
Network Working Group T. Ylonen
INTERNET-DRAFT T. Kivinen
draft-ietf-secsh-transport-10.txt M. Saarinen
Expires: 2 September, 2001 T. Rinne
 S. Lehtinen
 SSH Communications Security
 2 March, 2001

Secure Shell Transport Layer Protocol

Status of This Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

The Secure Shell Remote Login Protocol is a protocol for secure remote
login and other secure network services over an insecure network. This
document describes the Secure Shell transport layer protocol which typi-
cally runs on top of TCP/IP. The protocol can be used as a basis for a
number of secure network services. It provides strong encryption, server
authentication, and integrity protection. It may also provide compres-
sion. Key exchange method, public key algorithm, symmetric encryption
algorithm, message authentication algorithm, and hash algorithm are all
negotiated. This document also describes the Diffie-Hellman key
exchange method and the minimal set of algorithms that are needed to
implement the Secure Shell transport layer protocol.

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-transport-10.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 1]

INTERNET-DRAFT 2 March, 2001

Table of Contents

1. Introduction . 2
2. Conventions Used in This Document 3
3. Connection Setup . 3
3.1. Use over TCP/IP . 3
3.2. Protocol Version Exchange 3
3.3. Compatibility With Old Secure Shell Versions 4
3.3.1. Old Client, New Server 4
3.3.2. New Client, Old Server 4

4. Binary Packet Protocol . 4
4.1. Maximum Packet Length 5
4.2. Compression . 6
4.3. Encryption . 6
4.4. Data Integrity . 8
4.5. Key Exchange Methods . 9
4.6. Public Key Algorithms 9

5. Key Exchange . 11
5.1. Algorithm Negotiation 12
5.2. Output from Key Exchange 14
5.3. Taking Keys Into Use . 15

6. Diffie-Hellman Key Exchange 15
6.1. diffie-hellman-group1-sha1 17

7. Key Re-Exchange . 17
8. Service Request . 18
9. Additional Messages . 18
9.1. Disconnection Message 19
9.2. Ignored Data Message . 19
9.3. Debug Message . 19
9.4. Reserved Messages . 20

10. Summary of Message Numbers 20
11. Security Considerations . 20
12. Trademark Issues . 21
13. References . 21
14. Authors' Addresses . 22

1. Introduction

The Secure Shell transport layer protocol is a secure low level
transport protocol. It provides strong encryption, cryptographic host
authentication, and integrity protection.

Authentication in this protocol level is host-based; this protocol does
not perform user authentication. A higher level protocol for user
authentication can be designed on top of this protocol.

The protocol has been designed to be simple, flexible, to allow

parameter negotiation, and to minimize the number of round-trips. Key
exchange method, public key algorithm, symmetric encryption algorithm,
message authentication algorithm, and hash algorithm are all negotiated.
It is expected that in most environments, only 2 round-trips will be

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 2]

INTERNET-DRAFT 2 March, 2001

needed for full key exchange, server authentication, service request,
and acceptance notification of service request. The worst case is 3
round-trips.

2. Conventions Used in This Document

The keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", and
"MAY" that appear in this document are to be interpreted as described in
[RFC-2119].

The used data types and terminology are specified in the architecture
document [SECSH-ARCH].

The architecture document also discusses the algorithm naming
conventions that MUST be used with the Secure Shell protocols.
3. Connection Setup

The Secure Shell Transport Layer Protocol works over any 8-bit clean,
binary-transparent transport. The underlying transport SHOULD protect
against transmission errors as such errors cause the Secure Shell
connection to terminate.

The client initiates the connection.

3.1. Use over TCP/IP

When used over TCP/IP, the server normally listens for connections on
port 22. This port number has been registered with the IANA, and has
been officially assigned for Secure Shell.

3.2. Protocol Version Exchange

When the connection has been established, both sides MUST send an
identification string of the form "SSH-protoversion-softwareversion
comments", followed by carriage return and newline characters (ASCII 13
and 10, respectively). Both sides MUST be able to process
identification strings without carriage return character. No null
character is sent. The maximum length of the string is 255 characters,
including the carriage return and newline.

The part of the identification string preceding carriage return and
newline is used in the Diffie-Hellman key exchange (see Section
``Diffie-Hellman Key Exchange'').

The server MAY send other lines of data before sending the version
string. Each line SHOULD be terminated by a carriage return and
newline. Such lines MUST NOT begin with "SSH-", and SHOULD be encoded
in ISO-10646 UTF-8 [RFC-2279] (language is not specified). Clients MUST
be able to process such lines; they MAY be silently ignored, or MAY be
displayed to the client user; if they are displayed, control character

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2279

filtering discussed in [SECSH-ARCH] SHOULD be used. The primary use of
this feature is to allow TCP-wrappers to display an error message before
disconnecting.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 3]

INTERNET-DRAFT 2 March, 2001

Version strings MUST consist of printable US-ASCII characters, not
including whitespaces or a minus sign (-). The version string is
primarily used to trigger compatibility extensions and to indicate the
capabilities of an implementation. The comment string should contain
additional information that might be useful in solving user problems.

The protocol version described in this document is 2.0.

Key exchange will begin immediately after sending this identifier. All
packets following the identification string SHALL use the binary packet
protocol, to be described below.

3.3. Compatibility With Old Secure Shell Versions

During the transition period, it is important to be able to work in a
way that is compatible with the installed Secure Shell clients and
servers that use an older version of the protocol. Information in this
section is only relevant for implementations supporting compatibility
with Secure Shell versions 1.x.

3.3.1. Old Client, New Server

Server implementations MAY support a configurable "compatibility" flag
that enables compatibility with old versions. When this flag is on, the
server SHOULD identify its protocol version as "1.99". Clients using
protocol 2.0 MUST be able to identify this as identical to "2.0". In
this mode the server SHOULD NOT send the carriage return character
(ASCII 13) after the version identification string.

In the compatibility mode the server SHOULD NOT send any further data
after its initialization string until it has received an identification
string from the client. The server can then determine whether the
client is using an old protocol, and can revert to the old protocol if
required. In the compatibility mode, the server MUST NOT send
additional data before the version string.

When compatibility with old clients is not needed, the server MAY send
its initial key exchange data immediately after the identification
string.

3.3.2. New Client, Old Server

Since the new client MAY immediately send additional data after its
identification string (before receiving server's identification), the
old protocol may already have been corrupted when the client learns that
the server is old. When this happens, the client SHOULD close the
connection to the server, and reconnect using the old protocol.

4. Binary Packet Protocol

Each packet is in the following format:

 uint32 packet_length

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 4]

INTERNET-DRAFT 2 March, 2001

 byte padding_length
 byte[n1] payload; n1 = packet_length - padding_length - 1
 byte[n2] random padding; n2 = padding_length
 byte[m] mac (message authentication code); m = mac_length

 packet_length
 The length of the packet (bytes), not including MAC or the
 packet_length field itself.

 padding_length
 Length of padding (bytes).

 payload
 The useful contents of the packet. If compression has been
 negotiated, this field is compressed. Initially, compression MUST
 be "none".

 Padding
 Arbitrary-length padding, such that the total length of
 (packet_length || padding_length || payload || padding) is a
 multiple of the cipher block size or 8, whichever is larger.
 There MUST be at least four bytes of padding. The padding SHOULD
 consist of random bytes. The maximum amount of padding is 255
 bytes.

 MAC
 Message authentication code. If message authentication has been
 negotiated, this field contains the MAC bytes. Initially, the MAC
 algorithm MUST be "none".

Note that length of the concatenation of packet length, padding length,
payload, and padding MUST be a multiple of the cipher block size or 8,
whichever is larger. This constraint MUST be enforced even when using
stream ciphers. Note that the packet length field is also encrypted,
and processing it requires special care when sending or receiving
packets.

The minimum size of a packet is 16 (or the cipher block size, whichever
is larger) bytes (plus MAC); implementations SHOULD decrypt the length
after receiving the first 8 (or cipher block size, whichever is larger)
bytes of a packet.

4.1. Maximum Packet Length

All implementations MUST be able to process packets with uncompressed
payload length of 32768 bytes or less and total packet size of 35000
bytes or less (including length, padding length, payload, padding, and
MAC.). The maximum of 35000 bytes is an arbitrary chosen value larger
than uncompressed size. Implementations SHOULD support longer packets,
where they might be needed, e.g. if an implementation wants to send a

very large number of certificates. Such packets MAY be sent if the
version string indicates that the other party is able to process them.
However, implementations SHOULD check that the packet length is

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 5]

INTERNET-DRAFT 2 March, 2001

reasonable for the implementation to avoid denial-of-service and/or
buffer overflow attacks.

4.2. Compression

If compression has been negotiated, the payload field (and only it) will
be compressed using the negotiated algorithm. The length field and MAC
will be computed from the compressed payload. Encryption will be done
after compression.

Compression MAY be stateful, depending on the method. Compression MUST
be independent for each direction, and implementations MUST allow
independently choosing the algorithm for each direction.

The following compression methods are currently defined:

 none REQUIRED no compression
 zlib OPTIONAL ZLIB (LZ77) compression

The "zlib" compression is described in [RFC-1950] and in [RFC-1951]. The
compression context is initialized after each key exchange, and is
passed from one packet to the next with only a partial flush being
performed at the end of each packet. A partial flush means that all data
will be output, but the next packet will continue using compression
tables from the end of the previous packet.

Additional methods may be defined as specified in [SECSH-ARCH].

4.3. Encryption

An encryption algorithm and a key will be negotiated during the key
exchange. When encryption is in effect, the packet length, padding
length, payload and padding fields of each packet MUST be encrypted with
the given algorithm.

The encrypted data in all packets sent in one direction SHOULD be
considered a single data stream. For example, initialization vectors
SHOULD be passed from the end of one packet to the beginning of the next
packet. All ciphers SHOULD use keys with an effective key length of 128
bits or more.

The ciphers in each direction MUST run independently of each other, and
implementations MUST allow independently choosing the algorithm for each
direction (if multiple algorithms are allowed by local policy).

The following ciphers are currently defined:

 3des-cbc REQUIRED three-key 3DES in CBC mode
 blowfish-cbc RECOMMENDED Blowfish in CBC mode
 twofish256-cbc OPTIONAL Twofish in CBC mode,

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951

 with 256-bit key
 twofish-cbc OPTIONAL alias for "twofish256-cbc" (this
 is being retained for

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 6]

INTERNET-DRAFT 2 March, 2001

 historical reasons)
 twofish192-cbc OPTIONAL Twofish with 192-bit key
 twofish128-cbc RECOMMENDED Twofish with 128-bit key
 aes256-cbc OPTIONAL AES (Rijndael) in CBC mode,
 with 256-bit key
 aes192-cbc OPTIONAL AES with 192-bit key
 aes128-cbc RECOMMENDED AES with 128-bit key
 serpent256-cbc OPTIONAL Serpent in CBC mode, with
 256-bit key
 serpent192-cbc OPTIONAL Serpent with 192-bit key
 serpent128-cbc OPTIONAL Serpent with 128-bit key
 arcfour OPTIONAL the ARCFOUR stream cipher
 idea-cbc OPTIONAL IDEA in CBC mode
 cast128-cbc OPTIONAL CAST-128 in CBC mode
 none OPTIONAL no encryption; NOT RECOMMENDED

The "3des-cbc" cipher is three-key triple-DES (encrypt-decrypt-encrypt),
where the first 8 bytes of the key are used for the first encryption,
the next 8 bytes for the decryption, and the following 8 bytes for the
final encryption. This requires 24 bytes of key data (of which 168 bits
are actually used). To implement CBC mode, outer chaining MUST be used
(i.e., there is only one initialization vector). This is a block cipher
with 8 byte blocks. This algorithm is defined in [SCHNEIER].

The "blowfish-cbc" cipher is Blowfish in CBC mode, with 128 bit keys
[SCHNEIER]. This is a block cipher with 8 byte blocks.

The "twofish-cbc" or "twofish256-cbc" cipher is Twofish in CBC mode,
with 256 bit keys as described [TWOFISH]. This is a block cipher with 16
byte blocks.

The "twofish192-cbc" cipher. Same as above but with 192-bit key.

The "twofish128-cbc" cipher. Same as above but with 128-bit key.

The "aes256-cbc" cipher is AES (Advanced Encryption Standard), formerly
Rijndael, in CBC mode. This version uses 256-bit key.

The "aes192-cbc" cipher. Same as above but with 192-bit key.

The "aes128-cbc" cipher. Same as above but with 128-bit key.

The "serpent256-cbc" cipher in CBC mode, with 256-bit key as described
in the Serpent AES submission.

The "serpent192-cbc" cipher. Same as above but with 192-bit key.

The "serpent128-cbc" cipher. Same as above but with 128-bit key.

The "arcfour" is the Arcfour stream cipher with 128 bit keys. The

Arcfour cipher is believed to be compatible with the RC4 cipher
[SCHNEIER]. RC4 is a registered trademark of RSA Data Security Inc.
Arcfour (and RC4) has problems with weak keys, and should be used with

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 7]

INTERNET-DRAFT 2 March, 2001

caution.

The "idea-cbc" cipher is the IDEA cipher in CBC mode [SCHNEIER]. IDEA is
patented by Ascom AG.

The "cast128-cbc" cipher is the CAST-128 cipher in CBC mode [RFC-2144].

The "none" algorithm specifies that no encryption is to be done. Note
that this method provides no confidentiality protection, and it is not
recommended. Some functionality (e.g. password authentication) may be
disabled for security reasons if this cipher is chosen.

Additional methods may be defined as specified in [SECSH-ARCH].

4.4. Data Integrity

Data integrity is protected by including with each packet a message
authentication code (MAC) that is computed from a shared secret, packet
sequence number, and the contents of the packet.

The message authentication algorithm and key are negotiated during key
exchange. Initially, no MAC will be in effect, and its length MUST be
zero. After key exchange, the selected MAC will be computed before
encryption from the concatenation of packet data:

 mac = MAC(key, sequence_number || unencrypted_packet)

where unencrypted_packet is the entire packet without MAC (the length
fields, payload and padding), and sequence_number is an implicit packet
sequence number represented as uint32. The sequence number is
initialized to zero for the first packet, and is incremented after every
packet (regardless of whether encryption or MAC is in use). It is never
reset, even if keys/algorithms are renegotiated later. It wraps around
to zero after every 2^32 packets. The packet sequence number itself is
not included in the packet sent over the wire.

The MAC algorithms for each direction MUST run independently, and
implementations MUST allow choosing the algorithm independently for both
directions.

The MAC bytes resulting from the MAC algorithm MUST be transmitted
without encryption as the last part of the packet. The number of MAC
bytes depends on the algorithm chosen.

The following MAC algorithms are currently defined:

 hmac-sha1 REQUIRED HMAC-SHA1 (digest length = key
 length = 20)
 hmac-sha1-96 RECOMMENDED first 96 bits of HMAC-SHA1 (digest
 length = 12, key length = 20)

https://datatracker.ietf.org/doc/html/rfc2144

 hmac-md5 OPTIONAL HMAC-MD5 (digest length = key
 length = 16)
 hmac-md5-96 OPTIONAL first 96 bits of HMAC-MD5 (digest

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 8]

INTERNET-DRAFT 2 March, 2001

 length = 12, key length = 16)
 none OPTIONAL no MAC; NOT RECOMMENDED

The "hmac-*" algorithms are described in [RFC-2104]. The "*-n" MACs use
only the first n bits of the resulting value.

The hash algorithms are described in [SCHNEIER].

The "none" method is NOT RECOMMENDED. An active attacker may be able to
modify transmitted data if this is used.

Additional methods may be defined as specified in [SECSH-ARCH].

4.5. Key Exchange Methods

The key exchange method specifies how one-time session keys are
generated for encryption and for authentication, and how the server
authentication is done.

Only one REQUIRED key exchange method has been defined:

 diffie-hellman-group1-sha1 REQUIRED

This method is described later in this document.

Additional methods may be defined as specified in [SECSH-ARCH].

4.6. Public Key Algorithms

This protocol has been designed to be able to operate with almost any
public key format, encoding, and algorithm (signature and/or
encryption).

There are several aspects that define a public key type:

o Key format: how is the key encoded and how are certificates
 represented. The key blobs in this protocol MAY contain certificates
 in addition to keys.

o Signature and/or encryption algorithms. Some key types may not
 support both signing and encryption. Key usage may also be
 restricted by policy statements in e.g. certificates. In this case,
 different key types SHOULD be defined for the different policy
 alternatives.

o Encoding of signatures and/or encrypted data. This includes but is
 not limited to padding, byte order, and data formats.

The following public key and/or certificate formats are currently
defined:

https://datatracker.ietf.org/doc/html/rfc2104

ssh-dss REQUIRED sign Simple DSS
ssh-rsa RECOMMENDED sign Simple RSA

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 9]

INTERNET-DRAFT 2 March, 2001

x509v3-sign-rsa RECOMMENDED sign X.509 certificates (RSA key)
x509v3-sign-dss RECOMMENDED sign X.509 certificates (DSS key)
spki-sign-rsa OPTIONAL sign SPKI certificates (RSA key)
spki-sign-dss OPTIONAL sign SPKI certificates (DSS key)
pgp-sign-rsa OPTIONAL sign OpenPGP certificates (RSA key)
pgp-sign-dss OPTIONAL sign OpenPGP certificates (DSS key)

Additional key types may be defined as specified in [SECSH-ARCH].

The key type MUST always be explicitly known (from algorithm negotiation
or some other source). It is not normally included in the key blob.

Certificates and public keys are encoded as follows:

 string certificate or public key format identifier
 byte[n] key/certificate data

The certificate part may have be a zero length string, but a public key
is required. This is the public key that will be used for
authentication; the certificate sequence contained in the certificate
blob can be used to provide authorization.

The "ssh-dss" key format has the following specific encoding:

 string "ssh-dss"
 mpint p
 mpint q
 mpint g
 mpint y

Here the p, q, g, and y parameters form the signature key blob.

Signing and verifying using this key format is done according to the
Digital Signature Standard [FIPS-186] using the SHA-1 hash. A
description can also be found in [SCHNEIER].

The resulting signature is encoded as follows:

 string "ssh-dss"
 string dss_signature_blob

dss_signature_blob is encoded as a string containing r followed by s
(which are 160 bits long integers, without lengths or padding, unsigned
and in network byte order).

The "ssh-rsa" key format has the following specific encoding:

 string "ssh-rsa"
 mpint e
 mpint n

Here the e and n parameters form the signature key blob.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 10]

INTERNET-DRAFT 2 March, 2001

Signing and verifying using this key format is done according to
[SCHNEIER] and [PKCS1] using the SHA-1 hash.

The resulting signature is encoded as follows:

 string "ssh-rsa"
 string rsa_signature_blob

rsa_signature_blob is encoded as a string containing s (which is an
integer, without lengths or padding, unsigned and in network byte
order).

The "x509v3-sign-rsa" method indicates that the certificates, the public
key, and the resulting signature are in X.509v3 compatible DER-encoded
format. The formats used in X.509v3 is described in [RFC-2459]. This
method indicates that the key (or one of the keys in the certificate) is
an RSA-key.

The "x509v3-sign-dss". As above, but indicates that the key (or one of
the keys in the certificate) is a DSS-key.

The "spki-sign-rsa" method indicates that the certificate blob contains
a sequence of SPKI certificates. The format of SPKI certificates is
described in [RFC-2693]. This method indicates that the key (or one of
the keys in the certificate) is an RSA-key.

The "spki-sign-dss". As above, but indicates that the key (or one of the
keys in the certificate) is a DSS-key.

The "pgp-sign-rsa" method indicates the certificates, the public key,
and the signature are in OpenPGP compatible binary format ([RFC-2440]).
This method indicates that the key is an RSA-key.

The "pgp-sign-dss". As above, but indicates that the key is a DSS-key.

5. Key Exchange

Key exchange begins by each side sending lists of supported algorithms.
Each side has a preferred algorithm in each category, and it is assumed
that most implementations at any given time will use the same preferred
algorithm. Each side MAY guess which algorithm the other side is using,
and MAY send an initial key exchange packet according to the algorithm
if appropriate for the preferred method.

Guess is considered wrong, if:

o the kex algorithm and/or the host key algorithm is guessed wrong
 (server and client have different preferred algorithm), or

o if any of the other algorithms cannot be agreed upon (the procedure

https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/rfc2440

 is defined below in Section ``Algorithm Negotiation'').

Otherwise, the guess is considered to be right and the optimistically

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 11]

INTERNET-DRAFT 2 March, 2001

sent packet MUST be handled as the first key exchange packet.

However, if the guess was wrong, and a packet was optimistically sent by
one or both parties, such packets MUST be ignored (even if the error in
the guess would not affect the contents of the initial packet(s)), and
the appropriate side MUST send the correct initial packet.

Server authentication in the key exchange MAY be implicit. After a key
exchange with implicit server authentication, the client MUST wait for
response to its service request message before sending any further data.

5.1. Algorithm Negotiation

Key exchange begins by each side sending the following packet:

 byte SSH_MSG_KEXINIT
 byte[16] cookie (random bytes)
 string kex_algorithms
 string server_host_key_algorithms
 string encryption_algorithms_client_to_server
 string encryption_algorithms_server_to_client
 string mac_algorithms_client_to_server
 string mac_algorithms_server_to_client
 string compression_algorithms_client_to_server
 string compression_algorithms_server_to_client
 string languages_client_to_server
 string languages_server_to_client
 boolean first_kex_packet_follows
 uint32 0 (reserved for future extension)

Each of the algorithm strings MUST be a comma-separated list of
algorithm names (see ''Algorithm Naming'' in [SECSH-ARCH]). Each
supported (allowed) algorithm MUST be listed in order of preference.

The first algorithm in each list MUST be the preferred (guessed)
algorithm. Each string MUST contain at least one algorithm name.

 cookie
 The cookie MUST be a random value generated by the sender. Its
 purpose is to make it impossible for either side to fully
 determine the keys and the session identifier.

 kex_algorithms
 Key exchange algorithms were defined above. The first algorithm
 MUST be the preferred (and guessed) algorithm. If both sides make
 the same guess, that algorithm MUST be used. Otherwise, the
 following algorithm MUST be used to choose a key exchange method:
 iterate over client's kex algorithms, one at a time. Choose the
 first algorithm that satisfies the following conditions:

 o the server also supports the algorithm,

 o if the algorithm requires an encryption-capable host key, there is

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 12]

INTERNET-DRAFT 2 March, 2001

 an encryption-capable algorithm on the server's
 server_host_key_algorithms that is also supported by the client,
 and

 o if the algorithm requires a signature-capable host key, there is a
 signature-capable algorithm on the server's
 server_host_key_algorithms that is also supported by the client.

 If no algorithm satisfying all these conditions can be found, the
 connection fails, and both sides MUST disconnect.

 server_host_key_algorithms
 List of the algorithms supported for the server host key. The
 server lists the algorithms for which it has host keys; the client
 lists the algorithms that it is willing to accept. (There MAY be
 multiple host keys for a host, possibly with different
 algorithms.)

 Some host keys may not support both signatures and encryption
 (this can be determined from the algorithm), and thus not all host
 keys are valid for all key exchange methods.

 Algorithm selection depends on whether the chosen key exchange
 algorithm requires a signature or encryption capable host key. It
 MUST be possible to determine this from the public key algorithm
 name. The first algorithm on the client's list that satisfies the
 requirements and is also supported by the server MUST be chosen.
 If there is no such algorithm, both sides MUST disconnect.

 encryption_algorithms
 Lists the acceptable symmetric encryption algorithms in order of
 preference. The chosen encryption algorithm to each direction
 MUST be the first algorithm on the client's list that is also on
 the server's list. If there is no such algorithm, both sides MUST
 disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The defined algorithm names are listed in Section
 ``Encryption''.

 mac_algorithms
 Lists the acceptable MAC algorithms in order of preference. The
 chosen MAC algorithm MUST be the first algorithm on the client's
 list that is also on the server's list. If there is no such
 algorithm, both sides MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The MAC algorithm names are listed in Section ``Data
 Integrity''.

 compression_algorithms
 Lists the acceptable compression algorithms in order of
 preference. The chosen compression algorithm MUST be the first

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 13]

INTERNET-DRAFT 2 March, 2001

 algorithm on the client's list that is also on the server's list.
 If there is no such algorithm, both sides MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The compression algorithm names are listed in Section
 ``Compression''.
 languages
 This is a comma-separated list of language tags in order of
 preference [RFC-1766]. Both parties MAY ignore this list. If there
 are no language preferences, this list SHOULD be empty.

 first_kex_packet_follows
 Indicates whether a guessed key exchange packet follows. If a
 guessed packet will be sent, this MUST be TRUE. If no guessed
 packet will be sent, this MUST be FALSE.

 After receiving the SSH_MSG_KEXINIT packet from the other side,
 each party will know whether their guess was right. If the other
 party's guess was wrong, and this field was TRUE, the next packet
 MUST be silently ignored, and both sides MUST then act as
 determined by the negotiated key exchange method. If the guess
 was right, key exchange MUST continue using the guessed packet.

After the KEXINIT packet exchange, the key exchange algorithm is run. It
may involve several packet exchanges, as specified by the key exchange
method.

5.2. Output from Key Exchange

The key exchange produces two values: a shared secret K, and an exchange
hash H. Encryption and authentication keys are derived from these. The
exchange hash H from the first key exchange is additionally used as the
session identifier, which is a unique identifier for this connection.
It is used by authentication methods as a part of the data that is
signed as a proof of possession of a private key. Once computed, the
session identifier is not changed, even if keys are later re-exchanged.

Each key exchange method specifies a hash function that is used in the
key exchange. The same hash algorithm MUST be used in key derivation.
Here, we'll call it HASH.

Encryption keys MUST be computed as HASH of a known value and K as
follows:

o Initial IV client to server: HASH(K || H || "A" || session_id) (Here
 K is encoded as mpint and "A" as byte and session_id as raw data."A"
 means the single character A, ASCII 65).

o Initial IV server to client: HASH(K || H || "B" || session_id)

https://datatracker.ietf.org/doc/html/rfc1766

o Encryption key client to server: HASH(K || H || "C" || session_id)

o Encryption key server to client: HASH(K || H || "D" || session_id)

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 14]

INTERNET-DRAFT 2 March, 2001

o Integrity key client to server: HASH(K || H || "E" || session_id)

o Integrity key server to client: HASH(K || H || "F" || session_id)

Key data MUST be taken from the beginning of the hash output. 128 bits
(16 bytes) SHOULD be used for algorithms with variable-length keys. For
other algorithms, as many bytes as are needed are taken from the
beginning of the hash value. If the key length in longer than the output
of the HASH, the key is extended by computing HASH of the concatenation
of K and H and the entire key so far, and appending the resulting bytes
(as many as HASH generates) to the key. This process is repeated until
enough key material is available; the key is taken from the beginning of
this value. In other words:

 K1 = HASH(K || H || X || session_id) (X is e.g. "A")
 K2 = HASH(K || H || K1)
 K3 = HASH(K || H || K1 || K2)
 ...
 key = K1 || K2 || K3 || ...

This process will lose entropy if the amount of entropy in K is larger
than the internal state size of HASH.

5.3. Taking Keys Into Use

Key exchange ends by each side sending an SSH_MSG_NEWKEYS message. This
message is sent with the old keys and algorithms. All messages sent
after this message MUST use the new keys and algorithms.

When this message is received, the new keys and algorithms MUST be taken
into use for receiving.

This message is the only valid message after key exchange, in addition
to SSH_MSG_DEBUG, SSH_MSG_DISCONNECT and SSH_MSG_IGNORE messages. The
purpose of this message is to ensure that a party is able to respond
with a disconnect message that the other party can understand if
something goes wrong with the key exchange. Implementations MUST NOT
accept any other messages after key exchange before receiving
SSH_MSG_NEWKEYS.

 byte SSH_MSG_NEWKEYS

6. Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange provides a shared secret that can not be
determined by either party alone. The key exchange is combined with a
signature with the host key to provide host authentication.

In the following description (C is the client, S is the server; p is a
large safe prime, g is a generator for a subgroup of GF(p), and q is the

order of the subgroup; V_S is S's version string; V_C is C's version
string; K_S is S's public host key; I_C is C's KEXINIT message and I_S
S's KEXINIT message which have been exchanged before this part begins):

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 15]

INTERNET-DRAFT 2 March, 2001

1. C generates a random number x (1 < x < q) and computes e = g^x mod p.
 C sends "e" to S.

2. S generates a random number y (0 < y < q) and computes f = g^y mod p.
 S receives "e". It computes K = e^y mod p, H = hash(V_C || V_S ||
 I_C || I_S || K_S || e || f || K) (these elements are encoded
 according to their types; see below), and signature s on H with its
 private host key. S sends "K_S || f || s" to C. The signing
 operation may involve a second hashing operation.

3. C verifies that K_S really is the host key for S (e.g. using
 certificates or a local database). C is also allowed to accept the
 key without verification; however, doing so will render the protocol
 insecure against active attacks (but may be desirable for practical
 reasons in the short term in many environments). C then computes K =
 f^x mod p, H = hash(V_C || V_S || I_C || I_S || K_S || e || f || K),
 and verifies the signature s on H.

 Either side MUST NOT send or accept e or f values that are not in the
 range [1, p-1]. If this condition is violated, the key exchange
 fails.

This is implemented with the following messages. The hash algorithm for
computing the exchange hash is defined by the method name, and is called
HASH. The public key algorithm for signing is negotiated with the
KEXINIT messages.

First, the client sends the following:

 byte SSH_MSG_KEXDH_INIT
 mpint e

The server responds with the following:

 byte SSH_MSG_KEXDH_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

The hash H is computed as the HASH hash of the concatenation of the
following:

 string V_C, the client's version string (CR and NL excluded)
 string V_S, the server's version string (CR and NL excluded)
 string I_C, the payload of the client's SSH_MSG_KEXINIT
 string I_S, the payload of the server's SSH_MSG_KEXINIT
 string K_S, the host key
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

This value is called the exchange hash, and it is used to authenticate
the key exchange. The exchange hash SHOULD be kept secret.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 16]

INTERNET-DRAFT 2 March, 2001

The signature algorithm MUST be applied over H, not the original data.
Most signature algorithms include hashing and additional padding. For
example, "ssh-dss" specifies SHA-1 hashing; in that case, the data is
first hashed with HASH to compute H, and H is then hashed with SHA-1 as
part of the signing operation.

6.1. diffie-hellman-group1-sha1

The "diffie-hellman-group1-sha1" method specifies Diffie-Hellman key
exchange with SHA-1 as HASH, and the following group:

The prime p is equal to 2^1024 - 2^960 - 1 + 2^64 * floor(2^894 Pi +
129093). Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
 FFFFFFFF FFFFFFFF.

In decimal, this value is:

 179769313486231590770839156793787453197860296048756011706444
 423684197180216158519368947833795864925541502180565485980503
 646440548199239100050792877003355816639229553136239076508735
 759914822574862575007425302077447712589550957937778424442426
 617334727629299387668709205606050270810842907692932019128194
 467627007.

The generator used with this prime is g = 2. The group order q is (p -
1) / 2.

This group was taken from the ISAKMP/Oakley specification, and was
originally generated by Richard Schroeppel at the University of Arizona.
Properties of this prime are described in [Orm96].

7. Key Re-Exchange

Key re-exchange is started by sending an SSH_MSG_KEXINIT packet when not
already doing a key exchange (as described in Section ``Algorithm
Negotiation''). When this message is received, a party MUST respond
with its own SSH_MSG_KEXINIT message except when the received
SSH_MSG_KEXINIT already was a reply. Either party MAY initiate the re-
exchange, but roles MUST NOT be changed (i.e., the server remains the
server, and the client remains the client).

Key re-exchange is performed using whatever encryption was in effect
when the exchange was started. Encryption, compression, and MAC methods
are not changed before a new SSH_MSG_NEWKEYS is sent after the key

exchange (as in the initial key exchange). Re-exchange is processed
identically to the initial key exchange, except for the session
identifier that will remain unchanged. It is permissible to change some

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 17]

INTERNET-DRAFT 2 March, 2001

or all of the algorithms during the re-exchange. Host keys can also
change. All keys and initialization vectors are recomputed after the
exchange. Compression and encryption contexts are reset.

It is recommended that the keys are changed after each gigabyte of
transmitted data or after each hour of connection time, whichever comes
sooner. However, since the re-exchange is a public key operation, it
requires a fair amount of processing power and should not be performed
too often.

More application data may be sent after the SSH_MSG_NEWKEYS packet has
been sent; key exchange does not affect the protocols that lie above the
Secure Shell transport layer.

8. Service Request

After the key exchange, the client requests a service. The service is
identified by a name. The format of names and procedures for defining
new names are defined in [SECSH-ARCH].

Currently, the following names have been reserved:

 ssh-userauth
 ssh-connection

Similar local naming policy is applied to the service names, as is
applied to the algorithm names; a local service should use the
"servicename@domain" syntax.

 byte SSH_MSG_SERVICE_REQUEST
 string service name

If the server rejects the service request, it SHOULD send an appropriate
SSH_MSG_DISCONNECT message and MUST disconnect.

When the service starts, it may have access to the session identifier
generated during the key exchange.

If the server supports the service (and permits the client to use it),
it MUST respond with the following:

 byte SSH_MSG_SERVICE_ACCEPT
 string service name

Message numbers used by services should be in the area reserved for them
(see Section ``Summary of Message Numbers''). The transport level will
continue to process its own messages.

Note that after a key exchange with implicit server authentication, the
client MUST wait for response to its service request message before

sending any further data.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 18]

INTERNET-DRAFT 2 March, 2001

9. Additional Messages

Either party may send any of the following messages at any time.

9.1. Disconnection Message

 byte SSH_MSG_DISCONNECT
 uint32 reason code
 string description [RFC-2279]
 string language tag [RFC-1766]

This message causes immediate termination of the connection. All
implementations MUST be able to process this message; they SHOULD be
able to send this message.

The sender MUST NOT send or receive any data after this message, and the
recipient MUST NOT accept any data after receiving this message. The
description field gives a more specific explanation in a human-readable
form. The error code gives the reason in a more machine-readable format
(suitable for localization), and can have the following values:

 #define SSH_DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT 1
 #define SSH_DISCONNECT_PROTOCOL_ERROR 2
 #define SSH_DISCONNECT_KEY_EXCHANGE_FAILED 3
 #define SSH_DISCONNECT_RESERVED 4
 #define SSH_DISCONNECT_MAC_ERROR 5
 #define SSH_DISCONNECT_COMPRESSION_ERROR 6
 #define SSH_DISCONNECT_SERVICE_NOT_AVAILABLE 7
 #define SSH_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED 8
 #define SSH_DISCONNECT_HOST_KEY_NOT_VERIFIABLE 9
 #define SSH_DISCONNECT_CONNECTION_LOST 10
 #define SSH_DISCONNECT_BY_APPLICATION 11
 #define SSH_DISCONNECT_TOO_MANY_CONNECTIONS 12
 #define SSH_DISCONNECT_AUTH_CANCELLED_BY_USER 13
 #define SSH_DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE 14
 #define SSH_DISCONNECT_ILLEGAL_USER_NAME 15

If the description string is displayed, control character filtering
discussed in [SECSH-ARCH] should be used to avoid attacks by sending
terminal control characters.

9.2. Ignored Data Message

 byte SSH_MSG_IGNORE
 string data

All implementations MUST understand (and ignore) this message at any
time (after receiving the protocol version). No implementation is
required to send them. This message can be used as an additional
protection measure against advanced traffic analysis techniques.

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

9.3. Debug Message

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 19]

INTERNET-DRAFT 2 March, 2001

 byte SSH_MSG_DEBUG
 boolean always_display
 string message [RFC-2279]
 string language tag [RFC-1766]

All implementations MUST understand this message, but they are allowed
to ignore it. This message is used to pass the other side information
that may help debugging. If always_display is TRUE, the message SHOULD
be displayed. Otherwise, it SHOULD NOT be displayed unless debugging
information has been explicitly requested by the user.

The message doesn't need to contain a newline. It is, however, allowed
to consist of multiple lines separated by CRLF (Carriage Return - Line
Feed) pairs.

If the message string is displayed, terminal control character filtering
discussed in [SECSH-ARCH] should be used to avoid attacks by sending
terminal control characters.

9.4. Reserved Messages

An implementation MUST respond to all unrecognized messages with an
SSH_MSG_UNIMPLEMENTED message in the order in which the messages were
received. Such messages MUST be otherwise ignored. Later protocol
versions may define other meanings for these message types.

 byte SSH_MSG_UNIMPLEMENTED
 uint32 packet sequence number of rejected message

10. Summary of Message Numbers

The following message numbers have been defined in this protocol:

 #define SSH_MSG_DISCONNECT 1
 #define SSH_MSG_IGNORE 2
 #define SSH_MSG_UNIMPLEMENTED 3
 #define SSH_MSG_DEBUG 4
 #define SSH_MSG_SERVICE_REQUEST 5
 #define SSH_MSG_SERVICE_ACCEPT 6

 #define SSH_MSG_KEXINIT 20
 #define SSH_MSG_NEWKEYS 21

 /* Numbers 30-49 used for kex packets.
 Different kex methods may reuse message numbers in
 this range. */

 #define SSH_MSG_KEXDH_INIT 30
 #define SSH_MSG_KEXDH_REPLY 31

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

11. Security Considerations

This protocol provides a secure encrypted channel over an insecure

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 20]

INTERNET-DRAFT 2 March, 2001

network. It performs server host authentication, key exchange,
encryption, and integrity protection. It also derives a unique session
id that may be used by higher-level protocols.

It is expected that this protocol will sometimes be used without
insisting on reliable association between the server host key and the
server host name. Such use is inherently insecure, but may be necessary
in non-security critical environments, and still provides protection
against passive attacks. However, implementors of protocols running on
top of this protocol should keep this possibility in mind.

This protocol is designed to be used over a reliable transport. If
transmission errors or message manipulation occur, the connection is
closed. The connection SHOULD be re-established if this occurs. Denial
of service attacks of this type ("wire cutter") are almost impossible to
avoid.

The protocol was not designed to eliminate covert channels. For
example, the padding, SSH_MSG_IGNORE messages, and several other places
in the protocol can be used to pass covert information, and the
recipient has no reliable way to verify whether such information is
being sent.

12. Trademark Issues

"ssh" is a registered trademark of SSH Communications Security Corp in
the United States and/or other countries.

13. References

[FIPS-186] Federal Information Processing Standards Publication (FIPS
PUB) 186, Digital Signature Standard, 18 May 1994.

[Orm96] Orman, H: "The Oakley Key Determination Protocol", version 1,
TR97-92, Department of Computer Science Technical Report, University of
Arizona.

[RFC-2459] Housley, R., et al: "Internet X.509 Public Key
Infrastructure, Certificate and CRL Profile", January 1999.

[RFC-1034] Mockapetris, P: "Domain Names - Concepts and Facilities",
November 1987.

[RFC-1766] Alvestrand, H: "Tags for the Identification of Languages",
March 1995.

[RFC-1950] Deutch, P. and Gailly, J-L: "ZLIB Compressed Data Format
Specification version 3.3", May 1996.

[RFC-1951] Deutch, P: "DEFLATE Compressed Data Format Specification

version 1.3", May 1996.

[RFC-2279] Yergeau, F: "UTF-8, a transformation format of ISO 10646",

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 21]

INTERNET-DRAFT 2 March, 2001

January 1998.

[RFC-2104] Krawczyk, H., Bellare, M., and Canetti, R: "HMAC: Keyed-
Hashing for Message Authentication", February 1997

[RFC-2119] Bradner, S: "Key words for use in RFCs to indicate
Requirement Levels", March 1997.

[RFC-2144] Adams, C: "The CAST-128 Encryption Algorithm", May 1997.

[RFC-2440] Callas, J., et al: "OpenPGP Message Format", November 1998.

[RFC-2693] Ellison, C., et al: "SPKI Certificate Theory", September
1999.

[SCHNEIER] Schneier, B: "Applied Cryptography Second Edition: protocols,
algorithms, and source code in C", 2nd edition, John Wiley & Sons, New
York, NY, 1996.

[TWOFISH] Schneir, B., et al:"The Twofish Encryption Algorithm: A
128-Bit Block Cipher", 1st edition, John Wiley & Sons, 22 March 1999

[SECSH-ARCH] Ylonen, T., et al: "Secure Shell Remote Login Protocol
Architecture", Internet-Draft, draft-ietf-secsh-architecture-08.txt

[SECSH-USERAUTH] Ylonen, T., et al: "Secure Shell Authentication
Protocol", Internet-Draft, draft-ietf-secsh-userauth-10.txt

[SECSH-CONNECT] Ylonen, T., et al: "Secure Shell Connection Protocol",
Internet-Draft, draft-ietf-secsh-connect-10.txt

14. Authors' Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: ylo@ssh.com

 Tero Kivinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: kivinen@ssh.com

 Markku-Juhani O. Saarinen
 University of Jyvaskyla

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-userauth-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-connect-10.txt

 Timo J. Rinne
 SSH Communications Security Corp
 Fredrikinkatu 42

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 22]

INTERNET-DRAFT 2 March, 2001

 FIN-00100 HELSINKI
 Finland
 E-mail: tri@ssh.com

 Sami Lehtinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: sjl@ssh.com

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 23]

