
Network Working Group F. Brockners, Ed.
Internet-Draft S. Bhandari, Ed.
Intended status: Experimental Cisco
Expires: December 18, 2020 T. Mizrahi, Ed.
 Huawei Network.IO Innovation Lab
 S. Dara
 Seconize
 S. Youell
 JPMC
 June 16, 2020

Proof of Transit
draft-ietf-sfc-proof-of-transit-06

Abstract

 Several technologies such as Traffic Engineering (TE), Service
 Function Chaining (SFC), and policy based routing are used to steer
 traffic through a specific, user-defined path. This document defines
 mechanisms to securely prove that traffic transited a defined path.
 These mechanisms allow to securely verify whether, within a given
 path, all packets traversed all the nodes that they are supposed to
 visit.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 18, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Brockners, et al. Expires December 18, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Proof of Transit June 2020

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions . 4
3. Proof of Transit . 5
3.1. Basic Idea . 5
3.2. Solution Approach . 6
3.2.1. Setup . 7
3.2.2. In Transit . 7
3.2.3. Verification . 8

3.3. Illustrative Example 8
3.3.1. Baseline . 8
3.3.1.1. Secret Shares 8
3.3.1.2. Lagrange Polynomials 9
3.3.1.3. LPC Computation 9
3.3.1.4. Reconstruction 9
3.3.1.5. Verification 10

3.3.2. Complete Solution 10
3.3.2.1. Random Polynomial 10
3.3.2.2. Reconstruction 10
3.3.2.3. Verification 11

3.3.3. Solution Deployment Considerations 11
3.4. Operational Aspects 12
3.5. Ordered POT (OPOT) 12

4. Sizing the Data for Proof of Transit 13
5. Node Configuration . 14
5.1. Procedure . 15
5.2. YANG Model for POT 15
5.2.1. Main Parameters 16
5.2.2. Tree Diagram . 16
5.2.3. YANG Model . 17

6. IANA Considerations . 22
7. Security Considerations 22
7.1. Proof of Transit . 22
7.2. Cryptanalysis . 23
7.3. Anti-Replay . 23
7.4. Anti-Preplay . 24
7.5. Tampering . 24

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Brockners, et al. Expires December 18, 2020 [Page 2]

Internet-Draft Proof of Transit June 2020

7.6. Recycling . 25
7.7. Redundant Nodes and Failover 25
7.8. Controller Operation 25
7.9. Verification Scope 26
7.9.1. Node Ordering . 26
7.9.2. Stealth Nodes . 26

8. Acknowledgements . 26
9. Contributors . 26
10. References . 27
10.1. Normative References 27
10.2. Informative References 28

 Authors' Addresses . 28

1. Introduction

 Several deployments use Traffic Engineering, policy routing, Segment
 Routing (SR), and Service Function Chaining (SFC) [RFC7665] to steer
 packets through a specific set of nodes. In certain cases,
 regulatory obligations or a compliance policy require operators to
 prove that all packets that are supposed to follow a specific path
 are indeed being forwarded across and exact set of pre-determined
 nodes.

 If a packet flow is supposed to go through a series of service
 functions or network nodes, it has to be proven that indeed all
 packets of the flow followed the path or service chain or collection
 of nodes specified by the policy. In case some packets of a flow
 weren't appropriately processed, a verification device should
 determine the policy violation and take corresponding actions
 corresponding to the policy (e.g., drop or redirect the packet, send
 an alert etc.) In today's deployments, the proof that a packet
 traversed a particular path or service chain is typically delivered
 in an indirect way: Service appliances and network forwarding are in
 different trust domains. Physical hand-off-points are defined
 between these trust domains (i.e. physical interfaces). Or in other
 terms, in the "network forwarding domain" things are wired up in a
 way that traffic is delivered to the ingress interface of a service
 appliance and received back from an egress interface of a service
 appliance. This "wiring" is verified and then trusted upon. The
 evolution to Network Function Virtualization (NFV) and modern service
 chaining concepts (using technologies such as Locator/ID Separation
 Protocol (LISP), Network Service Header (NSH), Segment Routing (SR),
 etc.) blurs the line between the different trust domains, because the
 hand-off-points are no longer clearly defined physical interfaces,
 but are virtual interfaces. As a consequence, different trust layers
 should not to be mixed in the same device. For an NFV scenario a
 different type of proof is required. Offering a proof that a packet
 indeed traversed a specific set of service functions or nodes allows

https://datatracker.ietf.org/doc/html/rfc7665

Brockners, et al. Expires December 18, 2020 [Page 3]

Internet-Draft Proof of Transit June 2020

 operators to evolve from the above described indirect methods of
 proving that packets visit a predetermined set of nodes.

 The solution approach presented in this document is based on a small
 portion of operational data added to every packet. This "in-situ"
 operational data is also referred to as "proof of transit data", or
 POT data. The POT data is updated at every required node and is used
 to verify whether a packet traversed all required nodes. A
 particular set of nodes "to be verified" is either described by a set
 of shares of a single secret. Nodes on the path retrieve their
 individual shares of the secret using Shamir's Secret Sharing scheme
 from a central controller. The complete secret set is only known to
 the controller and a verifier node, which is typically the ultimate
 node on a path that performs verification. Each node in the path
 uses its share of the secret to update the POT data of the packets as
 the packets pass through the node. When the verifier receives a
 packet, it uses its key along with data found in the packet to
 validate whether the packet traversed the path correctly.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Abbreviations used in this document:

 HMAC: Hash based Message Authentication Code. For example,
 HMAC-SHA256 generates 256 bits of MAC

 IOAM: In-situ Operations, Administration, and Maintenance

 LISP: Locator/ID Separation Protocol

 LPC: Lagrange Polynomial Constants

 MTU: Maximum Transmit Unit

 NFV: Network Function Virtualization

 NSH: Network Service Header

 POT: Proof of Transit

 POT-Profile: Proof of Transit Profile that has the necessary data
 for nodes to participate in proof of transit

https://datatracker.ietf.org/doc/html/rfc2119

Brockners, et al. Expires December 18, 2020 [Page 4]

Internet-Draft Proof of Transit June 2020

 RND: Random Bits generated per packet. Packet fields that do
 not change during the traversal are given as input to
 HMAC-256 algorithm. A minimum of 32 bits (left most) need
 to be used from the output if RND is used to verify the
 packet integrity. This is a standard recommendation by
 NIST.

 SEQ_NO: Sequence number initialized to a predefined constant.
 This is used in concatenation with RND bits to mitigate
 different attacks discussed later.

 SFC: Service Function Chain

 SSSS: Shamir's Secret Sharing Scheme

 SR: Segment Routing

3. Proof of Transit

 This section discusses methods and algorithms to provide for a "proof
 of transit" (POT) for packets traversing a specific path. A path
 which is to be verified consists of a set of nodes. Transit of the
 data packets through those nodes is to be proven. Besides the nodes,
 the setup also includes a Controller that creates secrets and secrets
 shares and configures the nodes for POT operations.

 The methods how traffic is identified and associated to a specific
 path is outside the scope of this document. Identification could be
 done using a filter (e.g., 5-tuple classifier), or an identifier
 which is already present in the packet (e.g., path or service
 identifier, NSH Service Path Identifier (SPI), flow-label, etc.)

 When used in the context of IOAM, the POT information MUST be
 encapsulated in packets as an IOAM Proof of Transit Option-Type. The
 details and format of the encapsulation and the IOAM POT Option-Type
 format are specified in [I-D.ietf-ippm-ioam-data]. When used in
 conjunction with NSH [RFC8300], the POT Option-Type MUST be carried
 as specified in [I-D.ietf-sfc-ioam-nsh].

 The solution approach is detailed in two steps. Initially the
 concept of the approach is explained. This concept is then further
 refined to make it operationally feasible.

3.1. Basic Idea

 The method relies on adding POT data to all packets that traverse a
 path. The added POT data allows a verifying node (egress node) to
 check whether a packet traversed the identified set of nodes on a

https://datatracker.ietf.org/doc/html/rfc8300

Brockners, et al. Expires December 18, 2020 [Page 5]

Internet-Draft Proof of Transit June 2020

 path correctly or not. Security mechanisms are natively built into
 the generation of the POT data to protect against misuse (e.g.,
 configuration mistakes). The mechanism for POT leverages "Shamir's
 Secret Sharing" scheme [SSS].

 Shamir's secret sharing base idea: A polynomial (represented by its
 coefficients) of degree k is chosen as a secret by the controller. A
 polynomial represents a curve. A set of k+1 points on the curve
 define the polynomial and are thus needed to (re-)construct the
 polynomial. Each of these k+1 points of the polynomial is called a
 "share" of the secret. A single secret is associated with a
 particular set of k+1 nodes, which typically represent the path to be
 verified. k+1 shares of the single secret (i.e., k+1 points on the
 curve) are securely distributed from a Controller to the network
 nodes. Nodes use their respective share to update a cumulative value
 in the POT data of each packet. Only a verifying node has access to
 the complete secret. The verifying node validates the correctness of
 the received POT data by reconstructing the curve.

 The polynomial cannot be reconstructed if any of the points are
 missed or tampered. Per Shamir's Secret Sharing Scheme, any lesser
 points means one or more nodes are missed. Details of the precise
 configuration needed for achieving security are discussed further
 below.

 While applicable in theory, a vanilla approach based on Shamir's
 Secret Sharing Scheme could be easily attacked. If the same
 polynomial is reused for every packet for a path a passive attacker
 could reuse the value. As a consequence, one could consider creating
 a different polynomial per packet. Such an approach would be
 operationally complex. It would be complex to configure and recycle
 so many curves and their respective points for each node. Rather
 than using a single polynomial, two polynomials are used for the
 solution approach: A secret polynomial as described above which is
 kept constant, and a per-packet polynomial which is public and
 generated by the ingress node (the first node along the path).
 Operations are performed on the sum of those two polynomials -
 creating a third polynomial which is secret and per packet.

3.2. Solution Approach

 Solution approach: The overall algorithm uses two polynomials: POLY-1
 and POLY-2. POLY-1 is secret and constant. A different POLY-1 is
 used for each path, and its value is known to the controller and to
 the verifier of the respective path. Each node gets a point on
 POLY-1 at setup-time and keeps it secret. POLY-2 is public, random
 and per packet. Each node generates a point on POLY-2 each time a
 packet crosses it. Each node then calculates (point on POLY-1 +

Brockners, et al. Expires December 18, 2020 [Page 6]

Internet-Draft Proof of Transit June 2020

 point on POLY-2) to get a (point on POLY-3) and passes it to verifier
 by adding it to each packet. The verifier constructs POLY-3 from the
 points given by all the nodes and cross checks whether POLY-3 =
 POLY-1 + POLY-2. Only the verifier knows POLY-1.

 The solution leverages finite field arithmetic in a field of size
 "prime number", i.e. all operations are performed "modulo prime
 number".

 Detailed algorithms are discussed next. A simple example that
 describes how the algorithms work is discussed in Section 3.3.

 The algorithms themselves do not constrain the ranges of possible
 values for the different parameters and coefficients used. A
 deployment of the algorithms will always need to define appropriate
 ranges. Please refer to the YANG model in Section 5.2 for details on
 the units and ranges of possible values of the different parameters
 and coefficients.

3.2.1. Setup

 A controller generates a first polynomial (POLY-1) of degree k and
 k+1 points on the polynomial, corresponding to the k+1 nodes along
 the path. The constant coefficient of POLY-1 is considered the
 SECRET, which is per the definition of the SSSS algorithm [SSS]. The
 k+1 points are used to derive the Lagrange Basis Polynomials. The
 Lagrange Polynomial Constants (LPC) are retrieved from the constant
 coefficients of the Lagrange Basis Polynomials. Each of the k+1
 nodes (including verifier) are assigned a point on the polynomial
 i.e., shares of the SECRET. The verifier is configured with the
 SECRET. The Controller also generates coefficients (except the
 constant coefficient, called "RND", which is changed on a per packet
 basis) of a second polynomial POLY-2 of the same degree. Each node
 is configured with the LPC of POLY-2. Note that POLY-2 is public.

3.2.2. In Transit

 For each packet, the ingress node generates a random number (RND).
 It is considered as the constant coefficient for POLY-2. A
 cumulative value (CML) is initialized to 0. Both RND, CML are
 carried as within the packet POT data. As the packet visits each
 node, the RND is retrieved from the packet and the respective share
 of POLY-2 is calculated. Each node calculates (Share(POLY-1) +
 Share(POLY-2)) and CML is updated with this sum, specifically each
 node performs

 CML = CML+(((Share(POLY-1)+ Share(POLY-2)) * LPC) mod Prime, with
 "LPC" being the Lagrange Polynomial Constant and "Prime" being the

Brockners, et al. Expires December 18, 2020 [Page 7]

Internet-Draft Proof of Transit June 2020

 prime number which defines the finite field arithmetic that all
 operations are done over. Please also refer to Section 3.3.2 below
 for further details how the operations are performed.

 This step is performed by each node until the packet completes the
 path. The verifier also performs the step with its respective share.

3.2.3. Verification

 The verifier cross checks whether CML = SECRET + RND. If this
 matches then the packet traversed the specified set of nodes in the
 path. This is due to the additive homomorphic property of Shamir's
 Secret Sharing scheme.

3.3. Illustrative Example

 This section shows a simple example to illustrate step by step the
 approach described above. The example assumes a network with 3
 nodes. The last node that packets traverse also serves as the
 verifier. A Controller communicates the required parameters to the
 individual nodes.

3.3.1. Baseline

 Assumption: It is to be verified whether packets passed through the 3
 nodes. A polynomial of degree 2 is chosen for verification.

 Choices: Prime = 53. POLY-1(x) = (3x^2 + 3x + 10) mod 53. The
 secret to be re-constructed is the constant coefficient of POLY-1,
 i.e., SECRET=10. It is important to note that all operations are
 done over a finite field (i.e., modulo Prime = 53).

3.3.1.1. Secret Shares

 The shares of the secret are the points on POLY-1 chosen for the 3
 nodes. For example, let x0=2, x1=4, x2=5.

 POLY-1(2) = 28 => (x0, y0) = (2, 28)

 POLY-1(4) = 17 => (x1, y1) = (4, 17)

 POLY-1(5) = 47 => (x2, y2) = (5, 47)

 The three points above are the points on the curve which are
 considered the shares of the secret. They are assigned by the
 Controller to three nodes respectively and are kept secret.

Brockners, et al. Expires December 18, 2020 [Page 8]

Internet-Draft Proof of Transit June 2020

3.3.1.2. Lagrange Polynomials

 Lagrange basis polynomials (or Lagrange polynomials) are used for
 polynomial interpolation. For a given set of points on the curve
 Lagrange polynomials (as defined below) are used to reconstruct the
 curve and thus reconstruct the complete secret.

 l0(x) = (((x-x1) / (x0-x1)) * ((x-x2)/x0-x2))) mod 53
 = (((x-4) / (2-4)) * ((x-5)/2-5))) mod 53
 = (10/3 - 3x/2 + (1/6)x^2) mod 53

 l1(x) = (((x-x0) / (x1-x0)) * ((x-x2)/x1-x2))) mod 53
 = (-5 + 7x/2 - (1/2)x^2) mod 53

 l2(x) = (((x-x0) / (x2-x0)) * ((x-x1)/x2-x1))) mod 53
 = (8/3 - 2 + (1/3)x^2) mod 53

3.3.1.3. LPC Computation

 Since x0=2, x1=4, x2=5 are chosen points. Given that computations
 are done over a finite arithmetic field ("modulo a prime number"),
 the Lagrange basis polynomial constants are computed modulo 53. The
 Lagrange Polynomial Constants (LPC) would be mod(10/3, 53), mod(-5,
 53), mod(8/3, 53).LPC are computed by the Controller and communicated
 to the individual nodes.

 LPC(l0) = (10/3) mod 53 = 21

 LPC(l1) = (-5) mod 53 = 48

 LPC(l2) = (8/3) mod 53 = 38

 For a general way to compute the modular multiplicative inverse, see
 e.g., the Euclidean algorithm.

3.3.1.4. Reconstruction

 Reconstruction of the polynomial is well-defined as

 POLY1(x) = l0(x) * y0 + l1(x) * y1 + l2(x) * y2

 Subsequently, the SECRET, which is the constant coefficient of
 POLY1(x) can be computed as below

 SECRET = (y0*LPC(l0)+y1*LPC(l1)+y2*LPC(l2)) mod 53

Brockners, et al. Expires December 18, 2020 [Page 9]

Internet-Draft Proof of Transit June 2020

 The secret can be easily reconstructed using the y-values and the
 LPC:

 SECRET = (y0*LPC(l0) + y1*LPC(l1) + y2*LPC(l2)) mod 53
 = (28 * 21 + 17 * 48 + 47 * 38) mod 53
 = 3190 mod 53
 = 10

 One observes that the secret reconstruction can easily be performed
 cumulatively hop by hop, i.e. by every node. CML represents the
 cumulative value. It is the POT data in the packet that is updated
 at each hop with the node's respective (yi*LPC(i)), where i is their
 respective value.

3.3.1.5. Verification

 Upon completion of the path, the resulting CML is retrieved by the
 verifier from the packet POT data. Recall that the verifier is
 preconfigured with the original SECRET. It is cross checked with the
 CML by the verifier. Subsequent actions based on the verification
 failing or succeeding could be taken as per the configured policies.

3.3.2. Complete Solution

 As observed previously, the baseline algorithm that involves a single
 secret polynomial is not secure. The complete solution leverages a
 random second polynomial, which is chosen per packet.

3.3.2.1. Random Polynomial

 Let the second polynomial POLY-2 be (RND + 7x + 10 x^2). RND is a
 random number and is generated for each packet. Note that POLY-2 is
 public and need not be kept secret. The nodes can be pre-configured
 with the non-constant coefficients (for example, 7 and 10 in this
 case could be configured through the Controller on each node). So
 precisely only the RND value changes per packet and is public and the
 rest of the non-constant coefficients of POLY-2 is kept secret.

3.3.2.2. Reconstruction

 Recall that each node is preconfigured with their respective
 Share(POLY-1). Each node calculates its respective Share(POLY-2)
 using the RND value retrieved from the packet. The CML
 reconstruction is enhanced as below. At every node, CML is updated
 as

 CML = CML+(((Share(POLY-1)+ Share(POLY-2)) * LPC) mod Prime

Brockners, et al. Expires December 18, 2020 [Page 10]

Internet-Draft Proof of Transit June 2020

 Let us observe the packet level transformations in detail. For the
 example packet here, let the value RND be 45. Thus POLY-2 would be
 (45 + 7x + 10x^2).

 The shares that could be generated are (2, 46), (4, 21), (5, 12).

 At ingress: The fields RND = 45. CML = 0.

 At node-1 (x0): Respective share of POLY-2 is generated i.e., (2,
 46) because share index of node-1 is 2.

 CML = 0 + ((28 + 46)* 21) mod 53 = 17

 At node-2 (x1): Respective share of POLY-2 is generated i.e., (4,
 21) because share index of node-2 is 4.

 CML = 17 + ((17 + 21)*48) mod 53 = 17 + 22 = 39

 At node-3 (x2), which is also the verifier: The respective share
 of POLY-2 is generated i.e., (5, 12) because the share index of
 the verifier is 12.

 CML = 39 + ((47 + 12)*38) mod 53 = 39 + 16 = 55 mod 53 = 2

 The verification using CML is discussed in next section.

3.3.2.3. Verification

 As shown in the above example, for final verification, the verifier
 compares:

 VERIFY = (SECRET + RND) mod Prime, with Prime = 53 here

 VERIFY = (RND-1 + RND-2) mod Prime = (10 + 45) mod 53 = 2

 Since VERIFY = CML the packet is proven to have gone through nodes 1,
 2, and 3.

3.3.3. Solution Deployment Considerations

 The "complete solution" described above in Section 3.3.2 could still
 be prone to replay or preplay attacks. An attacker could e.g. reuse
 the POT metadata for bypassing the verification. These threats can
 be mitigated by appropriate parameterization of the algorithm.
 Please refer to Section 7 for details.

Brockners, et al. Expires December 18, 2020 [Page 11]

Internet-Draft Proof of Transit June 2020

3.4. Operational Aspects

 To operationalize this scheme, a central controller is used to
 generate the necessary polynomials, the secret share per node, the
 prime number, etc. and distributing the data to the nodes
 participating in proof of transit. The identified node that performs
 the verification is provided with the verification key. The
 information provided from the Controller to each of the nodes
 participating in proof of transit is referred to as a proof of
 transit profile (POT-Profile). Also note that the set of nodes for
 which the transit has to be proven are typically associated to a
 different trust domain than the verifier. Note that building the
 trust relationship between the Controller and the nodes is outside
 the scope of this document. Techniques such as those described in
 [I-D.ietf-anima-autonomic-control-plane] might be applied.

 To optimize the overall data amount of exchanged and the processing
 at the nodes the following optimizations are performed:

 1. The points (x, y) for each of the nodes on the public and private
 polynomials are picked such that the x component of the points
 match. This lends to the LPC values which are used to calculate
 the cumulative value CML to be constant. Note that the LPC are
 only depending on the x components. They can be computed at the
 controller and communicated to the nodes. Otherwise, one would
 need to distributed the x components to all the nodes.

 2. A pre-evaluated portion of the public polynomial for each of the
 nodes is calculated and added to the POT-Profile. Without this
 all the coefficients of the public polynomial had to be added to
 the POT profile and each node had to evaluate them. As stated
 before, the public portion is only the constant coefficient RND
 value, the pre-evaluated portion for each node should be kept
 secret as well.

 3. To provide flexibility on the size of the cumulative and random
 numbers carried in the POT data a field to indicate this is
 shared and interpreted at the nodes.

3.5. Ordered POT (OPOT)

 POT as discussed in this document so far only verifies that a defined
 set of nodes have been traversed by a packet. The order in which
 nodes where traversed is not verified. "Ordered Proof of Transit
 (OPOT)" addresses the need of deployments, that require to verify the
 order in which nodes were traversed. OPOT extends the POT scheme
 with symmetric masking between the nodes.

Brockners, et al. Expires December 18, 2020 [Page 12]

Internet-Draft Proof of Transit June 2020

 1. For each path the controller provisions all the nodes with (or
 asks them to agree on) two secrets per node, that we will refer
 to as masks, one for the connection from the upstream node(s),
 another for the connection to the downstream node(s). For
 obvious reasons, the ingress and egress (verifier) nodes only
 receive one, for downstream and upstream, respectively.

 2. Any two contiguous nodes in the OPOT stream share the mask for
 the connection between them, in the shape of symmetric keys.
 Masks can be refreshed as per-policy, defined at each hop or
 globally by the controller.

 3. Each mask has the same size in bits as the length assigned to CML
 plus RND, as described in the above sections.

 4. Whenever a packet is received at an intermediate node, the
 CML+RND sequence is deciphered (by XORing, though other ciphering
 schemas MAY be possible) with the upstream mask before applying
 the procedures described in Section 3.3.2.

 5. Once the new values of CML+RND are produced, they are ciphered
 (by XORing, though other ciphering schemas MAY be possible) with
 the downstream mask before transmitting the packet to the next
 node downstream.

 6. The ingress node only applies step 5 above, while the verifier
 only applies step 4 before running the verification procedure.

 The described process allows the verifier to check if the packet has
 followed the correct order while traversing the path. In particular,
 the reconstruction process will fail if the order is not respected,
 as the deciphering process will produce invalid CML and RND values,
 and the interpolation (secret reconstruction) will finally generate a
 wrong verification value.

 This procedure does not impose a high computational burden, does not
 require additional packet overhead, can be deployed on chains of any
 length, does not require any node to be aware of any additional
 information than the upstream and downstream masks, and can be
 integrated with the other operational mechanisms applied by the
 controller to distribute shares and other secret material.

4. Sizing the Data for Proof of Transit

 Proof of transit requires transport of two data fields in every
 packet that should be verified:

Brockners, et al. Expires December 18, 2020 [Page 13]

Internet-Draft Proof of Transit June 2020

 1. RND: Random number (the constant coefficient of public
 polynomial)

 2. CML: Cumulative

 The size of the data fields determines how often a new set of
 polynomials would need to be created. At maximum, the largest RND
 number that can be represented with a given number of bits determines
 the number of unique polynomials POLY-2 that can be created. The
 table below shows the maximum interval for how long a single set of
 polynomials could last for a variety of bit rates and RND sizes: When
 choosing 64 bits for RND and CML data fields, the time between a
 renewal of secrets could be as long as 3,100 years, even when running
 at 100 Gbps.

 +-------------+--------------+------------------+-------------------+
 | Transfer | Secret/RND | Max # of packets | Time RND lasts |
 | rate | size | | |
 +-------------+--------------+------------------+-------------------+
1 Gbps	64	2^64 = approx.	approx. 310,000
		2*10^19	years
10 Gbps	64	2^64 = approx.	approx. 31,000
		2*10^19	years
100 Gbps	64	2^64 = approx.	approx. 3,100
		2*10^19	years
1 Gbps	32	2^32 = approx.	2,200 seconds
		4*10^9	
10 Gbps	32	2^32 = approx.	220 seconds
		4*10^9	
100 Gbps	32	2^32 = approx.	22 seconds
		4*10^9	
 +-------------+--------------+------------------+-------------------+

 Table assumes 64 octet packets

 Table 1: Proof of transit data sizing

 If the symmetric masking method for ordered POT is used
 (Section 3.5), the masks used between nodes adjacent in the path MUST
 have a length equal to the sum of the ones of RND and CML.

5. Node Configuration

 A POT system consists of a number of nodes that participate in POT
 and a Controller, which serves as a control and configuration entity.
 The Controller is to create the required parameters (polynomials,
 prime number, etc.) and communicate the associated values (i.e. prime
 number, secret-share, LPC, etc.) to the nodes. The sum of all

Brockners, et al. Expires December 18, 2020 [Page 14]

Internet-Draft Proof of Transit June 2020

 parameters for a specific node is referred to as "POT-Profile". For
 details see the YANG model in Section 5.2.This document does not
 define a specific protocol to be used between Controller and nodes.
 It only defines the procedures and the associated YANG data model.

5.1. Procedure

 The Controller creates new POT-Profiles at a constant rate and
 communicates the POT-Profile to the nodes. The controller labels a
 POT-Profile "even" or "odd" and the Controller cycles between "even"
 and "odd" labeled profiles. This means that the parameters for the
 algorithms are continuously refreshed. Please refer to Section 4 for
 choosing an appropriate refresh rate: The rate at which the POT-
 Profiles are communicated to the nodes is configurable and MUST be
 more frequent than the speed at which a POT-Profile is "used up".
 Once the POT-Profile has been successfully communicated to all nodes
 (e.g., all NETCONF transactions completed, in case NETCONF is used as
 a protocol), the controller sends an "enable POT-Profile" request to
 the ingress node.

 All nodes maintain two POT-Profiles (an even and an odd POT-Profile):
 One POT-Profile is currently active and in use; one profile is
 standby and about to get used. A flag in the packet is indicating
 whether the odd or even POT-Profile is to be used by a node. This is
 to ensure that during profile change the service is not disrupted.
 If the "odd" profile is active, the Controller can communicate the
 "even" profile to all nodes. Only if all the nodes have received the
 POT-Profile, the Controller will tell the ingress node to switch to
 the "even" profile. Given that the indicator travels within the
 packet, all nodes will switch to the "even" profile. The "even"
 profile gets active on all nodes and nodes are ready to receive a new
 "odd" profile.

 Unless the ingress node receives a request to switch profiles, it'll
 continue to use the active profile. If a profile is "used up" the
 ingress node will recycle the active profile and start over (this
 could give rise to replay attacks in theory - but with 2^32 or 2^64
 packets this isn't really likely in reality).

5.2. YANG Model for POT

 This section defines that YANG data model for the information
 exchange between the Controller and the node.

Brockners, et al. Expires December 18, 2020 [Page 15]

Internet-Draft Proof of Transit June 2020

5.2.1. Main Parameters

 The main parameters for the information exchange between the
 Controller and the node used in the YANG model are as follows:

 o pot-profile-index: Section 5.1 details that two POT-Profiles are
 used. Only one of the POT-Profiles is active at a given point in
 time, allowing the Controller to refresh the non-active one for
 future use. pot-profile-index defines which of the POT-Profiles
 (the "even" or "odd" POT-Profile) is currently active. pot-
 profile-index will be set in the first hop of the path or chain.
 Other nodes will not use this field.

 o prime-number: Prime number used for module math computation.

 o secret-share: Share of the secret of polynomial-1 used in
 computation for the node. If POLY-1 is defined by points (x1_i,
 y1_i) with i=0,..k, then for node i, the secret-share will be
 y1_i.

 o public-polynomial: Public polynomial value for the node.. If
 POLY-2 is defined by points (x2_i, y2_i) with i=0,..k, then for
 node i, the secret-share will be y2_i.

 o lpc: Lagrange Polynomial Coefficient for the node, i.e. for node
 i, this would be LPC(l_i), with l_i being the i-th Lagrange Basis
 Polynomial.

 o validator?: True if the node is a verifier node.

 o validator-key?: The validator-key represents the SECRET as
 described in the sections above. The SECRET is the constant
 coefficient of POLY-1(z). If POLY-1(z) = a_0 + a_1*z +
 a_2*z^2+..+a_k*z^k, then the SECRET would be a_0.

 o bitmask?: Number of bits as mask used in controlling the size of
 the random value generation. 32-bits of mask is default. See

Section 4 for details.

5.2.2. Tree Diagram

 This section shows a simplified graphical representation of the YANG
 data model for POT. The meaning of the symbols in these diagrams is
 as follows:

 o Brackets "[" and "]" enclose list keys.

Brockners, et al. Expires December 18, 2020 [Page 16]

Internet-Draft Proof of Transit June 2020

 o Abbreviations before data node names: "rw" means configuration
 (read-write), and "ro" means state data (read-only).

 o Symbols after data node names: "?" means an optional node, "!"
 means a presence container, and "*" denotes a list and leaf-list.

 o Parentheses enclose choice and case nodes, and case nodes are also
 marked with a colon (":").

 o Ellipsis ("...") stands for contents of subtrees that are not
 shown.

 <CODE BEGINS>
 module: ietf-pot-profile
 +--rw pot-profiles
 +--rw pot-profile-set* [pot-profile-name]
 +--rw pot-profile-name string
 +--rw active-profile-index? profile-index-range
 +--rw pot-profile-list* [pot-profile-index]
 +--rw pot-profile-index profile-index-range
 +--rw prime-number uint64
 +--rw secret-share uint64
 +--rw public-polynomial uint64
 +--rw lpc uint64
 +--rw validator? boolean
 +--rw validator-key? uint64
 +--rw bitmask? uint64
 +--rw opot-masks
 +--rw downstream-mask* uint64
 +--rw upstream-mask* uint64
 <CODE ENDS>

5.2.3. YANG Model

 <CODE BEGINS> file "ietf-pot-profile@2016-06-15.yang"
 module ietf-pot-profile {

 yang-version 1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-pot-profile";

 prefix ietf-pot-profile;

 organization "IETF SFC Working Group";

 contact "WG Web: <https://tools.ietf.org/wg/sfc/>
 WG List: <mailto:sfc@ietf.org>";

https://tools.ietf.org/wg/sfc/

Brockners, et al. Expires December 18, 2020 [Page 17]

Internet-Draft Proof of Transit June 2020

 description
 "This module contains a collection of YANG
 definitions for proof of transit configuration
 parameters. The model is meant for proof of
 transit and is targeted for communicating the
 POT-Profile between a controller and nodes
 participating in proof of transit.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.
 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2016-06-15 {
 description
 "Initial revision.";
 reference
 "";
 }

 typedef profile-index-range {
 type int32 {
 range "0 .. 1";
 }
 description
 "Range used for the profile index. Currently restricted to
 0 or 1 to identify the odd or even profiles.";
 }

 grouping pot-profile {
 description "A grouping for proof of transit profiles.";

http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Brockners, et al. Expires December 18, 2020 [Page 18]

Internet-Draft Proof of Transit June 2020

 list pot-profile-list {
 key "pot-profile-index";
 ordered-by user;
 description "A set of pot profiles.";

 leaf pot-profile-index {
 type profile-index-range;
 mandatory true;
 description
 "Proof of transit profile index.";
 }

 leaf prime-number {
 type uint64;
 mandatory true;
 description
 "Prime number used for module math computation";
 }

 leaf secret-share {
 type uint64;
 mandatory true;
 description
 "Share of the secret of polynomial-1 used
 in computation for the node. If POLY-1
 is defined by points (x1_i, y1_i) with
 i=0,..k, then for node i, the secret-share
 will be y1_i.";
 }

 leaf public-polynomial {
 type uint64;
 mandatory true;
 description
 "Public polynomial value for the node.
 If POLY-2 is defined by points (x2_i, y2_i)
 with i=0,..k, then for node i,
 the secret-share will be y2_i.";
 }

 leaf lpc {
 type uint64;
 mandatory true;
 description
 "Lagrange Polynomial Coefficient";
 }

 leaf validator {

Brockners, et al. Expires December 18, 2020 [Page 19]

Internet-Draft Proof of Transit June 2020

 type boolean;
 default "false";
 description
 "True if the node is a verifier node";
 }

 leaf validator-key {
 type uint64;
 description
 "The validator-key represents the secret.
 The secret is the constant coefficient of
 POLY-1(z). If POLY-1(z) =
 a_0 + a_1*z + a_2*z^2+..+a_k*z^k,
 then the SECRET would be a_0.";
 }

 leaf bitmask {
 type uint64;
 default 4294967295;
 description
 "Number of bits as mask used in controlling
 the size of the random value generation.
 32-bits of mask is default.";
 }

 uses opot-profile;

 }
 }

 grouping opot-profile {
 description "Grouping containing OPoT related data.";

 container opot-masks {
 must "count(downstream-mask) = count(upstream-mask)";
 description "Masking information for OPoT support.";

 leaf-list downstream-mask {
 type uint64;
 max-elements 2;
 description "Secret stream used to demask the PoT metadata.
 The mask is used between nodes adjacent in the path
 and MUST have a length equal to the sum of the ones
 of RND and CML.";
 }

 leaf-list upstream-mask {

Brockners, et al. Expires December 18, 2020 [Page 20]

Internet-Draft Proof of Transit June 2020

 type uint64;
 max-elements 2;
 description "Secret stream used to mask the PoT metadata.
 The mask is used between nodes adjacent in the path
 and MUST have a length equal to the sum of the ones
 of RND and CML.";
 }
 }
 }

 container pot-profiles {
 description "A group of proof of transit profiles.";

 list pot-profile-set {
 key "pot-profile-name";
 ordered-by user;
 description
 "Set of proof of transit profiles that group parameters
 required to classify and compute proof of transit
 metadata at a node";

 leaf pot-profile-name {
 type string;
 mandatory true;
 description
 "Unique identifier for each proof of transit profile";
 }

 leaf active-profile-index {
 type profile-index-range;
 description
 "POT-Profile index that is currently active.
 Will be set in the first hop of the path or chain.
 Other nodes will not use this field.";
 }

 uses pot-profile;
 }
 /*** Container: end ***/
 }
 /*** module: end ***/
 }
 <CODE ENDS>

Brockners, et al. Expires December 18, 2020 [Page 21]

Internet-Draft Proof of Transit June 2020

6. IANA Considerations

 This document does not require any actions from IANA.

7. Security Considerations

 POT is a mechanism that is used for verifying the path through which
 a packet was forwarded. The security considerations of IOAM in
 general are discussed in [I-D.ietf-ippm-ioam-data]. Specifically, it
 is assumed that POT is used in a confined network domain, and
 therefore the potential threats that POT is intended to mitigate
 should be viewed accordingly. POT prevents spoofing and tampering;
 an attacker cannot maliciously create a bogus POT or modify a
 legitimate one. Furthermore, a legitimate node that takes part in
 the POT protocol cannot masquerade as another node along the path.
 These considerations are discussed in detail in the rest of this
 section.

7.1. Proof of Transit

 Proof of correctness and security of the solution approach is per
 Shamir's Secret Sharing Scheme [SSS]. Cryptographically speaking it
 achieves information-theoretic security i.e., it cannot be broken by
 an attacker even with unlimited computing power. As long as the
 below conditions are met it is impossible for an attacker to bypass
 one or multiple nodes without getting caught.

 o If there are k+1 nodes in the path, the polynomials (POLY-1, POLY-
 2) should be of degree k. Also k+1 points of POLY-1 are chosen
 and assigned to each node respectively. The verifier can re-
 construct the k degree polynomial (POLY-3) only when all the
 points are correctly retrieved.

 o Precisely three values are kept secret by individual nodes. Share
 of SECRET (i.e. points on POLY-1), Share of POLY-2, LPC, P. Note
 that only constant coefficient, RND, of POLY-2 is public. x values
 and non-constant coefficient of POLY-2 are secret

 An attacker bypassing a few nodes will miss adding a respective point
 on POLY-1 to corresponding point on POLY-2 , thus the verifier cannot
 construct POLY-3 for cross verification.

 Also it is highly recommended that different polynomials should be
 used as POLY-1 across different paths, traffic profiles or service
 chains.

 If symmetric masking is used to assure OPOT (Section 3.5), the nodes
 need to keep two additional secrets: the downstream and upstream

Brockners, et al. Expires December 18, 2020 [Page 22]

Internet-Draft Proof of Transit June 2020

 masks, that have to be managed under the same conditions as the
 secrets mentioned above. And it is equally recommended to employ a
 different set of mask pairs across different paths, traffic profiles
 or service chains.

7.2. Cryptanalysis

 A passive attacker could try to harvest the POT data (i.e., CML, RND
 values) in order to determine the configured secrets. Subsequently
 two types of differential analysis for guessing the secrets could be
 done.

 o Inter-Node: A passive attacker observing CML values across nodes
 (i.e., as the packets entering and leaving), cannot perform
 differential analysis to construct the points on POLY-1. This is
 because at each point there are four unknowns (i.e. Share(POLY-
 1), Share(Poly-2) LPC and prime number P) and three known values
 (i.e. RND, CML-before, CML-after). The application of symmetric
 masking for OPOT makes inter-node analysis less feasible.

 o Inter-Packets: A passive attacker could observe CML values across
 packets (i.e., values of PKT-1 and subsequent PKT-2), in order to
 predict the secrets. Differential analysis across packets could
 be mitigated using a good PRNG for generating RND. Note that if
 constant coefficient is a sequence number than CML values become
 quite predictable and the scheme would be broken. If symmetric
 masking is used for OPOT, inter-packet analysis could be applied
 to guess mask values, which requires a proper refresh rate for
 masks, at least as high as the one used for LPCs.

7.3. Anti-Replay

 A passive attacker could reuse a set of older RND and the
 intermediate CML values. Thus, an attacker can attack an old
 (replayed) RND and CML with a new packet in order to bypass some of
 the nodes along the path.

 Such attacks could be avoided by carefully choosing POLY-2 as a
 (SEQ_NO + RND). For example, if 64 bits are being used for POLY-2
 then first 16 bits could be a sequence number SEQ_NO and next 48 bits
 could be a random number.

 Subsequently, the verifier could use the SEQ_NO bits to run classic
 anti-replay techniques like sliding window used in IPSEC. The
 verifier could buffer up to 2^16 packets as a sliding window.
 Packets arriving with a higher SEQ_NO than current buffer could be
 flagged legitimate. Packets arriving with a lower SEQ_NO than
 current buffer could be flagged as suspicious.

Brockners, et al. Expires December 18, 2020 [Page 23]

Internet-Draft Proof of Transit June 2020

 For all practical purposes in the rest of the document RND means
 SEQ_NO + RND to keep it simple.

 The solution discussed in this memo does not currently mitigate
 replay attacks. An anti-replay mechanism may be included in future
 versions of the solution.

7.4. Anti-Preplay

 An active attacker could try to perform a man-in-the-middle (MITM)
 attack by extracting the POT of PKT-1 and using it in PKT-2.
 Subsequently attacker drops the PKT-1 in order to avoid duplicate POT
 values reaching the verifier. If the PKT-1 reaches the verifier,
 then this attack is same as Replay attacks discussed before.

 Preplay attacks are possible since the POT metadata is not dependent
 on the packet fields. Below steps are recommended for remediation:

 o Ingress node and Verifier are configured with common pre shared
 key

 o Ingress node generates a Message Authentication Code (MAC) from
 packet fields using standard HMAC algorithm.

 o The left most bits of the output are truncated to desired length
 to generate RND. It is recommended to use a minimum of 32 bits.

 o The verifier regenerates the HMAC from the packet fields and
 compares with RND. To ensure the POT data is in fact that of the
 packet.

 If an HMAC is used, an active attacker lacks the knowledge of the
 pre-shared key, and thus cannot launch preplay attacks.

 The solution discussed in this memo does not currently mitigate
 preplay attacks. A mitigation mechanism may be included in future
 versions of the solution.

7.5. Tampering

 An active attacker could not insert any arbitrary value for CML.
 This would subsequently fail the reconstruction of the POLY-3. Also
 an attacker could not update the CML with a previously observed
 value. This could subsequently be detected by using timestamps
 within the RND value as discussed above.

Brockners, et al. Expires December 18, 2020 [Page 24]

Internet-Draft Proof of Transit June 2020

7.6. Recycling

 The solution approach is flexible for recycling long term secrets
 like POLY-1. All the nodes could be periodically updated with shares
 of new SECRET as best practice. The table above could be consulted
 for refresh cycles (see Section 4).

 If symmetric masking is used for OPOT (Section 3.5), mask values must
 be periodically updated as well, at least as frequently as the other
 secrets are.

7.7. Redundant Nodes and Failover

 A "node" or "service" in terms of POT can be implemented by one or
 multiple physical entities. In case of multiple physical entities
 (e.g., for load-balancing, or business continuity situations -
 consider for example a set of firewalls), all physical entities which
 are implementing the same POT node are given that same share of the
 secret. This makes multiple physical entities represent the same POT
 node from an algorithm perspective.

7.8. Controller Operation

 The Controller needs to be secured given that it creates and holds
 the secrets, as need to be the nodes. The communication between
 Controller and the nodes also needs to be secured. As secure
 communication protocol such as for example NETCONF over SSH should be
 chosen for Controller to node communication.

 The Controller only interacts with the nodes during the initial
 configuration and thereafter at regular intervals at which the
 operator chooses to switch to a new set of secrets. In case 64 bits
 are used for the data fields "CML" and "RND" which are carried within
 the data packet, the regular intervals are expected to be quite long
 (e.g., at 100 Gbps, a profile would only be used up after 3100 years)
 - see Section 4 above, thus even a "headless" operation without a
 Controller can be considered feasible. In such a case, the
 Controller would only be used for the initial configuration of the
 POT-Profiles.

 If OPOT (Section 3.5) is applied using symmetric masking, the
 Controller will be required to perform a a periodic refresh of the
 mask pairs. The use of OPOT SHOULD be configurable as part of the
 required level of assurance through the Controller management
 interface.

Brockners, et al. Expires December 18, 2020 [Page 25]

Internet-Draft Proof of Transit June 2020

7.9. Verification Scope

 The POT solution defined in this document verifies that a data-packet
 traversed or transited a specific set of nodes. From an algorithm
 perspective, a "node" is an abstract entity. It could be represented
 by one or multiple physical or virtual network devices, or is could
 be a component within a networking device or system. The latter
 would be the case if a forwarding path within a device would need to
 be securely verified.

7.9.1. Node Ordering

 POT using Shamir's secret sharing scheme as discussed in this
 document provides for a means to verify that a set of nodes has been
 visited by a data packet. It does not verify the order in which the
 data packet visited the nodes.

 In case the order in which a data packet traversed a particular set
 of nodes needs to be verified as well, the alternate schemes related
 to OPOT (Section 3.5) have to be considered. Since these schemes
 introduce at least additional control requirements, the selection of
 order verification SHOULD be configurable the Controller management
 interface.

7.9.2. Stealth Nodes

 The POT approach discussed in this document is to prove that a data
 packet traversed a specific set of "nodes". This set could be all
 nodes within a path, but could also be a subset of nodes in a path.
 Consequently, the POT approach isn't suited to detect whether
 "stealth" nodes which do not participate in proof-of-transit have
 been inserted into a path.

8. Acknowledgements

 The authors would like to thank Eric Vyncke, Nalini Elkins, Srihari
 Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya
 Nadahalli, Erik Nordmark, and Andrew Yourtchenko for the comments and
 advice.

9. Contributors

 In addition to editors and authors listed on the title page, the
 following people have contributed substantially to this document and
 should be considered coauthors:

Brockners, et al. Expires December 18, 2020 [Page 26]

Internet-Draft Proof of Transit June 2020

 Carlos Pignataro
 Cisco Systems, Inc.
 7200-11 Kit Creek Road
 Research Triangle Park, NC 27709
 United States
 Email: cpignata@cisco.com

 John Leddy
 Email: john@leddy.net

 David Mozes
 Email: mosesster@gmail.com

 Alejandro Aguado
 Universidad Politecnica de Madrid
 Campus Montegancedo, Boadilla del Monte
 Madrid 28660
 Spain
 Phone: +34 910 673 086
 Email: a.aguadom@fi.upm.es

 Diego R. Lopez
 Telefonica I+D
 Editor Jose Manuel Lara, 9 (1-B)
 Seville 41013
 Spain
 Phone: +34 913 129 041
 Email: diego.r.lopez@telefonica.com

10. References

10.1. Normative References

 [I-D.ietf-ippm-ioam-data]
 Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
 Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov,
 P., remy@barefootnetworks.com, r., daniel.bernier@bell.ca,
 d., and J. Lemon, "Data Fields for In-situ OAM", draft-

ietf-ippm-ioam-data-09 (work in progress), March 2020.

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-09
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ioam-data-09

Brockners, et al. Expires December 18, 2020 [Page 27]

Internet-Draft Proof of Transit June 2020

 [I-D.ietf-sfc-ioam-nsh]
 Brockners, F. and S. Bhandari, "Network Service Header
 (NSH) Encapsulation for In-situ OAM (IOAM) Data", draft-

ietf-sfc-ioam-nsh-03 (work in progress), March 2020.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

 [RFC8300] Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
 "Network Service Header (NSH)", RFC 8300,
 DOI 10.17487/RFC8300, January 2018,
 <https://www.rfc-editor.org/info/rfc8300>.

 [SSS] "Shamir's Secret Sharing",
 <https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing>.

10.2. Informative References

 [I-D.ietf-anima-autonomic-control-plane]
 Eckert, T., Behringer, M., and S. Bjarnason, "An Autonomic
 Control Plane (ACP)", draft-ietf-anima-autonomic-control-

plane-18 (work in progress), August 2018.

Authors' Addresses

 Frank Brockners (editor)
 Cisco Systems, Inc.
 Hansaallee 249, 3rd Floor
 DUESSELDORF, NORDRHEIN-WESTFALEN 40549
 Germany

 Email: fbrockne@cisco.com

 Shwetha Bhandari (editor)
 Cisco Systems, Inc.
 Cessna Business Park, Sarjapura Marathalli Outer Ring Road
 Bangalore, KARNATAKA 560 087
 India

 Email: shwethab@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-sfc-ioam-nsh-03
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-ioam-nsh-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://datatracker.ietf.org/doc/html/rfc8300
https://www.rfc-editor.org/info/rfc8300
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-18
https://datatracker.ietf.org/doc/html/draft-ietf-anima-autonomic-control-plane-18

Brockners, et al. Expires December 18, 2020 [Page 28]

Internet-Draft Proof of Transit June 2020

 Tal Mizrahi (editor)
 Huawei Network.IO Innovation Lab
 Israel

 Email: tal.mizrahi.phd@gmail.com

 Sashank Dara
 Seconize
 BANGALORE, Bangalore, KARNATAKA
 INDIA

 Email: sashank@seconize.co

 Stephen Youell
 JP Morgan Chase
 25 Bank Street
 London E14 5JP
 United Kingdom

 Email: stephen.youell@jpmorgan.com

Brockners, et al. Expires December 18, 2020 [Page 29]

