
Network Working Group C. Lonvick, Ed.
Internet-Draft Cisco Systems, Inc.
Expires: August 21, 2005 February 17, 2005

SSH Transport Layer Protocol
draft-ietf-secsh-transport-23.txt

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 21, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 SSH is a protocol for secure remote login and other secure network
 services over an insecure network.

 This document describes the SSH transport layer protocol which
 typically runs on top of TCP/IP. The protocol can be used as a basis
 for a number of secure network services. It provides strong
 encryption, server authentication, and integrity protection. It may

Lonvick Expires August 21, 2005 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SSH Transport Layer Protocol February 2005

 also provide compression.

 Key exchange method, public key algorithm, symmetric encryption
 algorithm, message authentication algorithm, and hash algorithm are
 all negotiated.

 This document also describes the Diffie-Hellman key exchange method
 and the minimal set of algorithms that are needed to implement the
 SSH transport layer protocol.

Table of Contents

1. Contributors . 4
2. Introduction . 4
3. Conventions Used in This Document 4
4. Connection Setup . 5
4.1 Use over TCP/IP . 5
4.2 Protocol Version Exchange 5

5. Compatibility With Old SSH Versions 6
5.1 Old Client, New Server 7
5.2 New Client, Old Server 7
5.3 Packet Size and Overhead 7

6. Binary Packet Protocol 8
6.1 Maximum Packet Length 9
6.2 Compression . 9
6.3 Encryption . 10
6.4 Data Integrity . 12
6.5 Key Exchange Methods 13
6.6 Public Key Algorithms 14

7. Key Exchange . 16
7.1 Algorithm Negotiation 16
7.2 Output from Key Exchange 19
7.3 Taking Keys Into Use 20

8. Diffie-Hellman Key Exchange 21
8.1 diffie-hellman-group1-sha1 22
8.2 diffie-hellman-group14-sha1 23

9. Key Re-Exchange . 23
10. Service Request . 23
11. Additional Messages . 24
11.1 Disconnection Message 24
11.2 Ignored Data Message 26
11.3 Debug Message . 26
11.4 Reserved Messages 26

12. Summary of Message Numbers 26
13. IANA Considerations . 27
14. Security Considerations 27
15. References . 27
15.1 Normative . 27

Lonvick Expires August 21, 2005 [Page 2]

Internet-Draft SSH Transport Layer Protocol February 2005

15.2 Informative . 29
 Author's Address . 29
 Intellectual Property and Copyright Statements 30

Lonvick Expires August 21, 2005 [Page 3]

Internet-Draft SSH Transport Layer Protocol February 2005

1. Contributors

 The major original contributors of this set of documents have been:
 Tatu Ylonen, Tero Kivinen, Timo J. Rinne, Sami Lehtinen (all of SSH
 Communications Security Corp), and Markku-Juhani O. Saarinen
 (University of Jyvaskyla). Darren Moffit was the original editor of
 this set of documents and also made very substantial contributions.

 Additional contributors to this document include [need list].
 Listing their names here does not mean that they endorse this
 document, but that they have contributed to it.

 Comments on this internet draft should be sent to the IETF SECSH
 working group, details at:

http://ietf.org/html.charters/secsh-charter.html Note: This paragraph
 will be removed before this document progresses to become an RFC.

2. Introduction

 The SSH transport layer is a secure low level transport protocol. It
 provides strong encryption, cryptographic host authentication, and
 integrity protection.

 Authentication in this protocol level is host-based; this protocol
 does not perform user authentication. A higher level protocol for
 user authentication can be designed on top of this protocol.

 The protocol has been designed to be simple, flexible, to allow
 parameter negotiation, and to minimize the number of round-trips.
 Key exchange method, public key algorithm, symmetric encryption
 algorithm, message authentication algorithm, and hash algorithm are
 all negotiated. It is expected that in most environments, only 2
 round-trips will be needed for full key exchange, server
 authentication, service request, and acceptance notification of
 service request. The worst case is 3 round-trips.

3. Conventions Used in This Document

 All documents related to the SSH protocols shall use the keywords
 "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
 "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" to describe
 requirements. These keywords are to be interpreted as described in
 [RFC2119].

 The keywords "PRIVATE USE", "HIERARCHICAL ALLOCATION", "FIRST COME
 FIRST SERVED", "EXPERT REVIEW", "SPECIFICATION REQUIRED", "IESG
 APPROVAL", "IETF CONSENSUS", and "STANDARDS ACTION" that appear in
 this document when used to describe namespace allocation are to be

http://ietf.org/html.charters/secsh-charter.html
https://datatracker.ietf.org/doc/html/rfc2119

Lonvick Expires August 21, 2005 [Page 4]

Internet-Draft SSH Transport Layer Protocol February 2005

 interpreted as described in [RFC2434].

 Protocol fields and possible values to fill them are defined in this
 set of documents. Protocol fields will be defined in the message
 definitions. As an example, SSH_MSG_CHANNEL_DATA is defined as
 follows.

 byte SSH_MSG_CHANNEL_DATA
 uint32 recipient channel
 string data

 Throughout these documents, when the fields are referenced, they will
 appear within single quotes. When values to fill those fields are
 referenced, they will appear within double quotes. Using the above
 example, possible values for 'data' are "foo" and "bar".

4. Connection Setup

 SSH works over any 8-bit clean, binary-transparent transport. The
 underlying transport SHOULD protect against transmission errors as
 such errors cause the SSH connection to terminate.

 The client initiates the connection.

4.1 Use over TCP/IP

 When used over TCP/IP, the server normally listens for connections on
 port 22. This port number has been registered with the IANA, and has
 been officially assigned for SSH.

4.2 Protocol Version Exchange

 When the connection has been established, both sides MUST send an
 identification string. This identification string MUST be

 SSH-protoversion-softwareversion SP comments CR LF

 Since the protocol being defined in this set of documents is version
 2.0, the 'protoversion' MUST be "2.0". The 'comments' string is
 OPTIONAL. If the 'comments' string is included, a 'space' character
 (denoted above as SP, ASCII 32) MUST separate the 'softwareversion'
 and 'comments' strings. The identification MUST be terminated by a
 single Carriage Return and a single Line Feed character (ASCII 13 and
 10, respectively). Implementors who wish to maintain compatibility
 with older, undocumented versions of this protocol, may want to
 process the identification string without expecting the presence of
 the carriage return character for reasons described in Section 5 of
 this document. The null character MUST NOT be sent. The maximum

https://datatracker.ietf.org/doc/html/rfc2434

Lonvick Expires August 21, 2005 [Page 5]

Internet-Draft SSH Transport Layer Protocol February 2005

 length of the string is 255 characters, including the Carriage Return
 and Line Feed.

 The part of the identification string preceding Carriage Return and
 Line Feed is used in the Diffie-Hellman key exchange (see

Section 8).

 The server MAY send other lines of data before sending the version
 string. Each line SHOULD be terminated by a Carriage Return and Line
 Feed. Such lines MUST NOT begin with "SSH-", and SHOULD be encoded
 in ISO-10646 UTF-8 [RFC3629] (language is not specified). Clients
 MUST be able to process such lines. They MAY be silently ignored, or
 MAY be displayed to the client user. If they are displayed, control
 character filtering discussed in [SSH-ARCH] SHOULD be used. The
 primary use of this feature is to allow TCP-wrappers to display an
 error message before disconnecting.

 Both the 'protoversion' and 'softwareversion' strings MUST consist of
 printable US-ASCII characters with the exception of whitespace
 characters and the minus sign (-). The 'softwareversion' string is
 primarily used to trigger compatibility extensions and to indicate
 the capabilities of an implementation. The 'comments' string SHOULD
 contain additional information that might be useful in solving user
 problems. As such, an example of a valid identification string is

 SSH-2.0-billsSSH_3.6.3q3<CR><LF>

 This identification string does not contain the optional 'comments'
 string and is thusly terminated by a CR and LF immediately after the
 'softwareversion' string.

 Key exchange will begin immediately after sending this identifier.
 All packets following the identification string SHALL use the binary
 packet protocol which is described in Section 6.

5. Compatibility With Old SSH Versions

 As stated earlier, the 'protoversion' specified for this protocol is
 "2.0". Earlier versions of this protocol have not been formally
 documented but it is widely known that they use 'protoversion' of
 "1.x" (e.g., "1.5" or "1.3"). At the time of this writing, many
 implementations of SSH are utilizing protocol version 2.0 but it is
 known that there are still devices using the previous versions.
 During the transition period, it is important to be able to work in a
 way that is compatible with the installed SSH clients and servers
 that use the older version of the protocol. Information in this
 section is only relevant for implementations supporting compatibility
 with SSH versions 1.x. For those interested, the only known

https://datatracker.ietf.org/doc/html/rfc3629

Lonvick Expires August 21, 2005 [Page 6]

Internet-Draft SSH Transport Layer Protocol February 2005

 documentation of the 1.x protocol is contained in README files that
 are shipped along with the source code. [ssh-1.2.30]

5.1 Old Client, New Server

 Server implementations MAY support a configurable "compatibility"
 flag that enables compatibility with old versions. When this flag is
 on, the server SHOULD identify its protocol version as "1.99".
 Clients using protocol 2.0 MUST be able to identify this as identical
 to "2.0". In this mode the server SHOULD NOT send the carriage
 return character (ASCII 13) after the version identification string.

 In the compatibility mode the server SHOULD NOT send any further data
 after its initialization string until it has received an
 identification string from the client. The server can then determine
 whether the client is using an old protocol, and can revert to the
 old protocol if required. In the compatibility mode, the server MUST
 NOT send additional data before the version string.

 When compatibility with old clients is not needed, the server MAY
 send its initial key exchange data immediately after the
 identification string.

5.2 New Client, Old Server

 Since the new client MAY immediately send additional data after its
 identification string (before receiving server's identification), the
 old protocol may already have been corrupted when the client learns
 that the server is old. When this happens, the client SHOULD close
 the connection to the server, and reconnect using the old protocol.

5.3 Packet Size and Overhead

 Some readers will worry about the increase in packet size due to new
 headers, padding, and Message Authentication Code (MAC). The minimum
 packet size is in the order of 28 bytes (depending on negotiated
 algorithms). The increase is negligible for large packets, but very
 significant for one-byte packets (telnet-type sessions). There are,
 however, several factors that make this a non-issue in almost all
 cases:
 o The minimum size of a TCP/IP header is 32 bytes. Thus, the
 increase is actually from 33 to 51 bytes (roughly).
 o The minimum size of the data field of an Ethernet packet is 46
 bytes [RFC0894]. Thus, the increase is no more than 5 bytes.
 When Ethernet headers are considered, the increase is less than 10
 percent.
 o The total fraction of telnet-type data in the Internet is
 negligible, even with increased packet sizes.

https://datatracker.ietf.org/doc/html/rfc0894

Lonvick Expires August 21, 2005 [Page 7]

Internet-Draft SSH Transport Layer Protocol February 2005

 The only environment where the packet size increase is likely to have
 a significant effect is PPP [RFC1134] over slow modem lines (PPP
 compresses the TCP/IP headers, emphasizing the increase in packet
 size). However, with modern modems, the time needed to transfer is
 in the order of 2 milliseconds, which is a lot faster than people can
 type.

 There are also issues related to the maximum packet size. To
 minimize delays in screen updates, one does not want excessively
 large packets for interactive sessions. The maximum packet size is
 negotiated separately for each channel.

6. Binary Packet Protocol

 Each packet is in the following format:

 uint32 packet_length
 byte padding_length
 byte[n1] payload; n1 = packet_length - padding_length - 1
 byte[n2] random padding; n2 = padding_length
 byte[m] mac (Message Authentication Code - MAC); m = mac_length

 packet_length
 The length of the packet in bytes, not including 'mac' or the
 'packet_length' field itself.

 padding_length
 Length of 'random padding' (bytes).

 payload
 The useful contents of the packet. If compression has been
 negotiated, this field is compressed. Initially, compression
 MUST be "none".

 random padding
 Arbitrary-length padding, such that the total length of
 (packet_length || padding_length || payload || random padding)
 is a multiple of the cipher block size or 8, whichever is
 larger. There MUST be at least four bytes of padding. The
 padding SHOULD consist of random bytes. The maximum amount of
 padding is 255 bytes.

 mac
 Message Authentication Code. If message authentication has
 been negotiated, this field contains the MAC bytes. Initially,
 the MAC algorithm MUST be "none".

https://datatracker.ietf.org/doc/html/rfc1134

Lonvick Expires August 21, 2005 [Page 8]

Internet-Draft SSH Transport Layer Protocol February 2005

 Note that the length of the concatenation of 'packet_length',
 'padding_length', 'payload', and 'random padding' MUST be a multiple
 of the cipher block size or 8, whichever is larger. This constraint
 MUST be enforced even when using stream ciphers. Note that the
 'packet_length' field is also encrypted, and processing it requires
 special care when sending or receiving packets. Also note that the
 insertion of variable amounts of 'random padding' may help thwart
 traffic analysis.

 The minimum size of a packet is 16 (or the cipher block size,
 whichever is larger) bytes (plus 'mac'). Implementations SHOULD
 decrypt the length after receiving the first 8 (or cipher block size,
 whichever is larger) bytes of a packet.

6.1 Maximum Packet Length

 All implementations MUST be able to process packets with uncompressed
 payload length of 32768 bytes or less and total packet size of 35000
 bytes or less (including 'packet_length', 'padding_length',
 'payload', 'random padding', and 'mac'). The maximum of 35000 bytes
 is an arbitrarily chosen value larger than uncompressed size.
 Implementations SHOULD support longer packets, where they might be
 needed. For example: if an implementation wants to send a very large
 number of certificates, the larger packets MAY be sent if the version
 string indicates that the other party is able to process them.
 However, implementations SHOULD check that the packet length is
 reasonable for the implementation to avoid denial of service and/or
 buffer overflow attacks.

6.2 Compression

 If compression has been negotiated, the 'payload' field (and only it)
 will be compressed using the negotiated algorithm. The
 'packet_length' field and 'mac' will be computed from the compressed
 payload. Encryption will be done after compression.

 Compression MAY be stateful, depending on the method. Compression
 MUST be independent for each direction, and implementations MUST
 allow independently choosing the algorithm for each direction. In
 practice however, it is RECOMMENDED that the compression method be
 the same in both directions.

 The following compression methods are currently defined:

 none REQUIRED no compression
 zlib OPTIONAL ZLIB (LZ77) compression

 The "zlib" compression is described in [RFC1950] and in [RFC1951].

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951

Lonvick Expires August 21, 2005 [Page 9]

Internet-Draft SSH Transport Layer Protocol February 2005

 The compression context is initialized after each key exchange, and
 is passed from one packet to the next with only a partial flush being
 performed at the end of each packet. A partial flush means that the
 current compressed block is ended and all data will be output. If
 the current block is not a stored block, one or more empty blocks are
 added after the current block to ensure that there are at least 8
 bits counting from the start of the end-of-block code of the current
 block to the end of the packet payload.

 Additional methods may be defined as specified in [SSH-ARCH] and
 [SSH-NUMBERS].

6.3 Encryption

 An encryption algorithm and a key will be negotiated during the key
 exchange. When encryption is in effect, the packet length, padding
 length, payload and padding fields of each packet MUST be encrypted
 with the given algorithm.

 The encrypted data in all packets sent in one direction SHOULD be
 considered a single data stream. For example: initialization vectors
 SHOULD be passed from the end of one packet to the beginning of the
 next packet. All ciphers SHOULD use keys with an effective key
 length of 128 bits or more.

 The ciphers in each direction MUST run independent of each other.
 Implementations MUST allow the algorithm for each direction to be
 independently selected, if multiple algorithms are allowed by local
 policy. In practice however, it is RECOMMENDED that the same
 algorithm be used in both directions.

 The following ciphers are currently defined:

 3des-cbc REQUIRED three-key 3DES in CBC mode
 blowfish-cbc OPTIONAL Blowfish in CBC mode
 twofish256-cbc OPTIONAL Twofish in CBC mode,
 with 256-bit key
 twofish-cbc OPTIONAL alias for "twofish256-cbc" (this
 is being retained for
 historical reasons)
 twofish192-cbc OPTIONAL Twofish with 192-bit key
 twofish128-cbc OPTIONAL Twofish with 128-bit key
 aes256-cbc OPTIONAL AES in CBC mode,
 with 256-bit key
 aes192-cbc OPTIONAL AES with 192-bit key
 aes128-cbc RECOMMENDED AES with 128-bit key
 serpent256-cbc OPTIONAL Serpent in CBC mode, with
 256-bit key

Lonvick Expires August 21, 2005 [Page 10]

Internet-Draft SSH Transport Layer Protocol February 2005

 serpent192-cbc OPTIONAL Serpent with 192-bit key
 serpent128-cbc OPTIONAL Serpent with 128-bit key
 arcfour OPTIONAL the ARCFOUR stream cipher
 idea-cbc OPTIONAL IDEA in CBC mode
 cast128-cbc OPTIONAL CAST-128 in CBC mode
 none OPTIONAL no encryption; NOT RECOMMENDED

 The "3des-cbc" cipher is three-key triple-DES
 (encrypt-decrypt-encrypt), where the first 8 bytes of the key are
 used for the first encryption, the next 8 bytes for the decryption,
 and the following 8 bytes for the final encryption. This requires 24
 bytes of key data (of which 168 bits are actually used). To
 implement CBC mode, outer chaining MUST be used (i.e., there is only
 one initialization vector). This is a block cipher with 8 byte
 blocks. This algorithm is defined in [FIPS-46-3]. Note that since
 this algorithm only has an effective key length of 112 bits
 ([SCHNEIER]), it does not meet the specifications that SSH encryption
 algorithms should use keys of 128 bits or more. However, this
 algorithm is still REQUIRED for historical reasons; essentially, all
 known implementations at the time of this writing support this
 algorithm, and it is commonly used because it is the fundamental
 interoperable algorithm. At some future time it is expected that
 another algorithm, one with better strength, will become so prevalent
 and ubiquitous that the use of "3des-cbc" will be deprecated by
 another STANDARDS ACTION.

 The "blowfish-cbc" cipher is Blowfish in CBC mode, with 128 bit keys
 [SCHNEIER]. This is a block cipher with 8 byte blocks.

 The "twofish-cbc" or "twofish256-cbc" cipher is Twofish in CBC mode,
 with 256 bit keys as described [TWOFISH]. This is a block cipher
 with 16 byte blocks.

 The "twofish192-cbc" cipher. Same as above but with 192-bit key.

 The "twofish128-cbc" cipher. Same as above but with 128-bit key.

 The "aes256-cbc" cipher is AES (Advanced Encryption Standard)
 [FIPS-197], in CBC mode. This version uses 256-bit key.

 The "aes192-cbc" cipher. Same as above but with 192-bit key.

 The "aes128-cbc" cipher. Same as above but with 128-bit key.

 The "serpent256-cbc" cipher in CBC mode, with 256-bit key as
 described in the Serpent AES submission.

 The "serpent192-cbc" cipher. Same as above but with 192-bit key.

Lonvick Expires August 21, 2005 [Page 11]

Internet-Draft SSH Transport Layer Protocol February 2005

 The "serpent128-cbc" cipher. Same as above but with 128-bit key.

 The "arcfour" is the Arcfour stream cipher with 128 bit keys. The
 Arcfour cipher is believed to be compatible with the RC4 cipher
 [SCHNEIER]. Arcfour (and RC4) has problems with weak keys, and
 should be used with caution.

 The "idea-cbc" cipher is the IDEA cipher in CBC mode [SCHNEIER].

 The "cast128-cbc" cipher is the CAST-128 cipher in CBC mode
 [RFC2144].

 The "none" algorithm specifies that no encryption is to be done.
 Note that this method provides no confidentiality protection, and it
 is NOT RECOMMENDED. Some functionality (e.g., password
 authentication) may be disabled for security reasons if this cipher
 is chosen.

 Additional methods may be defined as specified in [SSH-ARCH] and in
 [SSH-NUMBERS].

6.4 Data Integrity

 Data integrity is protected by including with each packet a MAC that
 is computed from a shared secret, packet sequence number, and the
 contents of the packet.

 The message authentication algorithm and key are negotiated during
 key exchange. Initially, no MAC will be in effect, and its length
 MUST be zero. After key exchange, the 'mac' for the selected MAC
 algorithm will be computed before encryption from the concatenation
 of packet data:

 mac = MAC(key, sequence_number || unencrypted_packet)

 where 'unencrypted_packet' is the entire packet without 'mac' (the
 length fields, 'payload' and 'random padding'), and 'sequence_number'
 is an implicit packet sequence number represented as uint32. The
 'sequence_number' is initialized to zero for the first packet, and is
 incremented after every packet (regardless of whether encryption or
 MAC is in use). It is never reset, even if keys/algorithms are
 renegotiated later. It wraps around to zero after every 2^32
 packets. The packet 'sequence_number' itself is not included in the
 packet sent over the wire.

 The MAC algorithms for each direction MUST run independently, and
 implementations MUST allow choosing the algorithm independently for
 both directions.

https://datatracker.ietf.org/doc/html/rfc2144

Lonvick Expires August 21, 2005 [Page 12]

Internet-Draft SSH Transport Layer Protocol February 2005

 The value of 'mac' resulting from the MAC algorithm MUST be
 transmitted without encryption as the last part of the packet. The
 number of 'mac' bytes depends on the algorithm chosen.

 The following MAC algorithms are currently defined:

 hmac-sha1 REQUIRED HMAC-SHA1 (digest length = key
 length = 20)
 hmac-sha1-96 RECOMMENDED first 96 bits of HMAC-SHA1 (digest
 length = 12, key length = 20)
 hmac-md5 OPTIONAL HMAC-MD5 (digest length = key
 length = 16)
 hmac-md5-96 OPTIONAL first 96 bits of HMAC-MD5 (digest
 length = 12, key length = 16)
 none OPTIONAL no MAC; NOT RECOMMENDED

 The "hmac-*" algorithms are described in [RFC2104]. The "*-n" MACs
 use only the first n bits of the resulting value.

 The hash algorithms are described in [SCHNEIER].

 Additional methods may be defined as specified in [SSH-ARCH] and in
 [SSH-NUMBERS].

6.5 Key Exchange Methods

 The key exchange method specifies how one-time session keys are
 generated for encryption and for authentication, and how the server
 authentication is done.

 Two REQUIRED key exchange methods have been defined:

 diffie-hellman-group1-sha1 REQUIRED
 diffie-hellman-group14-sha1 REQUIRED

 These methods are described in Section 8.

 Additional methods may be defined as specified in [SSH-NUMBERS]. The
 name "diffie-hellman-group1-sha1" is used for a key exchange method
 using an Oakley group as defined in [RFC2409]. SSH maintains its own
 group identifier space which is logically distinct from Oakley
 [RFC2412] and IKE; however, for one additional group, the Working
 Group adopted the number assigned by [RFC3526], using
 diffie-hellman-group14-sha1 for the name of the second defined group.
 Implementations should treat these names as opaque identifiers and
 should not assume any relationship between the groups used by SSH and
 the groups defined for IKE.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc3526

Lonvick Expires August 21, 2005 [Page 13]

Internet-Draft SSH Transport Layer Protocol February 2005

6.6 Public Key Algorithms

 This protocol has been designed to be able to operate with almost any
 public key format, encoding, and algorithm (signature and/or
 encryption).

 There are several aspects that define a public key type:
 o Key format: how is the key encoded and how are certificates
 represented. The key blobs in this protocol MAY contain
 certificates in addition to keys.
 o Signature and/or encryption algorithms. Some key types may not
 support both signing and encryption. Key usage may also be
 restricted by policy statements - e.g., in certificates. In this
 case, different key types SHOULD be defined for the different
 policy alternatives.
 o Encoding of signatures and/or encrypted data. This includes but
 is not limited to padding, byte order, and data formats.

 The following public key and/or certificate formats are currently
 defined:

 ssh-dss REQUIRED sign Raw DSS Key
 ssh-rsa RECOMMENDED sign Raw RSA Key
 pgp-sign-rsa OPTIONAL sign OpenPGP certificates (RSA key)
 pgp-sign-dss OPTIONAL sign OpenPGP certificates (DSS key)

 Additional key types may be defined as specified in [SSH-ARCH] and in
 [SSH-NUMBERS].

 The key type MUST always be explicitly known (from algorithm
 negotiation or some other source). It is not normally included in
 the key blob.

 Certificates and public keys are encoded as follows:
 string certificate or public key format identifier
 byte[n] key/certificate data

 The certificate part may have be a zero length string, but a public
 key is required. This is the public key that will be used for
 authentication. The certificate sequence contained in the
 certificate blob can be used to provide authorization.

 Public key / certificate formats that do not explicitly specify a
 signature format identifier MUST use the public key / certificate
 format identifier as the signature identifier.

 Signatures are encoded as follows:
 string signature format identifier (as specified by the

Lonvick Expires August 21, 2005 [Page 14]

Internet-Draft SSH Transport Layer Protocol February 2005

 public key / cert format)
 byte[n] signature blob in format specific encoding.

 The "ssh-dss" key format has the following specific encoding:

 string "ssh-dss"
 mpint p
 mpint q
 mpint g
 mpint y

 Here the 'p', 'q', 'g', and 'y' parameters form the signature key blob.

 Signing and verifying using this key format is done according to the
 Digital Signature Standard [FIPS-186-2] using the SHA-1 hash.

 The resulting signature is encoded as follows:

 string "ssh-dss"
 string dss_signature_blob

 The value for 'dss_signature_blob' is encoded as a string containing
 r followed by s (which are 160 bits long integers, without lengths or
 padding, unsigned and in network byte order).

 The "ssh-rsa" key format has the following specific encoding:

 string "ssh-rsa"
 mpint e
 mpint n

 Here the 'e' and 'n' parameters form the signature key blob.

 Signing and verifying using this key format is done according to
 [SCHNEIER] and [RFC3447] using the SHA-1 hash.

 The resulting signature is encoded as follows:

 string "ssh-rsa"
 string rsa_signature_blob

 The value for 'rsa_signature_blob' is encoded as a string containing
 s (which is an integer, without lengths or padding, unsigned and in
 network byte order).

 The "pgp-sign-rsa" method indicates the certificates, the public key,
 and the signature are in OpenPGP compatible binary format

https://datatracker.ietf.org/doc/html/rfc3447

Lonvick Expires August 21, 2005 [Page 15]

Internet-Draft SSH Transport Layer Protocol February 2005

 ([RFC2440]). This method indicates that the key is an RSA-key.

 The "pgp-sign-dss". As above, but indicates that the key is a
 DSS-key.

7. Key Exchange

 Key exchange (kex) begins by each side sending name-lists of
 supported algorithms. Each side has a preferred algorithm in each
 category, and it is assumed that most implementations at any given
 time will use the same preferred algorithm. Each side MAY guess
 which algorithm the other side is using, and MAY send an initial key
 exchange packet according to the algorithm if appropriate for the
 preferred method.

 The guess is considered wrong, if:
 o the kex algorithm and/or the host key algorithm is guessed wrong
 (server and client have different preferred algorithm), or
 o if any of the other algorithms cannot be agreed upon (the
 procedure is defined below in Section 7.1).

 Otherwise, the guess is considered to be right and the optimistically
 sent packet MUST be handled as the first key exchange packet.

 However, if the guess was wrong, and a packet was optimistically sent
 by one or both parties, such packets MUST be ignored (even if the
 error in the guess would not affect the contents of the initial
 packet(s)), and the appropriate side MUST send the correct initial
 packet.

 A key exchange method uses "explicit server authentication" if the
 key exchange messages include a signature or other proof of the
 server's authenticity. A key exchange method uses "implicit server
 authentication" if, in order to prove its authenticity, the server
 also has to prove that it knows the shared secret K, by sending a
 message and a corresponding MAC which the client can verify.

 The key exchange method defined by this document uses explicit server
 authentication. However, key exchange methods with implicit server
 authentication MAY be used with this protocol. After a key exchange
 with implicit server authentication, the client MUST wait for a
 response to its service request message before sending any further
 data.

7.1 Algorithm Negotiation

 Key exchange begins by each side sending the following packet:

https://datatracker.ietf.org/doc/html/rfc2440

Lonvick Expires August 21, 2005 [Page 16]

Internet-Draft SSH Transport Layer Protocol February 2005

 byte SSH_MSG_KEXINIT
 byte[16] cookie (random bytes)
 name-list kex_algorithms
 name-list server_host_key_algorithms
 name-list encryption_algorithms_client_to_server
 name-list encryption_algorithms_server_to_client
 name-list mac_algorithms_client_to_server
 name-list mac_algorithms_server_to_client
 name-list compression_algorithms_client_to_server
 name-list compression_algorithms_server_to_client
 name-list languages_client_to_server
 name-list languages_server_to_client
 boolean first_kex_packet_follows
 uint32 0 (reserved for future extension)

 Each of the algorithm name-lists MUST be a comma-separated list of
 algorithm names - see Algorithm Naming in [SSH-ARCH] and additional
 information in [SSH-NUMBERS]. Each supported (allowed) algorithm
 MUST be listed in order of preference, from most to least.

 The first algorithm in each name-list MUST be the preferred (guessed)
 algorithm. Each name-list MUST contain at least one algorithm name.

 cookie
 The 'cookie' MUST be a random value generated by the sender.
 Its purpose is to make it impossible for either side to fully
 determine the keys and the session identifier.

 kex_algorithms
 Key exchange algorithms were defined above. The first
 algorithm MUST be the preferred (and guessed) algorithm. If
 both sides make the same guess, that algorithm MUST be used.
 Otherwise, the following algorithm MUST be used to choose a key
 exchange method: Iterate over client's kex algorithms, one at a
 time. Choose the first algorithm that satisfies the following
 conditions:
 + the server also supports the algorithm,
 + if the algorithm requires an encryption-capable host key,
 there is an encryption-capable algorithm on the server's
 server_host_key_algorithms that is also supported by the
 client, and
 + if the algorithm requires a signature-capable host key,
 there is a signature-capable algorithm on the server's
 server_host_key_algorithms that is also supported by the
 client.
 If no algorithm satisfying all these conditions can be found,
 the connection fails, and both sides MUST disconnect.

Lonvick Expires August 21, 2005 [Page 17]

 server_host_key_algorithms
 A name-list of the algorithms supported for the server host
 key. The server lists the algorithms for which it has host
 keys; the client lists the algorithms that it is willing to
 accept. (There MAY be multiple host keys for a host, possibly
 with different algorithms.)

 Some host keys may not support both signatures and encryption
 (this can be determined from the algorithm), and thus not all
 host keys are valid for all key exchange methods.

 Algorithm selection depends on whether the chosen key exchange
 algorithm requires a signature or encryption capable host key.
 It MUST be possible to determine this from the public key
 algorithm name. The first algorithm on the client's name-list
 that satisfies the requirements and is also supported by the
 server MUST be chosen. If there is no such algorithm, both
 sides MUST disconnect.

 encryption_algorithms
 A name-list of acceptable symmetric encryption algorithms (also
 known as ciphers) in order of preference. The chosen
 encryption algorithm to each direction MUST be the first
 algorithm on the client's name-list that is also on the
 server's name-list. If there is no such algorithm, both sides
 MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The defined algorithm names are listed in

Section 6.3.

 mac_algorithms
 A name-list of acceptable MAC algorithms in order of
 preference. The chosen MAC algorithm MUST be the first
 algorithm on the client's name-list that is also on the
 server's name-list. If there is no such algorithm, both sides
 MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The MAC algorithm names are listed in Section 6.4.

 compression_algorithms
 A name-list of acceptable compression algorithms in order of
 preference. The chosen compression algorithm MUST be the first
 algorithm on the client's name-list that is also on the
 server's name-list. If there is no such algorithm, both sides
 MUST disconnect.

 Note that "none" must be explicitly listed if it is to be
 acceptable. The compression algorithm names are listed in

Lonvick Expires August 21, 2005 [Page 18]

Internet-Draft SSH Transport Layer Protocol February 2005

Section 6.2.

 languages
 This is a name-list of language tags in order of preference
 [RFC3066]. Both parties MAY ignore this name-list. If there
 are no language preferences, this name-list SHOULD be empty as
 defined in Section 5 of [SSH-ARCH]. Language tags SHOULD NOT
 be present unless they are known to be needed by the sending
 party.

 first_kex_packet_follows
 Indicates whether a guessed key exchange packet follows. If a
 guessed packet will be sent, this MUST be TRUE. If no guessed
 packet will be sent, this MUST be FALSE.

 After receiving the SSH_MSG_KEXINIT packet from the other side,
 each party will know whether their guess was right. If the
 other party's guess was wrong, and this field was TRUE, the
 next packet MUST be silently ignored, and both sides MUST then
 act as determined by the negotiated key exchange method. If
 the guess was right, key exchange MUST continue using the
 guessed packet.

 After the KEXINIT packet exchange, the key exchange algorithm is run.
 It may involve several packet exchanges, as specified by the key
 exchange method.

 Once a party has sent a KEXINIT message for key exchange or
 re-exchange, until is has sent a NEWKEYS message (Section 7.3), it
 MUST NOT send any messages other than:
 o Transport layer generic messages (1 to 19) (but SERVICE_REQUEST
 and SERVICE_ACCEPT MUST NOT be sent);
 o Algorithm negotiation messages (20 to 29) (but further KEXINITs
 MUST NOT be sent);
 o Specific key exchange method messages (30 to 49).

 The provisions of Section 11 apply to unrecognized messages.

 Note however that during a key re-exchange, after sending a KEXINIT
 message, each party MUST be prepared to process an arbitrary number
 of messages that may be in-flight before receiving a KEXINIT from the
 other party.

7.2 Output from Key Exchange

 The key exchange produces two values: a shared secret K, and an
 exchange hash H. Encryption and authentication keys are derived from
 these. The exchange hash H from the first key exchange is

https://datatracker.ietf.org/doc/html/rfc3066

Lonvick Expires August 21, 2005 [Page 19]

Internet-Draft SSH Transport Layer Protocol February 2005

 additionally used as the session identifier, which is a unique
 identifier for this connection. It is used by authentication methods
 as a part of the data that is signed as a proof of possession of a
 private key. Once computed, the session identifier is not changed,
 even if keys are later re-exchanged.

 Each key exchange method specifies a hash function that is used in
 the key exchange. The same hash algorithm MUST be used in key
 derivation. Here, we'll call it HASH.

 Encryption keys MUST be computed as HASH of a known value and K as
 follows:
 o Initial IV client to server: HASH(K || H || "A" || session_id)
 (Here K is encoded as mpint and "A" as byte and session_id as raw
 data. "A" means the single character A, ASCII 65).
 o Initial IV server to client: HASH(K || H || "B" || session_id)
 o Encryption key client to server: HASH(K || H || "C" || session_id)
 o Encryption key server to client: HASH(K || H || "D" || session_id)
 o Integrity key client to server: HASH(K || H || "E" || session_id)
 o Integrity key server to client: HASH(K || H || "F" || session_id)

 Key data MUST be taken from the beginning of the hash output. 128
 bits (16 bytes) MUST be used for algorithms with variable-length
 keys. The only variable key length algorithm defined in this
 document is arcfour). For other algorithms, as many bytes as are
 needed are taken from the beginning of the hash value. If the key
 length needed is longer than the output of the HASH, the key is
 extended by computing HASH of the concatenation of K and H and the
 entire key so far, and appending the resulting bytes (as many as HASH
 generates) to the key. This process is repeated until enough key
 material is available; the key is taken from the beginning of this
 value. In other words:

 K1 = HASH(K || H || X || session_id) (X is e.g., "A")
 K2 = HASH(K || H || K1)
 K3 = HASH(K || H || K1 || K2)
 ...
 key = K1 || K2 || K3 || ...

 This process will lose entropy if the amount of entropy in K is
 larger than the internal state size of HASH.

7.3 Taking Keys Into Use

 Key exchange ends by each side sending an SSH_MSG_NEWKEYS message.
 This message is sent with the old keys and algorithms. All messages

Lonvick Expires August 21, 2005 [Page 20]

Internet-Draft SSH Transport Layer Protocol February 2005

 sent after this message MUST use the new keys and algorithms.

 When this message is received, the new keys and algorithms MUST be
 taken into use for receiving.

 The purpose of this message is to ensure that a party is able to
 respond with a SSH_MSG_DISCONNECT message that the other party can
 understand if something goes wrong with the key exchange.

 byte SSH_MSG_NEWKEYS

8. Diffie-Hellman Key Exchange

 The Diffie-Hellman (DH) key exchange provides a shared secret that
 can not be determined by either party alone. The key exchange is
 combined with a signature with the host key to provide host
 authentication. This key exchange method provides explicit server
 authentication as is defined in Section 7.

 In the following description (C is the client, S is the server; p is
 a large safe prime, g is a generator for a subgroup of GF(p), and q
 is the order of the subgroup; V_S is S's version string; V_C is C's
 version string; K_S is S's public host key; I_C is C's KEXINIT
 message and I_S S's KEXINIT message which have been exchanged before
 this part begins):

 1. C generates a random number x (1 < x < q) and computes e = g^x
 mod p. C sends "e" to S.

 2. S generates a random number y (0 < y < q) and computes f = g^y
 mod p. S receives "e". It computes K = e^y mod p, H = hash(V_C
 || V_S || I_C || I_S || K_S || e || f || K) (these elements are
 encoded according to their types; see below), and signature s on
 H with its private host key. S sends "K_S || f || s" to C. The
 signing operation may involve a second hashing operation.

 3. C verifies that K_S really is the host key for S (e.g., using
 certificates or a local database). C is also allowed to accept
 the key without verification; however, doing so will render the
 protocol insecure against active attacks (but may be desirable
 for practical reasons in the short term in many environments). C
 then computes K = f^x mod p, H = hash(V_C || V_S || I_C || I_S ||
 K_S || e || f || K), and verifies the signature s on H.

 Either side MUST NOT send or accept e or f values that are not in the
 range [1, p-1]. If this condition is violated, the key exchange

Lonvick Expires August 21, 2005 [Page 21]

Internet-Draft SSH Transport Layer Protocol February 2005

 fails.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The public key algorithm for signing is negotiated with
 the KEXINIT messages.

 First, the client sends the following:

 byte SSH_MSG_KEXDH_INIT
 mpint e

 The server responds with the following:

 byte SSH_MSG_KEXDH_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

 The hash H is computed as the HASH hash of the concatenation of the
 following:

 string V_C, the client's version string (CR and NL excluded)
 string V_S, the server's version string (CR and NL excluded)
 string I_C, the payload of the client's SSH_MSG_KEXINIT
 string I_S, the payload of the server's SSH_MSG_KEXINIT
 string K_S, the host key
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

 This value is called the exchange hash, and it is used to
 authenticate the key exchange. The exchange hash SHOULD be kept
 secret.

 The signature algorithm MUST be applied over H, not the original
 data. Most signature algorithms include hashing and additional
 padding - for example, "ssh-dss" specifies SHA-1 hashing. In that
 case, the data is first hashed with HASH to compute H, and H is then
 hashed with SHA-1 as part of the signing operation.

8.1 diffie-hellman-group1-sha1

 The "diffie-hellman-group1-sha1" method specifies Diffie-Hellman key
 exchange with SHA-1 as HASH, and Oakley Group 2 [RFC2409] (1024bit

https://datatracker.ietf.org/doc/html/rfc2409

Lonvick Expires August 21, 2005 [Page 22]

Internet-Draft SSH Transport Layer Protocol February 2005

 MODP Group). This method MUST be supported for interoperability as
 all of the known implementations currently support it. Note that
 this method is named using the phrase "group1" even though it
 specifies the use of Oakley Group 2.

8.2 diffie-hellman-group14-sha1

 The "diffie-hellman-group14-sha1" method specifies Diffie-Hellman key
 exchange with SHA-1 as HASH, and Oakley Group 14 [RFC3526] (2048bit
 MODP Group), and it MUST also be supported.

9. Key Re-Exchange

 Key re-exchange is started by sending an SSH_MSG_KEXINIT packet when
 not already doing a key exchange (as described in Section 7.1). When
 this message is received, a party MUST respond with its own
 SSH_MSG_KEXINIT message except when the received SSH_MSG_KEXINIT
 already was a reply. Either party MAY initiate the re-exchange, but
 roles MUST NOT be changed (i.e., the server remains the server, and
 the client remains the client).

 Key re-exchange is performed using whatever encryption was in effect
 when the exchange was started. Encryption, compression, and MAC
 methods are not changed before a new SSH_MSG_NEWKEYS is sent after
 the key exchange (as in the initial key exchange). Re-exchange is
 processed identically to the initial key exchange, except for the
 session identifier that will remain unchanged. It is permissible to
 change some or all of the algorithms during the re-exchange. Host
 keys can also change. All keys and initialization vectors are
 recomputed after the exchange. Compression and encryption contexts
 are reset.

 It is RECOMMENDED that the keys are changed after each gigabyte of
 transmitted data or after each hour of connection time, whichever
 comes sooner. However, since the re-exchange is a public key
 operation, it requires a fair amount of processing power and should
 not be performed too often.

 More application data may be sent after the SSH_MSG_NEWKEYS packet
 has been sent; key exchange does not affect the protocols that lie
 above the SSH transport layer.

10. Service Request

 After the key exchange, the client requests a service. The service

https://datatracker.ietf.org/doc/html/rfc3526

Lonvick Expires August 21, 2005 [Page 23]

Internet-Draft SSH Transport Layer Protocol February 2005

 is identified by a name. The format of names and procedures for
 defining new names are defined in [SSH-ARCH] and [SSH-NUMBERS].

 Currently, the following names have been reserved:

 ssh-userauth
 ssh-connection

 Similar local naming policy is applied to the service names, as is
 applied to the algorithm names. A local service should use the
 PRIVATE USE syntax of "servicename@domain".

 byte SSH_MSG_SERVICE_REQUEST
 string service name

 If the server rejects the service request, it SHOULD send an
 appropriate SSH_MSG_DISCONNECT message and MUST disconnect.

 When the service starts, it may have access to the session identifier
 generated during the key exchange.

 If the server supports the service (and permits the client to use
 it), it MUST respond with the following:

 byte SSH_MSG_SERVICE_ACCEPT
 string service name

 Message numbers used by services should be in the area reserved for
 them (see [SSH-ARCH]) and [SSH-NUMBERS]. The transport level will
 continue to process its own messages.

 Note that after a key exchange with implicit server authentication,
 the client MUST wait for response to its service request message
 before sending any further data.

11. Additional Messages

 Either party may send any of the following messages at any time.

11.1 Disconnection Message
 byte SSH_MSG_DISCONNECT
 uint32 reason code
 string description [RFC3629]

https://datatracker.ietf.org/doc/html/rfc3629

Lonvick Expires August 21, 2005 [Page 24]

Internet-Draft SSH Transport Layer Protocol February 2005

 string language tag [RFC3066]

 This message causes immediate termination of the connection. All
 implementations MUST be able to process this message; they SHOULD be
 able to send this message.

 The sender MUST NOT send or receive any data after this message, and
 the recipient MUST NOT accept any data after receiving this message.
 The Disconnection Message 'description' string gives a more specific
 explanation in a human-readable form. The Disconnection Message
 'reason code' gives the reason in a more machine-readable format
 (suitable for localization), and can have the values as displayed in
 the table below. Note that the decimal representation is displayed
 in this table for readability but that the values are actually uint32
 values.

 Symbolic name reason code
 ------------- -----------
 SSH_DISCONNECT_HOST_NOT_ALLOWED_TO_CONNECT 1
 SSH_DISCONNECT_PROTOCOL_ERROR 2
 SSH_DISCONNECT_KEY_EXCHANGE_FAILED 3
 SSH_DISCONNECT_RESERVED 4
 SSH_DISCONNECT_MAC_ERROR 5
 SSH_DISCONNECT_COMPRESSION_ERROR 6
 SSH_DISCONNECT_SERVICE_NOT_AVAILABLE 7
 SSH_DISCONNECT_PROTOCOL_VERSION_NOT_SUPPORTED 8
 SSH_DISCONNECT_HOST_KEY_NOT_VERIFIABLE 9
 SSH_DISCONNECT_CONNECTION_LOST 10
 SSH_DISCONNECT_BY_APPLICATION 11
 SSH_DISCONNECT_TOO_MANY_CONNECTIONS 12
 SSH_DISCONNECT_AUTH_CANCELLED_BY_USER 13
 SSH_DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE 14
 SSH_DISCONNECT_ILLEGAL_USER_NAME 15

 If the 'description' string is displayed, control character filtering
 discussed in [SSH-ARCH] should be used to avoid attacks by sending
 terminal control characters.

 Requests for assignments of new Disconnection Message 'reason code'
 values (and associated 'description' text) in the range of 0x00000010
 to 0xFDFFFFFF MUST be done through the IETF CONSENSUS method as
 described in [RFC2434]. The Disconnection Message 'reason code'
 values in the range of 0xFE000000 through 0xFFFFFFFF are reserved for
 PRIVATE USE. As is noted, the actual instructions to the IANA are in
 [SSH-NUMBERS].

https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc2434

Lonvick Expires August 21, 2005 [Page 25]

Internet-Draft SSH Transport Layer Protocol February 2005

11.2 Ignored Data Message
 byte SSH_MSG_IGNORE
 string data

 All implementations MUST understand (and ignore) this message at any
 time (after receiving the protocol version). No implementation is
 required to send them. This message can be used as an additional
 protection measure against advanced traffic analysis techniques.

11.3 Debug Message
 byte SSH_MSG_DEBUG
 boolean always_display
 string message [RFC3629]
 string language tag [RFC3066]

 All implementations MUST understand this message, but they are
 allowed to ignore it. This message is used to transmit information
 that may help debugging. If always_display is TRUE, the message
 SHOULD be displayed. Otherwise, it SHOULD NOT be displayed unless
 debugging information has been explicitly requested by the user.

 The 'message' doesn't need to contain a newline. It is, however,
 allowed to consist of multiple lines separated by CRLF (Carriage
 Return - Line Feed) pairs.

 If the 'message' string is displayed, terminal control character
 filtering discussed in [SSH-ARCH] should be used to avoid attacks by
 sending terminal control characters.

11.4 Reserved Messages

 An implementation MUST respond to all unrecognized messages with an
 SSH_MSG_UNIMPLEMENTED message in the order in which the messages were
 received. Such messages MUST be otherwise ignored. Later protocol
 versions may define other meanings for these message types.
 byte SSH_MSG_UNIMPLEMENTED
 uint32 packet sequence number of rejected message

12. Summary of Message Numbers

 The following is a summary of messages and their associated message
 number.

 SSH_MSG_DISCONNECT 1
 SSH_MSG_IGNORE 2
 SSH_MSG_UNIMPLEMENTED 3

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3066

Lonvick Expires August 21, 2005 [Page 26]

Internet-Draft SSH Transport Layer Protocol February 2005

 SSH_MSG_DEBUG 4
 SSH_MSG_SERVICE_REQUEST 5
 SSH_MSG_SERVICE_ACCEPT 6
 SSH_MSG_KEXINIT 20
 SSH_MSG_NEWKEYS 21

 Note that numbers 30-49 are used for kex packets. Different kex
 methods may reuse message numbers in this range.

13. IANA Considerations

 This document is part of a set. The IANA considerations for the SSH
 protocol as defined in [SSH-ARCH], [SSH-USERAUTH], [SSH-CONNECT], and
 this document, are detailed in [SSH-NUMBERS].

14. Security Considerations

 This protocol provides a secure encrypted channel over an insecure
 network. It performs server host authentication, key exchange,
 encryption, and integrity protection. It also derives a unique
 session id that may be used by higher-level protocols.

 Full security considerations for this protocol are provided in
 [SSH-ARCH].

15. References

15.1 Normative

 [SSH-ARCH]
 Lonvick, C., "SSH Protocol Architecture",
 I-D draft-ietf-secsh-architecture-21.txt, February 2005.

 [SSH-USERAUTH]
 Lonvick, C., "SSH Authentication Protocol",
 I-D draft-ietf-secsh-userauth-26.txt, February 2005.

 [SSH-CONNECT]
 Lonvick, C., "SSH Connection Protocol",
 I-D draft-ietf-secsh-connect-24.txt, February 2005.

 [SSH-NUMBERS]
 Lonvick, C., "SSH Protocol Assigned Numbers",
 I-D draft-ietf-secsh-assignednumbers-11.txt, February
 2005.

 [RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data Format

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-architecture-21.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-userauth-26.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-connect-24.txt
https://datatracker.ietf.org/doc/html/draft-ietf-secsh-assignednumbers-11.txt

Lonvick Expires August 21, 2005 [Page 27]

Internet-Draft SSH Transport Layer Protocol February 2005

 Specification version 3.3", RFC 1950, May 1996.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2144] Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144,
 May 1997.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC2440] Callas, J., Donnerhacke, L., Finney, H. and R. Thayer,
 "OpenPGP Message Format", RFC 2440, November 1998.

 [RFC2693] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas,
 B. and T. Ylonen, "SPKI Certificate Theory", RFC 2693,
 September 1999.

 [RFC3066] Alvestrand, H., "Tags for the Identification of
 Languages", BCP 47, RFC 3066, January 2001.

 [RFC3280] Housley, R., Polk, W., Ford, W. and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, May 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1951
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2144
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2440
https://datatracker.ietf.org/doc/html/rfc2693
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc3066
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3629

Lonvick Expires August 21, 2005 [Page 28]

Internet-Draft SSH Transport Layer Protocol February 2005

 [FIPS-186-2]
 Federal Information Processing Standards Publication,
 "FIPS PUB 186-2, Digital Signature Standard (DSS)",
 January 2000.

 [FIPS-197]
 NIST, "FIPS PUB 197 Advanced Encryption Standard (AES)",
 November 2001.

 [FIPS-46-3]
 U.S. Dept. of Commerce, "FIPS PUB 46-3, Data Encryption
 Standard (DES)", October 1999.

 [SCHNEIER]
 Schneier, B., "Applied Cryptography Second Edition:
 protocols algorithms and source in code in C", 1996.

 [TWOFISH] Schneier, B., "The Twofish Encryptions Algorithm: A
 128-Bit Block Cipher, 1st Edition", March 1999.

15.2 Informative

 [RFC0894] Hornig, C., "Standard for the transmission of IP datagrams
 over Ethernet networks", STD 41, RFC 894, April 1984.

 [RFC1134] Perkins, D., "Point-to-Point Protocol: A proposal for
 multi-protocol transmission of datagrams over
 Point-to-Point links", RFC 1134, November 1989.

 [RFC2412] Orman, H., "The OAKLEY Key Determination Protocol",
RFC 2412, November 1998.

 [ssh-1.2.30]
 Ylonen, T., "ssh-1.2.30/RFC", File within compressed
 tarball ftp://ftp.funet.fi/pub/unix/security/login/ssh/

ssh-1.2.30.tar.gz, November 1995.

Author's Address

 Chris Lonvick (editor)
 Cisco Systems, Inc.
 12515 Research Blvd.
 Austin 78759
 USA

 Email: clonvick@cisco.com

https://datatracker.ietf.org/doc/html/rfc894
https://datatracker.ietf.org/doc/html/rfc1134
https://datatracker.ietf.org/doc/html/rfc2412
ftp://ftp.funet.fi/pub/unix/security/login/ssh/ssh-1.2.30.tar.gz
ftp://ftp.funet.fi/pub/unix/security/login/ssh/ssh-1.2.30.tar.gz

Lonvick Expires August 21, 2005 [Page 29]

Internet-Draft SSH Transport Layer Protocol February 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Lonvick Expires August 21, 2005 [Page 30]

Internet-Draft SSH Transport Layer Protocol February 2005

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Lonvick Expires August 21, 2005 [Page 31]

