Abstract

Service Function Chaining (SFC) uses the Network Service Header (NSH) (RFC 8300) to steer and provide context Metadata (MD) with each packet. Such Metadata can be of various Types including MD Type 2 consisting of variable length context headers. This document specifies several such context headers that can be used within a service function path.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 October 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction
The Network Service Header (NSH) [RFC8300] is the Service Function Chaining (SFC) encapsulation that supports the SFC architecture [RFC7665]. As such, the NSH provides following key elements:

1. Service Function Path (SFP) identification.
2. Indication of location within a Service Function Path.
3. Optional, per-packet metadata (fixed-length or variable-length).

[RFC8300] further defines two metadata formats (MD Types): 1 and 2. MD Type 1 defines the fixed-length, 16-octet long metadata, whereas MD Type 2 defines a variable-length context format for metadata. This document defines several common metadata context headers for use within NSH MD Type 2. These supplement the Subscriber Identity and Performance Policy MD Type 2 metadata context headers specified in [RFC8979].

This document does not address metadata usage, updating/chaining of metadata, or other SFP functions. Those topics are described in [RFC8300].

2. Conventions used in this document

2.1. Terminology

This document uses the terminology defined in the SFC Architecture [RFC7665] and the Network Service Header [RFC8300].

2.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. NSH MD Type 2 format

An NSH is composed of a 4-octet Base Header, a 4-octet Service Path
Header and optional Context Headers. The Base Header identifies the MD-Type in use:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 1: NSH Base Header

When the base header specifies MD Type = 0x2, zero or more Variable Length Context Headers MAY be added, immediately following the Service Path Header. Figure 2 below depicts the format of the Context Header as defined in Section 2.5.1 of [RFC8300].

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Metadata Class       |      Type     |U|    Length   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                   Variable-Length Metadata                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Figure 2: NSH Variable-Length Context Headers

4. NSH MD Type 2 Context Headers

[RFC8300] specifies Metadata Class 0x0000 as IETF Base NSH MD Class. In this document, metadata types are defined for the IETF Base NSH MD Class. The Context Headers specified in the subsections below are as follows:

1. Forwarding Context
2. Tenant Identifier
3. Ingress Network Node Information

4. Ingress Node Source Interface

5. Flow ID

6. Source and/or Destination Groups

7. Policy Identifier

4.1. Forwarding Context

This metadata context carries a network forwarding context, used for segregation and forwarding scope. Forwarding context can take several forms depending on the network environment. For example, VXLAN/VXLAN-GPE VNID, VRF identification, or VLAN.

Wei, et al. Expires 22 October 2022

Internet-Draft NSH MD2 Context Headers April 2022

Figure 3: VLAN Forwarding Context

Figure 4: QinQ Forwarding Context
Context Type (CT) is a four bits-long field that defines the

Figure 5: MPLS VPN Forwarding Context

Figure 6: VNI Forwarding Context

Figure 7: Session ID Forwarding Context
interpretation of the Forwarding Context field. Please see the IANA Considerations in Section 7.2. This document defines these CT values:

- 0x0 - 12 bits VLAN identifier [IEEE.802.1Q_2018]. See Figure 3.
- 0x1 - 24 bits double tagging identifiers. A service VLAN tag followed by a customer VLAN tag [IEEE.802.1Q_2018]. The two VLAN IDs are concatenated and appear in the same order that they appeared in the payload. See Figure 4.
- 0x2 - 20 bits MPLS VPN label ([RFC3032])([RFC4364]). See Figure 5.
- 0x3 - 24 bits virtual network identifier (VNI) [RFC8926]. See Figure 6.
- 0x4 - 32 bits Session ID ([RFC3931]). This is called Key in GRE [RFC2890]. See Figure 7.

Reserved (Resv) bits in the context fields MUST be sent as zero and ignored on receipt.

4.2. Tenant Identifier

Tenant identification is often used for segregation within a multi-tenant environment. Orchestration system-generated tenant IDs are an example of such data. This context header carries the value of the Tenant identifier. [OpenDaylight-VTN] Virtual Tenant Network (VTN) is an application that provides multi-tenant virtual network on an SDN controller.
Figure 8: Tenant Identifier List

The fields are described as follows:

Length: Indicates the length of the Tenant ID in octets (see Section 2.5.1 of [RFC8300]).

Tenant ID: Represents an opaque value pointing to Orchestration system-generated tenant identifier. The structure and semantics of this field are specific to the operator's deployment across its operational domain, and are specified and assigned by an orchestration function. The specifics of that orchestration-based assignment are outside the scope of this document.

4.3. Ingress Network Node Information

This context header carries a Node ID of the network node at which the packet entered the SFC-enabled domain. This node will necessarily be a Classifier [RFC7665]. In cases where the SPI identifies the ingress node, this context header is superfluous.

Figure 9: Ingress Network Node ID

The fields are described as follows:

Length: Indicates the length of the Node ID in octets (see Section 2.5.1 of [RFC8300]).
4.4. Ingress Network Source Interface

This context identifies the ingress interface of the ingress network node. The l2vlan (135), l3ipvlan (136), ipForward (142), mpls (166) in [IANAifType] are examples of source interfaces.

![Ingress Network Source Interface](image)

The fields are described as follows:

- **Length**: Indicates the length of the Source Interface in octets (see Section 2.5.1 of [RFC8300]).

- **Source Interface**: Represents an opaque value of identifier of the ingress interface of the ingress network node.

4.5. Flow ID

Flow ID provides a field in the NSH MD Type 2 to label packets belonging to the same flow. For example, [RFC8200] defined IPv6 Flow Label as Flow ID, [RFC6790] defined an entropy label which is generated based on flow information in the MPLS network is another example of Flow ID. Absence of this field, or a value of zero denotes that packets have not been labeled with a Flow ID.

![Flow ID](image)
The fields are described as follows:

Length: Indicates the length of the Flow ID in octets (see Section 2.5.1 of [RFC8300]). For example, IPv6 Flow Label in [RFC8200] is 20-bit long. An entropy label in the MPLS network in [RFC6790] is also 20-bit long.

Context Type (CT) is four bits-long field that defines the interpretation of the Flow ID field. Please see the IANA Considerations in Section 7.3. This document defines these CT values:

- 0x0 - 20 bits IPv6 Flow Label in [RFC8200]. See Figure 11.
- 0x1 - 20 bits entropy label in the MPLS network in [RFC6790]. See Figure 12.

Reserved bits in the context fields MUST be sent as zero and ignored on receipt.

4.6. Source and/or Destination Groups

Intent-based systems can use this data to express the logical grouping of source and/or destination objects. [OpenStack] and [OpenDaylight] provide examples of such a system. Each is expressed as a 32-bit opaque object.
If there is no group information specified for the source group or destination group field, the field MUST be sent as zero and ignored on receipt.

4.7. Policy Identifier

Traffic handling policies are often referred to by a system-generated identifier, which is then used by the devices to look up the policy's content locally. For example, this identifier could be an index to an array, a lookup key, a database Id. The identifier allows enforcement agents or services to look up the content of their part of the policy.

The fields are described as follows:

Length: Indicates the length of the Policy ID in octets (see
Policy ID: Represents an opaque value of the Policy ID.

This policy identifier is a general policy ID, essentially a key to allow Service Functions to know which policies to apply to packets. Those policies generally will not have much to do with performance, but rather with what specific treatment to apply. It may for example select a URL filter data set for a URL filter, or select a video transcoding policy in a transcoding SF. The Performance Policy Identifier in [RFC8979] is described there as having very specific use, and for example says that fully controlled SFPs would not use it. The Policy ID in this document is for cases not covered by [RFC8979].

5. Security Considerations

A misbehaving node from within the SFC-enabled domain may alter the content of the Context Headers, which may lead to service disruption. Such an attack is not unique to the Context Headers defined in this document. Measures discussed in Section 8 of [RFC8300] describes the general security considerations for protecting NSH. [I-D.ietf-sfc-nsh-integrity] specifies methods of protecting the integrity of the NSH metadata. If the NSH includes the MAC and Encrypted Metadata Context Header [RFC9145], the authentication of the packet MUST be verified before using any data. If the verification fails, the receiver MUST stop processing the variable length context headers and notify an operator.

The security and privacy considerations for the 7 types of context header specified above are discussed below. Since NSH ignorant SFs will never see the NSH, then even if they are malign, they cannot compromise security or privacy based on the NSH or any of these context headers, although they could cause compromise based on the rest of the packet. To the extent that any of these headers is included when it would be unneeded or have no effect, they provide a covert channel for the entity adding the context header to communicate a limited amount of arbitrary information to downstream entities within the SFC-enabled domain.

5.1. Forwarding Context
All of the Forwarding Context variants specified in this document (those with CT values between 0 and 4) merely repeat a field that is available in the packet encapsulated by the NSH. These variants repeat that field in the NSH for convenience. Thus, there are no special security or privacy considerations in these cases. Any future new values of CT for the Forwarding Context must specify the security and privacy considerations for those extensions.

5.2. Tenant Identifier

The Tenant ID indicates the tenant to which traffic belongs and might be used to tie together and correlate packets for a tenant that some monitoring function could not otherwise group especially if other possible identifiers were being randomized. As such, it may reduce security by facilitating traffic analysis but only within the SFC-enabled domain where this context header is present in packets.

5.3. Ingress Network Node Information

The SFC-enabled domain manager normally operates the initial ingress / classifier node and is thus potentially aware of the information provided by this context header. Furthermore, in many cases the SPI that will be present in the NSH identifies or closely constrains the ingress node. Also, in most cases, it is anticipated that many entities will be sending packets into an SFC-enabled domain through the same ingress node. Thus, under most circumstances, this context header is expected to weaken security and privacy to only a minor extent and only within the SFC-enabled domain.

5.4. Ingress Node Source Interface

This context header is likely to be meaningless unless the Ingress Network Node Information context header is also present. When that
node information header is present, this source interface header provides a more fine-grained view of the source by identifying not just the initial ingress / classifier node but also the port of that node on which the data arrived. Thus, it is more likely to identify a specific source entity or at least to more tightly constrain the set of possible source entities, than just the node information header. As a result, inclusion of this context header with the node information context header is potentially a greater threat to security and privacy than the node information header alone but this threat is still constrained to the SFC-enabled domain.

5.5. Flow ID

The variations of this context header specified in this document simply repeat fields already available in the packet and thus have no special security or privacy considerations. Any future new values of CT for the Flow ID must specify the security and privacy considerations for those extensions.

5.6. Source and/or Destination Groups

This context header provides additional information that might help identify the source and/or destination of packets. Depending on the granularity of the groups, it could either (1) distinguish packets as part of flows from and/or to objects where those flows could not otherwise be easily distinguished but appear to be part of one or fewer flows or (2) group packet flows that are from and/or to an object where those flows could not otherwise be easily grouped for analysis or whatever. Thus, the presence of this context header with non-zero source and/or destination groups can, within the SFC-enabled domain, erode security and privacy to an extent that depends on the details of the grouping.

5.7. Policy Identifier

This context header carries an identifier that nodes in the SFC-enabled domain can use to look up policy to potentially influence
their actions with regard to the packet carrying this header. If there are no such action decisions, then the header should not be included. If are such decisions, the information on which they are to be based needs to be included somewhere in the packet. There is no reason for inclusion in this context header to have any security or privacy considerations that would not apply to any other plaintext way of including such information. It may provide additional information to help identify a flow of data for analysis.

6. Acknowledgments

The authors would like to thank Paul Quinn, Behcet Sarikaya, Dirk von Hugo, Mohamed Boucadair, Gregory Mirsky, and Joel Halpern for providing invaluable concepts and content for this document.

7. IANA Considerations

7.1. MD Type 2 Context Types

IANA is requested to assign the following types (Table 1) from the "NSH IETF-Assigned Optional Variable-Length Metadata Types" registry available at [IANA-NSH-MD2].

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBA1</td>
<td>Forwarding Context</td>
<td>This document</td>
</tr>
<tr>
<td>TBA2</td>
<td>Tenant Identifier</td>
<td>This document</td>
</tr>
<tr>
<td>TBA3</td>
<td>Ingress Network NodeID</td>
<td>This document</td>
</tr>
<tr>
<td>TBA4</td>
<td>Ingress Network Interface</td>
<td>This document</td>
</tr>
</tbody>
</table>
7.2. Forwarding Context Types

IANA is requested to create a new sub-registry for "Forwarding Context" context types at [IANA-NSH-MD2] as follows:

The Registration Policy is IETF Review

<table>
<thead>
<tr>
<th>Value</th>
<th>Forwarding Context Header Types</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>12-bit VLAN identifier</td>
<td>This document</td>
</tr>
<tr>
<td>0x1</td>
<td>24-bit double tagging identifiers</td>
<td>This document</td>
</tr>
<tr>
<td>0x2</td>
<td>20-bit MPLS VPN label</td>
<td>This document</td>
</tr>
<tr>
<td>0x3</td>
<td>24-bit virtual network identifier(VNI)</td>
<td>This document</td>
</tr>
<tr>
<td>0x4</td>
<td>32-bit Session ID</td>
<td>This document</td>
</tr>
<tr>
<td>0x5-0xE</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>0xF</td>
<td>Reserved</td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 2: Forwarding Context Types

7.3. Flow ID Context Types

IANA is requested to create a new sub-registry for "Flow ID Context" context types at [IANA-NSH-MD2] as follows:
The Registration Policy is IETF Review

<table>
<thead>
<tr>
<th>Value</th>
<th>Flow ID Context Header Types</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>20-bit IPv6 Flow Label</td>
<td>This document</td>
</tr>
<tr>
<td>0x1</td>
<td>20-bit entropy label in the</td>
<td>This document</td>
</tr>
<tr>
<td></td>
<td>MPLS network</td>
<td></td>
</tr>
<tr>
<td>0x2-0xE</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>0xF</td>
<td>Reserved</td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 3: Flow ID Context Types

8. References

8.1. Normative References

[I-D.ietf-sfc-nsh-integrity]

[IANA-NSH-MD2]

[IEEE.802.1Q_2018]
8.2. Informative References

[IANAifType]
IANA, "IANAifType", 2021,

[OpenDaylight]
OpenDaylight, "Group Based Policy", 2021,

[OpenDaylight-VTN]

[OpenStack]
OpenStack, "Group Based Policy", 2021,
<https://wiki.openstack.org/wiki/GroupBasedPolicy>.
Internet-Draft NSH MD2 Context Headers April 2022

Authors' Addresses
Uri Elzur
Intel
Email: uri.elzur@intel.com

Sumandra Majee
Individual contributor
Email: Sum.majee@gmail.com

Carlos Pignataro
Cisco
Email: cpignata@cisco.com

Donald E. Eastlake
Futurewei Technologies
2386 Panoramic Circle
Apopka, FL 32703
United States of America
Email: d3e3e3@gmail.com