
Secure Shell Working Group J. Galbraith
Internet-Draft VanDyke Software
Expires: July 29, 2006 O. Saarenmaa
 F-Secure
 January 25, 2006

SSH File Transfer Protocol
draft-ietf-secsh-filexfer-12.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on July 29, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 The SSH File Transfer Protocol provides secure file transfer
 functionality over any reliable data stream. It is the standard file
 transfer protocol for use with the SSH2 protocol. This document
 describes the file transfer protocol and its interface to the SSH2
 protocol suite.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SSH File Transfer Protocol January 2006

Table of Contents

1. Introduction . 4
2. Acknowledgements . 4
3. Use with the SSH Connection Protocol 4
3.1. The Use of 'stderr' in the server 5

4. General Packet Format . 5
4.1. Request Synchronization and Reordering 6
4.2. New data types defined by this document 7
4.3. Packet Types . 7

5. Protocol Initialization 9
5.1. Client Initialization 9
5.2. Server Initialization 9
5.3. Determining Server Newline Convention 10
5.4. Supported Features . 10
5.5. Version re-negotiation 13

6. File Names . 14
7. File Attributes . 16
7.1. valid-attribute-flags 17
7.2. Type . 18
7.3. Size . 18
7.4. allocation-size . 19
7.5. Owner and Group . 19
7.6. Permissions . 20
7.7. Times . 20
7.8. ACL . 21
7.9. attrib-bits and attrib-bits-valid 24
7.10. text-hint . 27
7.11. mime-type . 27
7.12. link-count . 27
7.13. untranslated-name . 28
7.14. Extended Attributes 28

8. Requests From the Client to the Server 28
8.1. Opening and Closing Files and Directories 28
8.1.1. Opening a File . 29
8.1.2. Opening a Directory 35
8.1.3. Closing Handles 35

8.2. Reading and Writing 36
8.2.1. Reading Files . 36
8.2.2. Reading Directories 37
8.2.3. Writing Files . 37

8.3. Removing and Renaming Files 38
8.4. Creating and Deleting Directories 39
8.5. Retrieving File Attributes 40
8.6. Setting File Attributes 41
8.7. Dealing with Links . 42
8.8. Byte-range locks . 43
8.9. Canonicalizing the Server-Side Path Name 44

Galbraith & Saarenmaa Expires July 29, 2006 [Page 2]

Internet-Draft SSH File Transfer Protocol January 2006

8.9.1. Best Practice for Dealing with Paths 46
9. Responses from the Server to the Client 47
9.1. Status Response . 47
9.2. Handle Response . 51
9.3. Data Response . 52
9.4. Name Response . 52
9.5. Attrs Response . 53

10. Extensions . 53
11. Implementation Considerations 54
12. IANA Considerations . 55
13. Security Considerations 55
14. Changes from Previous Protocol Versions 56
15. References . 56
15.1. Normative References 56
15.2. Informative References 57

 Authors' Addresses . 58
 Intellectual Property and Copyright Statements 59

Galbraith & Saarenmaa Expires July 29, 2006 [Page 3]

Internet-Draft SSH File Transfer Protocol January 2006

1. Introduction

 This protocol provides secure file transfer (and more generally file
 system access.) It is designed so that it could be used to implement
 a secure remote file system service, as well as a secure file
 transfer service.

 This protocol assumes that it runs over a secure channel, such as a
 channel in [RFC4251], and that the server has already authenticated
 the client, and that the identity of the client user is available to
 the protocol.

 In general, this protocol follows a simple request-response model.
 Each request and response contains a sequence number and multiple
 requests may be pending simultaneously. There are a relatively large
 number of different request messages, but a small number of possible
 response messages. Each request has one or more response messages
 that may be returned in result (e.g., a read either returns data or
 reports error status).

 The packet format descriptions in this specification follow the
 notation presented in [RFC4251].

 Even though this protocol is described in the context of the SSH2
 protocol, this protocol is general and independent of the rest of the
 SSH2 protocol suite. It could be used in a number of different
 applications, such as secure file transfer over TLS [RFC2246] and
 transfer of management information in VPN applications.

2. Acknowledgements

 This document owes it's initial creation and protocol design to Tatu
 Ylonen and Sami Lehtinen of SSH Communications Security Corp.

 We express our gratitude to them for their initial work on this
 protocol.

3. Use with the SSH Connection Protocol

 When used with the SSH2 Protocol suite, this protocol is intended to
 be used as a subsystem as described in [RFC4254] in the section
 "Starting a Shell or a Command". The subsystem name used with this
 protocol is "sftp".

https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4254

Galbraith & Saarenmaa Expires July 29, 2006 [Page 4]

Internet-Draft SSH File Transfer Protocol January 2006

3.1. The Use of 'stderr' in the server

 This protocol uses stdout and stdin to transmit binary protocol data.
 The "session" channel ([RFC4254]), which is used by the subsystem,
 also supports the use of stderr.

 Data sent on stderr by the server SHOULD be considered free format
 debug or supplemental error information, and MAY be displayed to the
 user.

 For example, during initialization, there is no client request
 active, so errors or warning information cannot be sent to the client
 as part of the SFTP protocol at this early stage. However, the
 errors or warnings MAY be sent as stderr text.

4. General Packet Format

 All packets transmitted over the secure connection are of the
 following format:

 uint32 length
 byte type
 uint32 request-id
 ... type specific fields ...

 'length'
 The length of the entire packet, excluding the length field
 itself, such that, for example, for a packet type containing no
 type specific fields, the length field would be 5, and 9 bytes of
 data would be sent on the wire. (This is the packet format used
 in [RFC4253].)

 All packet descriptions in this document omit the length field for
 brevity; the length field MUST be included in any case.

 The maximum size of a packet is in practice determined by the
 client (the maximum size of read or write requests that it sends,
 plus a few bytes of packet overhead). All servers SHOULD support
 packets of at least 34000 bytes (where the packet size refers to
 the full length, including the header above). This should allow
 for reads and writes of at most 32768 bytes.

 'type'
 The type code for the packet.

https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/rfc4253

Galbraith & Saarenmaa Expires July 29, 2006 [Page 5]

Internet-Draft SSH File Transfer Protocol January 2006

 'request-id'
 Each request from the client contains a 'request-id' field. Each
 response from the server includes that same 'request-id' from the
 request that the server is responding to. One possible
 implementation is for the client to us a monotonically increasing
 request sequence number (modulo 2^32). There is, however, no
 particular requirement the 'request-id' fields be unique.

 There are two packets, INIT and VERSION, which do not use the
 request-id.
 Packet descriptions in this document will contain the 'request-id'
 field, but will not redefine it.

 Implementations MUST ignore excess data at the end of an otherwise
 valid packet. Implementations MUST respond to unrecognized packet
 types with an SSH_FX_OP_UNSUPPORTED error. This will allow the
 protocol to be extended in a backwards compatible way as needed.

 Additionally, when a packet has two or more optional fields, and an
 implementation wishes to use the i-th optional field, all fields from
 1 to i MUST be present. In other words, only fields after the last
 field the implementation wishes to send are actually options.

 There is no limit on the number of outstanding (non-acknowledged)
 requests that the client may send to the server. In practice this is
 limited by the buffering available on the data stream and the queuing
 performed by the server. If the server's queues are full, it should
 not read any more data from the stream, and flow control will prevent
 the client from sending more requests. Note, however, that while
 there is no restriction on the protocol level, the client's API may
 provide a limit in order to prevent infinite queuing of outgoing
 requests at the client.

4.1. Request Synchronization and Reordering

 The protocol and implementations MUST process requests relating to
 the same file in the order in which they are received. In other
 words, if an application submits multiple requests to the server, the
 results in the responses will be the same as if it had sent the
 requests one at a time and waited for the response in each case. For
 example, the server may process non-overlapping read/write requests
 to the same file in parallel, but overlapping reads and writes cannot
 be reordered or parallelized. However, there are no ordering
 restrictions on the server for processing requests from two different
 file transfer connections. The server may interleave and parallelize
 them at will.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 6]

Internet-Draft SSH File Transfer Protocol January 2006

 There are no restrictions on the order in which responses to
 outstanding requests are delivered to the client, except that the
 server must ensure fairness in the sense that processing of no
 request will be indefinitely delayed even if the client is sending
 other requests so that there are multiple outstanding requests all
 the time.

 A client MUST be prepared to receive responses to multiple overlapped
 requests out of order.

4.2. New data types defined by this document

 This document defines these data types in addition to those defined
 in [RFC4251].

 uint16
 Represents a 16-bit unsigned integer. Stored as 2 bytes in the
 order of decreasing significance (network byte order).

 int64
 Represents a 64-bit signed integer. Stored using two's
 complement, as eight bytes in the order of decreasing significance
 (network byte order).

 extension-pair

 string extension-name
 string extension-data

 'extension-name' is the name of a protocol extension. Extensions
 not defined by IETF CONSENSUS MUST follow the the DNS
 extensibility naming convention outlined in [RFC4251].

 'extension-data' is any data specific to the extension, and MAY be
 zero length if the extension has no data.

4.3. Packet Types

 The following values are defined for packet types.

https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4251

Galbraith & Saarenmaa Expires July 29, 2006 [Page 7]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FXP_INIT 1
 SSH_FXP_VERSION 2
 SSH_FXP_OPEN 3
 SSH_FXP_CLOSE 4
 SSH_FXP_READ 5
 SSH_FXP_WRITE 6
 SSH_FXP_LSTAT 7
 SSH_FXP_FSTAT 8
 SSH_FXP_SETSTAT 9
 SSH_FXP_FSETSTAT 10
 SSH_FXP_OPENDIR 11
 SSH_FXP_READDIR 12
 SSH_FXP_REMOVE 13
 SSH_FXP_MKDIR 14
 SSH_FXP_RMDIR 15
 SSH_FXP_REALPATH 16
 SSH_FXP_STAT 17
 SSH_FXP_RENAME 18
 SSH_FXP_READLINK 19
 SSH_FXP_LINK 21
 SSH_FXP_BLOCK 22
 SSH_FXP_UNBLOCK 23

 SSH_FXP_STATUS 101
 SSH_FXP_HANDLE 102
 SSH_FXP_DATA 103
 SSH_FXP_NAME 104
 SSH_FXP_ATTRS 105

 SSH_FXP_EXTENDED 200
 SSH_FXP_EXTENDED_REPLY 201

 SSH_FXP_EXTENDED and SSH_FXP_EXTENDED_REPLY packets can be used to
 implement extensions, which can be vendor specific. See Section
 ''Extensions'' for more details.

 Values 210-255 are reserved for use in conjunction with these
 extensions. The SSH_FXP_EXTENDED packet can be used to negotiate the
 meaning of these reserved types. It is suggested that the actual
 value to be used also be negotiated, since this will prevent
 collision among multiple uncoordinated extensions.

 The server MUST respond with SSH_FXP_STATUS(SSH_FX_OP_UNSUPPORTED) if
 it receives a packet it does not recognize.

 The use of additional packet types in the non-extension range MUST be
 introduced through IETF consensus. New packet types to be sent from
 the client to the server MAY be introduced without changing the

Galbraith & Saarenmaa Expires July 29, 2006 [Page 8]

Internet-Draft SSH File Transfer Protocol January 2006

 protocol version (Section 5). Because the client has no way to
 respond to unrecognized packet types, new packet types to be sent
 from the server to the client the client MUST not used unless the
 protocol version is changed or the client has negotiated to received
 them. This negotiation MAY be explicit, through the use of
 extensions, or MAY be implicit, by the client itself using a packet
 type not defined above.

5. Protocol Initialization

 When the file transfer protocol starts, the client first sends a
 SSH_FXP_INIT (including its version number) packet to the server.
 The server responds with a SSH_FXP_VERSION packet, supplying the
 lowest of its own and the client's version number. Both parties
 should from then on adhere to that particular version of the
 protocol.

 The version number of the protocol specified in this document is 6.
 The version number should be incremented for each incompatible
 revision of this protocol.

 Note that these two packets DO NOT contain a request id. These are
 the only such packets in the protocol.

5.1. Client Initialization

 The SSH_FXP_INIT packet (from client to server) has the following
 data:

 uint32 version

 'version' is the version number of the client. If the client wishes
 to interoperate with servers that support discontinuous version
 numbers it SHOULD send '3', and then use the 'version-select'
 extension (see below.) Otherwise, this value is '6' for this version
 of the protocol.

5.2. Server Initialization

 The SSH_FXP_VERSION packet (from server to client) has the following
 data:

 uint32 version
 extension-pair extensions[0..n]

 'version' is the lower of the protocol version supported by the
 server and the version number received from the client.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 9]

Internet-Draft SSH File Transfer Protocol January 2006

 'extensions' is 0 or more extension-pairs (Section 4.2).
 Implementations MUST silently ignore any extensions whose names they
 do not recognize.

5.3. Determining Server Newline Convention

 In order to correctly process text files in a cross platform
 compatible way, newline sequences must be converted between client
 and server conventions.

 The SSH_FXF_TEXT_MODE file open flag (Section 8.1.1) makes it
 possible to request that the server translate a file to a 'canonical'
 wire format. This format uses CRLF as the line separator.

 Servers for systems using other conventions MUST translate to and
 from the canonical form.

 However, to ease the burden of implementation on servers that use a
 single, simple, separator sequence the following extension allows the
 canonical format to be changed.

 string "newline"
 string new-canonical-separator (usually CR or LF or CRLF)

 All clients MUST support this extension.

 When processing text files, clients SHOULD NOT translate any
 character or sequence that is not an exact match of the server's
 newline separator.

 In particular, if the newline sequence being used is the canonical
 CRLF sequence, a lone CR or a lone LF SHOULD be written through
 without change.

5.4. Supported Features

 The sftp protocol has grown to be very rich, and now supports a
 number of features that may not be available on all servers.

 When a server receives a request for a feature it cannot support, it
 MUST return a SSH_FX_OP_UNSUPPORTED status code, unless otherwise
 specified. The following extension facilitates clients being able to
 use the maximum available feature set, and yet not be overly burdened
 by dealing with SSH_FX_OP_UNSUPPORTED status codes. All servers MUST
 include as part of their version packet.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 10]

Internet-Draft SSH File Transfer Protocol January 2006

 string "supported2"
 string supported-structure
 uint32 supported-attribute-mask
 uint32 supported-attribute-bits
 uint32 supported-open-flags
 uint32 supported-access-mask
 uint32 max-read-size
 uint16 supported-open-block-vector
 uint16 supported-block-vector
 uint32 attrib-extension-count
 string attrib-extension-names[attrib_extension-count]
 uint32 extension-count
 string extension-names[extension-count]

 Note that the name "supported2" is used here to avoid conflict with
 the slightly different "supported" extension that was previously
 used.
 supported-attribute-mask
 This mask MAY by applied to the 'File Attributes' valid-attribute-
 flags field (Section 7.1) to ensure that no unsupported attributes
 are present during a operation which writes attributes.

 supported-attribute-bits
 This mask MAY by applied to the 'File Attributes' attrib-bits
 field (Section 7.9) to ensure that no unsupported attrib-bits are
 present during a operation which writes attributes.

 supported-open-flags
 The supported-open-flags mask MAY be applied to the SSH_FXP_OPEN
 (Section 8.1.1) flags field.

 supported-access-mask
 This mask may be applied to the ace-mask field of an ACL.

 This mask SHOULD NOT be applied to the desired-access field of the
 SSH_FXP_OPEN (Section 8.1.1) request. Doing so will simply result
 in not requesting the access required by the client. In this
 case, the server is responsible for translating the clients
 requested access to a mode it supports that is sufficient to grant
 all access requested by the client.

 max-read-size
 This is the maximum read size that the server guarantees to
 complete. For example, certain embedded server implementations
 complete only the first 4K of a read, even if there is additional
 data to be read from the file.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 11]

Internet-Draft SSH File Transfer Protocol January 2006

 If the server specifies a non-zero value for max-read-size, it
 MUST return the requested number of bytes for reads that are less
 than or equal to the value, unless it encounters EOF or an ERROR.

 The server MAY use this value to express that it is willing to
 handle very large read requests, in excess of the standard 34000
 bytes specified in Section 4.

 supported-open-block-vector
 supported-block-vector
 16-bit masks specifying which combinations of blocking flags are
 supported. Each bit corresponds to one combination of the
 SSH_FXF_BLOCK_READ, SSH_FXF_BLOCK_WRITE, SSH_FXF_BLOCK_DELETE, and
 SSH_FXF_BLOCK_ADVISORY bits from Section 7.1.1.3, with a set bit
 corresponding to a supported combination and a clear bit an
 unsupported combination. The index of a bit, bit zero being the
 least significant bit, viewed as a four-bit number, corresponds to
 a combination of flag bits, shifted right so that BLOCK_READ is
 the least significant bit. The combination `no blocking flags'
 MUST be supported, so the low bit will always be set.

 For example, a server supporting only the classic advisory read
 (shared) and write (exclusive) locks would set the bits
 corresponding to READ+WRITE+ADVISORY, 0b1011, and WRITE+ADVISORY,
 0b1010, plus the always-set bit 0b0000, giving a mask value of
 0b0000110000000001, or 0x0c01; a server supporting no locking at
 all would set only bit zero, giving 0x0001.

 'supported-open-block-masks' applies to the SSH_FXP_OPEN
 (Section 8.1.1) flags field. 'supported-block-masks' applies to
 the SSH_FXF_BLOCK request.

 attrib-extension-count
 Count of extension names in the attrib-extension-names array.

 attrib-extension-names
 Names of extensions that can be used in an ATTRS (Section 7.14)
 structure.

 extension-count
 Count of extension names in the extension-names array.

 extension-names
 Names of extensions that can be used with the SSH_FXP_EXTEND
 (Section 10) packet.

 Naturally, if a given attribute field, attribute mask bit, open flag,

Galbraith & Saarenmaa Expires July 29, 2006 [Page 12]

Internet-Draft SSH File Transfer Protocol January 2006

 or extension is required for correct operation, the client MUST
 either not allow the bit to be masked off, or MUST fail the operation
 gracefully without sending the request to the server.

 The client MAY send requests that are not supported by the server;
 however, it is not normally expected to be productive to do so. The
 client SHOULD apply the mask even to attrib structures received from
 the server. The server MAY include attributes or attrib-bits that
 are not included in the mask. Such attributes or attrib-bits are
 effectively read-only.

 The supported capabilities of the acl attribute are sent using the
 following extension.

 string "acl-supported"
 string supported-structure
 uint32 capabilities

 'capabilities' is a combination of the following bits:

 SSH_ACL_CAP_ALLOW 0x00000001
 SSH_ACL_CAP_DENY 0x00000002
 SSH_ACL_CAP_AUDIT 0x00000004
 SSH_ACL_CAP_ALARM 0x00000008
 SSH_ACL_CAP_INHERIT_ACCESS 0x00000010
 SSH_ACL_CAP_INHERIT_AUDIT_ALARM 0x00000020

 SSH_ACL_CAP_ALLOW
 SSH_ACL_CAP_DENY
 SSH_ACL_CAP_AUDIT
 SSH_ACL_CAP_ALARM
 The server supports the associated ACL ACE type.

 SSH_ACL_CAP_INHERIT_ACCESS
 The server can control whether a ACL will inherit DENY and ALLOW
 ACEs that are marked inheritable from it's parent object.

 SSH_ACL_CAP_INHERIT_AUDIT_ALARM
 The server can control whether a ACL will inherit AUDIT or ALARM
 ACEs that are marked inheritable from it's parent object.

5.5. Version re-negotiation

 If the server supports other versions than what was negotiated, it
 may wish to send the 'versions' extension to inform the client of
 this fact. The client may then optionally choose to use one of the
 other versions supported.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 13]

Internet-Draft SSH File Transfer Protocol January 2006

 string "versions"
 string comma-separated-versions

 'comma-separated-versions' is a string of comma separated version
 numbers. Defined versions are: "2", "3", "4", "5", "6". Any other
 version advertised by the server must follow the DNS extensibility
 naming convention outlined in [RFC4251].

 For example: "2,3,6,private@example.com".

 If the client and server have negotiated a a version greater than or
 equal to version '3' (the version at which SSH_FXP_EXTENDED was
 introduced) in the initial VERSION/INIT exchange, the client may
 select a new version to use from the list the server provided using
 the following SSH_FXP_EXTENDED request.

 string "version-select"
 string version-from-list

 If the 'version-from-list' is one of the versions on the servers
 list, the server MUST respond with SSH_FX_OK. If the server did not
 send the "versions" extension, or the version-from-list was not
 included, the server MAY send a status response describing the
 failure, but MUST then close the channel without processing any
 further requests.

 The 'version-select' MUST be the first request from the client to the
 server; if it is not, the server MUST fail the request and close the
 channel.

 Although this request does take a full round trip, no client need
 wait for the response before continuing, because any valid request
 MUST succeed, and any invalid request results in a channel close.
 Since the request is the first request, it is not possible for the
 server to have already sent responses conforming to the old version.

 Typically, the client SHOULD NOT down-grade the protocol version
 using this extension; however, it is not forbidden to do so. One
 reason a client might do so is to work around a buggy implementation.

6. File Names

 This protocol represents file names as strings. File names are
 assumed to use the slash ('/') character as a directory separator.

 File names starting with a slash are "absolute", and are relative to
 the root of the file system. Names starting with any other character

https://datatracker.ietf.org/doc/html/rfc4251

Galbraith & Saarenmaa Expires July 29, 2006 [Page 14]

Internet-Draft SSH File Transfer Protocol January 2006

 are relative to the user's default directory (home directory). Note
 that identifying the user is assumed to take place outside of this
 protocol.

 Servers SHOULD interpret a path name component ".." (Section 13) as
 referring to the parent directory, and "." as referring to the
 current directory.

 An empty path name is valid, and it refers to the user's default
 directory (usually the user's home directory).

 Otherwise, no syntax is defined for file names by this specification.
 Clients should not make any other assumptions; however, they can
 splice path name components returned by SSH_FXP_READDIR together
 using a slash ('/') as the separator, and that will work as expected.

 It is understood that the lack of well-defined semantics for file
 names may cause interoperability problems between clients and servers
 using radically different operating systems. However, this approach
 is known to work acceptably with most systems, and alternative
 approaches that e.g. treat file names as sequences of structured
 components are quite complicated.

 The preferred encoding for filenames is UTF-8. This is consistent
 with IETF Policy on Character Sets and Languages [RFC2277] and it is
 further supposed that the server is more likely to support any local
 character set and be able to convert it to UTF-8.

 However, because the server does not always know the encoding of
 filenames, it is not always possible for the server to preform a
 valid translation to UTF-8. When an invalid translation to UTF-8 is
 preformed, it becomes impossible to manipulate the file, because the
 translation is not reversible. Therefore, the following extensions
 are provided in order to make it possible for the server to
 communicate it's abilities to the client, and to allow the client to
 control whether the server attempts the conversion.

 A server MAY include the following extension with it's version
 packet.

 string "filename-charset"
 string charset-name

 A server that can always provide a valid UTF-8 translation for
 filenames SHOULD NOT send this extension. Otherwise, the server
 SHOULD send this extension and include the encoding most likely to be
 used for filenames. This value will most likely be derived from the
 LC_CTYPE on most unix-like systems.

https://datatracker.ietf.org/doc/html/rfc2277

Galbraith & Saarenmaa Expires July 29, 2006 [Page 15]

Internet-Draft SSH File Transfer Protocol January 2006

 A server that does not send this extension MUST send all filenames
 encoded in UTF-8. All clients MUST support UTF-8 filenames.

 If the server included the 'filename-charset' extension with its
 VERSION packet, a client MAY send the following extension to turn off
 server translation to UTF-8.

 string "filename-translation-control"
 bool do-translate

 If the client does not send this extension, the server MUST continue
 to attempt translation to UTF-8. When a client sends this extension,
 the server MUST enable filename translation if 'do-translate' is
 true, or disable filename translation if it is false.

 The server MUST respond with a STATUS response; if the server sent a
 'filename-charset' extension, the status MUST be SUCCESS. Otherwise,
 the status MUST be SSH_FX_OP_UNSUPPORTED.

 When UTF-8 is sent, the shortest valid UTF-8 encoding of the UNICODE
 data MUST be used. The server is responsible for converting the
 UNICODE data to whatever canonical form it requires. For example, if
 the server requires that precomposed characters always be used, the
 server MUST NOT assume the filename as sent by the client has this
 attribute, but must do this normalization itself.

7. File Attributes

 A new compound data type, 'ATTRS', is defined for encoding file
 attributes. The same encoding is used both when returning file
 attributes from the server and when sending file attributes to the
 server.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 16]

Internet-Draft SSH File Transfer Protocol January 2006

 uint32 valid-attribute-flags
 byte type always present
 uint64 size if flag SIZE
 uint64 allocation-size if flag ALLOCATION_SIZE
 string owner if flag OWNERGROUP
 string group if flag OWNERGROUP
 uint32 permissions if flag PERMISSIONS
 int64 atime if flag ACCESSTIME
 uint32 atime-nseconds if flag SUBSECOND_TIMES
 int64 createtime if flag CREATETIME
 uint32 createtime-nseconds if flag SUBSECOND_TIMES
 int64 mtime if flag MODIFYTIME
 uint32 mtime-nseconds if flag SUBSECOND_TIMES
 int64 ctime if flag CTIME
 uint32 ctime-nseconds if flag SUBSECOND_TIMES
 string acl if flag ACL
 uint32 attrib-bits if flag BITS
 uint32 attrib-bits-valid if flag BITS
 byte text-hint if flag TEXT_HINT
 string mime-type if flag MIME_TYPE
 uint32 link-count if flag LINK_COUNT
 string untranslated-name if flag UNTRANSLATED_NAME
 uint32 extended-count if flag EXTENDED
 extended-pair extensions

7.1. valid-attribute-flags

 The 'valid-attribute-flags' specifies which of the fields are
 present. Those fields for which the corresponding flag is not set
 are not present (not included in the packet).

 The server generally includes all attributes it knows about; however,
 it may exclude attributes that are overly expensive to retrieve
 unless the client explicitly requests them.

 When writing attributes, the server SHOULD NOT modify attributes that
 are not present in the structure. However, if necessary, the server
 MAY use a default value for an absent attribute.

 In general, unless otherwise specified, if a server cannot support
 writing an attribute requested, it must fail the setstat operation.
 In this case, none of the attributes SHOULD be changed.

 New fields can only be added by incrementing the protocol version
 number (or by using the extension mechanism described below).

 The following values are defined:

Galbraith & Saarenmaa Expires July 29, 2006 [Page 17]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FILEXFER_ATTR_SIZE 0x00000001
 SSH_FILEXFER_ATTR_PERMISSIONS 0x00000004
 SSH_FILEXFER_ATTR_ACCESSTIME 0x00000008
 SSH_FILEXFER_ATTR_CREATETIME 0x00000010
 SSH_FILEXFER_ATTR_MODIFYTIME 0x00000020
 SSH_FILEXFER_ATTR_ACL 0x00000040
 SSH_FILEXFER_ATTR_OWNERGROUP 0x00000080
 SSH_FILEXFER_ATTR_SUBSECOND_TIMES 0x00000100
 SSH_FILEXFER_ATTR_BITS 0x00000200
 SSH_FILEXFER_ATTR_ALLOCATION_SIZE 0x00000400
 SSH_FILEXFER_ATTR_TEXT_HINT 0x00000800
 SSH_FILEXFER_ATTR_MIME_TYPE 0x00001000
 SSH_FILEXFER_ATTR_LINK_COUNT 0x00002000
 SSH_FILEXFER_ATTR_UNTRANSLATED_NAME 0x00004000
 SSH_FILEXFER_ATTR_CTIME 0x00008000
 SSH_FILEXFER_ATTR_EXTENDED 0x80000000

 0x00000002 was used in a previous version of this protocol. It is
 now a reserved value and MUST NOT appear in the mask. Some future
 version of this protocol may reuse this value.

7.2. Type

 The type field is always present. The following types are defined:

 SSH_FILEXFER_TYPE_REGULAR 1
 SSH_FILEXFER_TYPE_DIRECTORY 2
 SSH_FILEXFER_TYPE_SYMLINK 3
 SSH_FILEXFER_TYPE_SPECIAL 4
 SSH_FILEXFER_TYPE_UNKNOWN 5
 SSH_FILEXFER_TYPE_SOCKET 6
 SSH_FILEXFER_TYPE_CHAR_DEVICE 7
 SSH_FILEXFER_TYPE_BLOCK_DEVICE 8
 SSH_FILEXFER_TYPE_FIFO 9

 On a POSIX system, these values would be derived from the mode field
 of the stat structure. SPECIAL should be used for files that are of
 a known type which cannot be expressed in the protocol. UNKNOWN
 should be used if the type is not known.

7.3. Size

 The 'size' field specifies the number of bytes that can be read from
 the file, or in other words, the location of the end-of-file.

 If this field is present during file creation, it indicates the
 number of bytes the client intends to transfer, but SHOULD NOT effect
 the creation of the file. The server can use this information to

Galbraith & Saarenmaa Expires July 29, 2006 [Page 18]

Internet-Draft SSH File Transfer Protocol January 2006

 determine if the client sent all the intended data and the file was
 transfered in it's entirity.

 If this field is present during a setstat operation, the file MUST be
 extended or truncated to the specified size.

 Files opened with the SSH_FXF_TEXT flag may have a size that is
 greater or less than the value of the size field. The server MAY
 fail setstat operations specifying size for files opened with the
 SSH_FXF_TEXT flag.

7.4. allocation-size

 The 'allocation-size' field specifies the number of bytes that the
 file consumes on disk. This field MAY be less than the 'size' field
 if the file is 'sparse' (Section 7.9).

 When present during file creation, the file SHOULD be created and the
 specified number of bytes preallocated. If the preallocation fails,
 the file should be removed (if it was created) and an error returned.

 If this field is present during a setstat operation, the file SHOULD
 be extended or truncated to the specified size. The 'size' of the
 file may be affected by this operation. If the operation succeeds,
 the 'size' should be the minimum of the 'size' before the operation
 and the new 'allocation-size'.

 Querying the 'allocation-size' after setting it MUST return a value
 that is greater-than or equal to the value set, but it MAY not return
 the precise value set.

 If both 'size' and 'allocation-size' are set during a setstat
 operation, and 'allocation-size' is less than 'size', the server MUST
 return SSH_FX_INVALID_PARAMETER.

7.5. Owner and Group

 The 'owner' and 'group' fields are represented as UTF-8 strings; this
 is the form used by NFS v4. See NFS version 4 Protocol [RFC3010].
 The following text is selected quotations from section 5.6.

 To avoid a representation that is tied to a particular underlying
 implementation at the client or server, the use of UTF-8 strings has
 been chosen. The string should be of the form "user@dns_domain".
 This will allow for a client and server that do not use the same
 local representation the ability to translate to a common syntax that
 can be interpreted by both. In the case where there is no
 translation available to the client or server, the attribute value

https://datatracker.ietf.org/doc/html/rfc3010

Galbraith & Saarenmaa Expires July 29, 2006 [Page 19]

Internet-Draft SSH File Transfer Protocol January 2006

 must be constructed without the "@". Therefore, the absence of the @
 from the owner or owner_group attribute signifies that no translation
 was available and the receiver of the attribute should not place any
 special meaning on the attribute value. Even though the attribute
 value cannot be translated, it may still be useful. In the case of a
 client, the attribute string may be used for local display of
 ownership.

 user@localhost represents a user in the context of the server.

 If either the owner or group field is zero length, the field should
 be considered absent, and no change should be made to that specific
 field during a modification operation.

7.6. Permissions

 The 'permissions' field contains a bit mask specifying file
 permissions. These permissions correspond to the st_mode field of
 the stat structure defined by POSIX [IEEE.1003-1.1996].

 This protocol uses the following values for the symbols declared in
 the POSIX standard.

 S_IRUSR 0000400 (octal)
 S_IWUSR 0000200
 S_IXUSR 0000100
 S_IRGRP 0000040
 S_IWGRP 0000020
 S_IXGRP 0000010
 S_IROTH 0000004
 S_IWOTH 0000002
 S_IXOTH 0000001
 S_ISUID 0004000
 S_ISGID 0002000
 S_ISVTX 0001000

 Implementations MUST NOT send bits that are not defined.

 The server SHOULD NOT apply a 'umask' to the mode bits; but should
 set the mode bits as specified by the client. The client MUST apply
 an appropriate 'umask' to the mode bits before sending them.

7.7. Times

 The 'atime' field contains the last access time of the file. Many
 operating systems either don't have this field, only optionally
 maintain it, or maintain it with less resolution than other fields.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 20]

Internet-Draft SSH File Transfer Protocol January 2006

 The 'mtime' contains the last time the file was written.

 'createtime' contains the creation time of the file.

 'ctime' contains the last time the file attributes were changed. The
 exact meaning of this field depends on the server.

 All times are represented as seconds from Jan 1, 1970 in UTC. A
 negative value indicates number of seconds before Jan 1, 1970. In
 both cases, if the SSH_FILEXFER_ATTR_SUBSECOND_TIMES flag is set, the
 nseconds field is to be added to the seconds field for the final time
 representation. For example, if the time to be represented is one-
 half second before 0 hour January 1, 1970, the seconds field would
 have a value of negative one (-1) and the nseconds fields would have
 a value of one-half second (500000000). Values greater than
 999,999,999 for nseconds are considered invalid.

7.8. ACL

 The 'ACL' field contains an ACL similar to that defined in section
5.9 of NFS version 4 Protocol [RFC3010].

 The structure of the ACL is:

 uint32 acl-flags
 uint32 ace-count
 ACE ace[ace-count]

 The ACE data structure is composes as follows:

 uint32 ace-type
 uint32 ace-flag
 uint32 ace-mask
 string who [UTF-8]

 acl-flags

 SFX_ACL_CONTROL_INCLUDED 0x00000001
 SFX_ACL_CONTROL_PRESENT 0x00000002
 SFX_ACL_CONTROL_INHERITED 0x00000004
 SFX_ACL_AUDIT_ALARM_INCLUDED 0x00000010
 SFX_ACL_AUDIT_ALARM_INHERITED 0x00000020

https://datatracker.ietf.org/doc/html/rfc3010

Galbraith & Saarenmaa Expires July 29, 2006 [Page 21]

Internet-Draft SSH File Transfer Protocol January 2006

 SFX_ACL_CONTROL_INCLUDED
 SFX_ACL_CONTROL_PRESENT
 SFX_ACL_CONTROL_INHERITED
 If INCLUDED is set during a setstat operation, then the client
 intends to modify the ALLOWED/DENIED entries of the ACL.
 Otherwise, the client intends for these entries to be
 preserved.

 If the PRESENT bit is not set, then the client wishes to remove
 control entries. If the server doesn't support separate
 control and audit information, the client MUST not clear this
 bit without also clearing the AUDIT_ALARM_PRESENT bit.

 If the PRESENT bit is clear, then control of the file MAY be
 through the permissions mask. The server MAY also grant full
 access to the file.

 If the both the INCLUDE and the PRESENT bit are set, but their
 are no ALLOW/DENY entries in the list, the client wishes to
 deny all access to the file or directory. The server may have
 to transform this into a ACL with a deny entry to implement it.

 If INHERITED is set, then ALLOW/DENY ACEs MAY be inherited from
 the parent directory. If it is off, then they MUST not be
 INHERITED. If the server does not support controlling
 inheritance, then the client MUST clear this bit; in this case
 the inheritance properties of the server are undefined.

 SFX_ACL_AUDIT_ALARM_INCLUDED
 SFX_ACL_AUDIT_ALARM_INHERITED
 If INCLUDE is set during a setstat operation, then the client
 intends to modify the AUDIT/ALARM entries of the ACL.
 Otherwise, the client intends for these entries to be
 preserved.

 If INHERITED is set, then AUDIT/ALARM ACEs MAY be inherited
 from the parent directory. If it is off, then they MUST not be
 INHERITED. If the server does not support controlling
 inheritance, then the client MUST clear this bit; in this case
 the inheritance properties of the server are undefined.

 Because some server require special permissions / privileges in
 order to modify the AUDIT/ALARM entries in the ACL, it is
 important to communicate to the server the clients intent to
 modify these entries. The client MUST both use the
 ACCESS_AUDIT_ALARM_ATTRIBUTES bit in the desired attribute of the
 open request and must set the SFX_ACL_AUDIT_ALARM_INCLUDED during
 the setstat operation.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 22]

Internet-Draft SSH File Transfer Protocol January 2006

 Clients that do not intend specifically to modify the AUDIT or
 ALARM entries SHOULD NOT set SSH_FXF_ACCESS_AUDIT_ALARM_INFO in
 the open-flags and SHOULD NOT set the SFX_ACL_AUDIT_ALARM_INCLUDED
 bit because these operations are often privileged and will fail.

 If the SFX_ACL_AUDIT_ALARM_INCLUDED is set, and the requested
 change can not be made, the server MUST fail the request.

 Servers that do not seperate control and audit/alarm information
 may have to read the existing ACL and merge in enteries not
 included by the client. The server must take this into account
 when opening files with the ACE4_WRITE_ACL permission requested.

 ace-type
 one of the following four values (taken from NFS Version 4
 Protocol [RFC3010]:

 ACE4_ACCESS_ALLOWED_ACE_TYPE 0x00000000
 ACE4_ACCESS_DENIED_ACE_TYPE 0x00000001
 ACE4_SYSTEM_AUDIT_ACE_TYPE 0x00000002
 ACE4_SYSTEM_ALARM_ACE_TYPE 0x00000003

 ace-flag
 A combination of the following flag values. See NFS Version 4
 Protocol [RFC3010] section 5.9.2:

 ACE4_FILE_INHERIT_ACE 0x00000001
 ACE4_DIRECTORY_INHERIT_ACE 0x00000002
 ACE4_NO_PROPAGATE_INHERIT_ACE 0x00000004
 ACE4_INHERIT_ONLY_ACE 0x00000008
 ACE4_SUCCESSFUL_ACCESS_ACE_FLAG 0x00000010
 ACE4_FAILED_ACCESS_ACE_FLAG 0x00000020
 ACE4_IDENTIFIER_GROUP 0x00000040

 ace-mask
 Combination of the following flags (taken from [RFC3010], section

5.9.3. The semantic meaning of these flags is also given in
 [RFC3010].

https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010#section-5.9.2
https://datatracker.ietf.org/doc/html/rfc3010
https://datatracker.ietf.org/doc/html/rfc3010

Galbraith & Saarenmaa Expires July 29, 2006 [Page 23]

Internet-Draft SSH File Transfer Protocol January 2006

 ACE4_READ_DATA 0x00000001
 ACE4_LIST_DIRECTORY 0x00000001
 ACE4_WRITE_DATA 0x00000002
 ACE4_ADD_FILE 0x00000002
 ACE4_APPEND_DATA 0x00000004
 ACE4_ADD_SUBDIRECTORY 0x00000004
 ACE4_READ_NAMED_ATTRS 0x00000008
 ACE4_WRITE_NAMED_ATTRS 0x00000010
 ACE4_EXECUTE 0x00000020
 ACE4_DELETE_CHILD 0x00000040
 ACE4_READ_ATTRIBUTES 0x00000080
 ACE4_WRITE_ATTRIBUTES 0x00000100
 ACE4_DELETE 0x00010000
 ACE4_READ_ACL 0x00020000
 ACE4_WRITE_ACL 0x00040000
 ACE4_WRITE_OWNER 0x00080000
 ACE4_SYNCHRONIZE 0x00100000

 who
 UTF-8 string of the form described in 'Owner and Group'
 (Section 7.5)
 Also, as per '5.9.4 ACE who' [RFC3010] there are several
 identifiers that need to be understood universally. Some of these
 identifiers cannot be understood when an client access the server,
 but have meaning when a local process accesses the file. The
 ability to display and modify these permissions is permitted over
 SFTP.

 OWNER The owner of the file.
 GROUP The group associated with the file.
 EVERYONE The world.
 INTERACTIVE Accessed from an interactive terminal.
 NETWORK Accessed via the network.
 DIALUP Accessed as a dialup user to the server.
 BATCH Accessed from a batch job.
 ANONYMOUS Accessed without any authentication.
 AUTHENTICATED Any authenticated user (opposite of ANONYMOUS).
 SERVICE Access from a system service.
 To avoid conflict, these special identifiers are distinguish by an
 appended "@". For example: ANONYMOUS@.

7.9. attrib-bits and attrib-bits-valid

 These fields, taken together, reflect various attributes of the file
 or directory, on the server.

 Bits not set in 'attrib-bits-valid' MUST be ignored in the 'attrib-
 bits' field. This allows both the server and the client to

https://datatracker.ietf.org/doc/html/rfc3010

Galbraith & Saarenmaa Expires July 29, 2006 [Page 24]

Internet-Draft SSH File Transfer Protocol January 2006

 communicate only the bits it knows about without inadvertently
 twiddling bits they don't understand.

 The following attrib-bits are defined:

 SSH_FILEXFER_ATTR_FLAGS_READONLY 0x00000001
 SSH_FILEXFER_ATTR_FLAGS_SYSTEM 0x00000002
 SSH_FILEXFER_ATTR_FLAGS_HIDDEN 0x00000004
 SSH_FILEXFER_ATTR_FLAGS_CASE_INSENSITIVE 0x00000008
 SSH_FILEXFER_ATTR_FLAGS_ARCHIVE 0x00000010
 SSH_FILEXFER_ATTR_FLAGS_ENCRYPTED 0x00000020
 SSH_FILEXFER_ATTR_FLAGS_COMPRESSED 0x00000040
 SSH_FILEXFER_ATTR_FLAGS_SPARSE 0x00000080
 SSH_FILEXFER_ATTR_FLAGS_APPEND_ONLY 0x00000100
 SSH_FILEXFER_ATTR_FLAGS_IMMUTABLE 0x00000200
 SSH_FILEXFER_ATTR_FLAGS_SYNC 0x00000400
 SSH_FILEXFER_ATTR_FLAGS_TRANSLATION_ERR 0x00000800

 SSH_FILEXFER_ATTR_FLAGS_READONLY
 Advisory, read-only bit. This bit is not part of the access
 control information on the file, but is rather an advisory field
 indicating that the file should not be written.

 SSH_FILEXFER_ATTR_FLAGS_SYSTEM
 The file is part of the operating system.

 SSH_FILEXFER_ATTR_FLAGS_HIDDEN
 File SHOULD NOT be shown to user unless specifically requested.
 For example, most UNIX systems SHOULD set this bit if the filename
 begins with a 'period'. This bit may be read-only (Section 5.4).
 Most UNIX systems will not allow this to be changed.

 SSH_FILEXFER_ATTR_FLAGS_CASE_INSENSITIVE
 This attribute applies only to directories. This attribute is
 always read-only, and cannot be modified. This attribute means
 that files and directory names in this directory should be
 compared without regard to case.

 It is recommended that where possible, the server's filesystem be
 allowed to do comparisons. For example, if a client wished to
 prompt a user before overwriting a file, it should not compare the
 new name with the previously retrieved list of names in the
 directory. Rather, it should first try to create the new file by
 specifying SSH_FXF_CREATE_NEW flag. Then, if this fails and
 returns SSH_FX_FILE_ALREADY_EXISTS, it should prompt the user and
 then retry the create specifying SSH_FXF_CREATE_TRUNCATE.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 25]

Internet-Draft SSH File Transfer Protocol January 2006

 Unless otherwise specified, filenames are assumed to be case
 sensitive.

 SSH_FILEXFER_ATTR_FLAGS_ARCHIVE
 The file should be included in backup / archive operations.

 SSH_FILEXFER_ATTR_FLAGS_ENCRYPTED
 The file is stored on disk using file-system level transparent
 encryption. This flag does not affect the file data on the wire
 (for either READ or WRITE requests.)

 SSH_FILEXFER_ATTR_FLAGS_COMPRESSED
 The file is stored on disk using file-system level transparent
 compression. This flag does not affect the file data on the wire.

 SSH_FILEXFER_ATTR_FLAGS_SPARSE
 The file is a sparse file; this means that file blocks that have
 not been explicitly written are not stored on disk. For example,
 if a client writes a buffer at 10 M from the beginning of the
 file, the blocks between the previous EOF marker and the 10 M
 offset would not consume physical disk space.

 Some servers may store all files as sparse files, in which case
 this bit will be unconditionally set. Other servers may not have
 a mechanism for determining if the file is sparse, and so the file
 MAY be stored sparse even if this flag is not set.

 SSH_FILEXFER_ATTR_FLAGS_APPEND_ONLY
 Opening the file without either the SSH_FXF_APPEND_DATA or the
 SSH_FXF_APPEND_DATA_ATOMIC flag (Section 8.1.1.3) MUST result in
 an SSH_FX_INVALID_PARAMETER error.

 SSH_FILEXFER_ATTR_FLAGS_IMMUTABLE
 The file cannot be deleted or renamed, no hard link can be created
 to this file, and no data can be written to the file.

 This bit implies a stronger level of protection than
 SSH_FILEXFER_ATTR_FLAGS_READONLY, the file permission mask or
 ACLs. Typically even the superuser cannot write to immutable
 files, and only the superuser can set or remove the bit.

 SSH_FILEXFER_ATTR_FLAGS_SYNC
 When the file is modified, the changes are written synchronously
 to the disk.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 26]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FILEXFER_ATTR_FLAGS_TRANSLATION_ERR
 The server MAY include this bit in a directory listing or realpath
 response. It indicates there was a failure in the translation to
 UTF-8. If this flag is included, the server SHOULD also include
 the UNTRANSLATED_NAME attribute.

7.10. text-hint

 The value is one of the following enumerations, and indicates what
 the server knows about the content of the file.

 SSH_FILEXFER_ATTR_KNOWN_TEXT 0x00
 SSH_FILEXFER_ATTR_GUESSED_TEXT 0x01
 SSH_FILEXFER_ATTR_KNOWN_BINARY 0x02
 SSH_FILEXFER_ATTR_GUESSED_BINARY 0x03

 SSH_FILEXFER_ATTR_KNOWN_TEXT
 The server knows the file is a text file, and should be opened
 using the SSH_FXF_TEXT_MODE flag.

 SSH_FILEXFER_ATTR_GUESSED_TEXT
 The server has applied a heuristic or other mechanism and believes
 that the file should be opened with the SSH_FXF_TEXT_MODE flag.

 SSH_FILEXFER_ATTR_KNOWN_BINARY
 The server knows the file has binary content.

 SSH_FILEXFER_ATTR_GUESSED_BINARY
 The server has applied a heuristic or other mechanism and believes
 has binary content, and should not be opened with the
 SSH_FXF_TEXT_MODE flag.

 This flag MUST NOT be present during either a setstat or a fsetstat
 operation.

7.11. mime-type

 The 'mime-type' field contains the mime-type [RFC1521] string. Most
 servers will not know this information and should not set the bit in
 their supported-attribute-mask.

7.12. link-count

 This field contains the hard link count of the file. This attribute
 MUST NOT be present during a setstat operation.

https://datatracker.ietf.org/doc/html/rfc1521

Galbraith & Saarenmaa Expires July 29, 2006 [Page 27]

Internet-Draft SSH File Transfer Protocol January 2006

7.13. untranslated-name

 This field contains the name before filename translation was attempt.
 It MUST NOT be included unless the server also set the
 SSH_FILEXFER_ATTR_FLAGS_TRANSLATION_ERR (Section 7.9) bit in the
 attrib-bits field.

7.14. Extended Attributes

 The SSH_FILEXFER_ATTR_EXTENDED flag provides a general extension
 mechanism for the attrib structure. If the flag is specified, then
 the 'extended_count' field is present. It specifies the number of
 'extension-pair' items that follow. Each of these items specifies an
 extended attribute. Implementations MUST return SSH_FX_UNSUPPORTED
 if there are any unrecognized extensions. Clients can avoid sending
 unsupported extensions by examining the attrib-extension-names of the
 "supported2" extension attrib-extension-names (Section 5.4).

 Additional fields can be added to the attributes by either defining
 additional bits to the flags field to indicate their presence, or by
 defining extended attributes for them. The extended attributes
 mechanism is recommended for most purposes; additional flags bits
 should be defined only by an IETF standards action that also
 increments the protocol version number. The use of such new fields
 MUST be negotiated by the version number in the protocol exchange.
 It is a protocol error if a packet with unsupported protocol bits is
 received.

8. Requests From the Client to the Server

 Requests from the client to the server represent the various file
 system operations.

8.1. Opening and Closing Files and Directories

 Many operations in the protocol operate on open files. The
 SSH_FXP_OPEN and SSH_FXP_OPENDIR requests return a handle (which is
 an opaque, variable-length string) which may be used to access the
 file or directory later. The client MUST NOT send requests to the
 server with bogus or closed handles. However, the server MUST
 perform adequate checks on the handle in order to avoid security
 risks due to fabricated handles.

 This design allows either stateful and stateless server
 implementation, as well as an implementation which caches state
 between requests but may also flush it. The contents of the file
 handle string are entirely up to the server and its design. The

Galbraith & Saarenmaa Expires July 29, 2006 [Page 28]

Internet-Draft SSH File Transfer Protocol January 2006

 client should not modify or attempt to interpret the file handle
 strings.

 The file handle strings MUST NOT be longer than 256 bytes.

8.1.1. Opening a File

 Files are opened and created using the SSH_FXP_OPEN message.

 byte SSH_FXP_OPEN
 uint32 request-id
 string filename [UTF-8]
 uint32 desired-access
 uint32 flags
 ATTRS attrs

 The response to this message will be either SSH_FXP_HANDLE (if the
 operation is successful) or SSH_FXP_STATUS (if the operation fails.)

8.1.1.1. filename

 The 'filename' field specifies the file name. See Section ''File
 Names'' for more information. If 'filename' is a directory file, the
 server MUST return an SSH_FX_FILE_IS_A_DIRECTORY error.

8.1.1.2. desired-access

 The 'desired-access' field is a bitmask containing a combination of
 values from the ace-mask flags (Section 7.8). Note that again, the
 meaning of these flags is given in [RFC3010].

 The server MUST be prepared to translate the SFTP access flags into
 its local equivalents. If the server cannot grant the access
 desired, it MUST return SSH_FX_PERMISSION_DENIED.

 The server MAY open the file with greater access than requested if
 the user has such access and the server implementation requires it.
 For example, a server that does not distinguish between
 READ_ATTRIBUTE and READ_DATA will have to request full 'read' access
 to the file when the client only requested READ_ATTRIBUTE, resulting
 in greater access than the client originally requested.

 In such cases, it is possible, and permissible in the protocol, that
 the client could open a file requesting some limited access, and then
 access the file in a way not permitted by that limited access and the
 server would permit such action. However, the server MUST NOT ever
 grant access to the file that the client does not actually have the
 rights to.

https://datatracker.ietf.org/doc/html/rfc3010

Galbraith & Saarenmaa Expires July 29, 2006 [Page 29]

Internet-Draft SSH File Transfer Protocol January 2006

8.1.1.3. flags

 The 'flags' field controls various aspects of the operation,
 including whether or not the file is created and the kind of locking
 desired.

 The following 'flags' are defined:

 SSH_FXF_ACCESS_DISPOSITION = 0x00000007
 SSH_FXF_CREATE_NEW = 0x00000000
 SSH_FXF_CREATE_TRUNCATE = 0x00000001
 SSH_FXF_OPEN_EXISTING = 0x00000002
 SSH_FXF_OPEN_OR_CREATE = 0x00000003
 SSH_FXF_TRUNCATE_EXISTING = 0x00000004
 SSH_FXF_APPEND_DATA = 0x00000008
 SSH_FXF_APPEND_DATA_ATOMIC = 0x00000010
 SSH_FXF_TEXT_MODE = 0x00000020
 SSH_FXF_BLOCK_READ = 0x00000040
 SSH_FXF_BLOCK_WRITE = 0x00000080
 SSH_FXF_BLOCK_DELETE = 0x00000100
 SSH_FXF_BLOCK_ADVISORY = 0x00000200
 SSH_FXF_NOFOLLOW = 0x00000400
 SSH_FXF_DELETE_ON_CLOSE = 0x00000800
 SSH_FXF_ACCESS_AUDIT_ALARM_INFO = 0x00001000
 SSH_FXF_ACCESS_BACKUP = 0x00002000
 SSH_FXF_BACKUP_STREAM = 0x00004000
 SSH_FXF_OVERRIDE_OWNER = 0x00008000

 SSH_FXF_ACCESS_DISPOSITION
 Disposition is a 3 bit field that controls how the file is opened.
 The server MUST support these bits. Any one of the following
 enumeration is allowed:

 SSH_FXF_CREATE_NEW
 A new file is created; if the file already exists, the server
 MUST return status SSH_FX_FILE_ALREADY_EXISTS.

 SSH_FXF_CREATE_TRUNCATE
 A new file is created; if the file already exists, it is opened
 and truncated.

 SSH_FXF_OPEN_EXISTING
 An existing file is opened. If the file does not exist, the
 server MUST return SSH_FX_NO_SUCH_FILE. If a directory in the
 path does not exist, the server SHOULD return
 SSH_FX_NO_SUCH_PATH. It is also acceptable if the server
 returns SSH_FX_NO_SUCH_FILE in this case.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 30]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FXF_OPEN_OR_CREATE
 If the file exists, it is opened. If the file does not exist,
 it is created.

 SSH_FXF_TRUNCATE_EXISTING
 An existing file is opened and truncated. If the file does not
 exist, the server MUST return the same error codes as defined
 for SSH_FXF_OPEN_EXISTING.

 SSH_FXF_APPEND_DATA
 Data is always written at the end of the file. The offset field
 of the SSH_FXP_WRITE requests are ignored.

 Data is not required to be appended atomically. This means that
 if multiple writers attempt to append data simultaneously, data
 from the first may be lost. However, data MAY be appended
 atomically.

 SSH_FXF_APPEND_DATA_ATOMIC
 Data is always written at the end of the file. The offset field
 of the SSH_FXP_WRITE requests are ignored.

 Data MUST be written atomically so that there is no chance that
 multiple appenders can collide and result in data being lost.

 If both append flags are specified, the server SHOULD use atomic
 append if it is available, but SHOULD use non-atomic appends
 otherwise. The server SHOULD NOT fail the request in this case.

 SSH_FXF_TEXT_MODE
 Indicates that the server should treat the file as text and
 convert it to the canonical newline convention in use. (See
 Determining Server Newline Convention. (Section 5.3)

 When a file is opened with this flag, the offset field in the read
 and write functions is ignored.

 Servers MUST process multiple, parallel reads and writes correctly
 in this mode. Naturally, it is permissible for them to do this by
 serializing the requests.

 Clients SHOULD use the SSH_FXF_APPEND_DATA flag to append data to
 a text file rather then using write with a calculated offset.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 31]

Internet-Draft SSH File Transfer Protocol January 2006

 To support seeks on text files the following SSH_FXP_EXTENDED
 packet is defined.

 string "text-seek"
 string file-handle
 uint64 line-number

 line-number is the index of the line number to seek to, where byte
 0 in the file is line number 0, and the byte directly following
 the first newline sequence in the file is line number 1 and so on.

 The response to a "text-seek" request is an SSH_FXP_STATUS
 message.

 An attempt to seek past the end-of-file should result in a
 SSH_FX_EOF status.

 Servers SHOULD support at least one "text-seek" in order to
 support resume. However, a client MUST be prepared to receive
 SSH_FX_OP_UNSUPPORTED when attempting a "text-seek" operation.
 The client can then try a fall-back strategy, if it has one.

 SSH_FXF_BLOCK_READ
 The server MUST guarantee that no other handle has been opened
 with ACE4_READ_DATA access, and that no other handle will be
 opened with ACE4_READ_DATA access until the client closes the
 handle. (This MUST apply both to other clients and to other
 processes on the server.)

 If there is a conflicting lock the server MUST return
 SSH_FX_LOCK_CONFLICT. If the server cannot make the locking
 guarantee, it MUST return SSH_FX_OP_UNSUPPORTED.

 Other handles MAY be opened for ACE4_WRITE_DATA or any other
 combination of accesses, as long as ACE4_READ_DATA is not included
 in the mask.

 SSH_FXF_BLOCK_WRITE
 The server MUST guarantee that no other handle has been opened
 with ACE4_WRITE_DATA or ACE4_APPEND_DATA access, and that no other
 handle will be opened with ACE4_WRITE_DATA or ACE4_APPEND_DATA
 access until the client closes the handle. (This MUST apply both
 to other clients and to other processes on the server.)

Galbraith & Saarenmaa Expires July 29, 2006 [Page 32]

Internet-Draft SSH File Transfer Protocol January 2006

 If there is a conflicting lock the server MUST return
 SSH_FX_LOCK_CONFLICT. If the server cannot make the locking
 guarantee, it MUST return SSH_FX_OP_UNSUPPORTED.

 Other handles MAY be opened for ACE4_READ_DATA or any other
 combination of accesses, as long as neither ACE4_WRITE_DATA nor
 ACE4_APPEND_DATA are included in the mask.

 SSH_FXF_BLOCK_DELETE
 The server MUST guarantee that no other handle has been opened
 with ACE4_DELETE access, opened with the SSH_FXF_DELETE_ON_CLOSE
 flag set, and that no other handle will be opened with ACE4_DELETE
 access or with the SSH_FXF_DELETE_ON_CLOSE flag set, and that the
 file itself is not deleted in any other way until the client
 closes the handle.

 If there is a conflicting lock the server MUST return
 SSH_FX_LOCK_CONFLICT. If the server cannot make the locking
 guarantee, it MUST return SSH_FX_OP_UNSUPPORTED.

 SSH_FXF_BLOCK_ADVISORY
 If this bit is set, the above BLOCK modes are advisory. In
 advisory mode, only other accesses that specify a BLOCK mode need
 be considered when determining whether the BLOCK can be granted,
 and the server need not prevent I/O operations that violate the
 block mode.

 The server MAY perform mandatory locking even if the
 BLOCK_ADVISORY bit is set.

 SSH_FXF_NOFOLLOW
 If the final component of the path is a symlink, then the open
 MUST fail, and the error SSH_FX_LINK_LOOP MUST be returned.

 SSH_FXF_DELETE_ON_CLOSE
 The file should be deleted when the last handle to it is closed.
 (The last handle may not be an sftp-handle.) This MAY be emulated
 by a server if the OS doesn't support it by deleting the file when
 this handle is closed.

 It is implementation specific whether the directory entry is
 removed immediately or when the handle is closed.

 SSH_FXF_ACCESS_AUDIT_ALARM_INFO
 The client wishes the server to enable any privileges or extra
 capabilities that the user may have in to allow the reading and
 writing of AUDIT or ALARM access control entries.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 33]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FXF_ACCESS_BACKUP
 The client wishes the server to enable any privileges or extra
 capabilities that the user may have in order to bypass normal
 access checks for the purpose of backing up or restoring files.

 SSH_FXF_BACKUP_STREAM
 This bit indicates that the client wishes to read or write a
 backup stream. A backup stream is a system dependent structured
 data stream that encodes all the information that must be
 preserved in order to restore the file from backup medium.

 The only well defined use for backup stream data read in this
 fashion is to write it to the same server to a file also opened
 using the BACKUP_STREAM flag. However, if the server has a well
 defined backup stream format, their may be other uses for this
 data outside the scope of this protocol.

 ACCESS_OVERRIDE_OWNER
 This bit indicates that the client wishes the server to enable any
 privileges or extra capabilities that the user may have in order
 to gain access to the file with WRITE_OWNER permission.

 This bit MUST always be specified in combination with
 ACE4_WRITE_OWNER.

 The 'attrs' field specifies the initial attributes for the file.
 Default values MUST be supplied by the server for those attributes
 that are not specified. See Section ''File Attributes'' for more
 information.

 The 'attrs' field is ignored if an existing file is opened.

 The following table is provided to assist in mapping POSIX semantics
 to equivalent SFTP file open parameters:
 O_RDONLY
 desired-access = READ_DATA|READ_ATTRIBUTES

 O_WRONLY
 desired-access = WRITE_DATA|WRITE_ATTRIBUTES

 O_RDWR
 desired-access = READ_DATA|READ_ATTRIBUTES|WRITE_DATA|
 WRITE_ATTRIBUTES

Galbraith & Saarenmaa Expires July 29, 2006 [Page 34]

Internet-Draft SSH File Transfer Protocol January 2006

 O_APPEND
 desired-access = WRITE_DATA|WRITE_ATTRIBUTES|APPEND_DATA
 flags = SSH_FXF_APPEND_DATA and or SSH_FXF_APPEND_DATA_ATOMIC

 O_CREAT
 flags = SSH_FXF_OPEN_OR_CREATE

 O_TRUNC
 flags = SSH_FXF_TRUNCATE_EXISTING

 O_TRUNC|O_CREATE
 flags = SSH_FXF_CREATE_TRUNCATE

8.1.2. Opening a Directory

 To enumerate a directory, the client first obtains a handle and then
 issues directory read requests. When enumeration is complete, the
 handle MUST be closed.

 byte SSH_FXP_OPENDIR
 uint32 request-id
 string path [UTF-8]

 path
 The 'path' field is the path name of the directory to be listed
 (without any trailing slash). See Section 'File Names' for more
 information on file names.

 If 'path' does not refer to a directory, the server MUST return
 SSH_FX_NOT_A_DIRECTORY.

 The response to this message will be either SSH_FXP_HANDLE (if the
 operation is successful) or SSH_FXP_STATUS (if the operation fails).

8.1.3. Closing Handles

 A handle is closed using the following request.

 byte SSH_FXP_CLOSE
 uint32 request-id
 string handle

 handle
 'handle' is a handle previously returned in the response to
 SSH_FXP_OPEN or SSH_FXP_OPENDIR. The handle becomes invalid
 immediately after this request has been sent.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 35]

Internet-Draft SSH File Transfer Protocol January 2006

 The response to this request will be a SSH_FXP_STATUS message. Note
 that on some server platforms even a close can fail. For example, if
 the server operating system caches writes, and an error occurs while
 flushing cached writes, the close operation may fail.

 Note that the handle is invalid regardless of the SSH_FXP_STATUS
 result. There is no way for the client to recover a handle that
 fails to close. The client MUST release all resources associated
 with the handle regardless of the status. The server SHOULD take
 whatever steps it can to recover from a close failure and to ensure
 that all resources associated with the handle on the server are
 correctly released.

8.2. Reading and Writing

8.2.1. Reading Files

 The following request can be used to read file data:

 byte SSH_FXP_READ
 uint32 request-id
 string handle
 uint64 offset
 uint32 length

 handle
 'handle' is an open file handle returned by SSH_FXP_OPEN. If
 'handle' is not a handle returned by SSH_FXP_OPEN, the server MUST
 return SSH_FX_INVALID_HANDLE.

 offset
 The offset (in bytes) relative to the beginning of the file that
 the read MUST start at. This field is ignored if
 SSH_FXF_TEXT_MODE was specified during the open.

 length
 'length' is the maximum number of bytes to read.

 The server MUST not respond with more data than is specified by
 the 'length' parameter. However, the server MAY respond with less
 data if EOF is reached, an error is encountered, or the servers
 internal buffers can not handle such a large request.

 If the server specified a non-zero 'max-read-size' in its
 'supported2' (Section 5.4) extension, then failure to return
 'length' bytes indicates that EOF or an error occurred.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 36]

Internet-Draft SSH File Transfer Protocol January 2006

8.2.2. Reading Directories

 In order to retrieve a directory listing, the client issues one or
 more SSH_FXP_READDIR requests. In order to obtain a complete
 directory listing, the client MUST issue repeated SSH_FXP_READDIR
 requests until the server responds with an SSH_FXP_STATUS message.

 byte SSH_FXP_READDIR
 uint32 request-id
 string handle

 handle
 'handle' is a handle returned by SSH_FXP_OPENDIR. If 'handle' is
 an ordinary file handle returned by SSH_FXP_OPEN, the server MUST
 return SSH_FX_INVALID_HANDLE.

 The server responds to this request with either a SSH_FXP_NAME or a
 SSH_FXP_STATUS message. One or more names may be returned at a time.
 Full status information is returned for each name in order to speed
 up typical directory listings.

 If there are no more names available to be read, the server MUST
 respond with a SSH_FXP_STATUS message with error code of SSH_FX_EOF.

8.2.3. Writing Files

 Writing to a file is achieved using the following message:

 byte SSH_FXP_WRITE
 uint32 request-id
 string handle
 uint64 offset
 string data

 handle
 'handle' is an open file handle returned by SSH_FXP_OPEN. If
 'handle' is not a handle returned by SSH_FXP_OPEN, the server MUST
 return SSH_FX_INVALID_HANDLE.

 offset
 The offset (in bytes) relative to the beginning of the file that
 the write MUST start at. This field is ignored if
 SSH_FXF_TEXT_MODE was specified during the open.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 37]

Internet-Draft SSH File Transfer Protocol January 2006

 The write will extend the file if writing beyond the end of the
 file. It is legal to write to an offset that extends beyond the
 end of the file; the semantics are to write the byte value 0x00
 from the end of the file to the specified offset and then the
 data. On most operating systems, such writes do not allocate disk
 space but instead create a sparse file.

 data
 The data to write to the file.

 The server responds to a write request with a SSH_FXP_STATUS message.

8.3. Removing and Renaming Files

 The following request can be used to remove a file:

 byte SSH_FXP_REMOVE
 uint32 request-id
 string filename [UTF-8]

 filename
 'filename' is the name of the file to be removed. See Section
 'File Names' for more information.

 If 'filename' is a symbolic link, the link is removed, not the
 file it points to.
 This request cannot be used to remove directories. The server
 MUST return SSH_FX_FILE_IS_A_DIRECTORY in this case.

 The server will respond to this request with a SSH_FXP_STATUS
 message.

 Files (and directories) can be renamed using the SSH_FXP_RENAME
 message.

 byte SSH_FXP_RENAME
 uint32 request-id
 string oldpath [UTF-8]
 string newpath [UTF-8]
 uint32 flags

 where 'request-id' is the request identifier, 'oldpath' is the name
 of an existing file or directory, and 'newpath' is the new name for
 the file or directory.

 'flags' is 0 or a combination of:

Galbraith & Saarenmaa Expires July 29, 2006 [Page 38]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FXF_RENAME_OVERWRITE 0x00000001
 SSH_FXF_RENAME_ATOMIC 0x00000002
 SSH_FXF_RENAME_NATIVE 0x00000004

 If flags does not include SSH_FXP_RENAME_OVERWRITE, and there already
 exists a file with the name specified by newpath, the server MUST
 respond with SSH_FX_FILE_ALREADY_EXISTS.

 If flags includes SSH_FXP_RENAME_ATOMIC, and the destination file
 already exists, it is replaced in an atomic fashion. I.e., there is
 no observable instant in time where the name does not refer to either
 the old or the new file. SSH_FXP_RENAME_ATOMIC implies
 SSH_FXP_RENAME_OVERWRITE.

 If flags includes SSH_FXP_RENAME_ATOMIC and the server cannot replace
 the destination in an atomic fashion, then the server MUST respond
 with SSH_FX_OP_UNSUPPORTED.

 Because some servers cannot provide atomic rename, clients should
 only specify atomic rename if correct operation requires it. If
 SSH_FXP_RENAME_OVERWRITE is specified, the server MAY perform an
 atomic rename even if it is not requested.

 If flags includes SSH_FXP_RENAME_NATIVE, the server is free to do the
 rename operation in whatever fashion it deems appropriate. Other
 flag values are considered hints as to desired behavior, but not
 requirements.

 The server will respond to this request with a SSH_FXP_STATUS
 message.

8.4. Creating and Deleting Directories

 New directories can be created using the SSH_FXP_MKDIR request. It
 has the following format:

 byte SSH_FXP_MKDIR
 uint32 request-id
 string path [UTF-8]
 ATTRS attrs

 where 'request-id' is the request identifier.

 'path' specifies the directory to be created. See Section ''File
 Names'' for more information on file names.

 'attrs' specifies the attributes that should be applied to it upon
 creation. Attributes are discussed in more detail in Section ''File

Galbraith & Saarenmaa Expires July 29, 2006 [Page 39]

Internet-Draft SSH File Transfer Protocol January 2006

 Attributes''.

 The server will respond to this request with a SSH_FXP_STATUS
 message. If a file or directory with the specified path already
 exists, an error will be returned.

 Directories can be removed using the SSH_FXP_RMDIR request, which has
 the following format:

 byte SSH_FXP_RMDIR
 uint32 request-id
 string path [UTF-8]

 where 'request-id' is the request identifier, and 'path' specifies
 the directory to be removed. See Section ''File Names'' for more
 information on file names.

 The server responds to this request with a SSH_FXP_STATUS message.

8.5. Retrieving File Attributes

 Very often, file attributes are automatically returned by
 SSH_FXP_READDIR. However, sometimes there is need to specifically
 retrieve the attributes for a named file. This can be done using the
 SSH_FXP_STAT, SSH_FXP_LSTAT and SSH_FXP_FSTAT requests.

 SSH_FXP_STAT and SSH_FXP_LSTAT only differ in that SSH_FXP_STAT
 follows symbolic links on the server, whereas SSH_FXP_LSTAT does not
 follow symbolic links. Both have the same format:

 byte SSH_FXP_STAT or SSH_FXP_LSTAT
 uint32 request-id
 string path [UTF-8]
 uint32 flags

 where 'request-id' is the request identifier, and 'path' specifies
 the file system object for which status is to be returned. The
 server responds to this request with either SSH_FXP_ATTRS or
 SSH_FXP_STATUS.

 The flags field specify the attribute flags in which the client has
 particular interest. This is a hint to the server. For example,
 because retrieving owner / group and acl information can be an
 expensive operation under some operating systems, the server may
 choose not to retrieve this information unless the client expresses a
 specific interest in it.

 The client has no guarantee the server will provide all the fields

Galbraith & Saarenmaa Expires July 29, 2006 [Page 40]

Internet-Draft SSH File Transfer Protocol January 2006

 that it has expressed an interest in.

 SSH_FXP_FSTAT differs from the others in that it returns status
 information for an open file (identified by the file handle).

 byte SSH_FXP_FSTAT
 uint32 request-id
 string handle
 uint32 flags

 handle
 'handle' is an open file handle from either SSH_FXP_OPEN or
 SSH_FXP_OPENDIR.

 The server responds to this request with SSH_FXP_ATTRS or
 SSH_FXP_STATUS.

8.6. Setting File Attributes

 File attributes may be modified using the SSH_FXP_SETSTAT and
 SSH_FXP_FSETSTAT requests.

 byte SSH_FXP_SETSTAT
 uint32 request-id
 string path [UTF-8]
 ATTRS attrs

 byte SSH_FXP_FSETSTAT
 uint32 request-id
 string handle
 ATTRS attrs

 path
 The file system object (e.g. file or directory) whose attributes
 are to be modified. If this object does not exist, or the user
 does not have sufficient access to write the attributes, the
 request MUST fail.

 handle
 'handle' is an open file handle from either SSH_FXP_OPEN or
 SSH_FXP_OPENDIR. If the handle was not opened with sufficient
 access to write the requested attributes, the request MUST fail.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 41]

Internet-Draft SSH File Transfer Protocol January 2006

 attrs
 Specifies the modified attributes to be applied. Attributes are
 discussed in more detail in Section ''File Attributes''.

 The server will respond with a SSH_FXP_STATUS message.

 Because some systems must use separate system calls to set various
 attributes, it is possible that a failure response will be returned,
 but yet some of the attributes may be have been successfully
 modified. If possible, servers SHOULD avoid this situation; however,
 clients MUST be aware that this is possible.

8.7. Dealing with Links

 The SSH_FXP_READLINK request reads the target of a symbolic link.

 byte SSH_FXP_READLINK
 uint32 request-id
 string path [UTF-8]

 where 'request-id' is the request identifier and 'path' specifies the
 path name of the symlink to be read.

 The server will respond with a SSH_FXP_NAME packet containing only
 one name and a dummy attributes value. The name in the returned
 packet contains the target of the link. If an error occurs, the
 server MAY respond with SSH_FXP_STATUS.

 The SSH_FXP_LINK request creates a link (either hard or symbolic) on
 the server.

 byte SSH_FXP_LINK
 uint32 request-id
 string new-link-path [UTF-8]
 string existing-path [UTF-8]
 bool sym-link

 new-link-path
 Specifies the path name of the new link to create.

 existing-path
 Specifies the path of an existing file system object to which the
 new-link-path will refer.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 42]

Internet-Draft SSH File Transfer Protocol January 2006

 sym-link
 Specifies that the link should be a symbolic link, or a special
 file that redirects file system parsing to the resulting path. It
 is generally possible to create symbolic links across device
 boundaries; however, it is not required that a server support
 this.

 If 'sym-link' is false, the link should be a hard link, or a
 second directory entry referring to the same file or directory
 object. It is generally not possible to create hard links across
 devices.

 The server shall respond with a SSH_FXP_STATUS. Clients should be
 aware that some servers may return SSH_FX_OP_UNSUPPORTED for either
 the hard-link, sym-link, or both operations.

8.8. Byte-range locks

 SSH_FXP_BLOCK creates a byte-range lock on the file specified by the
 handle. The lock can be either mandatory (meaning that the server
 enforces that no other process or client can perform operations in
 violation of the lock) or advisory (meaning that no other process can
 obtain a conflicting lock, but the server does not enforce that no
 operation violates the lock.

 A server MAY implement an advisory lock in a mandatory fashion; in
 other words, the server MAY enforce that no operation violates the
 lock even when operating in advisory mode.

 The result is a SSH_FXP_STATUS return.

 byte SSH_FXP_BLOCK
 uint32 request-id
 string handle
 uint64 offset
 uint64 length
 uint32 uLockMask

 handle
 'handle' is a handle returned by SSH_FXP_OPEN or SSH_FXP_OPENDIR.
 Note that some server MAY return SSH_FX_OP_UNSUPPORTED if the
 handle is a directory handle.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 43]

Internet-Draft SSH File Transfer Protocol January 2006

 offset
 Beginning of the byte-range to lock.

 length
 Number of bytes in the range to lock. The special value 0 means
 lock from 'offset' to the end of the file.

 uLockMask
 A bit mask of SSH_FXF_BLOCK_* values; the meanings are described
 in Section 8.1.1.3.

 SSH_FXP_UNBLOCK removes a previously acquired byte-range lock on the
 specified handle.

 The result is a SSH_FXP_STATUS return.

 byte SSH_FXP_UNBLOCK
 uint32 request-id
 string handle
 uint64 offset
 uint64 length

 handle
 'handle' on which a SSH_FXP_BLOCK request has previously been
 issued.

 offset
 Beginning of the byte-range to lock.

 length
 Number of bytes in the range to lock. The special value 0 means
 lock from 'offset' to the end of the file.

8.9. Canonicalizing the Server-Side Path Name

 The SSH_FXP_REALPATH request can be used to have the server
 canonicalize any given path name to an absolute path. This is useful
 for converting path names containing ".." components or relative
 pathnames without a leading slash into absolute paths. The format of
 the request is as follows:

 byte SSH_FXP_REALPATH
 uint32 request-id
 string original-path [UTF-8]
 byte control-byte [optional]
 string compose-path[0..n] [optional]

Galbraith & Saarenmaa Expires July 29, 2006 [Page 44]

Internet-Draft SSH File Transfer Protocol January 2006

 original-path
 The first component of the path which the client wishes resolved
 into a absolute canonical path. This may be the entire path.

 control-byte

 SSH_FXP_REALPATH_NO_CHECK 0x00000001
 SSH_FXP_REALPATH_STAT_IF 0x00000002
 SSH_FXP_REALPATH_STAT_ALWAYS 0x00000003

 This field is optional, and if it is not present in the packet, it
 is assumed to be SSH_FXP_REALPATH_NO_CHECK.

 If SSH_FXP_REALPATH_NO_CHECK is specified, the server MUST NOT
 fail the request if the path does not exist, is hidden, or the
 user does not have access to the path or some component thereof.
 In addition, the path MUST NOT resolve symbolic links. This
 allows paths to be composed for the SSH_FXP_REMOVE command to
 remove symbolic links.

 The server MAY fail the request if the path is not syntactically
 valid, or for other reasons.

 If SSH_FXP_REALPATH_STAT_IF is specified, the server MUST stat the
 path if it exists and is accessible to the client. However, if
 the path does not exist, isn't visible, or isn't accessible, the
 server MUST NOT fail the request. If the stat failed, the file
 type will be SSH_FILEXFER_TYPE_UNKNOWN. If the client needs to
 distinguish between files that are actually
 SSH_FILEXFER_TYPE_UNKNOWN and paths that don't exist, it will have
 to issue a separate stat command in this case.

 If SSH_FXP_REALPATH_STAT_ALWAYS is specified the server MUST stat
 the path. If the stat operation fails, the server MUST fail the
 request.

 compose-path
 A path which the client wishes the server to compose with the
 original path to form the new path. This field is optional, and
 if it is not present in the packet, it is assumed to be a zero
 length string.

 The client may specify multiple 'compose-path' elements, in which
 case the server should build the resultant path up by applying
 each compose path to the accumulated result until all 'compose-
 path' elements have been applied.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 45]

Internet-Draft SSH File Transfer Protocol January 2006

 The server MUST take the 'original-path' and apply the 'compose-path'
 as a modification to it. 'compose-path' MAY be relative to 'original-
 path' or may be an absolute path, in which case 'original-path' will
 be discarded. The 'compose-path' MAY be zero length.

 The server will respond with a SSH_FXP_NAME packet containing the
 canonical form of the composite path. If SSH_FXP_REALPATH_NO_CHECK
 is specified, the attributes are dummy values.

8.9.1. Best Practice for Dealing with Paths

 BEGIN: RFCEDITOR REMOVE BEFORE PUBLISHING

 Previous to this version, clients typically composed new paths
 themselves and then called both realpath and stat on the resulting
 path to get its canonical name and see if it really existed and was a
 directory.

 This required clients to assume certain things about how a relative
 vs. realpath looked. The new realpath allows clients to no longer
 make those assumptions and to remove one round trip from the process
 and get deterministic behavior from all servers.

 END: RFCEDITOR REMOVE BEFORE PUBLISHING

 The client SHOULD treat the results of SSH_FXP_REALPATH as a
 canonical absolute path, even if the path does not appear to be
 absolute. A client that uses REALPATH(".", "") and treats the result
 as absolute, even if there is no leading slash, will continue to
 function correctly, even when talking to a Windows NT or VMS style
 system, where absolute paths may not begin with a slash.

 The client SHOULD also use SSH_FXP_REALPATH call to compose paths so
 that it does not need to know when a path is absolute or relative.

 For example, if the client wishes to change directory up, and the
 server has returned "c:/x/y/z" from REALPATH, the client SHOULD use
 REALPATH("c:/x/y/z", "..", SSH_FXP_REALPATH_STAT_ALWAYS)

 As a second example, if the client wishes transfer local file "a" to
 remote file "/b/d/e", and server has returned "dka100:/x/y/z" as the
 canonical path of the current directory, the client SHOULD send
 REALPATH("dka100:/x/y/z", "/b/d/e", SSH_FXP_REALPATH_STAT_IF). This
 call will determine the correct path to use for the open request and
 whether the /b/d/e represents a directory.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 46]

Internet-Draft SSH File Transfer Protocol January 2006

9. Responses from the Server to the Client

 The server responds to the client using one of a few response
 packets. All requests can return a SSH_FXP_STATUS response upon
 failure. When the operation is successful, and no data needs to be
 returned, the SSH_FXP_STATUS response with SSH_FX_OK status is
 appropriate.

 Exactly one response will be returned for each request. Each
 response packet contains a request identifier which can be used to
 match each response with the corresponding request. Note that it is
 legal to have several requests outstanding simultaneously, and the
 server is allowed to send responses to them in a different order from
 the order in which the requests were sent (the result of their
 execution, however, is guaranteed to be as if they had been processed
 one at a time in the order in which the requests were sent).

 Response packets are of the same general format as request packets.
 Each response packet begins with the request identifier.

9.1. Status Response

 The format of the data portion of the SSH_FXP_STATUS response is as
 follows:

 byte SSH_FXP_STATUS
 uint32 request-id
 uint32 error/status code
 string error message (ISO-10646 UTF-8 [RFC-2279])
 string language tag (as defined in [RFC-1766])
 error-specific data

 request-id
 The 'request-id' specified by the client in the request the server
 is responding to.

 error/status code
 Machine readable status code indicating the result of the request.
 Error code values are defined below. The value SSH_FX_OK
 indicates success, and all other values indicate failure.

 Implementations MUST be prepared to receive unexpected error codes
 and handle them sensibly (such as by treating them as equivalent
 to SSH_FX_FAILURE). Future protocol revisions will add additional
 error codes without changing the version number.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

Galbraith & Saarenmaa Expires July 29, 2006 [Page 47]

Internet-Draft SSH File Transfer Protocol January 2006

 error message
 Human readable description of the error.

 language tag
 'language tag' specifies the language the error is in.

 error-specific data
 The error-specific data may be empty, or may contain additional
 information about the error. For error codes that send error-
 specific data, the format of the data is defined below.

 Error codes:

 SSH_FX_OK 0
 SSH_FX_EOF 1
 SSH_FX_NO_SUCH_FILE 2
 SSH_FX_PERMISSION_DENIED 3
 SSH_FX_FAILURE 4
 SSH_FX_BAD_MESSAGE 5
 SSH_FX_NO_CONNECTION 6
 SSH_FX_CONNECTION_LOST 7
 SSH_FX_OP_UNSUPPORTED 8
 SSH_FX_INVALID_HANDLE 9
 SSH_FX_NO_SUCH_PATH 10
 SSH_FX_FILE_ALREADY_EXISTS 11
 SSH_FX_WRITE_PROTECT 12
 SSH_FX_NO_MEDIA 13
 SSH_FX_NO_SPACE_ON_FILESYSTEM 14
 SSH_FX_QUOTA_EXCEEDED 15
 SSH_FX_UNKNOWN_PRINCIPAL 16
 SSH_FX_LOCK_CONFLICT 17
 SSH_FX_DIR_NOT_EMPTY 18
 SSH_FX_NOT_A_DIRECTORY 19
 SSH_FX_INVALID_FILENAME 20
 SSH_FX_LINK_LOOP 21
 SSH_FX_CANNOT_DELETE 22
 SSH_FX_INVALID_PARAMETER 23
 SSH_FX_FILE_IS_A_DIRECTORY 24
 SSH_FX_BYTE_RANGE_LOCK_CONFLICT 25
 SSH_FX_BYTE_RANGE_LOCK_REFUSED 26
 SSH_FX_DELETE_PENDING 27
 SSH_FX_FILE_CORRUPT 28
 SSH_FX_OWNER_INVALID 29
 SSH_FX_GROUP_INVALID 30

Galbraith & Saarenmaa Expires July 29, 2006 [Page 48]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FX_OK
 Indicates successful completion of the operation.

 SSH_FX_EOF
 An attempt to read past the end-of-file was made; or, there are no
 more directory entries to return.

 SSH_FX_NO_SUCH_FILE
 A reference was made to a file which does not exist.

 SSH_FX_PERMISSION_DENIED
 The user does not have sufficient permissions to perform the
 operation.

 SSH_FX_FAILURE
 An error occurred, but no specific error code exists to describe
 the failure.

 This error message SHOULD always have meaningful text in the the
 'error message' field.

 SSH_FX_BAD_MESSAGE
 A badly formatted packet or other SFTP protocol incompatibility
 was detected.

 SSH_FX_NO_CONNECTION
 There is no connection to the server. This error MAY be used
 locally, but MUST NOT be return by a server.

 SSH_FX_CONNECTION_LOST
 The connection to the server was lost. This error MAY be used
 locally, but MUST NOT be return by a server.

 SSH_FX_OP_UNSUPPORTED
 An attempted operation could not be completed by the server
 because the server does not support the operation.

 This error MAY be generated locally by the client if e.g. the
 version number exchange indicates that a required feature is not
 supported by the server, or it may be returned by the server if
 the server does not implement an operation.

 SSH_FX_INVALID_HANDLE
 The handle value was invalid.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 49]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FX_NO_SUCH_PATH
 The file path does not exist or is invalid.

 SSH_FX_FILE_ALREADY_EXISTS
 The file already exists.

 SSH_FX_WRITE_PROTECT
 The file is on read-only media, or the media is write protected.

 SSH_FX_NO_MEDIA
 The requested operation cannot be completed because there is no
 media available in the drive.

 SSH_FX_NO_SPACE_ON_FILESYSTEM
 The requested operation cannot be completed because there is no
 free space on the filesystem.

 SSH_FX_QUOTA_EXCEEDED
 The operation cannot be completed because it would exceed the
 user's storage quota.

 SSH_FX_UNKNOWN_PRINCIPAL
 A principal referenced by the request (either the 'owner',
 'group', or 'who' field of an ACL), was unknown. The error
 specific data contains the problematic names. The format is one
 or more:

 string unknown-name

 Each string contains the name of a principal that was unknown.

 SSH_FX_LOCK_CONFLICT
 The file could not be opened because it is locked by another
 process.

 SSH_FX_DIR_NOT_EMPTY
 The directory is not empty.

 SSH_FX_NOT_A_DIRECTORY
 The specified file is not a directory.

 SSH_FX_INVALID_FILENAME
 The filename is not valid.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 50]

Internet-Draft SSH File Transfer Protocol January 2006

 SSH_FX_LINK_LOOP
 Too many symbolic links encountered.

 SSH_FX_CANNOT_DELETE
 The file cannot be deleted. One possible reason is that the
 advisory READONLY attribute-bit is set.

 SSH_FX_INVALID_PARAMETER
 On of the parameters was out of range, or the parameters specified
 cannot be used together.

 SSH_FX_FILE_IS_A_DIRECTORY
 The specified file was a directory in a context where a directory
 cannot be used.

 SSH_FX_BYTE_RANGE_LOCK_CONFLICT
 A read or write operation failed because another process's
 mandatory byte-range lock overlaps with the request.

 SSH_FX_BYTE_RANGE_LOCK_REFUSED
 A request for a byte range lock was refused.

 SSH_FX_DELETE_PENDING
 An operation was attempted on a file for which a delete operation
 is pending.

 SSH_FX_FILE_CORRUPT
 The file is corrupt; an filesystem integrity check should be run.

 SSH_FX_OWNER_INVALID
 The principal specified can not be assigned as an owner of a file.

 SSH_FX_GROUP_INVALID
 The principal specified can not be assigned as the primary group
 of a file.

9.2. Handle Response

 The SSH_FXP_HANDLE response has the following format:

 byte SSH_FXP_HANDLE
 uint32 request-id
 string handle

Galbraith & Saarenmaa Expires July 29, 2006 [Page 51]

Internet-Draft SSH File Transfer Protocol January 2006

 'handle'
 An arbitrary string that identifies an open file or directory on
 the server. The handle is opaque to the client; the client MUST
 NOT attempt to interpret or modify it in any way. The length of
 the handle string MUST NOT exceed 256 data bytes.

9.3. Data Response

 The SSH_FXP_DATA response has the following format:

 byte SSH_FXP_DATA
 uint32 request-id
 string data
 bool end-of-file [optional]

 data
 'data' is an arbitrary byte string containing the requested data.
 The data string may be at most the number of bytes requested in a
 SSH_FXP_READ request, but may also be shorter. (See

Section 8.2.1.)

 end-of-file
 This field is optional. If it is present in the packet, it MUST
 be true, and it indicates that EOF was reached during this read.
 This can help the client avoid a round trip to determine whether a
 short read was normal (due to EOF) or some other problem (limited
 server buffer for example.)

9.4. Name Response

 The SSH_FXP_NAME response has the following format:

 byte SSH_FXP_NAME
 uint32 request-id
 uint32 count
 repeats count times:
 string filename [UTF-8]
 ATTRS attrs
 bool end-of-list [optional]

 count
 The number of names returned in this response, and the 'filename'
 and 'attrs' field repeat 'count' times.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 52]

Internet-Draft SSH File Transfer Protocol January 2006

 filename
 A file name being returned (for SSH_FXP_READDIR, it will be a
 relative name within the directory, without any path components;
 for SSH_FXP_REALPATH it will be an absolute path name.)

 attrs
 The attributes of the file as described in Section ''File
 Attributes''.

 end-of-list
 If this field is present and true, there are no more entries to be
 read.

9.5. Attrs Response

 The SSH_FXP_ATTRS response has the following format:

 byte SSH_FXP_ATTRS
 uint32 request-id
 ATTRS attrs

 attrs
 The returned file attributes as described in Section ''File
 Attributes''.

10. Extensions

 The SSH_FXP_EXTENDED request provides a generic extension mechanism
 for adding additional commands.

 byte SSH_FXP_EXTENDED
 uint32 request-id
 string extended-request
 ... any request-specific data ...

 request-id
 Identifier to be returned from the server with the response.

 extended-request
 A string naming the extension, following the the DNS extensibility
 naming convention outlined in [RFC4251], or defined by IETF
 consensus.

https://datatracker.ietf.org/doc/html/rfc4251

Galbraith & Saarenmaa Expires July 29, 2006 [Page 53]

Internet-Draft SSH File Transfer Protocol January 2006

 request-specific data
 The rest of the request is defined by the extension; servers
 SHOULD NOT attempt to interpret it if they do not recognize the
 'extended-request' name.

 The server may respond to such requests using any of the response
 packets defined in Section ''Responses from the Server to the
 Client''. Additionally, the server may also respond with a
 SSH_FXP_EXTENDED_REPLY packet, as defined below. If the server does
 not recognize the 'extended-request' name, then the server MUST
 respond with SSH_FXP_STATUS with error/status set to
 SSH_FX_OP_UNSUPPORTED.

 The SSH_FXP_EXTENDED_REPLY packet can be used to carry arbitrary
 extension-specific data from the server to the client. It is of the
 following format:

 byte SSH_FXP_EXTENDED_REPLY
 uint32 request-id
 ... any request-specific data ...

 There is a range of packet types reserved for use by extensions. In
 order to avoid collision, extensions that that use additional packet
 types should determine those numbers dynamically.

 The suggested way of doing this is have an extension request from the
 client to the server that enables the extension; the extension
 response from the server to the client would specify the actual type
 values to use, in addition to any other data.

 Extension authors should be mindful of the limited range of packet
 types available (there are only 45 values available) and avoid
 requiring a new packet type where possible.

11. Implementation Considerations

 In order for this protocol to perform well, especially over high
 latency networks, multiple read and write requests should be queued
 to the server.

 The data size of requests should match the maximum packet size for
 the next layer up in the protocol chain.

 When implemented over ssh, the best performance should be achieved
 when the data size matches the channel's max packet, and the channel
 window is a multiple of the channel packet size.

Galbraith & Saarenmaa Expires July 29, 2006 [Page 54]

Internet-Draft SSH File Transfer Protocol January 2006

 Implementations MUST be aware that requests do not have to be
 satisfied in the order issued. (See Request Synchronization and
 Reordering (Section 4.1).)

 Implementations MUST also be aware that read requests may not return
 all the requested data, even if the data is available.

12. IANA Considerations

 An IANA registry needs to be created containing:
 o The packet types define defined in Section 4.3
 o The extension specified in this draft, which are: 'text-seek',
 'supported2', 'acl-supported', 'newline', 'versions', 'version-
 select', 'filename-charset', 'filename-translation-control'

13. Security Considerations

 It is assumed that both ends of the connection have been
 authenticated and that the connection has privacy and integrity
 features. Such security issues are left to the underlying transport
 protocol, except to note that if this is not the case, an attacker
 could manipulate files on the server at will and thus wholly
 compromise the server.

 This protocol provides file system access to arbitrary files on the
 server (constrained only by the server implementation). It is the
 responsibility of the server implementation to enforce any access
 controls that may be required to limit the access allowed for any
 particular user (the user being authenticated externally to this
 protocol, typically using [RFC4252].

 Extreme care must be used when interpreting file handle strings. In
 particular, care must be taken that a file handle string is valid in
 the context of a given 'file-share' session. For example, the 'file-
 share' server daemon may have files which it has opened for its own
 purposes, and the client must not be able to access these files by
 specifying an arbitrary file handle string.

 The permission field of the attrib structure (Section 7.6) may
 include the SUID, SGID, and SVTX (sticky) bits. Clients should use
 extreme caution when setting these bits on either remote or local
 files. (I.e., just because a file was SUID on the remote system does
 not necessarily imply that it should be SUID on the local system.)

 Filesystems often contain entries for objects that are not files at
 all, but are rather devices. For example, it may be possible to

https://datatracker.ietf.org/doc/html/rfc4252

Galbraith & Saarenmaa Expires July 29, 2006 [Page 55]

Internet-Draft SSH File Transfer Protocol January 2006

 access serial ports, tape devices, or named pipes using this
 protocol. Servers should exercise caution when granting access to
 such resources. In addition to the dangers inherent in allowing
 access to such a device, some devices may be 'slow', and could cause
 denial of service by causing the server to block for a long period of
 time while I/O is performed to such a device.

 Servers should take care that file-system quotas are respected for
 users. In addition, implementations should be aware that attacks may
 be possible, or facilitated, by filling a filesystem. For example,
 filling the filesystem where event logging and auditing occurs may,
 at best, cause the system to crash, or at worst, allow the attacker
 to take untraceable actions in the future.

 Servers should take care that filenames are in their appropriate
 canonical form, and to ensure that filenames not in canonical form
 cannot be used to bypass access checks or controls.

 If the server implementation limits access to certain parts of the
 file system, extra care must be taken in parsing file names which
 contain the '..' path element, and when following symbolic links,
 shortcuts, or other filesystem objects which might transpose the path
 to refer to an object outside of the restricted area. There have
 been numerous reported security bugs where a ".." in a path name has
 allowed access outside the intended area.

14. Changes from Previous Protocol Versions

 RFC EDITOR: PLEASE REMOVE ENTIRE SECTION BEFORE PUBLISHING

 Please refer to the following web page for pervious versions of the
 protocol:

http://tools.ietf.org/wg/secsh/draft-ietf-secsh-filexfer/

 RFC EDITOR: END PLEASE REMOVE ENTIRE SECTION BEFORE PUBLISHING

15. References

15.1. Normative References

 [RFC3010] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "NFS version 4
 Protocol", RFC 3010, December 2000.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)

http://tools.ietf.org/wg/secsh/draft-ietf-secsh-filexfer/
https://datatracker.ietf.org/doc/html/rfc3010

Galbraith & Saarenmaa Expires July 29, 2006 [Page 56]

Internet-Draft SSH File Transfer Protocol January 2006

 Protocol Architecture", RFC 4251, January 2006.

 [RFC4253] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, January 2006.

 [RFC4254] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, January 2006.

 [IEEE.1003-1.1996]
 Institute of Electrical and Electronics Engineers,
 "Information Technology - Portable Operating System
 Interface (POSIX) - Part 1: System Application Program
 Interface (API) [C Language]", IEEE Standard 1003.2, 1996.

15.2. Informative References

 [RFC1521] Borenstein, N. and N. Freed, "MIME (Multipurpose Internet
 Mail Extensions) Part One: Mechanisms for Specifying and
 Describing the Format of Internet Message Bodies",

RFC 1521, September 1993.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

 [RFC4252] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, January 2006.

Trademark notice

 "ssh" is a registered trademark in the United States and/or other
 countries.

https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc4254
https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc4252

Galbraith & Saarenmaa Expires July 29, 2006 [Page 57]

Internet-Draft SSH File Transfer Protocol January 2006

Authors' Addresses

 Joseph Galbraith
 VanDyke Software
 4848 Tramway Ridge Blvd
 Suite 101
 Albuquerque, NM 87111
 US

 Phone: +1 505 332 5700
 Email: galb-list@vandyke.com

 Oskari Saarenmaa
 F-Secure
 Tammasaarenkatu 7
 Helsinki 00180
 FI

 Email: oskari.saarenmaa@f-secure.com

Galbraith & Saarenmaa Expires July 29, 2006 [Page 58]

Internet-Draft SSH File Transfer Protocol January 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Galbraith & Saarenmaa Expires July 29, 2006 [Page 59]

