
Network Working Group C. Daboo

Internet-Draft A. Stone

Intended status: Standards Track July 11, 2011

Expires: January 12, 2012

Sieve Email Filtering: Include Extension

draft-ietf-sieve-include-10

Abstract

The Sieve Email Filtering "include" extension permits users to include

one Sieve script inside another. This can make managing large scripts

or multiple sets of scripts much easier, and allows a site and its

users to build up libraries of scripts. Users are able to include their

own personal scripts or site-wide scripts.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 12, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction and Overview

2. Conventions Used in This Document

3. Include Extension

*

*

*

3.1. General Considerations

3.2. Control Structure include

3.3. Control Structure return

3.4. Interaction with Variables

3.4.1. Control Structure global

3.4.2. Variables Namespace global

4. Security Considerations

5. IANA Considerations

5.1. "include" Extension Registration

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Acknowledgments

Appendix B. Change History (to be removed prior to publication as

an RFC)

Authors' Addresses

1. Introduction and Overview

It's convenient to be able to break SIEVE [RFC5228] scripts down into

smaller components which can be reused in a variety of different

circumstances. For example, users may want to have a default script and

a special 'vacation' script, the latter being activated when the user

goes on vacation. In that case the default actions should continue to

be run, but a vacation command should be executed first. One option is

to edit the default script to add or remove the vacation command as

needed. Another is to have a vacation script that simply has a vacation

command and then includes the default script.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

Conventions for notations are as in SIEVE [RFC5228] Section 1.1.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

script

script execution

immediate script

including script

The following key phrases are used to describe scripts and script

execution:

a valid Sieve script.

an instance of a Sieve interpreter invoked for a

given message delivery, starting with the user's active script and

continuing through any included scripts until the message is

delivered.

the individual Sieve script file being executed.

the individual Sieve script file that had an include

statement which included the immediate script.

3. Include Extension

3.1. General Considerations

Sieve implementations that implement the "include", "return", and

"global" commands described below have an identifier of "include" for

use with the capability mechanism. If any of the "include", "return",

or "global" commands are used in a script, the "include" capability

MUST be listed in the "require" statement in that script.

Sieve implementations need to track the use of actions in included

scripts so that implicit "keep" behavior can be properly determined

based on whether any actions have executed in any script.

Sieve implementations are allowed to limit the total number of nested

included scripts, but MUST provide for a total of at least three levels

of nested scripts including the top-level script. An error MUST be

generated either when the script is uploaded to the Sieve repository,

or when the script is executed, if any nesting limit is exceeded. If

such an error is detected whilst processing a Sieve script, an implicit

"keep" action MUST be executed to prevent loss of any messages.

Sieve implementations MUST NOT allow recursive script inclusion. An

error MUST be generated when such a script is executed. An error SHOULD

be generated when such a script is marked active with MANAGESIEVE

[RFC5804] or similar mechanisms. Implementations MUST NOT generate

errors for recursive inclusions at upload time, as this would force an

upload ordering requirement upon script authors / generators. However,

if an active script is replaced with a faulty script and would remain

the active script, an error MUST be generated and the upload MUST fail.

If an include recursion error is detected during script execution, an

implicit "keep" action MUST be executed to prevent loss of any

messages.

:personal

:global

Sieve implementations MUST generate an error at execution time if an

included script does not exist. Implementations MUST NOT generate

errors for scripts missing at upload time, as this would force an

upload ordering requirement upon script authors / generators.

If the Sieve "variables" extension [RFC5229] is present, an issue

arises with the "scope" of variables defined in scripts that may

include each other. For example, if a script defines the variable "$

{status}" with one particular meaning or usage, and another defines "$

{status}" with a different meaning, then if one script includes the

other there is an issue as to which "${status}" is being referenced. To

solve this problem, Sieve implementations MUST follow the scoping rules

defined in Section 3.4 and support the "global" command defined there.

3.2. Control Structure include

 Usage: include *[PARAMETERS] <value: string>

 PARAMETERS = LOCATION / :once / :optional

 LOCATION = :personal / :global

The "include" command takes an optional "location" parameter, an

optional ":once" parameter, an optional ":optional" parameter, and a

single string argument representing the name of the script to include

for processing at that point. It is RECOMMENDED that implementations

restrict script names according to MANAGESIEVE [RFC5804] Section 1.7.

Implementations MUST NOT allow variables to be expanded into the names

of Sieve scripts; in other words, the value MUST be a constant string

as defined in VARIABLES [RFC5229], Section 3.

The "location" parameter MUST default to ":personal" if not specified.

The "location" parameter MUST NOT be specified more than once. The

"location" has the following meanings:

Indicates that the named script is stored in the user's own

personal (private) Sieve repository.

Indicates that the named script is stored in a site-wide Sieve

repository, accessible to all users of the Sieve system.

The ":once" parameter tells the interpreter only to include the named

script if it has not already been included at any other point during

script execution. If the script has already been included, processing

continues immediately following the include command. Implementations

MUST NOT generate an error if an "include :once" command names a script

whose inclusion would be recursive; in this case, the script MUST be

considered previously included and therefore "include :once" will not

include it again.

The ":optional" parameter indicates that the script may be missing.

Ordinarily, an implementation MUST generate an error at runtime if an

include command specifies a script that does not exist. When

":optional" is specified, implementations MUST NOT generate an error

for a missing script, and MUST continue as if the include command had

not been present.

Note: It is RECOMMENDED that script authors / generators use this

parameter only when including a script that performs general duties

such as declaring global variables and making sanity checks of the

environment.

The included script MUST be a valid Sieve script. Each script MUST have

its own "require" statements for all optional capabilities used by that

script. The scope of a "require" statement is the script in which it

immediately appears, and neither inherits nor passes on capabilities to

other scripts during the course of execution.

A "stop" command in an included script MUST stop all script processing,

including the processing of the scripts that include the immediate one.

The "return" command (described below) stops processing of the

immediate script only, and allows the scripts that include it to

continue.

The "include" command MAY appear anywhere in a script where a control

structure is legal, and MAY be used within another control structure,

e.g., within an "if" or "foreverypart" block (MIME [RFC5703]).

Examples:

The user has four scripts stored in their personal repository:

"default"

This is the default active script that includes several others.

 require ["include"];

 include :personal "always_allow";

 include :global "spam_tests";

 include :personal "spam_tests";

 include :personal "mailing_lists";

Personal script "always_allow"

This script special-cases some correspondent email addresses and

makes sure any message containing those addresses are always

kept.

 if address :is "from" "boss@example.com"

 {

 keep;

 }

 elsif address :is "from" "ceo@example.com"

 {

 keep;

 }

Personal script "spam_tests"

*

*

This script does some user-specific spam tests to catch spam

messages not caught by the site-wide spam tests.

 require ["reject"];

 if header :contains "Subject" "XXXX"

 {

 reject "Subject XXXX is unacceptable.";

 }

 elsif address :is "from" "money@example.com"

 {

 reject "Mail from this sender is unwelcome.";

 }

Personal script "mailing_lists"

This script looks for messages from different mailing lists and

files each into a mailbox specific to the mailing list.

 require ["fileinto"];

 if header :is "List-ID" "sieve.ietf.org"

 {

 fileinto "lists.sieve";

 }

 elsif header :is "List-ID" "ietf-imapext.imc.org"

 {

 fileinto "lists.imapext";

 }

There is one script stored in the global repository:

Site script "spam_tests"

This script does some site-wide spam tests which any user at the

site can include in their own scripts at a suitable point. The

script content is kept up to date by the site administrator.

 require ["reject"];

 if anyof (header :contains "Subject" "$$",

 header :contains "Subject" "Make money")

 {

 reject "No thank you.";

 }

3.3. Control Structure return

 Usage: return

*

*

*

The "return" command stops processing of the immediately included

script only and returns processing control to the script which includes

it. If used in the main script (i.e., not in an included script), it

has the same effect as the "stop" command, including the appropriate

"keep" action if no other actions have been executed up to that point.

3.4. Interaction with Variables

In order to avoid problems of variables in an included script

"overwriting" those from the script that includes it, this

specification requires that all variables defined in a script MUST be

kept "private" to the immediate script by default - that is, they are

not "visible" to other scripts. This ensures that two script authors

cannot inadvertently cause problems by choosing the same name for a

variable.

However, sometimes there is a need to make a variable defined in one

script available to others. This specification defines the new command

"global" to declare that a variable is shared among scripts.

Effectively, two namespaces are defined: one local to the immediate

script, and another shared among all scripts. Implementations MUST

allow a non-global variable to have the same name as a global variable

but have no interaction between them.

3.4.1. Control Structure global

 Usage: global <value: string-list>

The "global" command accepts a string list argument that defines one or

more names of variables to be stored in the global variable space. Each

name MUST be a constant string and conform to the syntax of variable-

name as defined in VARIABLES [RFC5229], Section 3. Match variables

cannot be specified and namespace prefixes are not allowed. An invalid

name MUST be detected as a syntax error.

The "global" command is only available when the script has both

"include" and "variables" in its require line. If the "global" command

appears when only "include" or only "variables" has been required, an

error MUST be generated when the script is uploaded.

If a "global" command is given the name of a variable that has

previously been defined in the immediate script with "set", an error

MUST be generated either when the script is uploaded or at execution

time.

If a "global" command lists a variable that has not been defined in the

global namespace, the name of the variable is now marked as global, and

any subsequent "set" command will set the value of the variable in

global scope.

A variable has global scope in all scripts that have declared it with

the "global" command. If a script uses that variable name without

declaring it global, the name specifies a separate, non-global variable

within that script.

Interpretation of a string containing a variable marked as global, but

without any value set, SHALL behave as any other access to an unknown

variable, as specified in VARIABLES [RFC5229], Section 3 (i.e.,

evaluates to an empty string).

Example:

The active script

The included script may contain repetitive code that is

effectively a subroutine that can be factored out. In this

script, the test which matches last will leave its value in the

test_mailbox variable and the top-level script will file the

message into that mailbox. If no tests matched, the message will

be implicitly kept in the INBOX.

 require ["fileinto", "include", "variables", "relational"];

 global "test";

 global "test_mailbox";

 set "test" "$$";

 include "spam_checks";

 set "test" "Make money";

 include "spam_checks";

 if string :count "eq" "${test_mailbox}" "1"

 {

 fileinto "${test_mailbox}";

 stop;

 }

Personal script "spam_checks"

This script is makes a number of tests against the message,

falling through back to the top-level script having set the

global test_mailbox variable with a target folder to file the

message into.

 require ["include", "variables"];

 global ["test", "test_mailbox"];

 if header :contains "Subject" "${test}"

 {

 set "test_mailbox" "spam-${test}";

 }

3.4.2. Variables Namespace global

In addition to the "global" command, this document defines the

variables namespace "global", as specified in VARIABLES [RFC5229],

Section 3. The global namespace has no sub-namespaces (e.g., 'set

*

*

"global.data.from" "me@example.com";' is not allowed). The variable-

name part MUST be a valid identifier (e.g., 'set "global.12" "value";'

is not valid because "12" is not a valid identifier).

Example:

 require ["variables", "include"];

 set "global.i_am_on_vacation" "1";

Variables declared global and variables accessed via the global

namespace MUST be one and the same. In the following example script, we

see the variable "i_am_on_vacation" used in a "global" command, and

again with the "global." namespace. Consider these as two syntaxes with

identical meaning.

Example:

 require ["variables", "include", "vacation"];

 global "i_am_on_vacation";

 set "global.i_am_on_vacation" "1";

 if string :is "${i_am_on_vacation}" "1"

 {

 vacation "It's true, I am on vacation.";

 }

4. Security Considerations

Sieve implementations MUST ensure adequate security for the global

script repository to prevent unauthorized changes to global scripts.

For example, a site policy might enable only certain users with

administrative privileges to modify the global scripts. Site are

advised against allowing all users to have write access to the site's

global scripts.

Sieve implementations MUST ensure that script names are checked for

validity and proper permissions prior to inclusion, in order to prevent

a malicious user from gaining acess to files accessible to the mail

server software that should not be accessible to the user.

Beyond these, the "include" extension does not raise any security

considerations that are not present in the base SIEVE [RFC5228]

document and the VARIABLES [RFC5229] extension.

5. IANA Considerations

The following template specifies the IANA registration of the Sieve

extension specified in this document:

5.1. "include" Extension Registration

 Capability name: include

 Description: adds the "include" command to execute other Sieve

 scripts, and the "global" command and "global"

 variables namespace to access variables shared

 among included scripts.

 RFC number: this RFC

 Contact address: the Sieve discussion list <sieve@ietf.org>

6. References

6.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC5228]
Guenther, P. and T. Showalter, "Sieve: An Email

Filtering Language", RFC 5228, January 2008.

[RFC5229]
Homme, K., "Sieve Email Filtering: Variables

Extension", RFC 5229, January 2008.

6.2. Informative References

[RFC5429]
Stone, A., "Sieve Email Filtering: Reject and Extended

Reject Extensions", RFC 5429, March 2009.

[RFC5703]

Hansen, T. and C. Daboo, "Sieve Email Filtering: MIME

Part Tests, Iteration, Extraction, Replacement, and

Enclosure", RFC 5703, October 2009.

[RFC5804]
Melnikov, A. and T. Martin, "A Protocol for Remotely

Managing Sieve Scripts", RFC 5804, July 2010.

Appendix A. Acknowledgments

Thanks to Ken Murchison, Rob Siemborski, Alexey Melnikov, Marc Mutz,

Kjetil Torgrim Homme, Stephan Bosch, Arnt Gulbrandsen, Barry Leiba, and

Jeffrey Hutzelman for comments and corrections.

Appendix B. Change History (to be removed prior to publication as an

RFC)

Changes from ietf-09 to ietf-10:

Another example script error caught by Stephan Bosch.

Add :optional argument to allow a missing script to be ignored.

Changes from ietf-08 to ietf-09:

Better variables language from Stephan Bosch.

a.

b.

a.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc5228
http://tools.ietf.org/html/rfc5228
http://tools.ietf.org/html/rfc5229
http://tools.ietf.org/html/rfc5229
http://tools.ietf.org/html/rfc5429
http://tools.ietf.org/html/rfc5429
http://tools.ietf.org/html/rfc5703
http://tools.ietf.org/html/rfc5703
http://tools.ietf.org/html/rfc5703
http://tools.ietf.org/html/rfc5804
http://tools.ietf.org/html/rfc5804

Changes from ietf-07 to ietf-08:

Nits from Stephan Bosch.

Nits from Barry Leiba.

Wordsmithing and layout wrangling.

Changes from ietf-06 to ietf-07:

Nits from Stephan Bosch.

Changes from ietf-05 to ietf-06:

Nits from Barry Leiba.

Changes from ietf-04 to ietf-05:

Integrate review from Barry Leiba.

Changes from ietf-03 to ietf-04:

No changes.

Changes from ietf-02 to ietf-03:

Setting a variable then calling global on it is an error

(something like 'use strict').

Specify that the 'global' keyword is only available when

'variables' has also been required.

Uploading a script that includes a nonexistent script is not an

error at upload time.

Changes from ietf-01 to ietf-02:

Require that script names must be constant strings, not subject

to variable expansion.

Try the phrase immediate script instead of current script.

Clarify that "global 'varname'" and "global.varname" refer to

the same variable.

Drop the requirement the global keywords come after require and

before anything else.

Changes from ietf-00 to ietf-01:

Replaced import/export with global.

a.

b.

c.

a.

a.

a.

a.

a.

b.

c.

a.

b.

c.

d.

a.

Added :once modifier to include.

Added global namespace to see if it holds water.

Changes from daboo-06 to ietf-00:

None

Changes from -05 to -06:

Aaron Stone joins as author.

Removed | characters from the script examples.

Updated draft references to published RFCs.

Changes from -04 to -05:

Fixed examples.

Relaxed requirement that imported/exported variables be set

before being used.

Changes from -03 to -04:

Fixed missing 2119 definitions.

Defined interaction with variables through use of import and

export commands.

Changes from -02 to -03:

Refreshing expired draft (updated for nits).

Syntax -> Usage.

Updated to 3028bis reference.

Changes from -01 to -02:

Minor formatting changes only - refreshing expired draft.

Changes from -00 to -01:

Added IPR boiler plate.

Re-ordered sections at start to conform to RFC style.

Moved recursion comment into General Considerations section.

b.

c.

a.

a.

b.

c.

a.

b.

a.

b.

a.

b.

c.

a.

a.

b.

c.

Switched to using optional parameter to indicate personal vs

global.

Explicitly state that an error occurs when a missing script is

included.

Authors' Addresses

Cyrus Daboo Daboo EMail: cyrus@daboo.name

Aaron Stone Stone EMail: aaron@serendipity.cx

d.

e.

mailto:cyrus@daboo.name
mailto:aaron@serendipity.cx

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction and Overview
	2. Conventions Used in This Document
	3. Include Extension
	3.1. General Considerations
	3.2. Control Structure include
	3.3. Control Structure return
	3.4. Interaction with Variables
	3.4.1. Control Structure global
	3.4.2. Variables Namespace global
	4. Security Considerations
	5. IANA Considerations
	5.1. "include" Extension Registration
	6. References
	6.1. Normative References
	6.2. Informative References
	Appendix A. Acknowledgments
	Appendix B. Change History (to be removed prior to publication as an RFC)
	Authors' Addresses

