
SIDR Operations O. Muravskiy
Internet-Draft RIPE NCC
Intended status: Informational T. Bruijnzeels
Expires: December 30, 2018 NLNetLabs
 June 28, 2018

RPKI Certificate Tree Validation by the RIPE NCC RPKI Validator
draft-ietf-sidrops-rpki-tree-validation-02

Abstract

 This document describes the approach to validate the content of the
 RPKI certificate tree, as it is implemented in the RIPE NCC RPKI
 Validator. This approach is independent of a particular object
 retrieval mechanism. This allows it to be used with repositories
 available over the rsync protocol, the RPKI Repository Delta
 Protocol, and repositories that use a mix of both.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft RPKI Tree Validation June 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Scope of this document 3
2. Introduction . 3
3. General Considerations 4
3.1. Hash comparisons . 4
3.2. Discovery of RPKI objects issued by a CA 4
3.3. Manifest entries versus repository content 4

 4. Top-down Validation of a Single Trust Anchor Certificate Tree 5
 4.1. Fetching the Trust Anchor Certificate Using the Trust
 Anchor Locator . 5

4.2. CA Certificate Validation 6
4.2.1. Finding the most recent valid manifest and CRL . . . 7
4.2.2. Manifest entries validation 8

4.3. Object Store Cleanup 9
5. Remote Objects Fetcher 9
5.1. Fetcher Operations 9
5.1.1. Fetch repository objects 10
5.1.2. Fetch single repository object 10

6. Local Object Store . 11
6.1. Store Operations . 11
6.1.1. Store Repository Object 11
6.1.2. Get objects by hash 11
6.1.3. Get certificate objects by URI 11
6.1.4. Get manifest objects by AKI 11
6.1.5. Delete objects for a URI 12
6.1.6. Delete outdated objects 12
6.1.7. Update object's validation time 12

7. Acknowledgements . 12
8. IANA Considerations . 12
9. Security Considerations 12
9.1. Hash collisions . 12

 9.2. Mismatch between the expected and the actual location of
 an object in the repository 12

9.3. Manifest content versus publication point content 13
 9.4. Storing of a TA certificate object before its complete
 validation . 13

9.5. Possible denial of service 14
10. References . 14
10.1. Normative References 14
10.2. Informative References 15

 Authors' Addresses . 15

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 2]

Internet-Draft RPKI Tree Validation June 2018

1. Scope of this document

 This document describes how the RIPE NCC RPKI Validator version 2.23
 has been implemented. Source code to this software can be found at
 [github]. The purpose of this document is to provide transparency to
 users of (and contributors to) this software tool, as well as serve
 to be subjected to scrutiny by the SIDR Operations Working Group. It
 is not intended as a document that describes a standard or best
 practices on how validation should be done in general.

2. Introduction

 In order to use information published in RPKI repositories, Relying
 Parties (RP) need to retrieve and validate the content of
 certificates, certificate revocation lists (CRLs), and other RPKI
 signed objects. To validate a particular object, one must ensure
 that all certificates in the certificate chain up to the Trust Anchor
 (TA) are valid. Therefore the validation of a certificate tree is
 performed top-down, starting from the TA certificate and descending
 down the certificate chain, validating every encountered certificate
 and its products. The result of this process is a list of all
 encountered RPKI objects with a validity status attached to each of
 them. These results may later be used by a Relying Party in taking
 routing decisions, etc.

 Traditionally RPKI data is made available to RPs through the
 repositories [RFC6481] accessible over [rsync] protocol. Relying
 parties are advised to keep a local copy of repository data, and
 perform regular updates of this copy from the repository (Section 5
 of [RFC6481]). The RPKI Repository Delta Protocol
 [I-D.ietf-sidr-delta-protocol] introduces another method to fetch
 repository data and keep the local copy up to date with the
 repository.

 This document describes how the RIPE NCC RPKI Validator discovers
 RPKI objects to download, builds certificate paths, and validates
 RPKI objects, independently from what repository access protocol is
 used. To achieve this, it puts downloaded RPKI objects in an object
 store, where each RPKI object can be found by its URI, the hash of
 its content, value of its Authority Key Identifier (AKI) extension,
 or a combination of these. It also keeps track of the download and
 the validation time for every object, to decide which locally stored
 objects are not used in the RPKI tree validation and could be
 removed.

https://datatracker.ietf.org/doc/html/rfc6481
https://datatracker.ietf.org/doc/html/rfc6481#section-5
https://datatracker.ietf.org/doc/html/rfc6481#section-5

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 3]

Internet-Draft RPKI Tree Validation June 2018

3. General Considerations

3.1. Hash comparisons

 This algorithm relies on the properties of the file hash algorithm
 (defined in [RFC6485]) to compute the hash of repository objects. It
 assumes that any two objects for which the hash value is the same,
 are identical.

 The hash comparison is used when matching objects in the repository
 with entries on the manifest (Section 4.2.2), and when looking up
 objects in the object store (Section 6).

3.2. Discovery of RPKI objects issued by a CA

 There are several possible ways of discovering products of a CA
 certificate: one could use all objects located in a repository
 directory designated as a publication point for a CA, or only objects
 mentioned on the manifest located at that publication point (see

Section 6 of [RFC6486]), or use all objects whose AKI extension
 matches the Subject Key Identifier (SKI) extension (Section 4.2.1 of
 [RFC5280]) of a CA certificate.

 For publication points whose content is consistent with the manifest
 and issuing certificate all of these approaches should produce the
 same result. For inconsistent publication points the results might
 be different. Section 6 of [RFC6486] leaves the decision on how to
 deal with inconsistencies to a local policy.

 The implementation described here does not rely on content of
 repository directories, but uses the Authority Key Identifier (AKI)
 extension of a manifest and a certificate revocation list (CRL) to
 find in an object store (Section 6) a manifest and a CRL issued by a
 particular Certification Authority (CA) (see Section 4.2.1). It
 further uses the hashes of manifest's fileList entries (Section 4.2.1
 of [RFC6486]) to find other objects issued by the CA, as described in

Section 4.2.2.

3.3. Manifest entries versus repository content

 Since the current set of RPKI standards requires use of the manifest
 [RFC6486] to describe the content of a publication point, this
 implementation requires strict consistency between the publication
 point content and manifest content. (This is a more stringent
 requirement than established in [RFC6486].) Therefore it will not
 process objects that are found in the publication point but do not
 match any of the entries of that publication point's manifest (see

Section 4.2.2). It will also issue warnings for all found

https://datatracker.ietf.org/doc/html/rfc6485
https://datatracker.ietf.org/doc/html/rfc6486#section-6
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc6486#section-6
https://datatracker.ietf.org/doc/html/rfc6486#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc6486#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc6486
https://datatracker.ietf.org/doc/html/rfc6486

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 4]

Internet-Draft RPKI Tree Validation June 2018

 mismatches, so that the responsible operators could be made aware of
 inconsistencies and fix them.

4. Top-down Validation of a Single Trust Anchor Certificate Tree

 1. The validation of a Trust Anchor (TA) certificate tree starts
 from its TA certificate. To retrieve the TA certificate, a Trust
 Anchor Locator (TAL) object is used, as described in Section 4.1.

 2. If the TA certificate is retrieved, it is validated according to
Section 7 of [RFC6487] and Section 2.2 of [RFC7730]. Otherwise

 the validation of certificate tree is aborted and an error is
 issued.

 3. If the TA certificate is valid, then all its subordinate objects
 are validated as described in Section 4.2. Otherwise the
 validation of certificate tree is aborted and an error is issued.

 4. For each repository object that was validated during this
 validation run, its validation timestamp is updated in the object
 store (see Section 6.1.7).

 5. Outdated objects are removed from the store as described in
Section 4.3. This completes the validation of the TA certificate

 tree.

4.1. Fetching the Trust Anchor Certificate Using the Trust Anchor
 Locator

 The following steps are performed in order to fetch a Trust Anchor
 Certificate:

 1. (Optional) If the Trust Anchor Locator contains a "prefetch.uris"
 field, pass the URIs contained in that field to the fetcher (see

Section 5.1.1). (This field is a non-standard addition to the
 TAL format. It helps fetching non-hierarchical rsync
 repositories more efficiently.)

 2. Extract the first TA certificate URI from the TAL's URI section
 (see Section 2.1 of [RFC7730]) and pass it to the object fetcher
 (Section 5.1.2). If the fetcher returns an error, repeat this
 step for every URI in the URI section, until no error is
 encountered, or no more URIs left.

 3. Retrieve from the object store (see Section 6.1.3) all
 certificate objects, for which the URI matches the URI extracted
 from the TAL in the previous step, and the public key matches the

https://datatracker.ietf.org/doc/html/rfc6487#section-7
https://datatracker.ietf.org/doc/html/rfc7730#section-2.2
https://datatracker.ietf.org/doc/html/rfc7730#section-2.1

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 5]

Internet-Draft RPKI Tree Validation June 2018

 subjectPublicKeyInfo extension of the TAL (see Section 2.1 of
 [RFC7730]).

 4. If no, or more than one such objects are found, issue an error
 and abort certificate tree validation process with an error.
 Otherwise, use the single found object as the Trust Anchor
 certificate.

4.2. CA Certificate Validation

 The following steps describe the validation of a single CA Resource
 certificate:

 1. If both the caRepository (Section 4.8.8.1 of [RFC6487]), and the
 id-ad-rpkiNotify (Section 3.2 of [I-D.ietf-sidr-delta-protocol])
 SIA pointers are present in the CA certificate, use a local
 policy to determine which pointer to use. Extract the URI from
 the selected pointer and pass it to the object fetcher (see

Section 5.1.1).

 2. For the CA certificate, find the current manifest and certificate
 revocation list (CRL), using the procedure described in

Section 4.2.1. If no such manifest and CRL could be found, stop
 validation of this certificate, consider it invalid, and issue an
 error.

 3. Compare the URI found in the id-ad-rpkiManifest field
 (Section 4.8.8.1 of [RFC6487]) of the SIA extension of the
 certificate with the URI of the manifest found in the previous
 step. If they are different, issue a warning, but continue
 validation process using this manifest object. (This warning
 indicates that there is a mismatch between the expected and the
 actual location of an object in a repository. See Section 9 for
 the explanation of this mismatch and the decision taken.)

 4. Perform manifest entries discovery and validation as described in
Section 4.2.2.

 5. Validate all resource certificate objects found on the manifest,
 using the CRL object found on the manifest:

 * if the strict validation option is enabled by the operator,
 the validation is performed according to Section 7 of
 [RFC6487],

 * otherwise, the validation is performed according to Section 7
 of [RFC6487], with the exception of the resource certification
 path validation, that is performed according to

https://datatracker.ietf.org/doc/html/rfc7730#section-2.1
https://datatracker.ietf.org/doc/html/rfc7730#section-2.1
https://datatracker.ietf.org/doc/html/rfc6487#section-4.8.8.1
https://datatracker.ietf.org/doc/html/rfc6487#section-4.8.8.1
https://datatracker.ietf.org/doc/html/rfc6487#section-7
https://datatracker.ietf.org/doc/html/rfc6487#section-7
https://datatracker.ietf.org/doc/html/rfc6487#section-7
https://datatracker.ietf.org/doc/html/rfc6487#section-7

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 6]

Internet-Draft RPKI Tree Validation June 2018

 Section 4.2.4.4 of
 [I-D.ietf-sidr-rpki-validation-reconsidered].

 (Note that this implementation uses the operator configuration to
 decide which algorithm to use for path validation. It applies
 selected algorithm to all resource certificates, rather than
 applying appropriate algorithm per resource certificate, based on
 the object identifier (OID) for the Certificate Policy found in
 that certificate, as specified in
 [I-D.ietf-sidr-rpki-validation-reconsidered].)

 6. Validate all ROA objects found on the manifest, using the CRL
 object found on the manifest, according to Section 4 of
 [RFC6482].

 7. Validate all Ghostbusters Record objects found on the manifest,
 using the CRL object found on the manifest, according to

Section 7 of [RFC6493].

 8. For every valid CA certificate object found on the manifest,
 apply the procedure described in this section (Section 4.2),
 recursively, provided that this CA certificate (identified by its
 SKI) has not yet been validated during current tree validation
 run.

4.2.1. Finding the most recent valid manifest and CRL

 1. Fetch from the store (see Section 6.1.4) all objects of type
 manifest, whose certificate's AKI extension matches the SKI of
 the current CA certificate. If no such objects are found, stop
 processing the current CA certificate and issue an error.

 2. Find among found objects the manifest object with the highest
 manifestNumber field (Section 4.2.1 of [RFC6486]), for which all
 following conditions are met:

 * There is only one entry in the manifest for which the store
 contains exactly one object of type CRL, the hash of which
 matches the hash of the entry.

 * The manifest's certificate AKI equals the above CRL's AKI.

 * The above CRL is a valid object according to Section 6.3 of
 [RFC5280].

 * The manifest is a valid object according to Section 4.4 of
 [RFC6486], and its EE certificates is not in the CRL found
 above.

https://datatracker.ietf.org/doc/html/rfc6482#section-4
https://datatracker.ietf.org/doc/html/rfc6482#section-4
https://datatracker.ietf.org/doc/html/rfc6493#section-7
https://datatracker.ietf.org/doc/html/rfc6486#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-6.3
https://datatracker.ietf.org/doc/html/rfc5280#section-6.3
https://datatracker.ietf.org/doc/html/rfc6486#section-4.4
https://datatracker.ietf.org/doc/html/rfc6486#section-4.4

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 7]

Internet-Draft RPKI Tree Validation June 2018

 3. If there is an object that matches above criteria, consider this
 object to be the valid manifest, and the CRL found at the
 previous step - the valid CRL for the current CA certificate's
 publication point.

 4. Report an error for every other manifest with a number higher
 than the number of the valid manifest.

4.2.2. Manifest entries validation

 For every entry in the manifest object:

 1. Construct an entry's URI by appending the entry name to the
 current CA's publication point URI.

 2. Get all objects from the store whose hash attribute equals
 entry's hash (see Section 6.1.2).

 3. If no such objects are found, issue an error for this manifest
 entry and progress to the next entry. This case indicates that
 the repository does not have an object at the location listed in
 the manifest, or that the object's hash does not match the hash
 listed in the manifest.

 4. For every found object, compare its URI with the URI of the
 manifest entry.

 * For every object with a non-matching URI issue a warning.
 This case indicates that the object from the manifest entry is
 (also) found at a different location in a (possibly different)
 repository.

 * If no objects with a matching URI are found, issue a warning.
 This case indicates that there is no object found in the
 repository at the location listed in the manifest entry (but
 there is at least one matching object found at a different
 location).

 5. Use all found objects for further validation as per Section 4.2.

 Please note that the above steps will not reject objects whose hash
 matches the hash listed in the manifest, but the URI does not. See

Section 9.2 for additional information.

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 8]

Internet-Draft RPKI Tree Validation June 2018

4.3. Object Store Cleanup

 At the end of every TA tree validation some objects are removed from
 the store using the following rules:

 1. Given all objects that were encountered during the current
 validation run, remove from the store (Section 6.1.6) all objects
 whose URI attribute matches the URI of one of the encountered
 objects, but the content's hash is different. This removes from
 the store objects that were replaced in the repository by their
 newer versions with the same URIs.

 2. Remove from the store all objects that were last encountered
 during validation a long time ago (as specified by the local
 policy). This removes objects that do not appear on any valid
 manifest anymore (but possibly are still published in a
 repository).

 3. Remove from the store all objects that were downloaded recently
 (as specified by the local policy), but have never been used in
 the validation process. This removes objects that have never
 appeared on any valid manifest.

 Shortening the time interval used in step 2 will free more disk space
 used by the store, at the expense of downloading removed objects
 again if they are still published in the repository.

 Extending the time interval used in step 3 will prevent repeated
 downloads of repository objects, with the risk that such objects, if
 created massively by mistake or by an adversary, will fill up local
 disk space, if they are not cleaned up promptly.

5. Remote Objects Fetcher

 The fetcher is responsible for downloading objects from remote
 repositories (described in Section 3 of [RFC6481]) using rsync
 protocol ([rsync]), or RPKI Repository Delta Protocol (RRDP)
 ([I-D.ietf-sidr-delta-protocol]).

5.1. Fetcher Operations

 For every visited URI the fetcher keeps track of the last time a
 successful fetch occurred.

https://datatracker.ietf.org/doc/html/rfc6481#section-3

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 9]

Internet-Draft RPKI Tree Validation June 2018

5.1.1. Fetch repository objects

 This operation receives one parameter - a URI. For an rsync
 repository this URI points to a directory. For an RRDP repository it
 points to the repository's notification file.

 The fetcher performs following steps:

 1. If data associated with the URI has been downloaded recently (as
 specified by the local policy), skip following steps.

 2. Download remote objects using the URI provided (for an rsync
 repository use recursive mode). If the URI contains schema
 "https" and download has failed, issue a warning, replace "https"
 schema in the URI by "http", and try to download objects again,
 using the resulting URI.

 3. If remote objects can not be downloaded, issue an error and skip
 following steps.

 4. Perform syntactic verification of fetched objects. The type of
 every object (certificate, manifest, CRL, ROA, or Ghostbusters
 record), is determined based on the object's filename extension
 (.cer, .mft, .crl, .roa, and .gbr, respectively). The syntax of
 the object is described in Section 4 of [RFC6487] for resource
 certificates, step 1 of Section 3 of [RFC6488] for signed
 objects, and specifically, Section 4 of [RFC6486] for manifests,
 [RFC5280] for CRLs, Section 3 of [RFC6482] for ROAs, and

Section 5 of [RFC6493] for Ghostbusters records.

 5. Put every downloaded and syntactically correct object in the
 object store (Section 6.1.1).

 The time interval used in the step 1 should be chosen based on the
 acceptable delay in receiving repository updates.

5.1.2. Fetch single repository object

 This operation receives one parameter - a URI that points to an
 object in a repository.

 The fetcher performs following operations:

 1. Download remote object using the URI provided. If the URI
 contains "https" schema and download failed, issue a warning,
 replace "https" schema in the URI by "http", and try to download
 the object using the resulting URI.

https://datatracker.ietf.org/doc/html/rfc6487#section-4
https://datatracker.ietf.org/doc/html/rfc6488#section-3
https://datatracker.ietf.org/doc/html/rfc6486#section-4
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6482#section-3
https://datatracker.ietf.org/doc/html/rfc6493#section-5

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 10]

Internet-Draft RPKI Tree Validation June 2018

 2. If the remote object can not be downloaded, issue an error and
 skip following steps.

 3. Perform syntactic verification of fetched object. The type of
 object (certificate, manifest, CRL, ROA, or Ghostbusters record),
 is determined based on the object's filename extension (.cer,
 .mft, .crl, .roa, and .gbr, respectively). The syntax of the
 object is described in Section 4 of [RFC6487] for resource
 certificates, step 1 of Section 3 of [RFC6488] for signed
 objects, and specifically, Section 4 of [RFC6486] for manifests,
 [RFC5280] for CRLs, Section 3 of [RFC6482] for ROAs, and

Section 5 of [RFC6493] for Ghostbusters records.

 4. If the downloaded object is not syntactically correct, issue an
 error and skip further steps.

 5. Delete all objects from the object store (Section 6.1.5) whose
 URI matches the URI given.

 6. Put the downloaded object in the object store (Section 6.1.1).

6. Local Object Store

6.1. Store Operations

6.1.1. Store Repository Object

 Put given object in the store, along with its type, URI, hash, and
 AKI, if there is no record with the same hash and URI fields. Note
 that in the (unlikely) event of hash collision the given object will
 not replace the object in the store.

6.1.2. Get objects by hash

 Retrieve all objects from the store whose hash attribute matches the
 given hash.

6.1.3. Get certificate objects by URI

 Retrieve from the store all objects of type certificate, whose URI
 attribute matches the given URI.

6.1.4. Get manifest objects by AKI

 Retrieve from the store all objects of type manifest, whose AKI
 attribute matches the given AKI.

https://datatracker.ietf.org/doc/html/rfc6487#section-4
https://datatracker.ietf.org/doc/html/rfc6488#section-3
https://datatracker.ietf.org/doc/html/rfc6486#section-4
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6482#section-3
https://datatracker.ietf.org/doc/html/rfc6493#section-5

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 11]

Internet-Draft RPKI Tree Validation June 2018

6.1.5. Delete objects for a URI

 For a given URI, delete all objects in the store with matching URI
 attribute.

6.1.6. Delete outdated objects

 For a given URI and a list of hashes, delete all objects in the store
 with matching URI, whose hash attribute is not in the given list of
 hashes.

6.1.7. Update object's validation time

 For all objects in the store whose hash attribute matches the given
 hash, set the last validation time attribute to the given timestamp.

7. Acknowledgements

 This document describes the algorithm as it is implemented by the
 software development team at the RIPE NCC. The authors would also
 like to acknowledge contributions by Carlos Martinez, Andy Newton,
 Rob Austein, and Stephen Kent.

8. IANA Considerations

 This document has no actions for IANA.

9. Security Considerations

9.1. Hash collisions

 This implementation will not detect possible hash collisions in the
 hashes of repository objects (calculated using the file hash
 algorithm specified in [RFC6485]). It considers objects with same
 hash values as identical.

9.2. Mismatch between the expected and the actual location of an object
 in the repository

 According to Section 2 of [RFC6481], all objects issued by a
 particular CA certificate are expected to be located in one
 repository publication point, specified in the SIA extension of that
 CA certificate. The manifest object issued by that CA certificate
 enumerates all other issued objects, listing their file names and
 content hashes.

https://datatracker.ietf.org/doc/html/rfc6485
https://datatracker.ietf.org/doc/html/rfc6481#section-2

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 12]

Internet-Draft RPKI Tree Validation June 2018

 However, it is possible that an object whose content hash matches the
 hash listed in the manifest, has either a different file name, or is
 located at a different publication point in a repository.

 On the other hand, all RPKI objects, either explicitly or within
 their embedded EE certificate, have an Authority Key Identifier
 extension that contains the key identifier of their issuing CA
 certificate. Therefore it is always possible to perform an RPKI
 validation of the object whose expected location does not match its
 actual location, provided that the certificate that matches the AKI
 of the object in question is known to the system that performs
 validation.

 In case of a mismatch described above this implementation will not
 exclude an object from further validation merely because it's actual
 location or file name does not match the expected location or file
 name. This decision was chosen because the actual location of a file
 in a repository is taken from the repository retrieval mechanism,
 which, in case of an rsync repository, does not provide any
 cryptographic security, and in case of an RRDP repository, provides
 only a transport layer security, with the fallback to unsecured
 transport. On the other hand, the manifest is an RPKI signed object,
 and its content could be verified in the context of the RPKI
 validation.

9.3. Manifest content versus publication point content

 This algorithm uses the content of a manifest object to determine
 other objects issued by a CA certificate. It verifies that the
 manifest is located in the publication point designated in the CA
 Certificate's SIA extension. However, if there are other (not listed
 in the manifest) objects located in the same publication point
 directory, they are ignored, even if they might be valid and issued
 by the same CA certificate as the manifest. (This behavior is
 allowed, but not required, by [RFC6486].)

9.4. Storing of a TA certificate object before its complete validation

 When fetching and storing a TA certificate to the object store, only
 a syntactic validation of a downloaded object is performed before
 newly downloaded object replaces the previously downloaded object in
 the object store (see Section 5.1.2). If an attacker will be able to
 replace a genuine TA certificate by a syntactically valid certificate
 object (either by manipulating the content of a repository, or by a
 man-in-the-middle attack), this implementation will discard
 previously downloaded genuine object, and replace it by a false
 object. Such false object will be detected later, but the validation

https://datatracker.ietf.org/doc/html/rfc6486

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 13]

Internet-Draft RPKI Tree Validation June 2018

 of the whole RPKI tree under this TA will be aborted, as described in
Section 4.

9.5. Possible denial of service

 The store cleanup procedure described in Section 4.3 tries to
 minimise removal and subsequent re-fetch of objects that are
 published in a repository, but not used in the validation. Once such
 objects are removed from the remote repository, they will be
 discarded from the local object store after a period of time
 specified by a local policy. By generating an excessive amount of
 syntactically valid RPKI objects, a man-in-the-middle attack between
 a validating tool and a repository could force an implementation to
 fetch and store those objects in the object store before they are
 validated and discarded, leading to an out-of-memory or out-of-disk-
 space conditions, and, subsequently, a denial of service.

10. References

10.1. Normative References

 [I-D.ietf-sidr-delta-protocol]
 Bruijnzeels, T., Muravskiy, O., Weber, B., and R. Austein,
 "RPKI Repository Delta Protocol (RRDP)", draft-ietf-sidr-

delta-protocol-08 (work in progress), March 2017.

 [I-D.ietf-sidr-rpki-validation-reconsidered]
 Huston, G., Michaelson, G., Martinez, C., Bruijnzeels, T.,
 Newton, A., and D. Shaw, "RPKI Validation Reconsidered",

draft-ietf-sidr-rpki-validation-reconsidered-10 (work in
 progress), December 2017.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC6481] Huston, G., Loomans, R., and G. Michaelson, "A Profile for
 Resource Certificate Repository Structure", RFC 6481,
 DOI 10.17487/RFC6481, February 2012,
 <https://www.rfc-editor.org/info/rfc6481>.

 [RFC6482] Lepinski, M., Kent, S., and D. Kong, "A Profile for Route
 Origin Authorizations (ROAs)", RFC 6482,
 DOI 10.17487/RFC6482, February 2012,
 <https://www.rfc-editor.org/info/rfc6482>.

https://datatracker.ietf.org/doc/html/draft-ietf-sidr-delta-protocol-08
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-delta-protocol-08
https://datatracker.ietf.org/doc/html/draft-ietf-sidr-rpki-validation-reconsidered-10
https://datatracker.ietf.org/doc/html/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://datatracker.ietf.org/doc/html/rfc6481
https://www.rfc-editor.org/info/rfc6481
https://datatracker.ietf.org/doc/html/rfc6482
https://www.rfc-editor.org/info/rfc6482

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 14]

Internet-Draft RPKI Tree Validation June 2018

 [RFC6485] Huston, G., "The Profile for Algorithms and Key Sizes for
 Use in the Resource Public Key Infrastructure (RPKI)",

RFC 6485, DOI 10.17487/RFC6485, February 2012,
 <https://www.rfc-editor.org/info/rfc6485>.

 [RFC6486] Austein, R., Huston, G., Kent, S., and M. Lepinski,
 "Manifests for the Resource Public Key Infrastructure
 (RPKI)", RFC 6486, DOI 10.17487/RFC6486, February 2012,
 <https://www.rfc-editor.org/info/rfc6486>.

 [RFC6487] Huston, G., Michaelson, G., and R. Loomans, "A Profile for
 X.509 PKIX Resource Certificates", RFC 6487,
 DOI 10.17487/RFC6487, February 2012,
 <https://www.rfc-editor.org/info/rfc6487>.

 [RFC6488] Lepinski, M., Chi, A., and S. Kent, "Signed Object
 Template for the Resource Public Key Infrastructure
 (RPKI)", RFC 6488, DOI 10.17487/RFC6488, February 2012,
 <https://www.rfc-editor.org/info/rfc6488>.

 [RFC6493] Bush, R., "The Resource Public Key Infrastructure (RPKI)
 Ghostbusters Record", RFC 6493, DOI 10.17487/RFC6493,
 February 2012, <https://www.rfc-editor.org/info/rfc6493>.

 [RFC7730] Huston, G., Weiler, S., Michaelson, G., and S. Kent,
 "Resource Public Key Infrastructure (RPKI) Trust Anchor
 Locator", RFC 7730, DOI 10.17487/RFC7730, January 2016,
 <https://www.rfc-editor.org/info/rfc7730>.

10.2. Informative References

 [github] "RIPE NCC RPKI Validator on GitHub",
 <https://github.com/RIPE-NCC/rpki-validator>.

 [rsync] "Rsync home page", <https://rsync.samba.org>.

Authors' Addresses

 Oleg Muravskiy
 RIPE NCC

 Email: oleg@ripe.net
 URI: https://www.ripe.net/

https://datatracker.ietf.org/doc/html/rfc6485
https://www.rfc-editor.org/info/rfc6485
https://datatracker.ietf.org/doc/html/rfc6486
https://www.rfc-editor.org/info/rfc6486
https://datatracker.ietf.org/doc/html/rfc6487
https://www.rfc-editor.org/info/rfc6487
https://datatracker.ietf.org/doc/html/rfc6488
https://www.rfc-editor.org/info/rfc6488
https://datatracker.ietf.org/doc/html/rfc6493
https://www.rfc-editor.org/info/rfc6493
https://datatracker.ietf.org/doc/html/rfc7730
https://www.rfc-editor.org/info/rfc7730
https://github.com/RIPE-NCC/rpki-validator
https://rsync.samba.org
https://www.ripe.net/

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 15]

Internet-Draft RPKI Tree Validation June 2018

 Tim Bruijnzeels
 NLNetLabs

 Email: tim@nlnetlabs.nl
 URI: https://www.nlnetlabs.nl/

Muravskiy & Bruijnzeels Expires December 30, 2018 [Page 16]

https://www.nlnetlabs.nl/

