
Workgroup: SIDROPS

Internet-Draft: draft-ietf-sidrops-6486bis-08

Updates: 6486 (if approved)

Published: 16 December 2021

Intended Status: Standards Track

Expires: 19 June 2022

Authors: R. Austein

Arrcus, Inc.

G. Huston

APNIC

S. Kent

Independent

M. Lepinski

New College Florida

Manifests for the Resource Public Key Infrastructure (RPKI)

Abstract

This document defines a "manifest" for use in the Resource Public

Key Infrastructure (RPKI). A manifest is a signed object (file) that

contains a listing of all the signed objects (files) in the

repository publication point (directory) associated with an

authority responsible for publishing in the repository. For each

certificate, Certificate Revocation List (CRL), or other type of

signed objects issued by the authority that are published at this

repository publication point, the manifest contains both the name of

the file containing the object and a hash of the file content.

Manifests are intended to enable a relying party (RP) to detect

certain forms of attacks against a repository. Specifically, if an

RP checks a manifest's contents against the signed objects retrieved

from a repository publication point, then the RP can detect "stale"

(valid) data and deletion of signed objects.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 June 2022.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6486
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Manifest Scope

3. Manifest Signing

4. Manifest Definition

4.1. eContentType

4.2. eContent

4.2.1. Manifest

4.2.2. Names in FileAndHash objects

4.3. Content-Type Attribute

4.4. Manifest Validation

5. Manifest Generation

5.1. Manifest Generation Procedure

5.2. Considerations for Manifest Generation

6. Relying Party Processing of Manifests

6.1. Manifest Processing Overview

6.2. Acquiring a Manifest for a CA

6.3. Detecting Stale and or Prematurely-issued Manifests

6.4. Acquiring Files Referenced by a Manifest

6.5. Matching File Names and Hashes

6.6. Failed Fetches

7. Publication Repositories

8. Security Considerations

9. IANA Considerations

10. Acknowledgements

11. References

11.1. Normative References

11.2. Informative References

Appendix A. ASN.1 Module

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

The Resource Public Key Infrastructure (RPKI) [RFC6480] makes use of

a distributed repository system [RFC6481] to make available a

variety of objects needed by relying parties (RPs). Because all of

the objects stored in the repository system are digitally signed by

the entities that created them, attacks that modify these published

objects are detectable by RPs. However, digital signatures provide

no protection against attacks that substitute "stale" versions of

signed objects (i.e., objects that were valid and have not expired,

but have since been superseded) or attacks that remove an object

that should be present in the repository. To assist in the detection

of such attacks, the RPKI repository system can make use of a signed

object called a "manifest".

A manifest is a signed object that enumerates all the signed objects

(files) in the repository publication point (directory) that are

associated with an authority responsible for publishing at that

publication point. Each manifest contains both the name of the file

containing the object and a hash of the file content, for every

signed object issued by an authority that is published at the

authority's repository publication point. A manifest is intended to

allow an RP to detect unauthorized object removal or the

substitution of stale versions of objects at a publication point. A

manifest also is intended to allow an RP to detect similar outcomes

that may result from a man-in-the-middle attack on the retrieval of

objects from the repository. Manifests are intended to be used in

Certification Authority (CA) publication points in repositories

(directories containing files that are subordinate certificates and

Certificate Revocation Lists (CRLs) issued by this CA and other

signed objects that are verified by end-entity (EE) certificates

issued by this CA).

Manifests are modeled on CRLs, as the issues involved in detecting

stale manifests and potential attacks using manifest replays, etc.,

are similar to those for CRLs. The syntax of the manifest payload

differs from CRLs, since RPKI repositories contain objects not

covered by CRLs, e.g., digitally signed objects, such as Route

Origination Authorizations (ROAs).

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

2. Manifest Scope

A manifest associated with a CA's repository publication point

contains a list of:

the set of (non-expired, non-revoked) certificates issued and

published by this CA,

the most recent CRL issued by this CA, and

all published signed objects that are verifiable using EE

certificates [RFC6487] issued by this CA (other than the manifest

itself).

Every RPKI signed object includes, in the Cryptographic Message

Syntax (CMS) [RFC3370] wrapper of the object, the EE certificate

used to verify it [RFC6488]. Thus, there is no requirement to

separately publish that EE certificate at the CA's repository

publication point.

Where multiple CA instances share a common publication point, as can

occur when a CA performs a key-rollover operation [RFC6489], the

repository publication point will contain multiple manifests. In

this case, each manifest describes only the collection of published

products of its associated CA instance.

3. Manifest Signing

A CA's manifest is verified using an EE certificate. The

SubjectInfoAccess (SIA) field of this EE certificate contains the

access method OID of id-ad-signedObject.

The CA MUST sign only one manifest with each generated private key,

and MUST generate a new key pair for each new version of the

manifest. This form of use of the associated EE certificate is

termed a "one-time-use" EE certificate [RFC6487]

4. Manifest Definition

A manifest is an RPKI signed object, as specified in [RFC6488]. The

RPKI signed object template requires specification of the following

data elements in the context of the manifest structure.

4.1. eContentType

The eContentType for a manifest is defined as id-ct-rpkiManifest and

has the numerical value of 1.2.840.113549.1.9.16.1.26.

¶

*

¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

4.2. eContent

The content of a manifest is ASN.1 encoded using the Distinguished

Encoding Rules (DER) [X.690]. The content of a manifest is defined

as follows:

4.2.1. Manifest

The manifestNumber, thisUpdate, and nextUpdate fields are modeled

after the corresponding fields in X.509 CRLs (see [RFC5280]).

Analogous to CRLs, a manifest is nominally current until the time

specified in nextUpdate or until a manifest is issued with a greater

manifest number, whichever comes first.

Because a "one-time-use" EE certificate is employed to verify a

manifest, it is RECOMMENDED that the EE certificate have a validity

period that coincides with the interval from thisUpdate to

nextUpdate in the manifest, to prevent needless growth of the CA's

CRL.

The data elements of the manifest structure are defined as follows:

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840)

 rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-rpkiManifest OBJECT IDENTIFIER ::= { id-ct 26 }

¶

¶

 Manifest ::= SEQUENCE {

 version [0] INTEGER DEFAULT 0,

 manifestNumber INTEGER (0..MAX),

 thisUpdate GeneralizedTime,

 nextUpdate GeneralizedTime,

 fileHashAlg OBJECT IDENTIFIER,

 fileList SEQUENCE SIZE (0..MAX) OF FileAndHash

 }

 FileAndHash ::= SEQUENCE {

 file IA5String,

 hash BIT STRING

 }

¶

¶

¶

¶

version:

manifestNumber:

thisUpdate:

nextUpdate:

The version number of this version of the manifest specification

MUST be 0.

This field is an integer that is incremented (by 1) each time a

new manifest is issued for a given publication point. This field

allows an RP to detect gaps in a sequence of published manifests.

As the manifest is modeled on the CRL specification, the

ManifestNumber is analogous to the CRLNumber, and the guidance in

[RFC5280] for CRLNumber values is appropriate as to the range of

number values that can be used for the manifestNumber. Manifest

numbers can be expected to contain long integers. Manifest

verifiers MUST be able to process number values up to 20 octets.

Conforming manifest issuers MUST NOT use number values longer

than 20 octets. The issuer MUST increase the value of this field

monotonically for each newly-generated Manifest. Each RP MUST

verify that a purported "new" Manifest contains a higher

manifestNumber than previously-validated Manifests.

This field contains the time when the manifest was created. This

field has the same format constraints as specified in [RFC5280]

for the CRL field of the same name. The issuer MUST ensure that

the value of this field is more recent any previously-generated

Manifest. Each RP MUST verify that this field value is greater

(more recent) than the most recent Manifest it has validated.

This field contains the time at which the next scheduled manifest

will be issued. The value of nextUpdate MUST be later than the

value of thisUpdate. The specification of the GeneralizedTime

value is the same as required for the thisUpdate field.

If the authority alters any of the items that it has published in

the repository publication point, then the authority MUST issue a

new manifest. Even if no changes are made to objects at a

publication point, a new manifest MUST be issued before the

nextUpdate time. Each manifest encompasses a CRL, and the

nextUpdate field of the manifest SHOULD match that of the CRL's

nextUpdate field, as the manifest will be re-issued when a new

CRL is published. When a new manifest is issued before the time

specified in nextUpdate of the current manifest, the CA MUST also

¶

¶

¶

¶

¶

fileHashAlg:

fileList:

issue a new CRL that revokes the EE certificate corresponding to

the old manifest.

This field contains the OID of the hash algorithm used to hash

the files that the authority has placed into the repository. The

hash algorithm used MUST conform to the RPKI Algorithms and Key

Size Profile specification [RFC6485].

This field is a sequence of FileAndHash objects. There is one

FileAndHash entry for each currently valid signed object that has

been published by the authority (at this publication point). Each

FileAndHash is an ordered pair consisting of the name of the file

in the repository publication point (directory) that contains the

object in question and a hash of the file's contents.

4.2.2. Names in FileAndHash objects

Names that appear in the fileList MUST consist of one or more

characters chosen from the set a-z, A-Z, 0-9, - (HYPHEN), or _

(UNDERSCORE), followed by a single . (DOT), followed by a three-

letter extension. The extension MUST be one of those enumerated in

the "RPKI Repository Naming Scheme" registry maintained by IANA

[IANA-NAMING].

As an example, 'vixxBTS_TVXQ-2pmGOT7.cer' is a valid filename.

The example above contains a mix of uppercase and lowercase

characters in the filename. CAs and RPs MUST be able to perform

filesystem operations in a case-sensitive, case-preserving manner.

4.3. Content-Type Attribute

The mandatory content-type attribute MUST have its attrValues field

set to the same OID as eContentType. This OID is id-ct-rpkiManifest

and has the numerical value of 1.2.840.113549.1.9.16.1.26.

4.4. Manifest Validation

To determine whether a manifest is valid, the RP MUST perform the

following checks in addition to those specified in [RFC6488]:

The eContentType in the EncapsulatedContentInfo is id-ad-

rpkiManifest (OID 1.2.840.113549.1.9.16.1.26).

The version of the rpkiManifest is 0.

In the rpkiManifest, thisUpdate precedes nextUpdate.

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2. ¶

3. ¶

Note: Although it is RECOMMENDED that the thisUpdate and nextUpdate

fields in the manifest match the corresponding fields in the CRL

associated with the manifest, RPs SHOULD NOT reject a manifest if

these fields do not match.

If the above procedure indicates that the manifest is invalid, then

the manifest MUST be discarded and treated as though no manifest

were present.

5. Manifest Generation

5.1. Manifest Generation Procedure

For a CA publication point in the RPKI repository system, a CA MUST

perform the following steps to generate a manifest:

Generate a new key pair for use in a "one-time-use" EE

certificate.

Issue an EE certificate for this key pair. The CA MUST revoke

the EE certificate used for the manifest being replaced.

This EE certificate MUST have an SIA extension access

description field with an accessMethod OID value of id-ad-

signedobject, where the associated accessLocation references

the publication point of the manifest as an object URL.(RPs are

required to verify both of these syntactic constraints.)

This EE certificate MUST describe its Internet Number Resources

(INRs) using the "inherit" attribute, rather than explicit

description of a resource set (see [RFC3779]).(RPs are required

to verify this.)

It is RECOMMENDED that the validity interval of the EE

certificate exactly match the thisUpdate and nextUpdate times

of the manifest.

Note: An RP MUST verify all mandated syntactic constraints,

i.e., constraints imposed on a CA via a "MUST".

The EE certificate MUST NOT be published in the authority's

repository publication point.

Construct the manifest content.

The manifest content is described in Section 4.2.1. The

manifest's fileList includes the file name and hash pair for

each object issued by this CA that has been published at this

repository publication point (directory). The collection of

objects to be included in the manifest includes all

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

3.

¶

4. ¶

certificates issued by this CA that are published at the CA's

repository publication point, the most recent CRL issued by the

CA, and all objects verified by EE certificates that were

issued by this CA that are published at this repository

publication point. (Sections 6.1-5 describes the checks that an

RP MUST perform in support of the manifest content noted here.)

Note that the manifest does not include a self reference (i.e.,

its own file name and hash), since it would be impossible to

compute the hash of the manifest itself prior to it being

signed.

Encapsulate the manifest content using the CMS SignedData

content type (as specified Section 4), sign the manifest using

the private key corresponding to the subject key contained in

the EE certificate, and publish the manifest in the repository

system publication point that is described by the manifest.

(RPs are required to verify the CMS signature.)

Because the key pair is to be used only once, the private key

associated with this key pair MUST now be destroyed.

5.2. Considerations for Manifest Generation

A new manifest MUST be issued and published before the nextUpdate

time.

An authority MUST issue a new manifest in conjunction with the

finalization of changes made to objects in the publication point. If

any named objects in the publication point are replaced, the

authority MUST ensure that the file hash for each replaced object is

updated accordingly in the new manifest. Additionally, the authority

MUST revoke the certificate associated with each replaced object

(other than a CRL), if it is not expired. An authority MAY perform a

number of object operations on a publication repository within the

scope of a repository change before issuing a single manifest that

covers all the operations within the scope of this change.

Repository operators MUST implement some form of repository update

procedure that mitigates, to the extent possible, the risk that RPs

that are performing retrieval operations on the repository are

exposed to inconsistent, transient, intermediate states during

updates to the repository publication point (directory) and the

associated manifest.

Since the manifest object URL is included in the SIA of issued

certificates, a new manifest MUST NOT invalidate the manifest object

URL of previously issued certificates. This implies that the

manifest's publication name in the repository, in the form of an

object URL, is unchanged across manifest generation cycles.

¶

¶

5.

¶

6.

¶

¶

¶

¶

When a CA entity is performing a key rollover, the entity MAY choose

to have two CA instances simultaneously publishing into the same

repository publication point. In this case, there will be one

manifest associated with each active CA instance that is publishing

into the common repository publication point (directory).

6. Relying Party Processing of Manifests

Each RP MUST use the current manifest of a CA to control addition of

listed files to the set of signed objects the RP employs for

validating basic RPKI objects: certificates, ROAs, and CRLs. Any

files not listed on the manifest MUST NOT be used for validation of

these objects. However, files not listed on a manifest MAY be

employed to validate other signed objects, if the profile of the

object type explicitly states that such behavior is allowed (or

required). Note that relying on files not listed in a manifest may

allow an attacker to effect substitution attacks against such

objects.

As noted earlier, manifests are designed to allow an RP to detect

manipulation of repository data, errors by a CA or repository

manager, and/or active attacks on the communication channel between

an RP and a repository. Unless all of the files enumerated in a

manifest can be obtained by an RP during a fetch operation, the

fetch is considered to have failed and the RP MUST retry the fetch

later.

[RFC6480] suggests (but does not mandate) that the RPKI model employ

fetches that are incremental, e.g., an RP transfers files from a

publication point only if they are new/changed since the previous,

successful, fetch represented in the RP's local cache. This document

avoids language that relies on details of the underlying file

transfer mechanism employed by an RP and a publication point to

effect this operation. Thus the term "fetch" refers to an operation

that attempts to acquire the full set of files at a publication

point, consistent with the id-ad-rpkiManifest URI extracted from a

CA certificate's SIA (see below).

If a fetch fails, it is assumed that a subsequent fetch will resolve

problems encountered during the fetch. Until such time as a

successful fetch is executed, an RP SHOULD use cached data from a

previous, successful fetch. This response is intended to prevent an

RP from misinterpreting data associated with a publication point,

and thus possibly treating invalid routes as valid, or vice versa.

The processing described below is designed to cause all RPs with

access to the same local cache and RPKI repository data to acquire

the same set of validated repository files. It does not ensure that

the RPs will achieve the same results with regard to validation of

¶

¶

¶

¶

¶

RPKI data, since that depends on how each RP resolves any conflicts

that may arise in processing the retrieved files. Moreover, in

operation, different RPs will access repositories at different

times, and some RPs may experience local cache failures, so there is

no guarantee that all RPs will achieve the same results with regard

to acquisition or validation of RPKI data.

Note also that there is a "chicken and egg" relationship between the

manifest and the CRL for a given CA instance. If the EE certificate

for the current manifest is revoked, i.e., it appears in the current

CRL, then the CA or publication point manager has made a serious

error. In this case the fetch has failed; proceed to Section 6.6.

Similarly, if the CRL is not listed on a valid, current manifest,

acquired during a fetch, the fetch has failed; proceed to Section

6.6, because the CRL is considered missing.

6.1. Manifest Processing Overview

For a given publication point, an RP MUST perform a series of tests

to determine which signed object files at the publication point are

acceptable. The tests described below (Section 6.2 to Section 6.5)

are to be performed using the manifest identified by the id-ad-

rpkiManifest URI extracted from a CA certificate's SIA. All of the

files referenced by the manifest MUST be located at the publication

point specified by the id-ad-caRepository URI from the (same) CA

certificate's SIA. The manifest and the files it references MUST

reside at the same publication point. If an RP encounters any files

that appear on a manifest but do not reside at the same publication

point as the manifest the RP MUST treat the fetch as failed, and a

warning MUST be issued (see Section 6.6 below).

Note that, during CA key rollover [RFC6489], signed objects for two

or more different CA instances will appear at the same publication

point. Manifest processing is to be performed separately for each CA

instance, guided by the SIA id-ad-rpkiManifest URI in each CA

certificate.

6.2. Acquiring a Manifest for a CA

The RP MUST fetch the manifest identified by the SIA id-ad-

rpkiManifest URI in the CA certificate. If an RP cannot retrieve a

manifest using this URI, or if the manifest is not valid (Section

4.4), an RP MUST treat this as a failed fetch and proceed to Section

6.6; otherwise proceed to Section 6.3.

6.3. Detecting Stale and or Prematurely-issued Manifests

The RP MUST check that the current time (translated to UTC) is

between thisUpdate and nextUpdate. If the current time lies within

this interval, proceed to Section 6.4. If the current time is

¶

¶

¶

¶

¶

earlier than thisUpdate, the CA may have made an error or the RP's

local notion of time may be in error; the RP MUST treat this as a

failed fetch and proceed to Section 6.6. If the current time is

later than nextUpdate, then the manifest is stale; this is a failed

fetch and RP MUST proceed to Section 6.6; otherwise proceed to

Section 6.4.

6.4. Acquiring Files Referenced by a Manifest

The RP MUST acquire all of the files enumerated in the manifest

(fileList) from the publication point. If there are files listed in

the manifest that cannot be retrieved from the publication point,

the fetch has failed and the RP MUST proceed to Section 6.6;

otherwise, proceed to Section 6.5.

6.5. Matching File Names and Hashes

The RP MUST verify that the hash value of each file listed in the

manifest matches the value obtained by hashing the file acquired

from the publication point. If the computed hash value of a file

listed on the manifest does not match the hash value contained in

the manifest, then the fetch has failed and the RP MUST proceed to

Section 6.6; otherwise proceed to Section 6.6.

6.6. Failed Fetches

If a fetch fails for any of the reasons cited in 6.2-6.5, the RP

MUST issue a warning indicating the reason(s)for termination of

processing with regard to this CA instance. It is RECOMMENDED that a

human operator be notified of this warning.

Termination of processing means that the RP SHOULD continue to use

cached versions of the objects associated with this CA instance,

until such time as they become stale or they can be replaced by

objects from a successful fetch. This implies that the RP MUST not

try to acquire and validate subordinate signed objects, e.g.,

subordinate CA certificates, until the next interval when the RP is

scheduled to fetch and process data for this CA instance.

7. Publication Repositories

The RPKI publication system model requires that every publication

point be associated with one or more CAs, and be non-empty. Upon

creation of the publication point associated with a CA, the CA MUST

create and publish a manifest as well as a CRL. A CA's manifest will

always contain at least one entry, i.e., a CRL issued by the CA

[RFC6481],corresponding to the scope of this manifest.

Every published signed object in the RPKI [RFC6488] is published in

the repository publication point of the CA that issued the EE

¶

¶

¶

¶

¶

¶

certificate, and is listed in the manifest associated with that CA

certificate.

8. Security Considerations

Manifests provide an additional level of protection for RPKI RPs.

Manifests can assist an RP to determine if a repository object has

been deleted, occluded, or otherwise removed from view, or if a

publication of a newer version of an object has been suppressed (and

an older version of the object has been substituted).

Manifests cannot repair the effects of such forms of corruption of

repository retrieval operations. However, a manifest enables an RP

to determine if a locally maintained copy of a repository is a

complete and up-to-date copy, even when the repository retrieval

operation is conducted over an insecure channel. In cases where the

manifest and the retrieved repository contents differ, the manifest

can assist in determining which repository objects form the

difference set in terms of missing, extraneous, or superseded

objects.

The signing structure of a manifest and the use of the nextUpdate

value allows an RP to determine if the manifest itself is the

subject of attempted alteration. The requirement for every

repository publication point to contain at least one manifest allows

an RP to determine if the manifest itself has been occluded from

view. Such attacks against the manifest are detectable within the

time frame of the regular schedule of manifest updates. Forms of

replay attack within finer-grained time frames are not necessarily

detectable by the manifest structure.

9. IANA Considerations

As [RFC6488] created and populated the registries "RPKI Signed

Object" and three-letter filename extensions for "RPKI Repository

Name Schemes," no new action is requested of the IANA.

10. Acknowledgements

The authors would like to acknowledge the contributions from George

Michelson and Randy Bush in the preparation of the manifest

specification. Additionally, the authors would like to thank Mark

Reynolds and Christopher Small for assistance in clarifying manifest

validation and RP behavior. The authors also wish to thank Tim

Bruijnzeels, Job Snijders, Oleg Muravskiy, and Sean Turner for their

helpful review of this document.

11. References

11.1. Normative References

¶

¶

¶

¶

¶

¶

[IANA-NAMING]

[RFC2119]

[RFC5280]

[RFC6481]

[RFC6482]

[RFC6485]

[RFC6487]

[RFC6488]

[RFC6493]

[RFC8174]

[RFC8209]

"RPKI Repository Name Schemes", <https://www.iana.org/

assignments/rpki/rpki.xhtml#name-schemes>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Huston, G., Loomans, R., and G. Michaelson, "A Profile

for Resource Certificate Repository Structure", RFC 6481,

DOI 10.17487/RFC6481, February 2012, <https://www.rfc-

editor.org/info/rfc6481>.

Lepinski, M., Kent, S., and D. Kong, "A Profile for Route

Origin Authorizations (ROAs)", RFC 6482, DOI 10.17487/

RFC6482, February 2012, <https://www.rfc-editor.org/info/

rfc6482>.

Huston, G., "The Profile for Algorithms and Key Sizes for

Use in the Resource Public Key Infrastructure (RPKI)",

RFC 6485, DOI 10.17487/RFC6485, February 2012, <https://

www.rfc-editor.org/info/rfc6485>.

Huston, G., Michaelson, G., and R. Loomans, "A Profile

for X.509 PKIX Resource Certificates", RFC 6487, DOI

10.17487/RFC6487, February 2012, <https://www.rfc-

editor.org/info/rfc6487>.

Lepinski, M., Chi, A., and S. Kent, "Signed Object

Template for the Resource Public Key Infrastructure

(RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,

<https://www.rfc-editor.org/info/rfc6488>.

Bush, R., "The Resource Public Key Infrastructure (RPKI)

Ghostbusters Record", RFC 6493, DOI 10.17487/RFC6493,

February 2012, <https://www.rfc-editor.org/info/rfc6493>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Reynolds, M., Turner, S., and S. Kent, "A Profile for

BGPsec Router Certificates, Certificate Revocation Lists,

https://www.iana.org/assignments/rpki/rpki.xhtml#name-schemes
https://www.iana.org/assignments/rpki/rpki.xhtml#name-schemes
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6481
https://www.rfc-editor.org/info/rfc6481
https://www.rfc-editor.org/info/rfc6482
https://www.rfc-editor.org/info/rfc6482
https://www.rfc-editor.org/info/rfc6485
https://www.rfc-editor.org/info/rfc6485
https://www.rfc-editor.org/info/rfc6487
https://www.rfc-editor.org/info/rfc6487
https://www.rfc-editor.org/info/rfc6488
https://www.rfc-editor.org/info/rfc6493
https://www.rfc-editor.org/info/rfc8174

[RFC8488]

[X.690]

[RFC3370]

[RFC3779]

[RFC6480]

[RFC6489]

and Certification Requests", RFC 8209, DOI 10.17487/

RFC8209, September 2017, <https://www.rfc-editor.org/

info/rfc8209>.

Muravskiy, O. and T. Bruijnzeels, "RIPE NCC's

Implementation of Resource Public Key Infrastructure

(RPKI) Certificate Tree Validation", RFC 8488, DOI

10.17487/RFC8488, December 2018, <https://www.rfc-

editor.org/info/rfc8488>.

"X.690", <https://www.itu.int/rec/T-REC-X.690-199511-S!

Cor1>.

11.2. Informative References

Housley, R., "Cryptographic Message Syntax (CMS)

Algorithms", RFC 3370, DOI 10.17487/RFC3370, August 2002,

<https://www.rfc-editor.org/info/rfc3370>.

Lynn, C., Kent, S., and K. Seo, "X.509 Extensions for IP

Addresses and AS Identifiers", RFC 3779, DOI 10.17487/

RFC3779, June 2004, <https://www.rfc-editor.org/info/

rfc3779>.

Lepinski, M. and S. Kent, "An Infrastructure to Support

Secure Internet Routing", RFC 6480, DOI 10.17487/RFC6480,

February 2012, <https://www.rfc-editor.org/info/rfc6480>.

Huston, G., Michaelson, G., and S. Kent, "Certification

Authority (CA) Key Rollover in the Resource Public Key

Infrastructure (RPKI)", BCP 174, RFC 6489, DOI 10.17487/

RFC6489, February 2012, <https://www.rfc-editor.org/info/

rfc6489>.

Appendix A. ASN.1 Module

 RPKIManifest { iso(1) member-body(2) us(840) rsadsi(113549)

 pkcs(1) pkcs9(9) smime(16) mod(0) TBD }

¶

https://www.rfc-editor.org/info/rfc8209
https://www.rfc-editor.org/info/rfc8209
https://www.rfc-editor.org/info/rfc8488
https://www.rfc-editor.org/info/rfc8488
https://www.itu.int/rec/T-REC-X.690-199511-S!Cor1
https://www.itu.int/rec/T-REC-X.690-199511-S!Cor1
https://www.rfc-editor.org/info/rfc3370
https://www.rfc-editor.org/info/rfc3779
https://www.rfc-editor.org/info/rfc3779
https://www.rfc-editor.org/info/rfc6480
https://www.rfc-editor.org/info/rfc6489
https://www.rfc-editor.org/info/rfc6489

Authors' Addresses

Rob Austein

Arrcus, Inc.

Email: sra@hactrn.net

Geoff Huston

APNIC

 DEFINITIONS EXPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 CONTENT-TYPE

 FROM CryptographicMessageSyntax-2010 -- in [RFC6268]

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0) id-mod-cms-2009(58) } ;

 -- Manifest Content Type

 ct-rpkiManifest CONTENT-TYPE ::=

 { TYPE Manifest IDENTIFIED BY id-ct-rpkiManifest }

 id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 16 }

 id-ct OBJECT IDENTIFIER ::= { id-smime 1 }

 id-ct-rpkiManifest OBJECT IDENTIFIER ::= { id-ct 26 }

 Manifest ::= SEQUENCE {

 version [0] INTEGER DEFAULT 0,

 manifestNumber INTEGER (0..MAX),

 thisUpdate GeneralizedTime,

 nextUpdate GeneralizedTime,

 fileHashAlg OBJECT IDENTIFIER,

 fileList SEQUENCE SIZE (0..MAX) OF FileAndHash

 }

 FileAndHash ::= SEQUENCE {

 file IA5String,

 hash BIT STRING

 }

 END

¶

mailto:sra@hactrn.net

6 Cordelia St

South Brisbane QLD 4101

Australia

Email: gih@apnic.net

Stephen Kent

Independent

Email: kent@alum.mit.edu

Matt Lepinski

New College Florida

5800 Bay Shore Rd.

Sarasota, FL 34243

USA

Email: mlepinski@ncf.edu

mailto:gih@apnic.net
mailto:kent@alum.mit.edu
mailto:mlepinski@ncf.edu

	Manifests for the Resource Public Key Infrastructure (RPKI)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Manifest Scope
	3. Manifest Signing
	4. Manifest Definition
	4.1. eContentType
	4.2. eContent
	4.2.1. Manifest
	4.2.2. Names in FileAndHash objects

	4.3. Content-Type Attribute
	4.4. Manifest Validation

	5. Manifest Generation
	5.1. Manifest Generation Procedure
	5.2. Considerations for Manifest Generation

	6. Relying Party Processing of Manifests
	6.1. Manifest Processing Overview
	6.2. Acquiring a Manifest for a CA
	6.3. Detecting Stale and or Prematurely-issued Manifests
	6.4. Acquiring Files Referenced by a Manifest
	6.5. Matching File Names and Hashes
	6.6. Failed Fetches

	7. Publication Repositories
	8. Security Considerations
	9. IANA Considerations
	10. Acknowledgements
	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. ASN.1 Module
	Authors' Addresses

