respond with SSH_FXP_STATUS.

 For normal disk files, it is normally guaranteed that this will read
 the specified number of bytes, or up to end of file. However, if the
 read length is very long, the server may truncate it if it doesn't
 support packets of that length. See General Packet Format (Section

3).

7.2.2 Reading Directories

 In order to retrieve a directory listing, the client issues one or
 more SSH_FXP_READDIR requests. In order to obtain a complete
 directory listing, the client MUST issue repeated SSH_FXP_READDIR
 requests until the server responds with an SSH_FXP_STATUS message.

Galbraith Expires April 26, 2005 [Page 31]

Internet-Draft SSH File Transfer Protocol October 2004

 byte SSH_FXP_READDIR
 uint32 request-id
 string handle

 where 'request-id' is the request identifier, and 'handle' is a
 handle returned by SSH_FXP_OPENDIR. (It is a protocol error to
 attempt to use an ordinary file handle returned by SSH_FXP_OPEN.)

 The server responds to this request with either a SSH_FXP_NAME or a
 SSH_FXP_STATUS message. One or more names may be returned at a time.
 Full status information is returned for each name in order to speed
 up typical directory listings.

 If there are no more names available to be read, the server MUST
 respond with a SSH_FXP_STATUS message with error code of SSH_FX_EOF.

7.2.3 Writing Files

 Writing to a file is achieved using the following message:

 byte SSH_FXP_WRITE
 uint32 request-id
 string handle
 uint64 offset
 string data

 where 'request-id' is a request identifier, 'handle' is a file handle
 returned by SSH_FXP_OPEN, 'offset' is the offset (in bytes) from the
 beginning of the file where to start writing, and 'data' is the data
 to be written.

 The write will extend the file if writing beyond the end of the file.
 It is legal to write to an offset that extends beyond the end of the
 file; the semantics are to write zeroes from the end of the file to
 the specified offset and then the data. On most operating systems,
 such writes do not allocate disk space but instead create a sparse
 file.

 The server responds to a write request with a SSH_FXP_STATUS message.

7.3 Removing and Renaming Files

 The following request can be used to remove a file:

 byte SSH_FXP_REMOVE
 uint32 request-id
 string filename [UTF-8]

Galbraith Expires April 26, 2005 [Page 32]

Internet-Draft SSH File Transfer Protocol October 2004

 where 'request-id' is the request identifier and 'filename' is the
 name of the file to be removed. See Section ''File Names'' for more
 information. This request cannot be used to remove directories.

 The server will respond to this request with a SSH_FXP_STATUS
 message.

 Files (and directories) can be renamed using the SSH_FXP_RENAME
 message.

 byte SSH_FXP_RENAME
 uint32 request-id
 string oldpath [UTF-8]
 string newpath [UTF-8]
 uint32 flags

 where 'request-id' is the request identifier, 'oldpath' is the name
 of an existing file or directory, and 'newpath' is the new name for
 the file or directory.

 'flags' is 0 or a combination of:

 SSH_FXP_RENAME_OVERWRITE 0x00000001
 SSH_FXP_RENAME_ATOMIC 0x00000002
 SSH_FXP_RENAME_NATIVE 0x00000004

 If flags does not include SSH_FXP_RENAME_OVERWRITE, and there already
 exists a file with the name specified by newpath, the server MUST
 respond with SSH_FX_FILE_ALREADY_EXISTS.

 If flags includes SSH_FXP_RENAME_ATOMIC, and the destination file
 already exists, it is replaced in an atomic fashion. I.e., there is
 no observable instant in time where the name does not refer to either
 the old or the new file. SSH_FXP_RENAME_ATOMIC implies
 SSH_FXP_RENAME_OVERWRITE.

 If flags includes SSH_FXP_RENAME_ATOMIC and the server cannot replace
 the destination in an atomic fashion, then the server MUST respond
 with SSH_FX_OP_UNSUPPORTED.

 Because some servers cannot provide atomic rename, clients should
 only specify atomic rename if correct operation requires it. If
 SSH_FXP_RENAME_OVERWRITE is specified, the server MAY perform an
 atomic rename even if it is not requested.

 If flags includes SSH_FXP_RENAME_NATIVE, the server is free to do the
 rename operation in whatever fashion it deems appropriate. Other
 flag values are considered hints as to desired behavior, but not

Galbraith Expires April 26, 2005 [Page 33]

Internet-Draft SSH File Transfer Protocol October 2004

 requirements.

 The server will respond to this request with a SSH_FXP_STATUS
 message.

7.4 Creating and Deleting Directories

 New directories can be created using the SSH_FXP_MKDIR request. It
 has the following format:

 byte SSH_FXP_MKDIR
 uint32 request-id
 string path [UTF-8]
 ATTRS attrs

 where 'request-id' is the request identifier.

 'path' specifies the directory to be created. See Section ''File
 Names'' for more information on file names.

 'attrs' specifies the attributes that should be applied to it upon
 creation. Attributes are discussed in more detail in Section ''File
 Attributes''.

 The server will respond to this request with a SSH_FXP_STATUS
 message. If a file or directory with the specified path already
 exists, an error will be returned.

 Directories can be removed using the SSH_FXP_RMDIR request, which has
 the following format:

 byte SSH_FXP_RMDIR
 uint32 request-id
 string path [UTF-8]

 where 'request-id' is the request identifier, and 'path' specifies
 the directory to be removed. See Section ''File Names'' for more
 information on file names.

 The server responds to this request with a SSH_FXP_STATUS message.

7.5 Retrieving File Attributes

 Very often, file attributes are automatically returned by
 SSH_FXP_READDIR. However, sometimes there is need to specifically
 retrieve the attributes for a named file. This can be done using the
 SSH_FXP_STAT, SSH_FXP_LSTAT and SSH_FXP_FSTAT requests.

Galbraith Expires April 26, 2005 [Page 34]

Internet-Draft SSH File Transfer Protocol October 2004

 SSH_FXP_STAT and SSH_FXP_LSTAT only differ in that SSH_FXP_STAT
 follows symbolic links on the server, whereas SSH_FXP_LSTAT does not
 follow symbolic links. Both have the same format:

 byte SSH_FXP_STAT or SSH_FXP_LSTAT
 uint32 request-id
 string path [UTF-8]
 uint32 flags

 where 'request-id' is the request identifier, and 'path' specifies
 the file system object for which status is to be returned. The
 server responds to this request with either SSH_FXP_ATTRS or
 SSH_FXP_STATUS.

 The flags field specify the attribute flags in which the client has
 particular interest. This is a hint to the server. For example,
 because retrieving owner / group and acl information can be an
 expensive operation under some operating systems, the server may
 choose not to retrieve this information unless the client expresses a
 specific interest in it.

 The client has no guarantee the server will provide all the fields
 that it has expressed an interest in.

 SSH_FXP_FSTAT differs from the others in that it returns status
 information for an open file (identified by the file handle).

 byte SSH_FXP_FSTAT
 uint32 request-id
 string handle
 uint32 flags

 where 'request-id' is the request identifier and 'handle' is a file
 handle returned by SSH_FXP_OPEN. The server responds to this request
 with SSH_FXP_ATTRS or SSH_FXP_STATUS.

7.6 Setting File Attributes

 File attributes may be modified using the SSH_FXP_SETSTAT and
 SSH_FXP_FSETSTAT requests.

 byte SSH_FXP_SETSTAT
 uint32 request-id
 string path [UTF-8]
 ATTRS attrs

Galbraith Expires April 26, 2005 [Page 35]

Internet-Draft SSH File Transfer Protocol October 2004

 byte SSH_FXP_FSETSTAT
 uint32 request-id
 string handle
 ATTRS attrs

 request-id
 The request identifier to be returned as part of the response.

 path
 The file system object (e.g. file or directory) whose attributes
 are to be modified. If this object does not exist, or the user
 does not have sufficient access to write the attributes, the
 request MUST fail.

 handle
 The handle is a handle previously returned from a SSH_FXP_OPEN
 request which identifies the file whose attributes are to be
 modified. If the handle was not opened with sufficient access to
 write the requested attributes, the request MUST fail.

 attrs
 Specifies the modified attributes to be applied. Attributes are
 discussed in more detail in Section ''File Attributes''.

 The server will respond with a SSH_FXP_STATUS message.

 Because some systems must use separate system calls to set various
 attributes, it is possible that a failure response will be returned,
 but yet some of the attributes may be have been successfully
 modified. If possible, servers SHOULD avoid this situation; however,
 client MUST be aware that this is possible.

7.7 Dealing with Symbolic Links

 The SSH_FXP_READLINK request reads the target of a symbolic link.

 byte SSH_FXP_READLINK
 uint32 request-id
 string path [UTF-8]

 where 'request-id' is the request identifier and 'path' specifies the
 path name of the symlink to be read.

 The server will respond with a SSH_FXP_NAME packet containing only
 one name and a dummy attributes value. The name in the returned
 packet contains the target of the link. If an error occurs, the
 server MAY respond with SSH_FXP_STATUS.

Galbraith Expires April 26, 2005 [Page 36]

Internet-Draft SSH File Transfer Protocol October 2004

 The SSH_FXP_SYMLINK request creates a symbolic link on the server.

 byte SSH_FXP_SYMLINK
 uint32 request-id
 string linkpath [UTF-8]
 string targetpath [UTF-8]

 where 'request-id' is the request identifier, 'linkpath' specifies
 the path name of the symlink to be created and 'targetpath' specifies
 the target of the symlink. The server shall respond with a
 SSH_FXP_STATUS.

7.8 Canonicalizing the Server-Side Path Name

 The SSH_FXP_REALPATH request can be used to have the server
 canonicalize any given path name to an absolute path. This is useful
 for converting path names containing ".." components or relative
 pathnames without a leading slash into absolute paths. The format of
 the request is as follows:

 byte SSH_FXP_REALPATH
 uint32 request-id
 string path [UTF-8]

 where 'request-id' is the request identifier and 'path' specifies the
 path name to be canonicalized. The server will respond with a
 SSH_FXP_NAME packet containing the name in canonical form and a dummy
 attributes value. If an error occurs, the server may also respond
 with SSH_FXP_STATUS.

 The server SHOULD fail the request if the path is not present on the
 server.

7.8.1 Best Practice for Dealing with Paths

 The client SHOULD treat the results of SSH_FXP_REALPATH as a
 canonical absolute path, even if the path does not appear to be
 absolute. A client that use REALPATH(".") and treats the result as
 absolute, even if there is no leading slash, will continue to
 function correctly, even when talking to a Windows NT or VMS style

 system, where absolute paths may not begin with a slash.

 For example, if the client wishes to change directory up, and the
 server has returned "c:/x/y/z" from REALPATH, the client SHOULD use
 "c:/x/y/z/..".

 As a second example, if the client wishes to open the file "x.txt" in
 the current directory, and server has returned "dka100:/x/y/z" as the

Galbraith Expires April 26, 2005 [Page 37]

Internet-Draft SSH File Transfer Protocol October 2004

 canonical path of the directory, the client SHOULD open
 "dka100:/x/y/z/x.txt"

Galbraith Expires April 26, 2005 [Page 38]

Internet-Draft SSH File Transfer Protocol October 2004

8. Responses from the Server to the Client

 The server responds to the client using one of a few response
 packets. All requests can return a SSH_FXP_STATUS response upon
 failure. When the operation is successful, and no data needs to be
 returned, the SSH_FXP_STATUS response with SSH_FX_OK status is
 appropriate.

 Exactly one response will be returned for each request. Each
 response packet contains a request identifier which can be used to
 match each response with the corresponding request. Note that it is
 legal to have several requests outstanding simultaneously, and the
 server is allowed to send responses to them in a different order from
 the order in which the requests were sent (the result of their
 execution, however, is guaranteed to be as if they had been processed
 one at a time in the order in which the requests were sent).

 Response packets are of the same general format as request packets.
 Each response packet begins with the request identifier.

 The format of the data portion of the SSH_FXP_STATUS response is as
 follows:

 byte SSH_FXP_STATUS
 uint32 request-id
 uint32 error/status code
 string error message (ISO-10646 UTF-8 [RFC-2279])
 string language tag (as defined in [RFC-1766])
 <error-specific data>

 request-id
 The 'request-id' specified by the client in the request the server
 is responding to.

 error/status code
 Machine readable status code indicating the result of the request.
 Error code values are defined below. The value SSH_FX_OK
 indicates success, and all other values indicate failure.

 error message

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

 Human readable description of the error. 'language tag' specifies
 the language the error is in.

 <error-specific data>
 The error-specific data may be empty, or may contain additional
 information about the error. For error codes that send
 error-specific data, the format of the data is defined below.

Galbraith Expires April 26, 2005 [Page 39]

Internet-Draft SSH File Transfer Protocol October 2004

 Error codes:

 #define SSH_FX_OK 0
 #define SSH_FX_EOF 1
 #define SSH_FX_NO_SUCH_FILE 2
 #define SSH_FX_PERMISSION_DENIED 3
 #define SSH_FX_FAILURE 4
 #define SSH_FX_BAD_MESSAGE 5
 #define SSH_FX_NO_CONNECTION 6
 #define SSH_FX_CONNECTION_LOST 7
 #define SSH_FX_OP_UNSUPPORTED 8
 #define SSH_FX_INVALID_HANDLE 9
 #define SSH_FX_NO_SUCH_PATH 10
 #define SSH_FX_FILE_ALREADY_EXISTS 11
 #define SSH_FX_WRITE_PROTECT 12
 #define SSH_FX_NO_MEDIA 13
 #define SSH_FX_NO_SPACE_ON_FILESYSTEM 14
 #define SSH_FX_QUOTA_EXCEEDED 15
 #define SSH_FX_UNKNOWN_PRINCIPLE 16
 #define SSH_FX_LOCK_CONFlICT 17
 #define SSH_FX_DIR_NOT_EMPTY 18
 #define SSH_FX_NOT_A_DIRECTORY 19
 #define SSH_FX_INVALID_FILENAME 20
 #define SSH_FX_LINK_LOOP 21

 SSH_FX_OK
 Indicates successful completion of the operation.

 SSH_FX_EOF
 An attempt to read past the end-of-file was made; or, there are no
 more directory entries to return.

 SSH_FX_NO_SUCH_FILE
 A reference was made to a file which does not exist.

 SSH_FX_PERMISSION_DENIED
 The user does not have sufficient permissions to perform the
 operation.

 SSH_FX_FAILURE
 An error occured, but no specific error code exists to describe
 the failure.

 This error message SHOULD always have meaningful text in the the
 'error message' field.

Galbraith Expires April 26, 2005 [Page 40]

Internet-Draft SSH File Transfer Protocol October 2004

 SSH_FX_BAD_MESSAGE
 A badly formatted packet or other SFTP protocol incompatibility
 was detected.

 SSH_FX_NO_CONNECTION
 There is no connection to the server. This error can only be
 generated locally, and MUST NOT be return by a server.

 SSH_FX_CONNECTION_LOST
 The connection to the server was lost. This error can only be
 generated locally, and MUST NOT be return by a server.

 SSH_FX_OP_UNSUPPORTED
 An attempted operation could not be completed by the server
 because the server does not support the operation.

 This error MAY be generated locally by the client if e.g. the
 version number exchange indicates that a required feature is not
 supported by the server, or it may be returned by the server if
 the server does not implement an operation).

 SSH_FX_INVALID_HANDLE
 The handle value was invalid.

 SSH_FX_NO_SUCH_PATH
 The file path does not exist or is invalid.

 SSH_FX_FILE_ALREADY_EXISTS
 The file already exists.

 SSH_FX_WRITE_PROTECT
 The file is on read-only media, or the media is write protected.

 SSH_FX_NO_MEDIA
 The requested operation cannot be completed because there is no
 media available in the drive.

 SSH_FX_NO_SPACE_ON_FILESYSTEM
 The requested operation cannot be completed because there is no

 free space on the filesystem.

 SSH_FX_QUOTA_EXCEEDED
 The operation cannot be completed because the it would exceed the
 users storage quota.

Galbraith Expires April 26, 2005 [Page 41]

Internet-Draft SSH File Transfer Protocol October 2004

 SSH_FX_UNKNOWN_PRINCIPLE
 A principle referenced by the request (either the 'owner',
 'group', or 'who' field of an ACL), was unknown. The error
 specific data contains the problematic names. The format is one
 or more:

 string unknown-name

 Each string contains the name of a principle that was unknown.

 SSH_FX_LOCK_CONFLICT
 The file could not be opened because it is locked by another
 process.

 SSH_FX_DIR_NOT_EMPTY
 The directory is not empty.

 SSH_FX_NOT_A_DIRECTORY
 The specified file is not a directory.

 SSH_FX_INVALID_FILENAME
 The filename is not valid.

 SSH_FX_LINK_LOOP
 Too many symbolic links encountered.

 The SSH_FXP_HANDLE response has the following format:

 byte SSH_FXP_HANDLE
 uint32 request-id
 string handle

 where 'request-id' is the request identifier, and 'handle' is an
 arbitrary string that identifies an open file or directory on the
 server. The handle is opaque to the client; the client MUST NOT
 attempt to interpret or modify it in any way. The length of the
 handle string MUST NOT exceed 256 data bytes.

 The SSH_FXP_DATA response has the following format:

 byte SSH_FXP_DATA
 uint32 request-id
 string data

 where 'request-id' is the request identifier, and 'data' is an
 arbitrary byte string containing the requested data. The data string
 may be at most the number of bytes requested in a SSH_FXP_READ
 request, but may also be shorter if end of file is reached or if the

Galbraith Expires April 26, 2005 [Page 42]

Internet-Draft SSH File Transfer Protocol October 2004

 read is from something other than a regular file.

 The SSH_FXP_NAME response has the following format:

 byte SSH_FXP_NAME
 uint32 request-id
 uint32 count
 repeats count times:
 string filename [UTF-8]
 ATTRS attrs

 where 'request-id' is the request identifier, 'count' is the number
 of names returned in this response, and the remaining fields repeat
 'count' times. In the repeated part, 'filename' is a file name being
 returned (for SSH_FXP_READDIR, it will be a relative name within the
 directory, without any path components; for SSH_FXP_REALPATH it will
 be an absolute path name), and 'attrs' is the attributes of the file
 as described in Section ''File Attributes''.

 The SSH_FXP_ATTRS response has the following format:

 byte SSH_FXP_ATTRS
 uint32 request-id
 ATTRS attrs

 where 'request-id' is the request identifier, and 'attrs' is the
 returned file attributes as described in Section ''File Attributes''.

Galbraith Expires April 26, 2005 [Page 43]

Internet-Draft SSH File Transfer Protocol October 2004

9. Extensions

 The SSH_FXP_EXTENDED request provides a generic extension mechanism
 for adding additional commands.

 byte SSH_FXP_EXTENDED
 uint32 request-id
 string extended-request
 ... any request-specific data ...

 request-id
 Identifier to be returned from the server with the response.

 extended-request
 A string naming the extension. Vendor-specific extensions have
 use the "name@domain" syntax, where domain is an internet domain
 name of the vendor defining the request.

 The IETF may also define extensions to the protocol. These
 extension names will not have an '@' in them.

 request-specific data
 The rest of the request is defined by the extension, and servers
 should only attempt to interpret it if they recognize the
 'extended-request' name.

 The server may respond to such requests using any of the response
 packets defined in Section ''Responses from the Server to the
 Client''. Additionally, the server may also respond with a
 SSH_FXP_EXTENDED_REPLY packet, as defined below. If the server does
 not recognize the 'extended-request' name, then the server MUST
 respond with SSH_FXP_STATUS with error/status set to
 SSH_FX_OP_UNSUPPORTED.

 The SSH_FXP_EXTENDED_REPLY packet can be used to carry arbitrary
 extension-specific data from the server to the client. It is of the
 following format:

 byte SSH_FXP_EXTENDED_REPLY
 uint32 request-id

 ... any request-specific data ...

 There is a range of packet types reserved for use by extensions. In
 order to avoid collision, extensions that that use additional packet
 types should determine those numbers dynamically.

 The suggested way of doing this is have an extension request from the
 client to the server that enables the extension; the extension

Galbraith Expires April 26, 2005 [Page 44]

Internet-Draft SSH File Transfer Protocol October 2004

 response from the server to the client would specify the actual type
 values to use, in additional to any other data.

 Extension authors should be mindful of the limited range of packet
 types available (there are only 45 values available) and avoid
 requiring a new packet type where possible.

9.1 Checking File Contents

 This extension allows a client to easily check if a file (or portion
 thereof) that it already has matches what is on the server.

 byte SSH_FXP_EXTENDED
 uint32 request-id
 string "md5-hash" / "md5-hash-handle"
 string filename / file-handle
 uint64 start-offset
 uint64 length
 string quick-check-hash

 filename
 Used if "md5-hash" is specified; indicates the name of the file to
 use. The has will be of the file contents as it would appear on
 the wire if the file were opened with no special flags.

 file-handle
 Used if "md5-hash-handle" is specified; specifies a file handle to
 read the data from. The handle MUST be a file handle, and
 ACE4_READ_DATA MUST have been included in the desired-access when
 the file was opened.

 If this file handle was opened in TEXT mode, the md5-hash must be
 made of the data as it would be sent on the wire.

 start-offset
 The starting offset of the data to hash.

 length
 The length of data to include in the hash. If both start-offset
 and length are zero, the entire file should be included.

 quick-check-hash
 The hash over the first 2048 bytes of the data range as the client
 knows it, or the entire range, if it is less than 2048 bytes.
 This allows the server to quickly check if it is worth the
 resources to hash a big file.

Galbraith Expires April 26, 2005 [Page 45]

Internet-Draft SSH File Transfer Protocol October 2004

 If this is a zero length string, the client does not have the
 data, and is requesting the hash for reasons other than comparing
 with a local file. The server MAY return SSH_FX_OP_UNSUPPORTED in
 this case.

 The response is either a SSH_FXP_STATUS packet, indicating an error,
 or the following extended reply packet:

 byte SSH_FXP_EXTENDED_REPLY
 uint32 request-id
 string "md5-hash"
 string hash

 If 'hash' is zero length, then the 'quick-check-hash' did not match,
 and no hash operation was preformed. Otherwise, 'hash' contains the
 hash of the entire data range (including the first 2048 bytes that
 were included in the 'quick-check-hash'.)

9.2 Querying Available Space

 The following extension provides a way to discover the available
 space for an arbitrary path.

 byte SSH_FXP_EXTENDED
 uint32 request-id
 string "space-available"
 string path [UTF-8]

 path
 'path' for which the available space should be reported. This
 'path' is not required to be the mount point path, but MAY be a
 directory or file contained within the mount.

 byte SSH_FXP_EXTENDED_REPLY
 uint32 request-id
 uint64 total-space-on-device
 uint64 unused-on-device
 uint64 total-space-available-to-user
 uint64 unused-space-available-to-user

 total-space-on-device
 The total amount of storage space on the device which stores
 'path', both used and unused, or 0 if unknown.

Galbraith Expires April 26, 2005 [Page 46]

Internet-Draft SSH File Transfer Protocol October 2004

 unused-space-on-device
 The total amount of unused storage availabe on the device which
 stores 'path', or 0 if unknown.

 total-space-available-to-user
 The total amount of storage space, both used and unused, available
 to the authenticated user on the device which stores 'path', or 0
 if unknown.

 unused-space-on-device
 The total amount of unused storage available to the authenticated
 user on the device which stores 'path', or 0 if unknown.

Galbraith Expires April 26, 2005 [Page 47]

Internet-Draft SSH File Transfer Protocol October 2004

10. Implementation Considerations

 In order for this protocol to perform well, especially over high
 latency networks, multiple read and write requests should be queued
 to the server.

 The data size of requests should match the maximum packet size for
 the next layer up in the protocol chain.

 When implemented over ssh, the best performance should be achieved
 when the data size matches the channels max packet, and the channel
 window is a multiple of the channel packet size.

 Implementations MUST be aware that requests do not have to be
 satisfied in the order issued. (See Request Synchronization and
 Reordering (Section 3.1).)

 Implemenations MUST also be aware that read requests may not return
 all the requested data, even if the data is available.

Galbraith Expires April 26, 2005 [Page 48]

Internet-Draft SSH File Transfer Protocol October 2004

11. Security Considerations

 It is assumed that both ends of the connection have been
 authenticated and that the connection has privacy and integrity
 features. Such security issues are left to the underlying transport
 protocol, except to note that if this is not the case, an attacker
 could manipulate files on the server at will and thus wholly
 compromise the server.

 This protocol provides file system access to arbitrary files on the
 server (only constrained by the server implementation). It is the
 responsibility of the server implementation to enforce any access
 controls that may be required to limit the access allowed for any
 particular user (the user being authenticated externally to this
 protocol, typically using the SSH User Authentication Protocol [6].

 Extreme care must be used when interpreting file handle strings. In
 particular, care must be taken that a file handle string is valid in
 the context of a given SFTP session. For example, the sftp server
 daemon may have files which it has opened for its own purposes, and
 the client must not be able to access these files by specifying an
 arbitrary file handle string.

 The permission field of the attrib structure (Section 6.6) may
 include the SUID, SGID, and SVTX (sticky) bits. Clients should use
 extreme caution when setting these bits on either remote or local
 files. (I.e., just because a file was SUID on the remote system does
 not necessarily imply that it should be SUID on the local system.)

 Filesystems often contain entries for objects that are not files at
 all, but are rather devices. For example, it may be possible to
 access serial ports, tape devices, or named pipes using this
 protocol. Servers should exercise caution when granting access to
 such resources. In addition to the dangers inherent in allowing
 access to such a device, some devices may be 'slow', and could cause
 denial of service by causing the server to block for a long period of
 time while I/O is performed to such a device.

 Servers should take care that file-system quotas are respected for
 users. In addition, implementations should be aware that attacks may
 be possible, or facilitated, by filling a filesystem. For example,
 filling the filesystem where event logging and auditing occurs may,

 at best, cause the system to crash, or at worst, allow the attacker
 to take untraceable actions in the future.

 Servers should take care that filenames are in their appropriate
 canonical form, and to insure that filenames not in canonical form
 cannot be used to bypass access checks or controls.

Galbraith Expires April 26, 2005 [Page 49]

Internet-Draft SSH File Transfer Protocol October 2004

 If the server implementation limits access to certain parts of the
 file system, extra care must be taken in parsing file names which
 contain the '..' path element, and when following symbolic links,
 shortcuts, or other filesystem objects which might transpose the path
 to refer to an object outside of the restricted area. There have
 been numerous reported security bugs where a ".." in a path name has
 allowed access outside the intended area.

Galbraith Expires April 26, 2005 [Page 50]

Internet-Draft SSH File Transfer Protocol October 2004

12. Changes from Previous Protocol Versions

 The SSH File Transfer Protocol has changed over time, before its
 standardization. The following is a description of the incompatible
 changes between different versions.

12.1 Changes Between Versions 6 and 5

 ********************* DO NOT IMPLEMENT ***********************
 ********************* DO NOT IMPLEMENT ***********************
 ***** *****
 ***** There will be more edits after IETF 61. *****
 ***** *****
 ********************* DO NOT IMPLEMENT ***********************
 ********************* DO NOT IMPLEMENT ***********************

 o Add ability to negotiate version when client supports discontigous
 ranges of protocol version.
 o Add 'filename-charset' and the 'filename-translation-control'
 extensions to allow better support of servers that can't reliably
 translate to UTF-8.
 o Add DIR_NOT_EMPTY, NOT_A_DIRECTORY, INVALID_FILENAME and LINK_LOOP
 error codes.
 o Added space-available extension.
 o Added NOFOLLOW flag to open flags.
 o Added allocation-size, text-hint, link-count, mime-type, and
 untranslated-name fields to attrib structure. Add
 ATTR_FLAGS_TRANSLATION_ERR to the attrib-bits.

12.2 Changes Between Versions 5 and 4

 Many of the changes between version 5 and version 4 are to better
 support the changes in version 4, and to better specify error
 conditions.

 o Add "supported" extension to communicate features supported.
 o Clarify error handling when client requests unsupported feature.
 (For example, attempts to write an unsupported attribute.)
 o Add attrib-bits field to the attribute structure, which specifies
 a number of boolean attributes related to files and directories,
 including advisory read-only and case-sensitivity bits.

 o Clarify the actual bit values to be used for the permissions field
 (since posix doesn't define values) and correct the value of
 ATTR_PERMISSIONS flag.
 o Some reordering of sections to attempt to get a better grouping of
 related functionality.
 o Open request explicitly specifies the access desired for the file.

Galbraith Expires April 26, 2005 [Page 51]

Internet-Draft SSH File Transfer Protocol October 2004

 o Add support for explicitly requesting file locking.
 o Add support for better control of the rename operation.
 o Add SSH_FX_NO_SPACE_ON_FILESYSTEM, SSH_FX_QUOTA_EXCEEDED, and
 SSH_FX_UNKNOWN_PRINCIPLE error codes.
 o Add support for error specific data. This is used by a new
 SSH_FX_UNKNOWN_PRINCIPLE error to communicate which principles are
 unknown.
 o Add support for retrieving md5-hash of file contents.
 o Update security section.

12.3 Changes Between Versions 4 and 3

 Many of the changes between version 4 and version 3 are to the
 attribute structure to make it more flexible for non-unix platforms.

 o Clarify the use of stderr by the server.
 o Clarify handling of very large read requests by the server.
 o Make all filenames UTF-8.
 o Added 'newline' extension.
 o Made time fields 64 bit, and optionally have nanosecond
 resolution.
 o Made file attribute owner and group strings so they can actually
 be used on disparate systems.
 o Added createtime field, and added separate flags for atime,
 createtime, and mtime so they can be set separately.
 o Split the file type out of the permissions field and into its own
 field (which is always present.)
 o Added acl attribute.
 o Added SSH_FXF_TEXT file open flag.
 o Added flags field to the get stat commands so that the client can
 specifically request information the server might not normally
 included for performance reasons.
 o Removed the long filename from the names structure-- it can now be
 built from information available in the attrs structure.
 o Added reserved range of packet numbers for extensions.
 o Added several additional error codes.

12.4 Changes Between Versions 3 and 2

 o The SSH_FXP_READLINK and SSH_FXP_SYMLINK messages were added.
 o The SSH_FXP_EXTENDED and SSH_FXP_EXTENDED_REPLY messages were
 added.
 o The SSH_FXP_STATUS message was changed to include fields 'error

 message' and 'language tag'.

12.5 Changes Between Versions 2 and 1

Galbraith Expires April 26, 2005 [Page 52]

Internet-Draft SSH File Transfer Protocol October 2004

 o The SSH_FXP_RENAME message was added.

12.6 Changes Between Versions 1 and 0

 o Implementation changes, no actual protocol changes.

Galbraith Expires April 26, 2005 [Page 53]

Internet-Draft SSH File Transfer Protocol October 2004

13. Trademark Issues

 "ssh" is a registered trademark of SSH Communications Security Corp
 in the United States and/or other countries.

Galbraith Expires April 26, 2005 [Page 54]

Internet-Draft SSH File Transfer Protocol October 2004

14. References

14.1 Normative References

 [1] Ylonen, T. and C. Lonvick, "SSH Protocol Architecture",
draft-ietf-secsh-architecture-16 (work in progress), June 2004.

 [2] Ylonen, T. and C. Lonvick, "SSH Transport Layer Protocol",
draft-ietf-secsh-transport-18 (work in progress), June 2004.

 [3] Ylonen, T., Kivinen, T., Rinne, T. and S. Lehtinen, "SSH
 Connection Protocol", draft-ietf-secsh-connect-19 (work in
 progress), June 2004.

 [4] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame,
 C., Eisler, M. and D. Noveck, "NFS version 4 Protocol", RFC

3010, December 2000.

 [5] Institute of Electrical and Electronics Engineers, "Information
 Technology - Portable Operating System Interface (POSIX) - Part
 1: System Application Program Interface (API) [C Language]",
 IEEE Standard 1003.2, 1996.

14.2 Informative References

 [6] Ylonen, T. and C. Lonvick, "SSH Authentication Protocol",
draft-ietf-secsh-userauth-21 (work in progress), June 2004.

 [7] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0", RFC
2246, January 1999.

 [8] Alvestrand, H., "IETF Policy on Character Sets and Languages",
BCP 18, RFC 2277, January 1998.

 [9] Borenstein, N. and N. Freed, "MIME (Multipurpose Internet Mail
 Extensions) Part One: Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies", RFC 1521, September
 1993.

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-16
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-transport-18
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-connect-19
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-userauth-21
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc1521

Galbraith Expires April 26, 2005 [Page 55]

Internet-Draft SSH File Transfer Protocol October 2004

Author's Address

 Joseph Galbraith
 VanDyke Software
 4848 Tramway Ridge Blvd
 Suite 101
 Albuquerque, NM 87111
 US

 Phone: +1 505 332 5700
 EMail: galb-list@vandyke.com

Galbraith Expires April 26, 2005 [Page 56]

Internet-Draft SSH File Transfer Protocol October 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Galbraith Expires April 26, 2005 [Page 57]

