
Network Working Group T. Ylonen
Internet-Draft T. Kivinen
Expires: March 21, 2003 SSH Communications Security Corp
 M. Saarinen
 University of Jyvaskyla
 T. Rinne
 S. Lehtinen
 SSH Communications Security Corp
 September 20, 2002

SSH Transport Layer Protocol
draft-ietf-secsh-transport-15.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 21, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network.

 This document describes the SSH transport layer protocol which
 typically runs on top of TCP/IP. The protocol can be used as a basis
 for a number of secure network services. It provides strong

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Ylonen, et. al. Expires March 21, 2003 [Page 1]

Internet-Draft SSH Transport Layer Protocol September 2002

 encryption, server authentication, and integrity protection. It may
 also provide compression.

 Key exchange method, public key algorithm, symmetric encryption
 algorithm, message authentication algorithm, and hash algorithm are
 all negotiated.

 This document also describes the Diffie-Hellman key exchange method
 and the minimal set of algorithms that are needed to implement the
 SSH transport layer protocol.

Table of Contents

1. Introduction . 3
2. Conventions Used in This Document 3
3. Connection Setup . 3
3.1 Use over TCP/IP . 3
3.2 Protocol Version Exchange 3
3.3 Compatibility With Old SSH Versions 4
3.4 Old Client, New Server . 4
3.5 New Client, Old Server . 5
4. Binary Packet Protocol . 5
4.1 Maximum Packet Length . 6
4.2 Compression . 6
4.3 Encryption . 7
4.4 Data Integrity . 9
4.5 Key Exchange Methods . 10
4.6 Public Key Algorithms . 10
5. Key Exchange . 13
5.1 Algorithm Negotiation . 13
5.2 Output from Key Exchange 16
5.3 Taking Keys Into Use . 17
6. Diffie-Hellman Key Exchange 17
6.1 diffie-hellman-group1-sha1 19
7. Key Re-Exchange . 19
8. Service Request . 20
9. Additional Messages . 21
9.1 Disconnection Message . 21
9.2 Ignored Data Message . 22
9.3 Debug Message . 22
9.4 Reserved Messages . 23
10. Summary of Message Numbers 23
11. Security Considerations 23
12. Intellectual Property . 25
13. Additional Information . 25

 References . 25
 Authors' Addresses . 27
 Full Copyright Statement 28

Ylonen, et. al. Expires March 21, 2003 [Page 2]

Internet-Draft SSH Transport Layer Protocol September 2002

1. Introduction

 The SSH transport layer is a secure low level transport protocol. It
 provides strong encryption, cryptographic host authentication, and
 integrity protection.

 Authentication in this protocol level is host-based; this protocol
 does not perform user authentication. A higher level protocol for
 user authentication can be designed on top of this protocol.

 The protocol has been designed to be simple, flexible, to allow
 parameter negotiation, and to minimize the number of round-trips.
 Key exchange method, public key algorithm, symmetric encryption
 algorithm, message authentication algorithm, and hash algorithm are
 all negotiated. It is expected that in most environments, only 2
 round-trips will be needed for full key exchange, server
 authentication, service request, and acceptance notification of
 service request. The worst case is 3 round-trips.

2. Conventions Used in This Document

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 and "MAY" that appear in this document are to be interpreted as
 described in [RFC2119]

 The used data types and terminology are specified in the architecture
 document [SSH-ARCH]

 The architecture document also discusses the algorithm naming
 conventions that MUST be used with the SSH protocols.

3. Connection Setup

 SSH works over any 8-bit clean, binary-transparent transport. The
 underlying transport SHOULD protect against transmission errors as
 such errors cause the SSH connection to terminate.

 The client initiates the connection.

3.1 Use over TCP/IP

 When used over TCP/IP, the server normally listens for connections on
 port 22. This port number has been registered with the IANA, and has
 been officially assigned for SSH.

3.2 Protocol Version Exchange

 When the connection has been established, both sides MUST send an

https://datatracker.ietf.org/doc/html/rfc2119

Ylonen, et. al. Expires March 21, 2003 [Page 3]

Internet-Draft SSH Transport Layer Protocol September 2002

 identification string of the form "SSH-protoversion-softwareversion
 comments", followed by carriage return and newline characters (ASCII
 13 and 10, respectively). Both sides MUST be able to process
 identification strings without carriage return character. No null
 character is sent. The maximum length of the string is 255
 characters, including the carriage return and newline.

 The part of the identification string preceding carriage return and
 newline is used in the Diffie-Hellman key exchange (see Section

Section 6).

 The server MAY send other lines of data before sending the version
 string. Each line SHOULD be terminated by a carriage return and
 newline. Such lines MUST NOT begin with "SSH-", and SHOULD be
 encoded in ISO-10646 UTF-8 [RFC2279] (language is not specified).
 Clients MUST be able to process such lines; they MAY be silently
 ignored, or MAY be displayed to the client user; if they are
 displayed, control character filtering discussed in [SSH-ARCH] SHOULD
 be used. The primary use of this feature is to allow TCP-wrappers to
 display an error message before disconnecting.

 Version strings MUST consist of printable US-ASCII characters, not
 including whitespaces or a minus sign (-). The version string is
 primarily used to trigger compatibility extensions and to indicate
 the capabilities of an implementation. The comment string should
 contain additional information that might be useful in solving user
 problems.

 The protocol version described in this document is 2.0.

 Key exchange will begin immediately after sending this identifier.
 All packets following the identification string SHALL use the binary
 packet protocol, to be described below.

3.3 Compatibility With Old SSH Versions

 During the transition period, it is important to be able to work in a
 way that is compatible with the installed SSH clients and servers
 that use an older version of the protocol. Information in this
 section is only relevant for implementations supporting compatibility
 with SSH versions 1.x.

3.4 Old Client, New Server

 Server implementations MAY support a configurable "compatibility"
 flag that enables compatibility with old versions. When this flag is
 on, the server SHOULD identify its protocol version as "1.99".
 Clients using protocol 2.0 MUST be able to identify this as identical

https://datatracker.ietf.org/doc/html/rfc2279

Ylonen, et. al. Expires March 21, 2003 [Page 4]

Internet-Draft SSH Transport Layer Protocol September 2002

 to "2.0". In this mode the server SHOULD NOT send the carriage
 return character (ASCII 13) after the version identification string.

 In the compatibility mode the server SHOULD NOT send any further data
 after its initialization string until it has received an
 identification string from the client. The server can then determine
 whether the client is using an old protocol, and can revert to the
 old protocol if required. In the compatibility mode, the server MUST
 NOT send additional data before the version string.

 When compatibility with old clients is not needed, the server MAY
 send its initial key exchange data immediately after the
 identification string.

3.5 New Client, Old Server

 Since the new client MAY immediately send additional data after its
 identification string (before receiving server's identification), the
 old protocol may already have been corrupted when the client learns
 that the server is old. When this happens, the client SHOULD close
 the connection to the server, and reconnect using the old protocol.

4. Binary Packet Protocol

 Each packet is in the following format:

 uint32 packet_length
 byte padding_length
 byte[n1] payload; n1 = packet_length - padding_length - 1
 byte[n2] random padding; n2 = padding_length
 byte[m] mac (message authentication code); m = mac_length

 packet_length
 The length of the packet (bytes), not including MAC or the
 packet_length field itself.

 padding_length
 Length of padding (bytes).

 payload
 The useful contents of the packet. If compression has been
 negotiated, this field is compressed. Initially, compression
 MUST be "none".

 random padding
 Arbitrary-length padding, such that the total length of
 (packet_length || padding_length || payload || padding) is a
 multiple of the cipher block size or 8, whichever is larger.

Ylonen, et. al. Expires March 21, 2003 [Page 5]

Internet-Draft SSH Transport Layer Protocol September 2002

 There MUST be at least four bytes of padding. The padding
 SHOULD consist of random bytes. The maximum amount of padding
 is 255 bytes.

 mac
 Message authentication code. If message authentication has
 been negotiated, this field contains the MAC bytes. Initially,
 the MAC algorithm MUST be "none".

 Note that length of the concatenation of packet length, padding
 length, payload, and padding MUST be a multiple of the cipher block
 size or 8, whichever is larger. This constraint MUST be enforced
 even when using stream ciphers. Note that the packet length field is
 also encrypted, and processing it requires special care when sending
 or receiving packets.

 The minimum size of a packet is 16 (or the cipher block size,
 whichever is larger) bytes (plus MAC); implementations SHOULD decrypt
 the length after receiving the first 8 (or cipher block size,
 whichever is larger) bytes of a packet.

4.1 Maximum Packet Length

 All implementations MUST be able to process packets with uncompressed
 payload length of 32768 bytes or less and total packet size of 35000
 bytes or less (including length, padding length, payload, padding,
 and MAC.). The maximum of 35000 bytes is an arbitrary chosen value
 larger than uncompressed size. Implementations SHOULD support longer
 packets, where they might be needed, e.g. if an implementation wants
 to send a very large number of certificates. Such packets MAY be
 sent if the version string indicates that the other party is able to
 process them. However, implementations SHOULD check that the packet
 length is reasonable for the implementation to avoid denial-of-
 service and/or buffer overflow attacks.

4.2 Compression

 If compression has been negotiated, the payload field (and only it)
 will be compressed using the negotiated algorithm. The length field
 and MAC will be computed from the compressed payload. Encryption
 will be done after compression.

 Compression MAY be stateful, depending on the method. Compression
 MUST be independent for each direction, and implementations MUST
 allow independently choosing the algorithm for each direction.

 The following compression methods are currently defined:

Ylonen, et. al. Expires March 21, 2003 [Page 6]

Internet-Draft SSH Transport Layer Protocol September 2002

 none REQUIRED no compression
 zlib OPTIONAL ZLIB (LZ77) compression

 The "zlib" compression is described in [RFC1950] and in [RFC1951].
 The compression context is initialized after each key exchange, and
 is passed from one packet to the next with only a partial flush being
 performed at the end of each packet. A partial flush means that the
 current compressed block is ended and all data will be output. If
 the current block is not a stored block, one or more empty blocks are
 added after the current block to ensure that there are at least 8
 bits counting from the start of the end-of-block code of the current
 block to the end of the packet payload.

 Additional methods may be defined as specified in [SSH-ARCH].

4.3 Encryption

 An encryption algorithm and a key will be negotiated during the key
 exchange. When encryption is in effect, the packet length, padding
 length, payload and padding fields of each packet MUST be encrypted
 with the given algorithm.

 The encrypted data in all packets sent in one direction SHOULD be
 considered a single data stream. For example, initialization vectors
 SHOULD be passed from the end of one packet to the beginning of the
 next packet. All ciphers SHOULD use keys with an effective key
 length of 128 bits or more.

 The ciphers in each direction MUST run independently of each other,
 and implementations MUST allow independently choosing the algorithm
 for each direction (if multiple algorithms are allowed by local
 policy).

 The following ciphers are currently defined:

 3des-cbc REQUIRED three-key 3DES in CBC mode
 blowfish-cbc RECOMMENDED Blowfish in CBC mode
 twofish256-cbc OPTIONAL Twofish in CBC mode,
 with 256-bit key
 twofish-cbc OPTIONAL alias for "twofish256-cbc" (this
 is being retained for
 historical reasons)
 twofish192-cbc OPTIONAL Twofish with 192-bit key
 twofish128-cbc RECOMMENDED Twofish with 128-bit key
 aes256-cbc OPTIONAL AES (Rijndael) in CBC mode,
 with 256-bit key
 aes192-cbc OPTIONAL AES with 192-bit key
 aes128-cbc RECOMMENDED AES with 128-bit key

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951

Ylonen, et. al. Expires March 21, 2003 [Page 7]

Internet-Draft SSH Transport Layer Protocol September 2002

 serpent256-cbc OPTIONAL Serpent in CBC mode, with
 256-bit key
 serpent192-cbc OPTIONAL Serpent with 192-bit key
 serpent128-cbc OPTIONAL Serpent with 128-bit key
 arcfour OPTIONAL the ARCFOUR stream cipher
 idea-cbc OPTIONAL IDEA in CBC mode
 cast128-cbc OPTIONAL CAST-128 in CBC mode
 none OPTIONAL no encryption; NOT RECOMMENDED

 The "3des-cbc" cipher is three-key triple-DES (encrypt-decrypt-
 encrypt), where the first 8 bytes of the key are used for the first
 encryption, the next 8 bytes for the decryption, and the following 8
 bytes for the final encryption. This requires 24 bytes of key data
 (of which 168 bits are actually used). To implement CBC mode, outer
 chaining MUST be used (i.e., there is only one initialization
 vector). This is a block cipher with 8 byte blocks. This algorithm
 is defined in [SCHNEIER]

 The "blowfish-cbc" cipher is Blowfish in CBC mode, with 128 bit keys
 [SCHNEIER]. This is a block cipher with 8 byte blocks.

 The "twofish-cbc" or "twofish256-cbc" cipher is Twofish in CBC mode,
 with 256 bit keys as described [TWOFISH]. This is a block cipher
 with 16 byte blocks.

 The "twofish192-cbc" cipher. Same as above but with 192-bit key.

 The "twofish128-cbc" cipher. Same as above but with 128-bit key.

 The "aes256-cbc" cipher is AES (Advanced Encryption Standard),
 formerly Rijndael, in CBC mode. This version uses 256-bit key.

 The "aes192-cbc" cipher. Same as above but with 192-bit key.

 The "aes128-cbc" cipher. Same as above but with 128-bit key.

 The "serpent256-cbc" cipher in CBC mode, with 256-bit key as
 described in the Serpent AES submission.

 The "serpent192-cbc" cipher. Same as above but with 192-bit key.

 The "serpent128-cbc" cipher. Same as above but with 128-bit key.

 The "arcfour" is the Arcfour stream cipher with 128 bit keys. The
 Arcfour cipher is believed to be compatible with the RC4 cipher
 [SCHNEIER]. RC4 is a registered trademark of RSA Data Security Inc.
 Arcfour (and RC4) has problems with weak keys, and should be used
 with caution.

Ylonen, et. al. Expires March 21, 2003 [Page 8]

Internet-Draft SSH Transport Layer Protocol September 2002

 The "idea-cbc" cipher is the IDEA cipher in CBC mode [SCHNEIER].
 IDEA is patented by Ascom AG.

 The "cast128-cbc" cipher is the CAST-128 cipher in CBC mode
 [RFC2144].

 The "none" algorithm specifies that no encryption is to be done.
 Note that this method provides no confidentiality protection, and it
 is not recommended. Some functionality (e.g. password
 authentication) may be disabled for security reasons if this cipher
 is chosen.

 Additional methods may be defined as specified in [SSH-ARCH].

4.4 Data Integrity

 Data integrity is protected by including with each packet a message
 authentication code (MAC) that is computed from a shared secret,
 packet sequence number, and the contents of the packet.

 The message authentication algorithm and key are negotiated during
 key exchange. Initially, no MAC will be in effect, and its length
 MUST be zero. After key exchange, the selected MAC will be computed
 before encryption from the concatenation of packet data:

 mac = MAC(key, sequence_number || unencrypted_packet)

 where unencrypted_packet is the entire packet without MAC (the length
 fields, payload and padding), and sequence_number is an implicit
 packet sequence number represented as uint32. The sequence number is
 initialized to zero for the first packet, and is incremented after
 every packet (regardless of whether encryption or MAC is in use). It
 is never reset, even if keys/algorithms are renegotiated later. It
 wraps around to zero after every 2^32 packets. The packet sequence
 number itself is not included in the packet sent over the wire.

 The MAC algorithms for each direction MUST run independently, and
 implementations MUST allow choosing the algorithm independently for
 both directions.

 The MAC bytes resulting from the MAC algorithm MUST be transmitted
 without encryption as the last part of the packet. The number of MAC
 bytes depends on the algorithm chosen.

https://datatracker.ietf.org/doc/html/rfc2144

Ylonen, et. al. Expires March 21, 2003 [Page 9]

Internet-Draft SSH Transport Layer Protocol September 2002

 The following MAC algorithms are currently defined:

 hmac-sha1 REQUIRED HMAC-SHA1 (digest length = key
 length = 20)
 hmac-sha1-96 RECOMMENDED first 96 bits of HMAC-SHA1 (digest
 length = 12, key length = 20)
 hmac-md5 OPTIONAL HMAC-MD5 (digest length = key
 length = 16)
 hmac-md5-96 OPTIONAL first 96 bits of HMAC-MD5 (digest
 length = 12, key length = 16)
 none OPTIONAL no MAC; NOT RECOMMENDED

 The "hmac-*" algorithms are described in [RFC2104] The "*-n" MACs use
 only the first n bits of the resulting value.

 The hash algorithms are described in [SCHNEIER].

 Additional methods may be defined as specified in [SSH-ARCH].

4.5 Key Exchange Methods

 The key exchange method specifies how one-time session keys are
 generated for encryption and for authentication, and how the server
 authentication is done.

 Only one REQUIRED key exchange method has been defined:

 diffie-hellman-group1-sha1 REQUIRED

 This method is described later in this document.

 Additional methods may be defined as specified in [SSH-ARCH].

4.6 Public Key Algorithms

 This protocol has been designed to be able to operate with almost any
 public key format, encoding, and algorithm (signature and/or
 encryption).

 There are several aspects that define a public key type:
 o Key format: how is the key encoded and how are certificates
 represented. The key blobs in this protocol MAY contain
 certificates in addition to keys.
 o Signature and/or encryption algorithms. Some key types may not
 support both signing and encryption. Key usage may also be
 restricted by policy statements in e.g. certificates. In this
 case, different key types SHOULD be defined for the different
 policy alternatives.

https://datatracker.ietf.org/doc/html/rfc2104

Ylonen, et. al. Expires March 21, 2003 [Page 10]

Internet-Draft SSH Transport Layer Protocol September 2002

 o Encoding of signatures and/or encrypted data. This includes but
 is not limited to padding, byte order, and data formats.

 The following public key and/or certificate formats are currently defined:

 ssh-dss REQUIRED sign Simple DSS
 ssh-rsa RECOMMENDED sign Simple RSA
 x509v3-sign-rsa OPTIONAL sign X.509 certificates (RSA key)
 x509v3-sign-dss OPTIONAL sign X.509 certificates (DSS key)
 spki-sign-rsa OPTIONAL sign SPKI certificates (RSA key)
 spki-sign-dss OPTIONAL sign SPKI certificates (DSS key)
 pgp-sign-rsa OPTIONAL sign OpenPGP certificates (RSA key)
 pgp-sign-dss OPTIONAL sign OpenPGP certificates (DSS key)

 Additional key types may be defined as specified in [SSH-ARCH].

 The key type MUST always be explicitly known (from algorithm
 negotiation or some other source). It is not normally included in
 the key blob.

 Certificates and public keys are encoded as follows:

 string certificate or public key format identifier
 byte[n] key/certificate data

 The certificate part may have be a zero length string, but a public
 key is required. This is the public key that will be used for
 authentication; the certificate sequence contained in the certificate
 blob can be used to provide authorization.

 Public key / certifcate formats that do not explicitly specify a
 signature format identifier MUST use the public key / certificate
 format identifier as the signature identifier.

 Signatures are encoded as follows:
 string signature format identifier (as specified by the
 public key / cert format)
 byte[n] signature blob in format specific encoding.

 The "ssh-dss" key format has the following specific encoding:

 string "ssh-dss"
 mpint p
 mpint q
 mpint g
 mpint y

Ylonen, et. al. Expires March 21, 2003 [Page 11]

Internet-Draft SSH Transport Layer Protocol September 2002

 Here the p, q, g, and y parameters form the signature key blob.

 Signing and verifying using this key format is done according to the
 Digital Signature Standard [FIPS-186] using the SHA-1 hash. A
 description can also be found in [SCHNEIER].

 The resulting signature is encoded as follows:

 string "ssh-dss"
 string dss_signature_blob

 dss_signature_blob is encoded as a string containing r followed by s
 (which are 160 bits long integers, without lengths or padding,
 unsigned and in network byte order).

 The "ssh-rsa" key format has the following specific encoding:

 string "ssh-rsa"
 mpint e
 mpint n

 Here the e and n parameters form the signature key blob.

 Signing and verifying using this key format is done according to
 [SCHNEIER] and [PKCS1] using the SHA-1 hash.

 The resulting signature is encoded as follows:

 string "ssh-rsa"
 string rsa_signature_blob

 rsa_signature_blob is encoded as a string containing s (which is an
 integer, without lengths or padding, unsigned and in network byte
 order).

 The "spki-sign-rsa" method indicates that the certificate blob
 contains a sequence of SPKI certificates. The format of SPKI
 certificates is described in [RFC2693]. This method indicates that
 the key (or one of the keys in the certificate) is an RSA-key.

 The "spki-sign-dss". As above, but indicates that the key (or one of
 the keys in the certificate) is a DSS-key.

 The "pgp-sign-rsa" method indicates the certificates, the public key,
 and the signature are in OpenPGP compatible binary format
 ([RFC2440]). This method indicates that the key is an RSA-key.

 The "pgp-sign-dss". As above, but indicates that the key is a DSS-

https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/rfc2440

Ylonen, et. al. Expires March 21, 2003 [Page 12]

Internet-Draft SSH Transport Layer Protocol September 2002

 key.

5. Key Exchange

 Key exchange begins by each side sending lists of supported
 algorithms. Each side has a preferred algorithm in each category,
 and it is assumed that most implementations at any given time will
 use the same preferred algorithm. Each side MAY guess which
 algorithm the other side is using, and MAY send an initial key
 exchange packet according to the algorithm if appropriate for the
 preferred method.

 Guess is considered wrong, if:
 o the kex algorithm and/or the host key algorithm is guessed wrong
 (server and client have different preferred algorithm), or
 o if any of the other algorithms cannot be agreed upon (the
 procedure is defined below in Section Section 5.1).

 Otherwise, the guess is considered to be right and the optimistically
 sent packet MUST be handled as the first key exchange packet.

 However, if the guess was wrong, and a packet was optimistically sent
 by one or both parties, such packets MUST be ignored (even if the
 error in the guess would not affect the contents of the initial
 packet(s)), and the appropriate side MUST send the correct initial
 packet.

 Server authentication in the key exchange MAY be implicit. After a
 key exchange with implicit server authentication, the client MUST
 wait for response to its service request message before sending any
 further data.

5.1 Algorithm Negotiation

 Key exchange begins by each side sending the following packet:

 byte SSH_MSG_KEXINIT
 byte[16] cookie (random bytes)
 string kex_algorithms
 string server_host_key_algorithms
 string encryption_algorithms_client_to_server
 string encryption_algorithms_server_to_client
 string mac_algorithms_client_to_server
 string mac_algorithms_server_to_client
 string compression_algorithms_client_to_server
 string compression_algorithms_server_to_client
 string languages_client_to_server
 string languages_server_to_client

Ylonen, et. al. Expires March 21, 2003 [Page 13]

Internet-Draft SSH Transport Layer Protocol September 2002

 boolean first_kex_packet_follows
 uint32 0 (reserved for future extension)

 Each of the algorithm strings MUST be a comma-separated list of
 algorithm names (see ''Algorithm Naming'' in [SSH-ARCH]). Each
 supported (allowed) algorithm MUST be listed in order of preference.

 The first algorithm in each list MUST be the preferred (guessed)
 algorithm. Each string MUST contain at least one algorithm name.

 cookie
 The cookie MUST be a random value generated by the sender. Its
 purpose is to make it impossible for either side to fully
 determine the keys and the session identifier.

 kex_algorithms
 Key exchange algorithms were defined above. The first
 algorithm MUST be the preferred (and guessed) algorithm. If
 both sides make the same guess, that algorithm MUST be used.
 Otherwise, the following algorithm MUST be used to choose a key
 exchange method: iterate over client's kex algorithms, one at a
 time. Choose the first algorithm that satisfies the following
 conditions:
 + the server also supports the algorithm,
 + if the algorithm requires an encryption-capable host key,
 there is an encryption-capable algorithm on the server's
 server_host_key_algorithms that is also supported by the
 client, and
 + if the algorithm requires a signature-capable host key,
 there is a signature-capable algorithm on the server's
 server_host_key_algorithms that is also supported by the
 client.
 + If no algorithm satisfying all these conditions can be
 found, the connection fails, and both sides MUST disconnect.

 server_host_key_algorithms
 List of the algorithms supported for the server host key. The
 server lists the algorithms for which it has host keys; the
 client lists the algorithms that it is willing to accept.
 (There MAY be multiple host keys for a host, possibly with
 different algorithms.)

 Some host keys may not support both signatures and encryption
 (this can be determined from the algorithm), and thus not all
 host keys are valid for all key exchange methods.

 Algorithm selection depends on whether the chosen key exchange

Ylonen, et. al. Expires March 21, 2003 [Page 14]

Internet-Draft SSH Transport Layer Protocol September 2002

 algorithm requires a signature or encryption capable host key.
 It MUST be possible to determine this from the public key
 algorithm name. The first algorithm on the client's list that
 satisfies the requirements and is also supported by the server
 MUST be chosen. If there is no such algorithm, both sides MUST
 disconnect.

 encryption_algorithms
 Lists the acceptable symmetric encryption algorithms in order
 of preference. The chosen encryption algorithm to each
 direction MUST be the first algorithm on the client's list
 that is also on the server's list. If there is no such
 algorithm, both sides MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The defined algorithm names are listed in Section

Section 4.3.

 mac_algorithms
 Lists the acceptable MAC algorithms in order of preference.
 The chosen MAC algorithm MUST be the first algorithm on the
 client's list that is also on the server's list. If there is
 no such algorithm, both sides MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The MAC algorithm names are listed in Section
 Figure 1.

 compression_algorithms
 Lists the acceptable compression algorithms in order of
 preference. The chosen compression algorithm MUST be the first
 algorithm on the client's list that is also on the server's
 list. If there is no such algorithm, both sides MUST
 disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The compression algorithm names are listed in
 Section Section 4.2.

 languages
 This is a comma-separated list of language tags in order of
 preference [RFC1766]. Both parties MAY ignore this list. If
 there are no language preferences, this list SHOULD be empty.

 first_kex_packet_follows
 Indicates whether a guessed key exchange packet follows. If a
 guessed packet will be sent, this MUST be TRUE. If no guessed
 packet will be sent, this MUST be FALSE.

https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires March 21, 2003 [Page 15]

 After receiving the SSH_MSG_KEXINIT packet from the other side,
 each party will know whether their guess was right. If the
 other party's guess was wrong, and this field was TRUE, the
 next packet MUST be silently ignored, and both sides MUST then
 act as determined by the negotiated key exchange method. If
 the guess was right, key exchange MUST continue using the
 guessed packet.

 After the KEXINIT packet exchange, the key exchange algorithm is run.
 It may involve several packet exchanges, as specified by the key
 exchange method.

5.2 Output from Key Exchange

 The key exchange produces two values: a shared secret K, and an
 exchange hash H. Encryption and authentication keys are derived from
 these. The exchange hash H from the first key exchange is
 additionally used as the session identifier, which is a unique
 identifier for this connection. It is used by authentication methods
 as a part of the data that is signed as a proof of possession of a
 private key. Once computed, the session identifier is not changed,
 even if keys are later re-exchanged.

 Each key exchange method specifies a hash function that is used in
 the key exchange. The same hash algorithm MUST be used in key
 derivation. Here, we'll call it HASH.

 Encryption keys MUST be computed as HASH of a known value and K as
 follows:
 o Initial IV client to server: HASH(K || H || "A" || session_id)
 (Here K is encoded as mpint and "A" as byte and session_id as raw
 data."A" means the single character A, ASCII 65).
 o Initial IV server to client: HASH(K || H || "B" || session_id)
 o Encryption key client to server: HASH(K || H || "C" || session_id)
 o Encryption key server to client: HASH(K || H || "D" || session_id)
 o Integrity key client to server: HASH(K || H || "E" || session_id)
 o Integrity key server to client: HASH(K || H || "F" || session_id)

 Key data MUST be taken from the beginning of the hash output. 128
 bits (16 bytes) SHOULD be used for algorithms with variable-length
 keys. For other algorithms, as many bytes as are needed are taken
 from the beginning of the hash value. If the key length in longer
 than the output of the HASH, the key is extended by computing HASH of
 the concatenation of K and H and the entire key so far, and appending
 the resulting bytes (as many as HASH generates) to the key. This
 process is repeated until enough key material is available; the key
 is taken from the beginning of this value. In other words:

Ylonen, et. al. Expires March 21, 2003 [Page 16]

Internet-Draft SSH Transport Layer Protocol September 2002

 K1 = HASH(K || H || X || session_id) (X is e.g. "A")
 K2 = HASH(K || H || K1)
 K3 = HASH(K || H || K1 || K2)
 ...
 key = K1 || K2 || K3 || ...

 This process will lose entropy if the amount of entropy in K is
 larger than the internal state size of HASH.

5.3 Taking Keys Into Use

 Key exchange ends by each side sending an SSH_MSG_NEWKEYS message.
 This message is sent with the old keys and algorithms. All messages
 sent after this message MUST use the new keys and algorithms.

 When this message is received, the new keys and algorithms MUST be
 taken into use for receiving.

 This message is the only valid message after key exchange, in
 addition to SSH_MSG_DEBUG, SSH_MSG_DISCONNECT and SSH_MSG_IGNORE
 messages. The purpose of this message is to ensure that a party is
 able to respond with a disconnect message that the other party can
 understand if something goes wrong with the key exchange.
 Implementations MUST NOT accept any other messages after key exchange
 before receiving SSH_MSG_NEWKEYS.

 byte SSH_MSG_NEWKEYS

6. Diffie-Hellman Key Exchange

 The Diffie-Hellman key exchange provides a shared secret that can not
 be determined by either party alone. The key exchange is combined
 with a signature with the host key to provide host authentication.

 In the following description (C is the client, S is the server; p is
 a large safe prime, g is a generator for a subgroup of GF(p), and q
 is the order of the subgroup; V_S is S's version string; V_C is C's
 version string; K_S is S's public host key; I_C is C's KEXINIT
 message and I_S S's KEXINIT message which have been exchanged before
 this part begins):

 1. C generates a random number x (1 < x < q) and computes e = g^x
 mod p. C sends "e" to S.

Ylonen, et. al. Expires March 21, 2003 [Page 17]

 2. S generates a random number y (0 < y < q) and computes f = g^y
 mod p. S receives "e". It computes K = e^y mod p, H = hash(V_C
 || V_S || I_C || I_S || K_S || e || f || K) (these elements are
 encoded according to their types; see below), and signature s on
 H with its private host key. S sends "K_S || f || s" to C. The
 signing operation may involve a second hashing operation.

 3. C verifies that K_S really is the host key for S (e.g. using
 certificates or a local database). C is also allowed to accept
 the key without verification; however, doing so will render the
 protocol insecure against active attacks (but may be desirable
 for practical reasons in the short term in many environments). C
 then computes K = f^x mod p, H = hash(V_C || V_S || I_C || I_S ||
 K_S || e || f || K), and verifies the signature s on H.

 Either side MUST NOT send or accept e or f values that are not in the
 range [1, p-1]. If this condition is violated, the key exchange
 fails.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The public key algorithm for signing is negotiated with
 the KEXINIT messages.

 First, the client sends the following:

 byte SSH_MSG_KEXDH_INIT
 mpint e

 The server responds with the following:

 byte SSH_MSG_KEXDH_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client's version string (CR and NL excluded)
 string V_S, the server's version string (CR and NL excluded)
 string I_C, the payload of the client's SSH_MSG_KEXINIT
 string I_S, the payload of the server's SSH_MSG_KEXINIT
 string K_S, the host key
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

Ylonen, et. al. Expires March 21, 2003 [Page 18]

Internet-Draft SSH Transport Layer Protocol September 2002

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret.

 The signature algorithm MUST be applied over H, not the original
 data. Most signature algorithms include hashing and additional
 padding. For example, "ssh-dss" specifies SHA-1 hashing; in that
 case, the data is first hashed with HASH to compute H, and H is then
 hashed with SHA-1 as part of the signing operation.

6.1 diffie-hellman-group1-sha1

 The "diffie-hellman-group1-sha1" method specifies Diffie-Hellman key
 exchange with SHA-1 as HASH, and the following group:

 The prime p is equal to 2^1024 - 2^960 - 1 + 2^64 * floor(2^894 Pi +
 129093). Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
 FFFFFFFF FFFFFFFF.

 In decimal, this value is:

 179769313486231590770839156793787453197860296048756011706444
 423684197180216158519368947833795864925541502180565485980503
 646440548199239100050792877003355816639229553136239076508735
 759914822574862575007425302077447712589550957937778424442426
 617334727629299387668709205606050270810842907692932019128194
 467627007.

 The generator used with this prime is g = 2. The group order q is (p
 - 1) / 2.

 This group was taken from the ISAKMP/Oakley specification, and was
 originally generated by Richard Schroeppel at the University of
 Arizona. Properties of this prime are described in [Orm96].

7. Key Re-Exchange

 Key re-exchange is started by sending an SSH_MSG_KEXINIT packet when
 not already doing a key exchange (as described in Section Section

5.1). When this message is received, a party MUST respond with its
 own SSH_MSG_KEXINIT message except when the received SSH_MSG_KEXINIT

Ylonen, et. al. Expires March 21, 2003 [Page 19]

Internet-Draft SSH Transport Layer Protocol September 2002

 already was a reply. Either party MAY initiate the re-exchange, but
 roles MUST NOT be changed (i.e., the server remains the server, and
 the client remains the client).

 Key re-exchange is performed using whatever encryption was in effect
 when the exchange was started. Encryption, compression, and MAC
 methods are not changed before a new SSH_MSG_NEWKEYS is sent after
 the key exchange (as in the initial key exchange). Re-exchange is
 processed identically to the initial key exchange, except for the
 session identifier that will remain unchanged. It is permissible to
 change some or all of the algorithms during the re-exchange. Host
 keys can also change. All keys and initialization vectors are
 recomputed after the exchange. Compression and encryption contexts
 are reset.

 It is recommended that the keys are changed after each gigabyte of
 transmitted data or after each hour of connection time, whichever
 comes sooner. However, since the re-exchange is a public key
 operation, it requires a fair amount of processing power and should
 not be performed too often.

 More application data may be sent after the SSH_MSG_NEWKEYS packet
 has been sent; key exchange does not affect the protocols that lie
 above the SSH transport layer.

8. Service Request

 After the key exchange, the client requests a service. The service
 is identified by a name. The format of names and procedures for
 defining new names are defined in [SSH-ARCH].

 Currently, the following names have been reserved:

 ssh-userauth
 ssh-connection

 Similar local naming policy is applied to the service names, as is
 applied to the algorithm names; a local service should use the
 "servicename@domain" syntax.

 byte SSH_MSG_SERVICE_REQUEST
 string service name

 If the server rejects the service request, it SHOULD send an

Ylonen, et. al. Expires March 21, 2003 [Page 20]

Internet-Draft SSH Transport Layer Protocol September 2002

 appropriate SSH_MSG_DISCONNECT message and MUST disconnect.

 When the service starts, it may have access to the session identifier
 generated during the key exchange.

 If the server supports the service (and permits the client to use
 it), it MUST respond with the following:

 byte SSH_MSG_SERVICE_ACCEPT
 string service name

 Message numbers used by services should be in the area reserved for
 them (see Section 6 in [SSH-ARCH]). The transport level will
 continue to process its own messages.

 Note that after a key exchange with implicit server authentication,
 the client MUST wait for response to its service request message
 before sending any further data.

9. Additional Messages

 Either party may send any of the following messages at any time.

9.1 Disconnection Message

 byte SSH_MSG_DISCONNECT
 uint32 reason code
 string description [RFC2279]
 string language tag [RFC1766]

 This message causes immediate termination of the connection. All
 implementations MUST be able to process this message; they SHOULD be
 able to send this message.

 The sender MUST NOT send or receive any data after this message, and
 the recipient MUST NOT accept any data after receiving this message.
 The description field gives a more specific explanation in a human-
 readable form. The error code gives the reason in a more machine-
 readable format (suitable for localization), and can have the
 following values:

 #define SSH_DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT 1
 #define SSH_DISCONNECT_PROTOCOL_ERROR 2
 #define SSH_DISCONNECT_KEY_EXCHANGE_FAILED 3
 #define SSH_DISCONNECT_RESERVED 4

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires March 21, 2003 [Page 21]

Internet-Draft SSH Transport Layer Protocol September 2002

 #define SSH_DISCONNECT_MAC_ERROR 5
 #define SSH_DISCONNECT_COMPRESSION_ERROR 6
 #define SSH_DISCONNECT_SERVICE_NOT_AVAILABLE 7
 #define SSH_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED 8
 #define SSH_DISCONNECT_HOST_KEY_NOT_VERIFIABLE 9
 #define SSH_DISCONNECT_CONNECTION_LOST 10
 #define SSH_DISCONNECT_BY_APPLICATION 11
 #define SSH_DISCONNECT_TOO_MANY_CONNECTIONS 12
 #define SSH_DISCONNECT_AUTH_CANCELLED_BY_USER 13
 #define SSH_DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE 14
 #define SSH_DISCONNECT_ILLEGAL_USER_NAME 15

 If the description string is displayed, control character filtering
 discussed in [SSH-ARCH] should be used to avoid attacks by sending
 terminal control characters.

9.2 Ignored Data Message

 byte SSH_MSG_IGNORE
 string data

 All implementations MUST understand (and ignore) this message at any
 time (after receiving the protocol version). No implementation is
 required to send them. This message can be used as an additional
 protection measure against advanced traffic analysis techniques.

9.3 Debug Message

 byte SSH_MSG_DEBUG
 boolean always_display
 string message [RFC2279]
 string language tag [RFC1766]

 All implementations MUST understand this message, but they are
 allowed to ignore it. This message is used to pass the other side
 information that may help debugging. If always_display is TRUE, the
 message SHOULD be displayed. Otherwise, it SHOULD NOT be displayed
 unless debugging information has been explicitly requested by the
 user.

 The message doesn't need to contain a newline. It is, however,
 allowed to consist of multiple lines separated by CRLF (Carriage
 Return - Line Feed) pairs.

 If the message string is displayed, terminal control character
 filtering discussed in [SSH-ARCH] should be used to avoid attacks by

https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc1766

Ylonen, et. al. Expires March 21, 2003 [Page 22]

Internet-Draft SSH Transport Layer Protocol September 2002

 sending terminal control characters.

9.4 Reserved Messages

 An implementation MUST respond to all unrecognized messages with an
 SSH_MSG_UNIMPLEMENTED message in the order in which the messages were
 received. Such messages MUST be otherwise ignored. Later protocol
 versions may define other meanings for these message types.

 byte SSH_MSG_UNIMPLEMENTED
 uint32 packet sequence number of rejected message

10. Summary of Message Numbers

 The following message numbers have been defined in this protocol:

 #define SSH_MSG_DISCONNECT 1
 #define SSH_MSG_IGNORE 2
 #define SSH_MSG_UNIMPLEMENTED 3
 #define SSH_MSG_DEBUG 4
 #define SSH_MSG_SERVICE_REQUEST 5
 #define SSH_MSG_SERVICE_ACCEPT 6

 #define SSH_MSG_KEXINIT 20
 #define SSH_MSG_NEWKEYS 21

 /* Numbers 30-49 used for kex packets.
 Different kex methods may reuse message numbers in
 this range. */

 #define SSH_MSG_KEXDH_INIT 30
 #define SSH_MSG_KEXDH_REPLY 31

11. Security Considerations

 This protocol provides a secure encrypted channel over an insecure
 network. It performs server host authentication, key exchange,
 encryption, and integrity protection. It also derives a unique
 session id that may be used by higher-level protocols.

 It is expected that this protocol will sometimes be used without
 insisting on reliable association between the server host key and the
 server host name. Such use is inherently insecure, but may be
 necessary in non-security critical environments, and still provides
 protection against passive attacks. However, implementors of
 protocols running on top of this protocol should keep this

Ylonen, et. al. Expires March 21, 2003 [Page 23]

Internet-Draft SSH Transport Layer Protocol September 2002

 possibility in mind.

 This protocol is designed to be used over a reliable transport. If
 transmission errors or message manipulation occur, the connection is
 closed. The connection SHOULD be re-established if this occurs.
 Denial of service attacks of this type ("wire cutter") are almost
 impossible to avoid.

 The protocol was not designed to eliminate covert channels. For
 example, the padding, SSH_MSG_IGNORE messages, and several other
 places in the protocol can be used to pass covert information, and
 the recipient has no reliable way to verify whether such information
 is being sent.

 Nearly all ciphers specified in this document are used in cipher
 block chaining (CBC) mode. It's been known for some time that CBC
 modes will reveal information about the plaintext if two ciphertext
 blocks encrypted under the same key are equal; this is one of the
 reasons this document strongly recommends rekeying at least once per
 gigabyte of data, to reduce the chance that a "birthday paradox"
 collision will appear.

 Recent research has uncovered a new attack on CBC mode which, under
 certain conditions, allows a chosen plaintext attacker aware of the
 IV for a forthcoming message to have some chance to artificially
 induce a system into generating ciphertext collisions, allowing the
 attacker's guesses at likely prior plaintexts to be confirmed.

 Any protocol which uses CBC in a way which allows advance knowledge
 of a message's IV (e.g., by using the last block of the preceding
 message as the IV) might be vulnerable to this attack.

 Preliminary analysis of this attack as applied to the SSH protocol
 suggests that the protocol as implemented today is actually fairly
 resistant to this attack. While estimates vary, on average, an
 attacker would need tens or hundreds of millions of opportunities to
 inject chosen plaintexts to be encrypted with a known IV to confirm
 guesses on the value of a few unknown plaintexts.

 While this attack involves less work than a brute-force attack on the
 underlying cipher (and is thus a matter of some concern), it is also
 likely to be significantly more difficult than attacks on other parts
 of a system using the SSH protocol, and so is unlikely to be an
 immediate risk to real-world systems. Due to this document's
 recommendation that rekeying occur once an hour, an attacker also has
 a limited amount of time to complete any particular attack.

 Nevertheless, work is underway to specify, in a separate document or

Ylonen, et. al. Expires March 21, 2003 [Page 24]

Internet-Draft SSH Transport Layer Protocol September 2002

 documents, additional cipher modes for the SSH protocol to address
 this vulnerability. Implementors should be prepared to add new
 algorithms to their implementations as this work progresses.

12. Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementers or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

13. Additional Information

 The current document editor is: Darren.Moffat@Sun.COM. Comments on
 this internet draft should be sent to the IETF SECSH working group,
 details at: http://ietf.org/html.charters/secsh-charter.html

References

 [FIPS-186] Federal Information Processing Standards Publication,
 ., "FIPS PUB 186, Digital Signature Standard", May
 1994.

 [Orm96] Orman, H., "The Okaley Key Determination Protcol
 version1, TR97-92", 1996.

 [RFC2459] Housley, R., Ford, W., Polk, W. and D. Solo,
 "Internet X.509 Public Key Infrastructure Certificate
 and CRL Profile", RFC 2459, January 1999.

 [RFC1034] Mockapetris, P., "Domain names - concepts and
 facilities", STD 13, RFC 1034, Nov 1987.

 [RFC1766] Alvestrand, H., "Tags for the Identification of

https://datatracker.ietf.org/doc/html/bcp11
http://ietf.org/html.charters/secsh-charter.html
https://datatracker.ietf.org/doc/html/rfc2459
https://datatracker.ietf.org/doc/html/rfc1034

Ylonen, et. al. Expires March 21, 2003 [Page 25]

Internet-Draft SSH Transport Layer Protocol September 2002

 Languages", RFC 1766, March 1995.

 [RFC1950] Deutsch, P. and J-L. Gailly, "ZLIB Compressed Data
 Format Specification version 3.3", RFC 1950, May
 1996.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format
 Specification version 1.3", RFC 1951, May 1996.

 [RFC2279] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 2279, January 1998.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2144] Adams, C., "The CAST-128 Encryption Algorithm", RFC
2144, May 1997.

 [RFC2440] Callas, J., Donnerhacke, L., Finney, H. and R.
 Thayer, "OpenPGP Message Format", RFC 2440, November
 1998.

 [RFC2693] Ellison, C., Frantz, B., Lampson, B., Rivest, R.,
 Thomas, B. and T. Ylonen, "SPKI Certificate Theory",

RFC 2693, September 1999.

 [SCHNEIER] Schneier, B., "Applied Cryptography Second Edition:
 protocols algorithms and source in code in C", 1996.

 [TWOFISH] Schneier, B., "The Twofish Encryptions Algorithm: A
 128-Bit Block Cipher, 1st Edition", March 1999.

 [SSH-ARCH] Ylonen, T., "SSH Protocol Architecture", I-D draft-
ietf-architecture-13.txt, September 2002.

 [SSH-TRANS] Ylonen, T., "SSH Transport Layer Protocol", I-D
draft-ietf-transport-15.txt, September 2002.

 [SSH-USERAUTH] Ylonen, T., "SSH Authentication Protocol", I-D draft-
ietf-userauth-16.txt, September 2002.

 [SSH-CONNECT] Ylonen, T., "SSH Connection Protocol", I-D draft-
ietf-connect-16.txt, September 2002.

https://datatracker.ietf.org/doc/html/rfc1766
https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2144
https://datatracker.ietf.org/doc/html/rfc2144
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-13.txt
https://datatracker.ietf.org/doc/html/draft-ietf-architecture-13.txt
https://datatracker.ietf.org/doc/html/draft-ietf-transport-15.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-userauth-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-16.txt
https://datatracker.ietf.org/doc/html/draft-ietf-connect-16.txt

Ylonen, et. al. Expires March 21, 2003 [Page 26]

Internet-Draft SSH Transport Layer Protocol September 2002

Authors' Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: ylo@ssh.com

 Tero Kivinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: kivinen@ssh.com

 Markku-Juhani O. Saarinen
 University of Jyvaskyla

 Timo J. Rinne
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: tri@ssh.com

 Sami Lehtinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 HELSINKI FIN-00100
 Finland

 EMail: sjl@ssh.com

Ylonen, et. al. Expires March 21, 2003 [Page 27]

Internet-Draft SSH Transport Layer Protocol September 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Ylonen, et. al. Expires March 21, 2003 [Page 28]

