
SHIM6 Working Group M. Komu

Internet-Draft HIIT

Intended status: Informational M. Bagnulo

Expires: October 05, 2011 UC3M

K. Slavov

S. Sugimoto, Ed.

Ericsson

April 03, 2011

Socket Application Program Interface (API) for Multihoming Shim

draft-ietf-shim6-multihome-shim-api-17

Abstract

This document specifies sockets API extensions for the multihoming shim

layer. The API aims to enable interactions between applications and the

multihoming shim layer for advanced locator management, and access to

information about failure detection and path exploration.

This document is based on an assumption that a multihomed host is

equipped with a conceptual sub-layer (hereafter "shim") inside the IP

layer that maintains mappings between identifiers and locators.

Examples of the shim are SHIM6 and HIP.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on October 05, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

2. Requirements Language

3. Terminology and Background

4. System Overview

5. Requirements

6. Socket Options for Multihoming Shim Sub-layer

6.1. SHIM_ASSOCIATED

6.2. SHIM_DONTSHIM

6.3. SHIM_HOT_STANDBY

6.4. SHIM_LOC_LOCAL_PREF

6.5. SHIM_LOC_PEER_PREF

6.6. SHIM_LOC_LOCAL_RECV

6.7. SHIM_LOC_PEER_RECV

6.8. SHIM_LOC_LOCAL_SEND

6.9. SHIM_LOC_PEER_SEND

6.10. SHIM_LOCLIST_LOCAL

6.11. SHIM_LOCLIST_PEER

6.12. SHIM_APP_TIMEOUT

6.13. SHIM_PATHEXPLORE

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

6.14. SHIM_DEFERRED_CONTEXT_SETUP

6.15. Applicability

6.16. Error Handling

7. Ancillary Data for Multihoming Shim Sub-layer

7.1. Get Locator from Incoming Packet

7.2. Set Locator for Outgoing Packet

7.3. Notification from Application to Multihoming Shim Sub-layer

7.4. Applicability

8. Data Structures

8.1. Data Structure for Locator Information

8.1.1. Handling Locator behind NAT

8.2. Path Exploration Parameter

8.3. Feedback Information

9. System Requirements

10. Relation to Existing Sockets API Extensions

11. Operational Considerations

11.1. Conflict Resolution

11.2. Incompatibility between IPv4 and IPv6

12. IANA Considerations

13. Protocol Constants and Variables

14. Security Considerations

14.1. Treatment of Unknown Locator

14.1.1. Treatment of Unknown Source Locator

14.1.2. Treatment of Unknown Destination Locator

15. Changes

15.1. Changes from version 00 to version 01

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

15.2. Changes from version 01 to version 02

15.3. Changes from version 02 to version 03

15.4. Changes from version 03 to version 04

15.5. Changes from version 04 to version 05

15.6. Changes from version 05 to version 06

15.7. Changes from version 06 to version 07

15.8. Changes from version 07 to version 08

15.9. Changes from version 08 to version 09

15.10. Changes from version 09 to version 10

15.11. Changes from version 10 to version 11

15.12. Changes from version 11 to version 12

15.13. Changes from version 12 to version 13

15.14. Changes from version 13 to version 14

15.15. Changes from version 14 to version 15

15.16. Changes from version 15 to version 16

15.17. Changes from version 16 to version 17

16. Acknowledgments

17. References

17.1. Normative References

17.2. Informative References

Appendix A. Context Forking

Authors' Addresses

1. Introduction

This document defines socket API extensions by which upper layer

protocols may be informed about and control the way in which a

multihoming shim sub-layer in the IP layer manages the dynamic choice

of locators. Initially it applies to SHIM6 and HIP, but it is defined

generically.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

The role of the multihoming shim sub-layer (hereafter called "shim sub-

layer" in this document) is to avoid impacts to upper layer protocols

which may be caused when the endhost changes its attachment point to

the Internet, for instance, in the case of rehoming event under the

multihomed environment. There is, however, a need for API in the cases

where 1) the upper layer protocol is particularly sensitive to impacts,

or 2) the upper layer protocol wants to benefit from better knowledge

of what is going on underneath.

There are various kinds of technologies that aim to solve the same

issue, the multihoming issue. Note that there will be conflict when

more than one shim sub-layer is active at the same time. The assumption

made in this document is that there is only a single shim sub-layer

(HIP or SHIM6) activated on the system.

The target readers of this document are application programmers who

develop application software which may benefit greatly from multihomed

environments. In addition, this document aims to provide necessary

information for developers of shim protocols to implement API for

enabling advanced locator management.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Terminology and Background

This section provides terminology used in this document. Basically most

of the terms used in this document are taken from the following

documents:

In this document, the term "IP" refers to both IPv4 and IPv6, unless

the protocol version is specifically mentioned. The following are

definitions of terms frequently used in this document:

SHIM6 Protocol Specification[RFC5533]

HIP Architecture[RFC4423]

Reachability Protocol (REAP)[RFC5534]

Endpoint identifier (EID) - The identifier used by the

application to specify the endpoint of a given communication.

*

*

*

*

Applications may handle EIDs in various ways such as long-lived

connections, callbacks, and referrals[I-D.ietf-shim6-app-refer].

In the case of SHIM6, an identifier called a ULID (Upper Layer

Identifier) serves as an EID. A ULID is chosen from locators

available on the host.

In the case of HIP, an identifier called a Host Identifier

serves as an EID. A Host Identifier is derived from the public

key of a given host. For the sake of backward compatibility

with the sockets API, the Host Identifier is represented in a

form of hash of public key.

Note that the EID appears in the standard socket API as an

address, and does not appear in the extensions defined in this

document, which only concern locators.

Locator - The IP address actually used to deliver IP packets.

Locators are present in the source and destination fields of the

IP header of a packet on the wire. Locator discussed in this

document could be either an IPv4 address or an IPv6 address. Note

that HIP can handle both IPv4 and IPv6 locators, whereas SHIM6

can handle only IPv6 locators. For the HIP case, locator can be a

private IPv4 address when the host is behind a NAT. Section

Section 8.1.1 gives detailed description about handling of

locator behind NAT.

List of locators - A list of locators associated with an EID.

There are two lists of locators stored in a given context. One

is associated with the local EID and the other is associated

with the remote EID. As defined in [RFC5533], the list of

locators associated with an EID 'A' is denoted as Ls(A).

Preferred locator - The (source/destination) locator currently

used to send packets within a given context.

Unknown locator - Any locator that does not appear in the

locator list of the shim context associated with the socket.

When there is no shim context associated with the socket, any

source and/or destination locator requested by the application

is considered to be unknown locator.

Valid locator - A valid locator means that the locator is

considered to be valid in the security sense. More

specifically, the validity indicates whether the locator is

part of a HBA set.

Verified locator - A verified locator means that the locator

is considered to be reachable according to the result of REAP

-

-

-

*

-

-

-

-

-

return routability check. Note that the verification applies

only to peer's locator.

Shim - The conceptual sub-layer inside the IP layer which

maintains mappings between EIDs and locators. An EID can be

associated with more than one locator at a time when the host is

multihomed. The term 'shim' does not refer to a specific protocol

but refers to the conceptual sub-layer inside the IP layer.

Identifier/locator adaptation - The adaptation performed at the

shim sub-layer which may end up re-writing the source and/or

destination addresses of an IP packet. In the outbound packet

processing, the EID pair is converted to the associated locator

pair. In the inbound packet processing, the locator pair is

converted to the EID pair.

Context - The state information shared by a given pair of peers,

which stores a binding between the EID and associated locators.

Contexts are maintained by the shim sub-layer. Deferred context

setup is a scenario where a context is established after the

communication starts. Deferred context setup is possible if the

ULID is routable, such as the case of SHIM6.

Reachability detection - The procedure to check reachability

between a given locator pair.

Path - The sequence of routers that an IP packet goes through to

reach the destination.

Path exploration - The procedure to explore available paths for a

given set of locator pairs.

Outage - The incident that prevents IP packets to flow from the

source locator to the destination locator. When there is an

outage, it means that there is no reachability between a given

locator pair. The outage may be caused by various reasons, such

as shortage of network resources, congestion, and human error

(faulty operation).

Working address pair - The address pair is considered to be

"working" if the packet can safely travel from the source to the

destination where the packet contains the first address from the

pair as the source address and the second address from the pair

as the destination address. If reachability is confirmed in both

directions, the address pair is considered to be working bi-

directionally.

Reachability protocol (REAP) - The protocol for detecting failure

and exploring reachability in a multihomed environment. REAP is

defined in [RFC5534].

*

*

*

*

*

*

*

*

*

In this document, syntax and semantics of the API are given in the same

way as in the Posix standard [POSIX]. The API specifies how to use

ancillary data (aka cmsg) to access the locator information with

recvmsg() and/or sendmsg() I/O calls. The API is described in C

language and data types are defined in the Posix format; intN_t means a

signed integer of exactly N bits (e.g. int16_t) and uintN_t means an

unsigned integer of exactly N bits (e.g. uint32_t).

The distinction between "connected" sockets and "unconnected" sockets

is important when discussing the applicability of the socket API

defined in this document. A connected socket is bound to a given peer,

whereas an unconnected socket is not bound to any specific peers. A TCP

socket becomes a connected socket when the TCP connection establishment

is completed. UDP sockets are unconnected, unless the application uses

the connect() system call.

4. System Overview

Figure 1 illustrates the system overview. The shim sub-layer and REAP

component exist inside the IP layer. Applications use the sockets API

defined in this document to interface with the shim sub-layer and the

transport layer for locator management, failure detection, and path

exploration.

It is also be possible that the shim sub-layer interacts with the

transport layer, however, such an interaction is outside the scope of

this document.

 +------------------------+

 | Application |

 +------------------------+

 ^ ^

           ~~~~~~~~~~~~~|~Socket Interface|~~~~~~~~~~~~~~

                        |                 v

            +-----------|------------------------------+

            |           |  Transport Layer             |

            +-----------|------------------------------+

                  ^     |

    +-------------|-----|-------------------------------------+

    |             v     v                                     |

    |   +-----------------------------+       +----------+    |  IP 

    |   |            Shim             |<----->|   REAP   |    | Layer

    |   +-----------------------------+       +----------+    |

    |                       ^                      ^          |

    +-----------------------|----------------------|----------+

                            v                      v

            +------------------------------------------+

            |                Link Layer                |

            +------------------------------------------+ 

5. Requirements

The following is a list of requirements from applications: 

Turn on/off shim. An application should be able to request to

turn on or turn off the multihoming support by the shim layer: 

Apply shim. The application should be able to explicitly

request the shim sub-layer to apply multihoming support.

Don't apply shim. The application should be able to request

the shim sub-layer not to apply the multihoming support but to

apply normal IP processing at the IP layer.

Note that this function is also required by other types of

multihoming mechanisms such as SCTP and multipath TCP to avoid

potential conflict with the shim sub-layer.

Locator management. 

It should be possible to set preferred source and/or

destination locator within a given context.

It should be possible to get preferred source and/or

destination locator within a given context.

*

-

-

-

*

-

-



It should be possible to set a list of source and/or

destination locators within a given context: Ls(local) and

Ls(remote).

It should be possible to get a list of source and/or

destination locators within a given context: Ls(local) and

Ls(remote).

Notification from applications and upper layer protocols to the

shim sub-layer about the status of the communication. The

notification occurs in an event-based manner. Applications and/or

upper layer protocols may provide positive feedback or negative

feedback to the shim sub-layer. Note that these feedback are

mentioned in [RFC5534]: 

Applications and/or upper layer protocols (e.g., TCP) may

provide positive feedback to the shim sub-layer informing that

the communication is going well.

Applications and/or upper layer protocols (e.g., TCP) may

provide negative feedback to the shim sub-layer informing that

the communication status is not satisfactory. TCP may detect a

problem when it does not receive any expected ACK message from

the peer. The REAP module may be triggered by these negative

feedback and invoke the path exploration procedure.

Feedback from applications to the shim sub-layer. Applications

should be able to inform the shim sub-layer of the timeout values

for detecting failures, sending keepalives, and starting the

exploration procedure. In particular, applications should be able

to suppress keepalives. 

Hot-standby. Applications may request the shim sub-layer for a

hot-standby capability. This means that, alternative paths are

known to be working in advance of a failure detection. In such a

case, it is possible for the shim sub-layer to immediately

replace the current locator pair with an alternative locator

pair. 

Eagerness for locator exploration. An application should be able

to inform the shim sub-layer of how aggressively it wants the

REAP mechanism to perform a path exploration (e.g., by specifying

the number of concurrent attempts of discovery of working locator

pairs) when an outage occurs on the path between the locator pair

in use.

-

-

*

-

-

*

*

*



Providing locator information to applications. An application

should be able to obtain information about the locator pair which

was actually used to send or receive packets.

For inbound traffic, the application may be interested in the

locator pair which was actually used to receive the packet. 

For outbound traffic, the application may be interested in the

locator pair which was actually used to transmit the packet.

In this way, applications may have additional control on the

locator management. For example, an application becomes able to

verify if its preference for locator is actually applied to the

flow or not. 

Applications should be able to know if the shim-sublayer supports

deferred context setup or not.

An application should be able to know if the communication is now

being served by the shim sub-layer or not.

An application should be able to use a common interface to access

an IPv4 locator and an IPv6 locator.

6. Socket Options for Multihoming Shim Sub-layer

In this section, socket options that are specific to the shim sub-layer

are defined.

Table 1 shows a list of the socket options that are specific to the

shim sub-layer. All of these socket options are defined at the level

SOL_SHIM. When an application uses one of the socket options by

getsockopt() or setsockopt(), the second argument MUST be set as

SOL_SHIM.

The first column of Table 1 gives the name of the option. The second

column indicates whether the value for the socket option can be ready

by getsockopt() and the third column indicates whether the value for

the socket option can be written by setsockopt(). The fourth column

provides a brief description of the socket option. The fifth column

shows the type of data structure specified along with the socket

option. By default, the data structure type is an integer.

optname get set description dtype

SHIM_ASSOCIATED o

Get the parameter which

indicates whether the socket

is associated (1) with any

shim context or not (0).

int

SHIM_DONTSHIM o o
Get or set the parameter

which indicates whether to

employ the multihoming

int

*

-

-

*

*

*



optname get set description dtype

support by the shim sub-layer

or not.

SHIM_HOT_STANDBY o o

Get or set the parameter to

request the shim sub-layer to

prepare a hot-standby

connection.

int

SHIM_LOC_LOCAL_PREF o o

Set the preference value for

a source locator for outbound

traffic. Get the preferred

locator for the source

locator for outbound traffic.

Note

1

SHIM_LOC_PEER_PREF o o

Set the preference value for

a destination locator for

outbound traffic. Get the

preferred locator for the

destination locator for

outbound traffic.

Note

1

SHIM_LOC_LOCAL_RECV o o

Request the shim sub-layer to

store the destination locator

of the received IP packet in

an ancillary data object.

int

SHIM_LOC_PEER_RECV o o

Request the shim sub-layer to

store the source locator of

the received IP packet in an

ancillary data object.

int

SHIM_LOC_LOCAL_SEND o o
Get or set the source locator

of outgoing IP packets.

Note

1

SHIM_LOC_PEER_SEND o o

Get or set the destination

locator of outgoing IP

packets.

Note

1

SHIM_LOCLIST_LOCAL o o

Get or set the list of

locators associated with the

local EID.

Note

2

SHIM_LOCLIST_PEER o o

Get or set the list of

locators associated with the

peer's EID.

Note

2

SHIM_APP_TIMEOUT o o
Get or set the Send Timeout

value of the REAP protocol.
int

SHIM_PATHEXPLORE o o

Get or set parameters for

path exploration and failure

detection.

Note

3

SHIM_CONTEXT_DEFERRED_SETUP o
Get the parameter which

indicates whether deferred
int



optname get set description dtype

context setup is supported or

not.

Socket options for multihoming shim sub-layer

Note 1: Pointer to a shim_locator which is defined in Section 8.

Note 2: Pointer to an array of shim_locator.

Note 3: Pointer to a shim_pathexplore which is defined in Section 8.

Figure 2 illustrates how the shim specific socket options fit into the

system model of socket API. The figure shows that the shim sub-layer

and the additional protocol components (IPv4 and IPv6) below the shim

sub-layer are new to the system model. As previously mentioned, all the

shim specific socket options are defined at the SOL_SHIM level. This

design choice brings the following advantages:

The existing sockets API continue to work at the layer above

the shim sub-layer. That is, those legacy API handle IP

addresses as identifiers.

With newly defined socket options for the shim sub-layer, the

application obtains additional control of locator management.

The shim specific socket options can be kept independent from

address family (IPPROTO_IP or IPPROTO_IPV6) and transport

protocol (IPPROTO_TCP or IPPROTO_UDP).

1. 

2. 

3. 



                         s1 s2      s3 s4

                          |  |       |  |

         +----------------|--|-------|--|----------------+

         |             +-------+   +-------+             |

         | IPPROTO_TCP |  TCP  |   |  UDP  |             |

         |             +-------+   +-------+             |

         |                |   \     /   |                |

         |                |    -----    |                | 

         |                |   /     \   |                |

         |              +------+   +------+              |

         |   IPPROTO_IP | IPv4 |   | IPv6 | IPPROTO_IPV6 |

         |              +------+   +------+              |

         |                  \         /             SOL_SOCKET

         |          +--------\-------/--------+          |

         | SOL_SHIM |          shim           |          |

         |          +--------/-------\--------+          |

         |                  /         \                  |

         |              +------+   +------+              |

         |              | IPv4 |   | IPv6 |              |

         |              +------+   +------+              |

         |                  |          |                 |

         +------------------|----------|-----------------+

                            |          |

                          IPv4       IPv6

                        Datagram   Datagram

6.1. SHIM_ASSOCIATED

The SHIM_ASSOCIATED option is used to check whether the socket is

associated with any shim context or not.

This option is meaningful when the locator information of the received

IP packet does not tell whether the identifier/locator adaptation is

performed or not. Note that the EID pair and the locator pair may be

identical in some cases.

Note that the socket option is read-only and the option value can be

read by getsockopt(). The result (0/1/2) is set in the option value

(the fourth argument of getsockopt()).

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

The data type of the option value is an integer. The option value

indicates the presence of shim context. A return value 1 means that the

socket is associated with a shim context at the shim sub-layer. A

return value 0 indicates that there is no shim context associated with

the socket. A return value 2 means that it is not known whether the

socket is associated with a shim context or not, and this MUST be



returned only when the socket is unconnected. In other words, the

returned value MUST be 0 or 1 when the socket is connected.

For example, the option can be used by the application as follows:

    int optval;

    int optlen = sizeof(optval);

    getsockopt(fd, SOL_SHIM, SHIM_ASSOCIATED, &optval, &optlen);

6.2. SHIM_DONTSHIM

The SHIM_DONTSHIM option is used to request the shim layer not to

provide the multihoming support for the communication established over

the socket.

The data type of the option value is an integer, and it takes 0 or 1.

An option value 0 means that the shim sub-layer is employed if

available. An option value 1 means that the application does not want

the shim sub-layer to provide the multihoming support for the

communication established over the socket.

Default value is set as 0, which means that the shim sub-layer performs

identifier/locator adaptation if available.

Any attempt to disable the multihoming shim support MUST be made by the

application before the socket is connected. If an application makes

such an attempt for a connected-socket, an error code EOPNOTSUPP MUST

be returned.

For example, an application can request the system not to apply the

multihoming support as follows:

    int optval;

    optval = 1;

    setsockopt(fd, SOL_SHIM, SHIM_DONTSHIM, &optval, sizeof(optval));

For example, the application can check the option value as follows:

    int optval;

    int len;

    len = sizeof(optval);

    getsockopt(fd, SOL_SHIM, SHIM_DONTSHIM, &optval, &len);

6.3. SHIM_HOT_STANDBY

The SHIM_HOT_STANDBY option is used to control the shim sub-layer

whether to employ a hot-standby connection for the socket or not. A



hot-standby connection is an alternative working locator pair to the

current locator pair. This option is effective only when there is a

shim context associated with the socket.

The data type of the option value is an integer.

The option value can be set by setsockopt().

The option value can be read by getsockopt().

By default, the value is set to 0, meaning that hot-standby connection

is disabled.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

For example, an application can request establishment of a hot-standby

connection by using the socket option as follows:

    int optval;

    optval = 1;

    setsockopt(fd, SOL_SHIM, SHIM_HOT_STANDBY, &optval,

               sizeof(optval));

For example, an application can get the option value by using the

socket option as follows:

    int optval;

    int len;

    len = sizeof(optval);

    getsockopt(fd, SOL_SHIM, SHIM_HOT_STANDBY, &optval, &len);

6.4. SHIM_LOC_LOCAL_PREF

The SHIM_LOC_LOCAL_PREF option is used to set the preference value for

a source locator for outbound traffic, or to get the preference value

of the source locator for outbound traffic that has the highest

preference value.

This option is effective only when there is a shim context associated

with the socket.

By default, the option value is set to NULL, meaning that the option is

disabled.

The preference of a locator is defined by a combination of priority and

weight as per DNS SRV[RFC2782]. Note that the SHIM6 base protocol

defines preference of locator in the same way.

The data type of the option value is a pointer to a locator information

data structure which is defined in Section 8.



When an application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error EINVALIDLOCATOR is returned when the validation of the

specified locator fails.

An application can set the preference value for a source locator for

outbound traffic by setsockopt() with the socket option. Note that

lc_ifidx and lc_flags have no effect in a set operation. Below is an

example of set operation.

    struct shim_locator lc;

    struct in6_addr ip6;

    /* ...set the locator (ip6)... */

    memset(&lc, 0, sizeof(shim_locator));

    lc.lc_family = AF_INET6;  /* IPv6 */

    lc.lc_ifidx = 0;

    lc.lc_flags = 0;

    lc.lc_prio = 1;

    lc.lc_weight = 10;

    memcpy(&lc.lc_addr, &ip6, sizeof(in6_addr)); 

    setsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_PREF, &lc,

               sizeof(optval));

An application can get the source locator for outbound traffic that has

the highest preference value by using the socket option. Below is an

example of get operation.

    struct shim_locator lc;

    int len;

    len = sizeof(lc);

    getsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_PREF, &lc, &len);

6.5. SHIM_LOC_PEER_PREF

The SHIM_LOC_PEER_PREF option is used to set the preference value for a

destination locator for outbound traffic, or to get the preference

value of the destination locator for outbound traffic that has the

highest preference value.

This option is effective only when there is a shim context associated

with the socket.

By default, the option value is set to NULL, meaning that the option is

disabled.



As defined earlier, the preference of a locator is defined by a

combination of priority and weight as per DNS SRV[RFC2782]. When there

are more than one candidate destination locators, the shim sub-layer

makes selection based on the priority and weight specified for each

locator.

The data type of the option value is a pointer to the locator

information data structure which is defined in Section 8.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error EINVALIDLOCATOR is returned when the validation of the

requested locator fails.

An error EUNREACHABLELOCATOR is returned when the requested locator is

determined to be not reachable according to a reachability check.

The usage of the option is same as that of SHIM_LOC_LOCAL_PREF.

6.6. SHIM_LOC_LOCAL_RECV

The SHIM_LOC_LOCAL_RECV option can be used to request the shim sub-

layer to store the destination locator of the received IP packet in an

ancillary data object which can be accessed by recvmsg(). This option

is effective only when there is a shim context associated with the

socket.

The data type of the option value is integer. The option value MUST be

binary (0 or 1). By default, the option value is set to 0, meaning that

the option is disabled.

An application can set the option value by setsockopt().

An application can get the option value by getsockopt().

See Section 7 for the procedure to access locator information stored in

the ancillary data objects.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

For example, an application can request the shim sub-layer to store

destination locator by using the socket option as follows.

    int optval;

    optval = 1;

    setsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_RECV, &optval,

               sizeof(optval));

For example, an application can get the option value as follows.



    int optval;

    int len;

    len = sizeof(optval);

    getsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_RECV, &optval, &len);

6.7. SHIM_LOC_PEER_RECV

The SHIM_LOC_PEER_RECV option is used to request the shim sub-layer to

store the source locator of the received IP packet in an ancillary data

object which can be accessed by recvmsg(). This option is effective

only when there is a shim context associated with the socket.

The data type of the option value is integer. The option value MUST be

binary (0 or 1). By default, the option value is set to 0, meaning that

the option is disabled.

The option value can be set by setsockopt().

The option value can be read by getsockopt().

See Section 7 for the procedure to access locator information stored in

the ancillary data objects.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

The usage of the option is same as that of SHIM_LOC_LOCAL_RECV option.

6.8. SHIM_LOC_LOCAL_SEND

The SHIM_LOC_LOCAL_SEND option is used to request the shim sub-layer to

use a specific locator as the source locator for the IP packets to be

sent from the socket. This option is effective only when there is a

shim context associated with the socket.

The data type of option value is pointer to shim_locator data

structure.

An application can set the local locator by setsockopt() providing a

locator which is stored in a shim_locator data structure. When a zero-

filled locator is specified, pre-existing setting of local locator is

inactivated.

An application can get the local locator by getsockopt().

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error EINVALIDLOCATOR is returned when an invalid locator is

specified.

For example, an application can request the shim sub-layer to use a

specific local locator by using the socket option as follows.



    struct shim_locator locator;

    struct in6_addr ia6;

    /* an IPv6 address preferred for the source locator is copied

       to the parameter ia6 */

    memset(&locator, 0, sizeof(locator));

    /* fill shim_locator data structure */

    locator.lc_family = AF_INET6;

    locator.lc_ifidx = 0;

    locator.lc_flags = 0;

    locator.lc_prio = 0;

    locator.lc_weight = 0;

    memcpy(&locator.lc_addr, &ia6, sizeof(ia6));

    setsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_SEND, &locator,

               sizeof(locator));

For example, an application can get the designated local locator by

using the socket option as follows:

    struct shim_locator locator;

    memset(&locator, 0, sizeof(locator));

    getsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_SEND, &locator,

               sizeof(locator));

    /* check locator */

6.9. SHIM_LOC_PEER_SEND

The SHIM_LOC_PEER_SEND option is used to request the shim sub-layer to

use a specific locator for the destination locator of IP packets to be

sent from the socket. This option is effective only when there is a

shim context associated with the socket.

The data type of the option value is a pointer to shim_locator data

structure.

An application can set the remote locator by setsockopt() providing a

locator which is stored in a shim_locator data structure. When a zero-

filled locator is specified, pre-existing setting of remote locator is

inactivated.

An application can get the specified remote locator by getsockopt().

The difference between the SHIM_LOC_PEER_SEND option and the

SHIM_LOC_PEER_PREF option is that the former guarantee the use of

requested locator when applicable whereas the latter does not.



When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error EINVALIDLOCATOR is returned when the validation of the

requested locator fails.

An error EUNVERIFIEDLOCATOR is returned when reachability for the

requested locator has not been verified yet.

An error EUNREACHABLELOCATOR is returned when the requested locator is

determined to be not reachable according to a reachability check.

The usage of the option is the same as that of SHIM_LOC_LOCAL_SEND

option.

6.10. SHIM_LOCLIST_LOCAL

The SHIM_LOCLIST_LOCAL option is used to get or set the locator list

associated with the local EID of the shim context associated with the

socket. This option is effective only when there is a shim context

associated with the socket.

The data type of the option value is a pointer to the buffer in which a

locator list is stored. See Section 8 for the data structure for

storing the locator information. By default, the option value is set to

NULL, meaning that the option is disabled.

An application can get the locator list by getsockopt(). Note that the

size of the buffer pointed to by the optval argument MUST be large

enough to store an array of locator information. The number of the

locator information is not known beforehand.

The local locator list can be set by setsockopt(). The buffer pointed

to by the optval argument MUST contain an array of locator structures.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error EINVALIDLOCATOR is returned when the validation of any of the

specified locators failed.

An error ETOOMANYLOCATORS is returned when the number of locators

specified exceeds the limit (SHIM_MAX_LOCATORS), or when the size of

the buffer provided by the application is not large enough to store the

locator list provided by the shim sub-layer.

For example, an application can set a list of locators to be associated

with the local EID by using the socket option as follows. Note that

IPv4 locator can be handled by HIP and not by SHIM6.



    struct shim_locator locators[SHIM_MAX_LOCATORS];

    struct sockaddr_in *sin;

    struct sockaddr_in6 *sin6;

    memset(locators, 0, sizeof(locators));

    ...

    /* obtain local IP addresses from local interfaces */

    ...

    /* first locator (an IPv6 address) */

    locators[0].lc_family = AF_INET6;

    locators[0].lc_ifidx = 0;

    locators[0].lc_flags = 0;

    locators[0].lc_prio = 1;

    locators[0].lc_weight = 0;

    memcpy(&locators[0].lc_addr, &sa6->sin6_addr,

           sizeof(sa6->sin6_addr));

    ...

    /* second locator (an IPv4 address) */

    locators[1].lc_family = AF_INET;

    locators[1].lc_ifidx = 0;

    locators[1].lc_flags = 0;

    locators[1].lc_prio = 0;

    locators[1].lc_weight = 0;

    memcpy(&locators[1].lc_addr, &sa->sin_addr,

           sizeof(sa->sin_addr));

    setsockopt(fd, SOL_SHIM, SHIM_LOCLIST_LOCAL, locators,

               sizeof(locators));

For example, an application can get a list of locators that are

associated with the local EID by using the socket option as follows.

    struct shim_locator locators[SHIM_MAX_LOCATORS];

    memset(locators, 0, sizeof(locators));

    getsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_RECV, locators,

               sizeof(locators));

    /* parse locators */

    ...



6.11. SHIM_LOCLIST_PEER

The SHIM_LOCLIST_PEER option is used to get or set the locator list

associated with the peer EID of the shim context associated with the

socket. This option is effective only when there is a shim context

associated with the socket.

The data type of the option value is a pointer to the buffer where a

locator list is stored. See Section 8 for the data structure for

storing the locator information. By default, the option value is set to

NULL, meaning that the option is disabled.

An application can get the locator list by getsockopt(). Note that the

size of the buffer pointed to by the optval argument MUST be large

enough to store an array of locator information. The number of the

locator information is not known beforehand.

An application can set the locator list by setsockopt(). The buffer

pointed to by the optval argument MUST contain an array of locator

list.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error EINVALIDLOCATOR is returned when the validation of any of the

specified locators failed.

An error EUNVERIFIEDLOCATOR is returned when reachability for the

requested locator has not been verified yet.

An error EUNREACHABLELOCATOR is returned when the requested locator is

determined to be not reachable according to a reachability check.

An error ETOOMANYLOCATORS is returned when the number of locators

specified exceeds the limit (SHIM_MAX_LOCATORS), or when the size of

the buffer provided by the application is not large enough to store the

locator list provided by the shim sub-layer.

The usage of the option is same as that of SHIM_LOCLIST_LOCAL.

6.12. SHIM_APP_TIMEOUT

The SHIM_APP_TIMEOUT option is used to get or set the Send Timeout

value of the REAP protocol[RFC5534]. This option is effective only when

there is a shim context associated with the socket.

The data type of the option value is an integer. The value indicates

the period of timeout in seconds to send a REAP Keepalive message since

the last outbound traffic. By default, the option value is set to 0,

meaning that the option is disabled. When the option is disabled, the

REAP mechanism follows its default value of Send Timeout value as

specified in [RFC5534]

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.



When there is no REAP protocol instance on the system, an error code

EOPNOTSUPP is returned to the application.

For example, an application can set the timeout value by using the

socket option as follows.

    int optval;

    optval = 15; /* 15 seconds */

    setsockopt(fd, SOL_SHIM, SHIM_APP_TIMEOUT, &optval,

               sizeof(optval));

For example, an application can get the timeout value by using the

socket option as follows.

    int optval;

    int len;

    len = sizeof(optval);

    getsockopt(fd, SOL_SHIM, SHIM_APP_TIMEOUT, &optval, &len);

6.13. SHIM_PATHEXPLORE

The application MAY use this socket option to get or set parameters

concerning path exploration. Path exploration is a procedure to find an

alternative locator pair to the current locator pair. As the REAP

specification defines, a peer may send Probe messages to find an

alternative locator pair.

This option is effective only when there is a shim context associated

with the socket.

The data type of the option value is a pointer to the buffer where a

set of information for path exploration is stored. The data structure

is defined in Section 8.

By default, the option value is set to NULL, meaning that the option is

disabled.

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

For example, an application can set parameters for path exploration by

using the socket option as follows.



    struct shim6_pathexplore pe;

    pe.pe_probenum = 4;        /* times */

    pe.pe_keepaliveto = 10;    /* seconds */

    pe.pe_initprobeto = 500;   /* milliseconds */

    pe.pe_reserved = 0;

    setsockopt(fd, SOL_SHIM, SHIM_PATHEXPLORE, &pe, sizeof(pe));

For example, an application can get parameters for path exploration by

using the socket option as follows.

    struct shim6_pathexplore pe;

    int len;

    len = sizeof(pe);

    getsockopt(fd, SOL_SHIM, SHIM_PATHEXPLORE, &pe, &len);

6.14. SHIM_DEFERRED_CONTEXT_SETUP

The SHIM_DEFERRED_CONTEXT_SETUP option is used to check whether

deferred context setup is possible or not. Deferred context setup means

that the context is established in parallel with the data

communication. Note that SHIM6 supports deferred context setup and HIP

does not because EIDs in HIP (i.e., Host Identifiers) are non-routable.

Note that the socket option is read-only and the option value can be

ready by getsockopt().

The data type for the option value is an integer. The option value MUST

be binary (0 or 1). The option value 1 means that the shim sub-layer

supports deferred context setup. 

When the application specifies the socket option to an unconnected

socket, an error code EOPNOTSUPP is returned to the application.

For example, an application can check whether deferred context setup is

possible or not as follows:

    int optval;

    int len;

    len = sizeof(optval);

    getsockopt(fd, SOL_SHIM, SHIM_DEFERRED_CONTEXT_SETUP,

               &optval, &len);



EINVALIDLOCATOR

EUNVERIFIEDLOCATOR

EUNREACHABLELOCATOR

6.15. Applicability

All the socket options defined in this section except for the

SHIM_DONTSHIM option are applicable to applications that use connected

sockets.

All the socket options defined in this section except for the

SHIM_ASSOCIATED, SHIM_DONTSHIM and SHIM_CONTEXT_DEFERRED_SETUP options

are effective only when there is a shim context associated with the

socket.

6.16. Error Handling

If successful, getsockopt() and setsockopt() return 0; otherwise, the

functions return -1 and set errno to indicate an error.

The following are new error values defined for some shim specific

socket options indicating that the getsockopt() or setsockopt()

finished incompletely:

This indicates that the locator is not part of the HBA

set[RFC5535] within the shim context associated with the socket.

This indicates that the reachability of the locator

has not been confirmed. This error is applicable to only peer's

locator.

This indicates that the locator is not reachable

according to the result of the reachability check. This error is

applicable to only peer's locator.

7. Ancillary Data for Multihoming Shim Sub-layer

This section provides definitions of ancillary data to be used for

locator management and notification from/to the shim sub-layer to/from

application.

When the application performs locator management by sendmsg() or

recvmsg(), a member of the msghdr structure (given in Figure 21) called

msg_control holds a pointer to the buffer in which one or more shim

specific ancillary data objects may be stored. An ancillary data object

can store a single locator. It should be possible to process the shim

specific ancillary data object by the existing macros defined in the

Posix standard and [RFC3542].



     struct msghdr {

             caddr_t msg_name;       /* optional address */

             u_int   msg_namelen;    /* size of address */

             struct  iovec *msg_iov; /* scatter/gather array */

             u_int   msg_iovlen;     /* # elements in msg_iov */

             caddr_t msg_control;    /* ancillary data, see below */

             u_int   msg_controllen; /* ancillary data buffer len */

             int     msg_flags;      /* flags on received message */

     };

In the case of unconnected socket, msg_name stores the socket address

of the peer. Note that the address is not a locator of the peer but the

identifier of the peer. SHIM_LOC_PEER_RECV can be used to get the

locator of the peer node.

Table 2 is a list of the shim specific ancillary data which can be used

for locator management by recvmsg() or sendmsg(). In any case, the

value of cmsg_level MUST be set as SOL_SHIM.

cmsg_type sendmsg() recvmsg() cmsg_data[]

SHIM_LOC_LOCAL_RECV o Note 1

SHIM_LOC_PEER_RECV o Note 1

SHIM_LOC_LOCAL_SEND o Note 1

SHIM_LOC_PEER_SEND o Note 1

SHIM_FEEDBACK o shim_feedback{}

Shim specific ancillary data

Note 1: cmsg_data[] within msg_control includes a single sockaddr_in{}

or sockaddr_in6{} and padding if necessary

7.1. Get Locator from Incoming Packet

An application can get locator information from the received IP packet

by specifying the shim specific socket options for the socket. When

SHIM_LOC_LOCAL_RECV and/or SHIM_LOC_PEER_RECV socket options are set,

the application can retrieve local and/or remote locator from the

ancillary data.

When there is no shim context associated with the socket, the shim sub-

layer MUST return zero-filled locator information to the application.

7.2. Set Locator for Outgoing Packet

An application can specify the locators to be used for transmitting an

IP packet by sendmsg(). When the ancillary data of cmsg_type

SHIM_LOC_LOCAL_SEND and/or SHIM_LOC_PEER_SEND are specified, the

application can explicitly specify the source and/or the destination

locators to be used for the communication over the socket. If the

specified locator pair is verified, the shim sub-layer overrides the



locator(s) of the outgoing IP packet. Note that the effect is limited

to the datagram transmitted by the sendmsg().

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

An error code EINVALIDLOCATOR is returned when validation of the

specified locator fails.

An error EUNVERIFIEDLOCATOR is returned when reachability for the

requested locator has not been verified yet. The application is

recommended to use another destination locator until the reachability

check for the requested locator is done.

An error EUNREACHABLELOCATOR is returned when the requested locator is

determined to be not reachable according to a reachability check. The

application is recommended to use another destination locator when

receiving the error.

7.3. Notification from Application to Multihoming Shim Sub-layer

An application MAY provide feedback to the shim sub-layer about the

communication status. Such feedback are useful for the shim sub-layer

to monitor the reachability status of the currently used locator pair

in a given shim context.

The notification can be made by sendmsg() specifying a new ancillary

data called SHIM_FEEDBACK. The ancillary data can be handled by

specifying SHIM_FEEDBACK option in cmsg_type.

When there is no shim context associated with the socket, an error code

ENOENT is returned to the application.

See Section 8.3 for details of the data structure to be used.

It is outside the scope of this document how the shim sub-layer would

react when a feedback is provided by an application.

7.4. Applicability

All the ancillary data for the shim sub-layer is applicable to

connected sockets.

Care is needed when the SHIM_LOC_*_RECV socket option is used for

stream-oriented sockets (e.g., TCP sockets) because there is no one-to-

one mapping between a single send or receive operation and the data

(e.g., a TCP segment) being received. In other words, there is no

guarantee that the locator(s) set in the SHIM_LOC_*_RECV ancillary data

is identical to the locator(s) that appear in the IP packets received.

The shim sub-layer SHOULD provide the latest locator information to the

application in response to the SHIM_LOC_*_RECV socket option. 

8. Data Structures

This section gives data structures for the shim sub-layer. These data

structures are either used as a parameter for setsockopt() or

getsockopt() (as mentioned in Section 6) or as a parameter for



lc_family

lc_proto

lc_port

lc_prio

lc_weight

ancillary data to be processed by sendmsg() or recvmsg() (as mentioned

in Section 7).

8.1. Data Structure for Locator Information

As defined in Section 6, the SHIM_LOC_*_PREF, SHIM_LOC_*_SEND, and

SHIM_LOCLIST_* socket options need to handle one or more locator

information. Locator information includes not only the locator itself

but also additional information about the locator which is useful for

locator management. A new data structure is defined to serve as a

placeholder for the locator information.

     struct shim_locator {

             uint8_t    lc_family;       /* address family */

             uint8_t    lc_proto;        /* protocol */

             uint16_t   lc_port;         /* port number */ 

             uint16_t   lc_prio;         /* preference value */

             uint16_t   lc_weight;       /* weight */

             uint32_t   lc_ifidx;        /* interface index */

             struct in6_addr lc_addr;    /* address */ 

             uint16_t   lc_flags;        /* flags */

     };

Figure 22 illustrates the data structure called shim_locator which

stores a locator information. 

Address family of the locator (e.g. AF_INET, AF_INET6). It

is required that the parameter contains non-zero value indicating

the exact address family of the locator.

Internet Protocol number for the protocol which is used to

handle locator behind NAT. The value MUST be set to zero when there

is no NAT involved. When the locator is behind NAT, the value MUST

be set to IPPROTO_UDP.

Port number which is used for handling locator behind NAT.

The priority of the locator. The range is 0-65535. The lowest

priority value means the highest priority.

The weight value indicates a relative weight for locators

with the same priority value. The range is 0-65535. A locator with

higher weight value is prioritized over the other locators with

lower weight values.



lc_ifidx

lc_addr

lc_flags

Interface index of the network interface to which the locator is

assigned. This field is applicable only to local locators, and has

no effect in set operation.

Contains the locator. In case of IPv4, the locator MUST be

formatted in the IPv4-mapped IPv6 address as defined in [RFC4291].

The locator MUST be stored in network byte order.

Each bit of the flags represents a specific characteristics

of the locator. Hash Based Address (HBA) is defined as 0x01.

Cryptographically Generated Address (CGA) is defined as 0x02. This

field has no effect in set operation.

8.1.1. Handling Locator behind NAT

       struct shim_locator locator;

       struct in6_addr ia6;

       /* copy the private IPv4 address to the ia6 as an IPv4-mapped

          IPv6 address */

       memset(&locator, 0, sizeof(locator));

       /* fill shim_locator data structure */

       locator.lc_family = AF_INET;

       locator.lc_proto = IPPROTO_UDP;

       locator.lc_port = 50500;

       locator.lc_ifidx = 0;

       locator.lc_flags = 0;

       locator.lc_prio = 0;

       locator.lc_weight = 0;

       memcpy(&locator.lc_addr, &ia6, sizeof(ia6));

       setsockopt(fd, SOL_SHIM, SHIM_LOC_LOCAL_SEND, &locator,

                  sizeof(locator));

Note that the locator information MAY contain a locator behind a

Network Address Translator (NAT). Such a situation may arise when the

host is behind the NAT and uses a local address as a source locator to

communicate with the peer. Note that a NAT traversal mechanism for HIP

is defined, which allows HIP host to tunnel control and data traffic

over UDP[RFC5770]. Note also that the locator behind NAT is not

necessarily an IPv4 address but it can be an IPv6 address. Below is an



pe_probenum

pe_keepaliveto

pe_keepaliveint

pe_initprobeto

pe_reserved

example where the application sets a UDP encapsulation interface as a

source locator when sending IP packets. 

8.2. Path Exploration Parameter

     struct shim_pathexplore {

             uint16_t  pe_probenum;      /* # of initial probes */

             uint16_t  pe_keepaliveto;   /* Keepalive Timeout */

             uint16_t  pe_keepaliveint   /* Keepalive Interval */

             uint16_t  pe_initprobeto;   /* Initial Probe Timeout */

             uint32_t  pe_reserved;      /* reserved */

     };

As defined in Section 6, SHIM_PATHEXPLORE allows application to set or

read the parameters for path exploration and failure detection. A new

data structure called shim_pathexplore is defined to store the

necessary parameters. Figure 24 illustrates the data structure. The

data structure can be passed to getsockopt() or setsockopt() as an

argument. 

Indicates the number of initial probe messages to be sent.

The value MUST be set as per [RFC5534]. 

Indicates timeout value in seconds for detecting a

failure when the host does not receive any packets for a certain

period of time while there is outbound traffic. When the timer

expires, path exploration procedure will be carried out by sending a

REAP Probe message. The value MUST be set as per [RFC5534]. 

Indicates interval of REAP keepalive messages in

seconds to be sent by the host when there is no outbound traffic to

the peer host. The value MUST be set as per [RFC5534]. 

Indicates retransmission timer of REAP Probe message in

milliseconds. Note that this timer is applied before exponential

back-off is started. A REAP Probe message for the same locator pair

may be retransmitted. The value MUST be set as per [RFC5534]. 

A reserved field for future extension. By default, the

field MUST be initialized to zero. 

8.3. Feedback Information



direction

indicator

reserved

     struct shim_feedback {

             uint8_t   fb_direction;    /* direction of traffic */

             uint8_t   fb_indicator;    /* indicator (1-3) */

             uint16_t  fb_reserved;     /* reserved */

     };

As mentioned in Section 7.3, applications can inform the shim sub-layer

about the status of unicast reachability of the locator pair currently

in use. The feedback information can be handled by using ancillary data

called SHIM_FEEDBACK. A new data structure named shim_feedback is

illustrated in Figure 25. 

Indicates direction of reachability between a locator pair

in question. A value 0 indicates outbound and a value 1 indicates

inbound direction. 

A value indicating the degree of satisfaction of a

unidirectional reachability for a given locator pair. 

0: Default value. Whenever this value is specified the

feedback information MUST NOT be processed by the shim sub-

layer.

1: Unable to connect. There is no unidirectional reachability

between the locator pair in question.

2: Unsatisfactory. The application is not satisfied with the

unidirectional reachability between the locator pair in

question.

3: Satisfactory. There is satisfactory unidirectional

reachability between the locator pair in question.

Reserved field. MUST be ignored by the receiver. 

9. System Requirements

As addressed in Section 6, most of the socket options and ancillary

data defined in this document are applicable to connected sockets. It

is assumed that the kernel is capable of maintaining the association

between a connected socket and a shim context. This requirement is

considered to be reasonable because a pair of source and destination IP

addresses is bound to a connected socket.

*

*

*

*



10. Relation to Existing Sockets API Extensions

This section explains relation between the sockets API defined in this

document and the existing sockets API extensions.

As mentioned in Section 6, the basic assumption is that the existing

sockets API continues to work above the shim sub-layer. This means

that, the existing sockets API deals with identifiers, and the sockets

API defined in this document deals with locators.

SHIM_LOC_LOCAL_SEND and SHIM_LOC_PEER_SEND socket options are

semantically similar to the IPV6_PKTINFO socket API in the sense that

both provide a means for application to set the source IP address of

outbound IP packets.

SHIM_LOC_LOCAL_RECV and SHIM_LOC_PEER_RECV socket options are

semantically similar to the IP_RECVDSTADDR and IPV6_PKTINFO socket APIs

in the sense that both provides a means for application to get the

source and/or destination IP address of inbound IP packets.

getsockname() and getpeername() enable application to get 'name' of the

communication endpoints which is represented by a pair of IP address

and port number assigned to the socket. getsockname() gives IP address

and port number assigned to the socket on the local side, and

getpeername() gives IP address and port number of the peer side.

11. Operational Considerations

This section gives operational considerations of the sockets API

defined in this document.

11.1. Conflict Resolution

There can be a conflicting situation when different applications

specify difference preference for the same shim context. For instance,

suppose if application A and B establish communication with the same

EID pair while both applications have different preference in their

choice of local locator. The notion of context forking in SHIM6 can

resolve the conflicting situation.

It is possible that socket options defined in Section 6 cause

conflicting situation when the target context is shared by multiple

applications. In such a case, the socket handler should inform the shim

sub-layer that context forking is required. In SHIM6, when a context is

forked, an unique identifier called Forked Instance Identifier (FII) is

assigned to the newly forked context. The forked context is then

exclusively associated with the socket through which non-default

preference value was specified. The forked context is maintained by the

shim sub-layer during the lifetime of associated socket instance. When

the socket is closed, the shim sub-layer SHOULD delete associated

context.

When the application specifies SHIM_LOC_*_SEND specifying a different

source or destination locator which does not have the highest priority

and weight specified by the SHIM_LOC_*_PREF, the shim sub-layer SHOULD



SHIM_MAX_LOCATORS

supersede the request made by SHIM_LOC_*_SEND over the preference

specified by SHIM_LOC_*_PREF.

When the peer provides preferences of the locators (e.g., a SHIM6 peer

sends a locator with a Locator Preferences Option) which conflict with

preference specified by the applications either by SHIM_LOC_PEER_SEND

or SHIM_LOC_PEER_PREF, the shim sub-layer SHOULD supersede the

preference made by the application over the preference specified by the

peer. 

11.2. Incompatibility between IPv4 and IPv6

The shim sub-layer performs identifier/locator adaptation. Therefore,

in some cases, the whole IP header can be replaced with new IP header

of a different address family (e.g. conversion from IPv4 to IPv6 or

vice versa). Hence, there is an issue how to make the conversion with

minimum impact. Note that this issue is common in other protocol

conversion techniques [RFC2765][I-D.ietf-behave-v6v4-xlate].

As studied in the previous works on protocol conversion[RFC2765][I-

D.ietf-behave-v6v4-xlate], some of the features (IPv6 routing headers,

hop-by-hop extension headers, and destination headers) from IPv6 are

not convertible to IPv4. In addition, notion of source routing is not

exactly the same in IPv4 and IPv6. This means that an error may occur

during the conversion of identifier and locator. It is outside the

scope of this document to describe how the shim sub-layer should behave

in such erroneous cases.

12. IANA Considerations

There is no IANA considerations for the socket options (SHIM_*), the

ancillary data, and the socket level (SOL_SHIM) that are defined in

this document. All the numbers concerned are not under the control of

IETF or IANA but they are platform-specific.

13. Protocol Constants and Variables

This section defines protocol constants and variables. 

The maximum number of the locators to be included in

a locator list. The value is set to 32.

14. Security Considerations

This section gives security considerations of the API defined in this

document.

14.1. Treatment of Unknown Locator

When sending IP packets, there is a possibility that an application

requests use of unknown locator for the source and/or destination

locators. Note that treatment of unknown locator can be a subject of



security considerations because use of invalid source and/or

destination locator may cause redirection attack.

14.1.1. Treatment of Unknown Source Locator

The shim sub-layer checks if the requested locator is available on any

of the local interface. If not, the shim sub-layer MUST reject the

request and return an error message with the EINVALIDLOCATOR code to

the application. If the locator is confirmed to be available, the shim

sub-layer SHOULD initiate the procedure to update the locator list.

Use of the following socket options and ancillary data requires

treatment of unknown source locator: 

SHIM_LOC_LOCAL_SEND

SHIM_LOC_LOCAL_PREF

SHIM_LOCLIST_LOCAL

14.1.2. Treatment of Unknown Destination Locator

If the shim sub-layer turns out to be SHIM6, the SHIM6 layer MUST

reject the request for using an unknown destination locator.

If the shim sub-layer turns out to be HIP, the HIP layer MUST reject

the request for using an unknown destination locator. There is,

however, an exceptional case where the HIP layer SHOULD accept the

request provided that the HIP association is in an UNASSOCIATED state.

Details of locator handling in HIP is described in section 4.6 of [I-

D.ietf-hip-native-api].

Use of the following socket options and ancillary data requires

treatment of unknown destination locator: 

SHIM_LOC_PEER_SEND

SHIM_LOC_PEER_PREF

SHIM_LOCLIST_PEER

15. Changes

15.1. Changes from version 00 to version 01

Define shim_locator{} data type which is a placeholder for

locator.

Define shim_pathexplore{} data type in which a set of REAP

parameters are stored.

Remove descriptions about "stickiness" of socket options.

*

*

*

*

*

*

*

*

*



Deprecate SHIM_IF_RECV and SHIM_IF_SEND socket options.

Give default value and how to disable given socket option.

15.2. Changes from version 01 to version 02

Add section describing context forking.

Rephrase conclusion section.

Separate normative references from informative references.

Remove texts from discussion section that are not relevant to the

contents of the document.

Add section describing change history (this section).

15.3. Changes from version 02 to version 03

Add an Appendix section describing the issue of context forking.

15.4. Changes from version 03 to version 04

Updated reference.

Correct typo and grammatical errors.

15.5. Changes from version 04 to version 05

Added definition of SHIM_FEEDBACK ancillary data.

Added an example of code using the SHIM_LOCLIST_LOCAL

Added SHIM_LOC_LOCAL_SEND and SHIM_LOC_PEER_SEND socket options.

15.6. Changes from version 05 to version 06

Updated references.

15.7. Changes from version 06 to version 07

Resolved editorial issues.

15.8. Changes from version 07 to version 08

No changes are made except for updates of the references.

15.9. Changes from version 08 to version 09

Updated texts for Section 1 and Section 5 according to the

comments provided by Samu Varjonen.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



Made it clear that downgrading the multihoming shim support

(i.e., specifying value 1 with the SHIM_DONTSHIM socket option)

is only allowed before the socket is connected.

Updated locator information (shim_locator{}) so that it can

contain a locator behind NAT.

15.10. Changes from version 09 to version 10

Addressed applicability of socket options and ancillary data for

the shim sub-layer.

Addressed system requirements.

Removed unnecessary description about deprecated socket option

(SHIM_IF_RECV).

15.11. Changes from version 10 to version 11

Added short descriptions about connected sockets and unconnected

sockets.

Relaxed applicability of the socket options.

Relaxed applicability of the ancillary data.

Added notification about locator change.

15.12. Changes from version 11 to version 12

Reflected comments from Brian Karpenter.

Reflected comments from Michael Scharf.

15.13. Changes from version 12 to version 13

Reflected comments from Sebastien Barre.

Removed the description about the notification from the shim sub-

layer to applications.

Narrowed down the scope of the applicability of the socket

options and the ancillary data.

15.14. Changes from version 13 to version 14

No change was made. The draft was re-submitted to avoid

expiration.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



15.15. Changes from version 14 to version 15

Addressed the difference between SHIM_LOC_PEER_SEND and

SHIM_LOC_PEER_PREF.

Made clear distinction between validation of locator and

verification of locator, and introduced two errors:

EUNVERIFIEDLOCATOR and EUNREACHABLELOCATOR.

Addressed exceptional case for HIP in handling of unknown

destination locator.

15.16. Changes from version 15 to version 16

Updated the documents reflecting the comments received during the IETF

Last Call. 

Added Keepalive Interval (pe_keepaliveint) as a member of the

shim_pathexplore{} data structure.

Addressed the unit of pe_keepaliveto.

Rephrased the last sentence in Appendix A to make it clear that

the addressed issue is for further study.

Corrected a typo.

15.17. Changes from version 16 to version 17

Updated the documents reflecting the comments received during the IESG

review. 

Applied the RFC 2119 terminology more strictly.

Made it clear whether each socket option can be set and/or get.

Made some adjustments to the semantics of SHIM_LOC_LOCAL_PREF.

Made the usage of lc_proto clear.

Removed a misleading sentence from the paragraph describing

lc_ifidx.

16. Acknowledgments

Authors would like to thank Jari Arkko who participated in the

discussion that lead to the first version of this document, and Tatuya

Jinmei who thoroughly reviewed the early version of this draft and

provided detailed comments on sockets API related issues. Thomas

Henderson provided valuable comments especially from HIP perspectives.

*

*

*

*

*

*

*

*

*

*

*

*



Authors sincerely thank to the following people for their helpful

comments to the document: Samu Varjonen, Dmitriy Kuptsov, Brian

Carpenter, Michael Scharf, Sebastien Barre, and Roni Even.

17. References

17.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3542]

Stevens, W., Thomas, M., Nordmark, E. and T. Jinmei,

"Advanced Sockets Application Program Interface (API)

for IPv6", RFC 3542, May 2003.

[RFC4423]
Moskowitz, R. and P. Nikander, "Host Identity Protocol

(HIP) Architecture", RFC 4423, May 2006.

[RFC5533]

Nordmark, E. and M. Bagnulo, "Shim6: Level 3

Multihoming Shim Protocol for IPv6", RFC 5533, June

2009.

[RFC5534]

Arkko, J. and I. van Beijnum, "Failure Detection and

Locator Pair Exploration Protocol for IPv6

Multihoming", RFC 5534, June 2009.

[POSIX]

, , "IEEE Std. 1003.1-2001 Standard for Information

Technology -- Portable Operating System Interface

(POSIX). Open group Technical Standard: Base

Specifications, Issue 6, http://www.opengroup.org/

austin", December 2001.

17.2. Informative References

[I-D.ietf-

behave-v6v4-

xlate]

Li, X, Bao, C and F Baker, "IP/ICMP Translation

Algorithm", Internet-Draft draft-ietf-behave-v6v4-

xlate-23, September 2010.

[I-D.ietf-

shim6-app-

refer]

Nordmark, E, "Shim6 Application Referral Issues",

Internet-Draft draft-ietf-shim6-app-refer-00, July

2005.

[RFC2765]
Nordmark, E., "Stateless IP/ICMP Translation

Algorithm (SIIT)", RFC 2765, February 2000.

[RFC2782]

Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR

for specifying the location of services (DNS SRV)",

RFC 2782, February 2000.

[RFC4291]
Hinden, R. and S. Deering, "IP Version 6 Addressing

Architecture", RFC 4291, February 2006.

[RFC5535]
Bagnulo, M., "Hash-Based Addresses (HBA)", RFC

5535, June 2009.

[RFC5770]

Komu, M., Henderson, T., Tschofenig, H., Melen, J.

and A. Keranen, "Basic Host Identity Protocol (HIP)

Extensions for Traversal of Network Address

Translators", RFC 5770, April 2010.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3542
http://tools.ietf.org/html/rfc3542
http://tools.ietf.org/html/rfc4423
http://tools.ietf.org/html/rfc4423
http://tools.ietf.org/html/rfc5533
http://tools.ietf.org/html/rfc5533
http://tools.ietf.org/html/rfc5534
http://tools.ietf.org/html/rfc5534
http://tools.ietf.org/html/rfc5534
http://tools.ietf.org/html/draft-ietf-behave-v6v4-xlate-23
http://tools.ietf.org/html/draft-ietf-behave-v6v4-xlate-23
http://tools.ietf.org/html/draft-ietf-shim6-app-refer-00
mailto:nordmark@sun.com
http://tools.ietf.org/html/rfc2765
http://tools.ietf.org/html/rfc2765
mailto:arnt@troll.no
mailto:levone@microsoft.com
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc2782
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc4291
http://tools.ietf.org/html/rfc5535
http://tools.ietf.org/html/rfc5770
http://tools.ietf.org/html/rfc5770
http://tools.ietf.org/html/rfc5770


[I-D.ietf-

hip-native-

api]

Komu, M and T Henderson, "Basic Socket Interface

Extensions for Host Identity Protocol (HIP)",

Internet-Draft draft-ietf-hip-native-api-12,

January 2010.

Appendix A. Context Forking

In this section, an issue concerning context forking and its relation

to the multihoming shim API are discussed.

SHIM6 supports a notion of context forking. A peer may decide to fork a

context for certain reason (e.g. upper layer protocol prefers to use

different locator pair than the one defined in available context). The

procedure of forking context is done similar to the normal context

establishment, performing the 4-way message exchange. A peer who has

decided to fork a context initiates the context establishment.

Hereafter, we call this peer the "initiator". The peer of the initiator

is called the "responder".

Once the forked context is established between the peers, on the

initiator side, it is possible to apply forked context to the packet

flow since the system maintains an association between the forked

context and the socket owned by the application that has requested the

context forking. How this association is maintained is an

implementation specific issue. However, on the responder side, there is

a question how the outbound packet can be multiplexed by the shim sub-

layer because there are more than one SHIM6 contexts that match with

the ULID pair of the packet flow. There is a need to differentiate

packet flows not only by the ULID pairs but by some other information

and associate a given packet flow with a specific context.

http://tools.ietf.org/html/draft-ietf-hip-native-api-12
http://tools.ietf.org/html/draft-ietf-hip-native-api-12


           Peer 1                                 Peer 2   

         (initiator)                            (responder)

    +----+         +----+                  +----+         +----+

    |App1|         |App2|                  |App1|         |App2|

    +----+         +----+                  +----+         +----+

      |^             |^                      ^|             ^|

      v|             v|                      |v             |v

 -----S1-------------S2-----            -----S1-------------S2-----

      ||             ||                      ||             ||

      ||             ||                      ||             ||

     Ctx1           Ctx2                    Ctx1           Ctx2

 ULID:<A1,B1>   ULID:<A1,B1>            ULID:<B1,A1>    ULID:<B1,A1>

 Loc: <A1,B2>   Loc: <A1,B3>            Loc: <B2,A1>    Loc: <B3,A1> 

 FII: 0         FII: 100                FII: 0          FII: 100

      |^             |^                      ^|             ^|

      ||             ||                      ||             ||

      ||             ||                      ||             ||

      \..............||....................../|             ||

       \.............||......................./             ||

                     ||                                     ||

                     \|...................................../|

                      \....................................../

Figure 26 gives an example of a scenario where two communicating peers

fork a context. Initially, there has been a single transaction between

the peers, by the application 1 (App1). Accordingly, another

transaction is started, by application 2 (App2). Both of the

transactions are made based on the same ULID pair. The first context

pair (Ctx1) is established for the transaction of App1. Given the

requests from App2, the shim sub-layer on Peer 1 decides to fork a

context. Accordingly, a forked context (Ctx2) is established between

the peers, which should be exclusively applied to the transaction of

App2. Ideally, multiplexing and demultiplexing of packet flows that

relate to App1 and App2 should be done as illustrated in Figure 26.

However, as mentioned earlier, the responder needs to multiplex

outbound flows of App1 and App2 somehow. Note that if a context forking

occurs on the initiator side, a context forking needs to occur also on

the responder side. 

It is for further study how to solve the issue described above.

Authors' Addresses

Miika Komu Komu Helsinki Institute for Information Technology

Tammasaarenkatu 3 Helsinki, Finland Phone: +358503841531 EMail: 

miika@iki.fi URI: http://www.hiit.fi/

mailto:miika@iki.fi
http://www.hiit.fi/


Marcelo Bagnulo Bagnulo Universidad Carlos III de Madrid Av.

Universidad 30 Leganes, 28911 SPAIN Phone: +34 91 6248837 EMail: 

marcelo@it.uc3m.es URI: http://it.uc3m.es/marcelo

Kristian Slavov Slavov Ericsson Research Nomadiclab Hirsalantie 11

Jorvas, FI-02420 Finland Phone: +358 9 299 3286 EMail: 

kristian.slavov@ericsson.com

Shinta Sugimoto editor Sugimoto Nippon Ericsson K.K. Koraku Mori

Building 1-4-14, Koraku, Bunkyo-ku Tokyo, 112-0004 Japan Phone: +81

3 3830 2241 EMail: shinta@sfc.wide.ad.jp

mailto:marcelo@it.uc3m.es
http://it.uc3m.es/marcelo
mailto:kristian.slavov@ericsson.com
mailto:shinta@sfc.wide.ad.jp

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Terminology and Background
	4. System Overview
	5. Requirements
	6. Socket Options for Multihoming Shim Sub-layer
	6.1. SHIM_ASSOCIATED
	6.2. SHIM_DONTSHIM
	6.3. SHIM_HOT_STANDBY
	6.4. SHIM_LOC_LOCAL_PREF
	6.5. SHIM_LOC_PEER_PREF
	6.6. SHIM_LOC_LOCAL_RECV
	6.7. SHIM_LOC_PEER_RECV
	6.8. SHIM_LOC_LOCAL_SEND
	6.9. SHIM_LOC_PEER_SEND
	6.10. SHIM_LOCLIST_LOCAL
	6.11. SHIM_LOCLIST_PEER
	6.12. SHIM_APP_TIMEOUT
	6.13. SHIM_PATHEXPLORE
	6.14. SHIM_DEFERRED_CONTEXT_SETUP
	6.15. Applicability
	6.16. Error Handling
	7. Ancillary Data for Multihoming Shim Sub-layer
	7.1. Get Locator from Incoming Packet
	7.2. Set Locator for Outgoing Packet
	7.3. Notification from Application to Multihoming Shim Sub-layer
	7.4. Applicability
	8. Data Structures
	8.1. Data Structure for Locator Information
	8.1.1. Handling Locator behind NAT
	8.2. Path Exploration Parameter
	8.3. Feedback Information
	9. System Requirements
	10. Relation to Existing Sockets API Extensions
	11. Operational Considerations
	11.1. Conflict Resolution
	11.2. Incompatibility between IPv4 and IPv6
	12. IANA Considerations
	13. Protocol Constants and Variables
	14. Security Considerations
	14.1. Treatment of Unknown Locator
	14.1.1. Treatment of Unknown Source Locator
	14.1.2. Treatment of Unknown Destination Locator
	15. Changes
	15.1. Changes from version 00 to version 01
	15.2. Changes from version 01 to version 02
	15.3. Changes from version 02 to version 03
	15.4. Changes from version 03 to version 04
	15.5. Changes from version 04 to version 05
	15.6. Changes from version 05 to version 06
	15.7. Changes from version 06 to version 07
	15.8. Changes from version 07 to version 08
	15.9. Changes from version 08 to version 09
	15.10. Changes from version 09 to version 10
	15.11. Changes from version 10 to version 11
	15.12. Changes from version 11 to version 12
	15.13. Changes from version 12 to version 13
	15.14. Changes from version 13 to version 14
	15.15. Changes from version 14 to version 15
	15.16. Changes from version 15 to version 16
	15.17. Changes from version 16 to version 17
	16. Acknowledgments
	17. References
	17.1. Normative References
	17.2. Informative References
	Appendix A. Context Forking
	Authors' Addresses

