
Network Working Group T. Ylonen
INTERNET-DRAFT T. Kivinen
draft-ietf-secsh-userauth-09.txt M. Saarinen
Expires: 9 July, 2001 T. Rinne
 S. Lehtinen
 SSH Communications Security
 9 January, 2001

SSH Authentication Protocol

Status of This Memo

This document is an Internet-Draft and is in full conformance
with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as
"work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

SSH is a protocol for secure remote login and other secure network ser-
vices over an insecure network. This document describes the SSH authen-
tication protocol framework and public key, password, and host-based
client authentication methods. Additional authentication methods are
described in separate documents. The SSH authentication protocol runs
on top of the SSH transport layer protocol and provides a single authen-
ticated tunnel for the SSH connection protocol.

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-userauth-09.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 1]

INTERNET-DRAFT 9 January, 2001

Table of Contents

1. Introduction . 2
2. The Authentication Protocol Framework 2
2.1. Authentication Requests 3
2.2. Responses to Authentication Requests 4
2.3. The "none" Authentication Request 4
2.4. Completion of User Authentication 5
2.5. Banner Message . 5

3. Authentication Protocol Message Numbers 5
4. Public Key Authentication Method: publickey 6
5. Password Authentication Method: password 7
6. Host-Based Authentication: hostbased 9
7. Security Considerations . 10
8. Trademark Issues . 10
9. References . 11
10. Authors' Addresses . 11

1. Introduction

The SSH authentication protocol is a general-purpose user authentication
protocol. It is intended to be run over the SSH transport layer protocol
[SSH-TRANS]. This protocol assumes that the underlying protocols provide
integrity and confidentiality protection.

This document should be read only after reading the SSH architecture
document [SSH-ARCH]. This document freely uses terminology and notation
from the architecture document without reference or further explanation.

The service name for this protocol is "ssh-userauth".

When this protocol starts, it receives the session identifier from the
lower-level protocol (this is the exchange hash H from the first key
exchange). The session identifier uniquely identifies this session and
is suitable for signing in order to prove ownership of a private key.
This protocol also needs to know whether the lower-level protocol
provides confidentiality protection.

2. The Authentication Protocol Framework

The server drives the authentication by telling the client which
authentication methods can be used to continue the exchange at any given
time. The client has the freedom to try the methods listed by the server
in any order. This gives the server complete control over the
authentication process if desired, but also gives enough flexibility for
the client to use the methods it supports or that are most convenient
for the user, when multiple methods are offered by the server.

Authentication methods are identified by their name, as defined in [SSH-
ARCH]. The "none" method is reserved, and MUST NOT be listed as
supported. However, it MAY be sent by the client. The server MUST

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 2]

INTERNET-DRAFT 9 January, 2001

always reject this request, unless the client is to be allowed in
without any authentication, in which case the server MUST accept this
request. The main purpose of sending this request is to get the list of
supported methods from the server.

The server SHOULD have a timeout for authentication, and disconnect if
the authentication has not been accepted within the timeout period. The
RECOMMENDED timeout period is 10 minutes. Additionally, the
implementation SHOULD limit the number of failed authentication attempts
a client may perform in a single session (the RECOMMENDED limit is 20
attempts). If the threshold is exceeded, the server SHOULD disconnect.

2.1. Authentication Requests

All authentication requests MUST use the following message format. Only
the first few fields are defined; the remaining fields depend on the
authentication method.

 byte SSH_MSG_USERAUTH_REQUEST
 string user name (in ISO-10646 UTF-8 encoding [RFC-2279])
 string service name (in US-ASCII)
 string method name (US-ASCII)
 The rest of the packet is method-specific.

The user name and service are repeated in every new authentication
attempt, and MAY change. The server implementation MUST carefully check
them in every message, and MUST flush any accumulated authentication
states if they change. If it is unable to flush some authentication
state, it MUST disconnect if the user or service name changes.

The service name specifies the service to start after authentication.
There may be several different authenticated services provided. If the
requested service is not available, the server MAY disconnect
immediately or at any later time. Sending a proper disconnect message
is RECOMMENDED. In any case, if the service does not exist,
authentication MUST NOT be accepted.

If the requested user does not exist, the server MAY disconnect, or MAY
send a bogus list of acceptable authentication methods, but never accept
any. This makes it possible for the server to avoid disclosing
information on which accounts exist. In any case, if the user does not
exist, the authentication request MUST NOT be accepted.

While there is usually little point for clients to send requests that
the server does not list as acceptable, sending such requests is not an
error, and the server SHOULD simply reject requests that it does not
recognize.

An authentication request MAY result in a further exchange of messages.
All such messages depend on the authentication method used, and the

https://datatracker.ietf.org/doc/html/rfc2279

client MAY at any time continue with a new SSH_MSG_USERAUTH_REQUEST
message, in which case the server MUST abandon the previous
authentication attempt and continue with the new one.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 3]

INTERNET-DRAFT 9 January, 2001

2.2. Responses to Authentication Requests

If the server rejects the authentication request, it MUST respond with
the following:

 byte SSH_MSG_USERAUTH_FAILURE
 string authentications that can continue
 boolean partial success

"Authentications that can continue" is a comma-separated list of
authentication method names that may productively continue the
authentication dialog.

It is RECOMMENDED that servers only include those methods in the list
that are actually useful. However, it is not illegal to include methods
that cannot be used to authenticate the user.

Already successfully completed authentications SHOULD NOT be included in
the list, unless they really should be performed again for some reason.

"Partial success" MUST be TRUE if the authentication request to which
this is a response was successful. It MUST be FALSE if the request was
not successfully processed.

When the server accepts authentication, it MUST respond with the
following:

 byte SSH_MSG_USERAUTH_SUCCESS

Note that this is not sent after each step in a multi-method
authentication sequence, but only when the authentication is complete.

The client MAY send several authentication requests without waiting for
responses from previous requests. The server MUST acknowledge any
failed requests with a SSH_MSG_USERAUTH_FAILURE message. However,
SSH_MSG_USERAUTH_SUCCESS MUST be sent only once, and once
SSH_MSG_USERAUTH_SUCCESS has been sent, any further authentication
requests received after that SHOULD be silently ignored.

Any non-authentication messages sent by the client after the request
that resulted in SSH_MSG_USERAUTH_SUCCESS being sent MUST be passed to
the service being run on top of this protocol. Such messages can be
identified by their message numbers (see Section ``Message Numbers'').

2.3. The "none" Authentication Request

A client may request a list of authentication methods that may continue
by using the "none" authentication method.

If no authentication at all is needed for the user, the server MUST

return SSH_MSG_USERAUTH_SUCCESS. Otherwise, the server MUST return
SSH_MSG_USERAUTH_FAILURE and MAY return with it a list of authentication
methods that can continue.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 4]

INTERNET-DRAFT 9 January, 2001

This method MUST NOT be listed as supported by the server.

2.4. Completion of User Authentication

Authentication is complete when the server has responded with
SSH_MSG_USERAUTH_SUCCESS; all authentication related messages received
after sending this message SHOULD be silently ignored.

After sending SSH_MSG_USERAUTH_SUCCESS, the server starts the requested
service.

2.5. Banner Message

In some jurisdictions, sending a warning message before authentication
may be relevant for getting legal protection. Many UNIX machines, for
example, normally display text from `/etc/issue', or use "tcp wrappers"
or similar software to display a banner before issuing a login prompt.

The SSH server may send a SSH_MSG_USERAUTH_BANNER message at any time
before authentication is successful. This message contains text to be
displayed to the client user before authentication is attempted. The
format is as follows:

 byte SSH_MSG_USERAUTH_BANNER
 string message (ISO-10646 UTF-8)
 string language tag (as defined in [RFC-1766])

The client SHOULD by default display the message on the screen.
However, since the message is likely to be sent for every login attempt,
and since some client software will need to open a separate window for
this warning, the client software may allow the user to explicitly
disable the display of banners from the server. The message may consist
of multiple lines.

If the message string is displayed, control character filtering
discussed in [SSH-ARCH] SHOULD be used to avoid attacks by sending
terminal control characters.

3. Authentication Protocol Message Numbers

All message numbers used by this authentication protocol are in the
range from 50 to 79, which is part of the range reserved for protocols
running on top of the SSH transport layer protocol.

Message numbers of 80 and higher are reserved for protocols running
after this authentication protocol, so receiving one of them before
authentication is complete is an error, to which the server MUST respond
by disconnecting (preferably with a proper disconnect message sent first
to ease troubleshooting).

https://datatracker.ietf.org/doc/html/rfc1766

After successful authentication, such messages are passed to the higher-
level service.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 5]

INTERNET-DRAFT 9 January, 2001

These are the general authentication message codes:

 #define SSH_MSG_USERAUTH_REQUEST 50
 #define SSH_MSG_USERAUTH_FAILURE 51
 #define SSH_MSG_USERAUTH_SUCCESS 52
 #define SSH_MSG_USERAUTH_BANNER 53

In addition to the above, there is a range of message numbers (60..79)
reserved for method-specific messages. These messages are only sent by
the server (client sends only SSH_MSG_USERAUTH_REQUEST messages).
Different authentication methods reuse the same message numbers.

4. Public Key Authentication Method: publickey

The only REQUIRED authentication method is public key authentication.
All implementations MUST support this method; however, not all users
need to have public keys, and most local policies are not likely to
require public key authentication for all users in the near future.

With this method, the possession of a private key serves as
authentication. This method works by sending a signature created with a
private key of the user. The server MUST check that the key is a valid
authenticator for the user, and MUST check that the signature is valid.
If both hold, the authentication request MUST be accepted; otherwise it
MUST be rejected. (Note that the server MAY require additional
authentications after successful authentication.)
Private keys are often stored in an encrypted form at the client host,
and the user must supply a passphrase before the signature can be
generated. Even if they are not, the signing operation involves some
expensive computation. To avoid unnecessary processing and user
interaction, the following message is provided for querying whether
authentication using the key would be acceptable.

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "publickey"
 boolean FALSE
 string public key algorithm name
 string public key blob

Public key algorithms are defined in the transport layer specification
[SSH-TRANS]. The public key blob may contain certificates.

Any public key algorithm may be offered for use in authentication. In
particular, the list is not constrained by what was negotiated during
key exchange. If the server does not support some algorithm, it MUST
simply reject the request.

The server MUST respond to this message with either

SSH_MSG_USERAUTH_FAILURE or with the following:

 byte SSH_MSG_USERAUTH_PK_OK

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 6]

INTERNET-DRAFT 9 January, 2001

 string public key algorithm name from the request
 string public key blob from the request

To perform actual authentication, the client MAY then send a signature
generated using the private key. The client MAY send the signature
directly without first verifying whether the key is acceptable. The
signature is sent using the following packet:

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "publickey"
 boolean TRUE
 string public key algorithm name
 string public key to be used for authentication
 string signature

Signature is a signature by the corresponding private key over the
following data, in the following order:

 string session identifier
 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "publickey"
 boolean TRUE
 string public key algorithm name
 string public key to be used for authentication

When the server receives this message, it MUST check whether the
supplied key is acceptable for authentication, and if so, it MUST check
whether the signature is correct.

If both checks succeed, this method is successful. Note that the server
may require additional authentications. The server MUST respond with
SSH_MSG_USERAUTH_SUCCESS (if no more authentications are needed), or
SSH_MSG_USERAUTH_FAILURE (if the request failed, or more authentications
are needed).

The following method-specific message numbers are used by the publickey
authentication method.

 /* Key-based */
 #define SSH_MSG_USERAUTH_PK_OK 60

5. Password Authentication Method: password

Password authentication uses the following packets. Note that a server
MAY request the user to change the password. All implementations SHOULD
support password authentication.

 byte SSH_MSG_USERAUTH_REQUEST
 string user name

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 7]

INTERNET-DRAFT 9 January, 2001

 string service
 string "password"
 boolean FALSE
 string plaintext password (ISO-10646 UTF-8)

Note that the password is encoded in ISO-10646 UTF-8. It is up to the
server how it interprets the password and validates it against the
password database. However, if the client reads the password in some
other encoding (e.g., ISO 8859-1 (ISO Latin1)), it MUST convert the
password to ISO-10646 UTF-8 before transmitting, and the server MUST
convert the password to the encoding used on that system for passwords.

Note that even though the cleartext password is transmitted in the
packet, the entire packet is encrypted by the transport layer. Both the
server and the client should check whether the underlying transport
layer provides confidentiality (i.e., if encryption is being used). If
no confidentiality is provided (none cipher), password authentication
SHOULD be disabled. If there is no confidentiality or no MAC, password
change SHOULD be disabled.

Normally, the server responds to this message with success or failure.
However, the server MAY also respond with
SSH_MSG_USERAUTH_PASSWD_CHANGEREQ.

 byte SSH_MSG_USERAUTH_PASSWD_CHANGEREQ
 string prompt (ISO-10646 UTF-8)
 string language tag (as defined in [RFC-1766])

In this case, the software client SHOULD request a new password from the
user, and send a new request using the following message. The client
may also send this message instead of the normal password authentication
request without the server asking for it.

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "password"
 boolean TRUE
 string plaintext old password (ISO-10646 UTF-8)
 string plaintext new password (ISO-10646 UTF-8)

The server must reply to request message with SSH_MSG_USERAUTH_SUCCESS,
SSH_MSG_USERAUTH_FAILURE, or another SSH_MSG_USERAUTH_PASSWD_CHANGEREQ.
The meaning of these is as follows:

 SSH_MSG_USERAUTH_SUCCESS
 The password has been changed, and authentication has been
 successfully completed.

 SSH_MSG_USERAUTH_FAILURE with partial success

https://datatracker.ietf.org/doc/html/rfc1766

 The password has been changed, but more authentications are
 needed.

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 8]

INTERNET-DRAFT 9 January, 2001

 SSH_MSG_USERAUTH_FAILURE without partial success
 The password has not been changed. Either password changing was
 not supported, or the old password was bad. Note that if the
 server has already sent SSH_MSG_USERAUTH_PASSWD_CHANGEREQ, we know
 that it supports changing the password.

 SSH_MSG_USERAUTH_CHANGEREQ
 The password was not changed because the new password was not
 acceptable (e.g. too easy to guess).

The following method-specific message numbers are used by the password
authentication method.

 #define SSH_MSG_USERAUTH_PASSWD_CHANGEREQ 60

6. Host-Based Authentication: hostbased

Some sites wish to allow authentication based on the host where the user
is coming from, and the user name on the remote host. While this form
of authentication is not suitable for high-security sites, it can be
very convenient in many environments. This form of authentication is
OPTIONAL. When used, special care SHOULD be taken to prevent a regular
user from obtaining the private host key.

The client requests this form of authentication by sending the following
message. It is similar to the UNIX "rhosts" and "hosts.equiv" styles of
authentication, except that the identity of the client host is checked
more rigorously.

This method works by having the client send a signature created with the
private key of the client host, which the server checks with that host's
public key. Once the client host's identity is established,
authorization (but no further authentication) is performed based on the
user names on the server and the client, and the client host name.

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "hostbased"
 string public key algorithm for host key
 string public host key and certificates for client host
 string client host name (FQDN; US-ASCII)
 string client user name on the remote host (ISO-10646 UTF-8)
 string signature

Public key algorithm names for use in "public key algorithm for host
key" are defined in the transport layer specification. The "public host
key for client host" may include certificates.

Signature is a signature with the private host key of the following

data, in this order:

 string session identifier

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 9]

INTERNET-DRAFT 9 January, 2001

 byte SSH_MSG_USERAUTH_REQUEST
 string user name
 string service
 string "hostbased"
 string public key algorithm for host key
 string public host key and certificates for client host
 string client host name (FQDN; US-ASCII)
 string client user name on the remote host (ISO-10646 UTF-8)

The server MUST verify that the host key actually belongs to the client
host named in the message, that the given user on that host is allowed
to log in, and that the signature is a valid signature on the
appropriate value by the given host key. The server MAY ignore the
client user name, if it wants to authenticate only the client host.

It is RECOMMENDED that whenever possible, the server perform additional
checks to verify that the network address obtained from the (untrusted)
network matches the given client host name. This makes exploiting
compromised host keys more difficult. Note that this may require
special handling for connections coming through a firewall.

7. Security Considerations

The purpose of this protocol is to perform client user authentication.
It assumed that this runs over a secure transport layer protocol, which
has already authenticated the server machine, established an encrypted
communications channel, and computed a unique session identifier for
this session. The transport layer provides forward secrecy for password
authentication and other methods that rely on secret data.

The server may go into a "sleep" period after repeated unsuccessful
authentications to make key search harder.

If the transport layer does not provide encryption, authentication
methods that rely on secret data SHOULD be disabled. If it does not
provide MAC protection, requests to change authentication data (e.g.
password change) SHOULD be disabled to avoid an attacker from modifying
the ciphertext without being noticed, rendering the new authentication
data unusable (denial of service).

Several authentication methods with different security characteristics
are allowed. It is up to the server's local policy to decide which
methods (or combinations of methods) it is willing to accept for each
user. Authentication is no stronger than the weakest combination
allowed.

Special care should be taken when designing debug messages. These
messages may reveal surprising amounts of information about the host if
not properly designed. Debug messages can be disabled (during user

authentication phase) if high security is required.
8. Trademark Issues

SSH is a registered trademark and Secure Shell is a trademark of SSH

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 10]

INTERNET-DRAFT 9 January, 2001

Communications Security Corp. SSH Communications Security Corp permits
the use of these trademarks as the name of this standard and protocol,
and permits their use to describe that a product conforms to this
standard, provided that the following acknowledgement is included where
the trademarks are used: ''SSH is a registered trademark and Secure
Shell is a trademark of SSH Communications Security Corp
(www.ssh.com)''. These trademarks may not be used as part of a product
name or in otherwise confusing manner without prior written permission
of SSH Communications Security Corp.

9. References

[RFC-1766] Alvestrand, H: "Tags for the Identification of Languages",
March 1995.

[RFC-2279] Yergeau, F: "UTF-8, a transformation format of ISO 10646",
January 1998.

[SSH-ARCH] Ylonen, T., et al: "SSH Protocol Architecture", Internet-
Draft, draft-secsh-architecture-07.txt

[SSH-TRANS] Ylonen, T., et al: "SSH Transport Layer Protocol", Internet-
Draft, draft-secsh-transport-09.txt

[SSH-CONNECT] Ylonen, T., et al: "SSH Connection Protocol", Internet-
Draft, draft-secsh-connect-09.txt

10. Authors' Addresses

 Tatu Ylonen
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: ylo@ssh.com

 Tero Kivinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: kivinen@ssh.com

 Markku-Juhani O. Saarinen
 University of Jyvaskyla

 Timo J. Rinne
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI

https://datatracker.ietf.org/doc/html/draft-secsh-architecture-07.txt
https://datatracker.ietf.org/doc/html/draft-secsh-transport-09.txt
https://datatracker.ietf.org/doc/html/draft-secsh-connect-09.txt

 Finland
 E-mail: tri@ssh.com

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 11]

INTERNET-DRAFT 9 January, 2001

 Sami Lehtinen
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: sjl@ssh.com

T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen [page 12]

