SIMPLE J. Rosenberg ToC

Internet-Draft jdrosen.net
Intended status: Informational A. Houri
Expires: November 13, 2010 IBM
C. Smyth
Avaya
F. Audet
Skype
May 12, 2010

Models for Intra-Domain Presence and Instant Messaging (IM) Bridging
draft-ietf-simple-intradomain-federation-05

Abstract

Presence and Instant Messaging (IM) bridging involves the sharing of
presence information and exchange of IM across multiple systems within
a single domain. As such, it is a close cousin to presence and IM
federation, which involves the sharing of presence and IM across
differing domains. Presence and IM bridging can be the result of a
multi-vendor network, or a consequence of a large organization that
requires partitioning. This document examines different use cases and
models for intra-domain presence and IM bridging. It is meant to
provide a framework for defining requirements and specifications for
presence and IM bridging. The document assumes SIP as the underlying
protocl but many of the modles can fit other protocols as well.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on November 13, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF
Contributions published or made publicly available before November 10,
2008. The person(s) controlling the copyright in some of this material
may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an
adequate license from the person(s) controlling the copyright in such
materials, this document may not be modified outside the IETF Standards
Process, and derivative works of it may not be created outside the IETF
Standards Process, except to format it for publication as an RFC or to
translate it into languages other than English.

Table of Contents

1. Introduction
2. Intra-Domain Bridging vs. Clustering
3. Use Cases for Intra-Domain Bridging
3.1. Scale
3.2. Organizational Structures
3.3. Multi-Vendor Requirements
3.4. Specialization
4. Considerations for Bridging Models
5. Overview of the Models
6. Partitioned
6.1. Applicability
6.2. Routing
6.2.1. Centralized Database
6.2.2. Routing Proxy
6.2.3. Subdomaining
6.2.4. Peer-to-Peer
6.2.5. Forking
6.2.6. Provisioned Routing
6.3. Policy
6.4. Presence Data
6.5. Conversation Consistency
7. Exclusive

7.1. Routing
.1.1. Centralized Database
1.2. Routing Proxy
.1.3. Subdomaining
.1.4. Peer-to-Peer
1.5. Forking
7.2. Policy
7.3. Presence Data
7.4. Conversation Consistency
8. Unioned
8.1. Hierarchical Model
8.1.1. Routing
8.1.2. Policy and Identity
8.1.2.1. Root Only
8.1.2.2. Distributed Provisioning
8.1.2.3. Central Provisioning
8.1.2.4. Centralized PDP
.1.3. Presence Data

.1.4. Conversation Consistency

8.2 Peer Model

NN ONONON

00 |0o

8.2.1. Routing

8.2.2. Policy

8.2.3. Presence Data

8.2.4. Conversation Consistency

9. More about Policy

10. Acknowledgements

11. Security Considerations
12. TIANA Considerations
13. 1Informative References
8§ Authors' Addresses

1. Introduction TOC

Presence refers to the ability, willingness and desire to communicate
across differing devices, mediums and services [RFC2778] (Day, M.,
Rosenberg, J., and H. Sugano, “A Model for Presence and Instant
Messaging,” February 2000.). Presence is described using presence
documents [RFC3863] (Sugano, H., Fujimoto, S., Klyne, G., Bateman, A.,
Carr, W., and J. Peterson, “Presence Information Data Format (PIDF),”
August 2004.) [RFC4479] (Rosenberg, J., “A Data Model for Presence,”
July 2006.), exchanged using a Session Initiation Protocol (SIP)
[RFC3261] (Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,

Peterson, J., Sparks, R., Handley, M., and E. Schooler, “SIP: Session
Initiation Protocol,” June 2002.) based event package [RFC3856]
(Rosenberg, J., “A Presence Event Package for the Session Initiation

Protocol (SIP),” August 2004.). Similarly, instant messaging refers to
the exchange of real-time text-oriented messaging between users. SIP
defines two mechanisms for IM - pager mode [RFC3428] (Campbell, B.,
Rosenberg, J., Schulzrinne, H., Huitema, C., and D. Gurle, “Session
Initiation Protocol (SIP) Extension for Instant Messaging,”

December 2002.) and session mode [RFC4975] (Campbell, B., Mahy, R., and

C. Jennings, “The Message Session Relay Protocol (MSRP),”

September 2007.).

Presence and Instant Messaging (IM) bridging involves the sharing of
presence information and exchange of IM across multiple systems within
a single domain. As such, it is a close cousin to presence and IM
federation [RFC5344] (Houri, A., Aoki, E., and S. Parameswar, “Presence
and Instant Messaging Peering Use Cases,” October 2008.), which
involves the sharing of presence and IM across differing domains.

For example, consider the network of Figure 1 (Inter-Domain Presence
Model), which shows one model for inter-domain presence federation. In
this network, Alice belongs to the example.org domain, and Bob belongs
to the example.com domain. Alice subscribes to her buddy list on her
presence server (which is also acting as her Resource List Server (RLS)
[RFC4662] (Roach, A., Campbell, B., and J. Rosenberg, “A Session
Initiation Protocol (SIP) Event Notification Extension for Resource
Lists,” August 2006.)), and that 1list includes bob@example.com. Alice's
presence server generates a back-end subscription on the federated link
between example.org and example.com. The example.com presence server
authorizes the subscription, and if permitted, generates notifications
back to Alice's presence server, which are in turn passed to Alice.

Fomm e e oo oo + SUB B SR, +
I | Bob I I
| Presence |------------------- >| Presence |
| Server | . . | Server |
I I I I
| | <o | |
| | NOTIFY | |
Foe e + S RO +

A | N

SUB | | |PUB
Buddy | [NOTIFY |
List | | |
I I I
I v I

E + R R +

I I I I

I I I I

I I I I

S + R R +

Alice's . . Bob's
PC . . PC

example.org example.com

Figure 1: Inter-Domain Presence Model

Similarly, inter-domain IM federation would look like the model shown
in Figure 2 (Inter-Domain SIP based IM Model):

. + INV Fommm e e oo +
I | Bob I I
I [-=-mmmmmmm - >| |
| M | . . | M |
| Server | | Server |
I |<--mmmmmmm - >| I
I I IM I |
oo + Ccontent Fomm e +
N A A\ |
INVITE | | . . IM | | INV
Bob [| IM . . Content | | Bob
| | Content . . [|
I I I I
| v v v
Feommmm o + Feommm o - +
I I | |
I I I I
I I I I
Feommmm o + Fommmm o +
Alice's . . Bob's
PC . . PC
example.org example.com

Figure 2: Inter-Domain SIP based IM Model

In this model, example.org and example.com both have an "IM server".
This would typically be a SIP proxy or B2BUA responsible for handling
both the signaling and the IM content (as these are separate in the
case of session mode). The IM server would handle routing of the IM
along with application of IM policy.

Though both of these pictures show federation between domains, a
similar interconnection - presence and IM bridging - can happen within
a domain as well. We define intra-domain bridging as the
interconnection of presence and IM servers within a single
administrative domain. Typically, a single administrative domain often
means the same DNS domain within the right hand side of the @-sign in
the SIP URI.

This document considers the architectural models and different problems
that arise when performing intra-domain presence and IM bridging.
Though presence and IM are quite distinct functions, this document
considers both since the architectural models and issues are common
between the two. The document first clarifies the distinction between
intra-domain bridging and clustering. It defines the primary issues
that arise in intra-domain presence and IM bridging, and then goes on
to define the three primary models for it - partitioned, unioned and
exclusive.

This document doesn't make any recommendation as to which model is
best. Each model has different areas of applicability and are
appropriate in a particular deployment. The intent is to provide
informative material and ideas on how this can be done.

2. Intra-Domain Bridging vs. Clustering TOC

Intra-domain bridging is the interconnection of servers within a single
domain. This is very similar to clustering, which is the tight coupling
of a multiplicity of physical servers to realize scale and/or high
availability. Consequently, it is important to clarify the differences.
Note that clustering is out of scope for this document.

Firstly, clustering implies a tight coupling of components. Clustering
usually involves proprietary information sharing, such as state
sharing, which in turn are tightly bound with the internal
implementation of the product. Intra-domain bridging, on the other
hand, is a loose coupling. Although database replication may be used
across bridged systems, it is not in the same level of stats
replication that usually occurs in clusters.

Secondly, clustering most usually occurs amongst components from the
same vendor. This is due to the tight coupling described above. Intra-
domain bridging, on the other hand, can occur between servers from
different vendors. As described below, this is one of the chief use
cases for intra-domain bridging.

Thirdly, clustering is almost always invisible to users. Communications
between users within the same cluster almost always have identical
functionality to communications between users on the same server within
the cluster. The cluster boundaries are invisible; indeed the purpose
of a cluster is to build a system which behaves as if it were a single
monolithic entity, even though it is not. Bridging, on the other hand,
is often visible to users. There will frequently be loss of
functionality when crossing a cluster. Though this is not a hard and
fast rule, it is a common differentiator.

Fourthly, connections between federated and bridged systems almost
always involve standards, whereas communications within a cluster often
involves proprietary mechanisms. Standards are needed for bridging

because the systems can be from different vendors, and thus agreement
is needed to enable interoperation.

Finally, a cluster will often have an upper bound on its size and
capacity, due to some kind of constraint on the coupling between nodes
in the cluster. However, there is typically no limit, or a much larger
limit, on the number of bridged systems that can be put into a domain.
This is a consequence of their loose coupling.

Though these rules are not hard and fast, they give general guidelines
on the differences between clustering and intra-domain bridging.

3. Use Cases for Intra-Domain Bridging TOC

There are several use cases that drive intra-domain bridging.

3.1. Scale TOC

One common use case for bridging is an organization that is just very
large, and their size exceeds the capacity that a single server or
cluster can provide. So, instead, the domain breaks its users into
partitions (perhaps arbitrarily) and then uses intra-domain bridging to
allow the overall system to scale up to arbitrary sizes. This is common
practice today for service providers and large enterprises.

3.2. Organizational Structures TOC

Another use case for intra-domain bridging is a multi-national
organization with regional IT departments, each of which supports a
particular set of nationalities. It is very common for each regional IT
department to deploy and run its own servers for its own population. In
that case, the domain would end up being composed of the presence
servers deployed by each regional IT department. Indeed, in many
organizations, each regional IT department might end up using different
vendors. This can be a consequence of differing regional requirements
for features (such as compliance or localization support), differing
sales channels and markets in which vendors sell, and so on.

3.3. Multi-Vendor Requirements

Another use case for intra-domain bridging is an organization that
requires multiple vendors for each service, in order to avoid vendor
lock in and drive competition between its vendors. Since the servers
will come from different vendors, a natural way to deploy them is to
partition the users across them. Such multi-vendor networks are
extremely common in large service provider networks, many of which have
hard requirements for multiple vendors.

Typically, the vendors are split along geographies, often run by
different local IT departments. As such, this case is similar to the
organizational division above.

3.4. Specialization TOC

Another use case 1is where certain vendors might specialize in specific
types of clients. For example, one vendor might provide a mobile client
(but no desktop client), while another provides a desktop client but no
mobile client. It is often the case that specific client applications
and devices are designed to only work with their corresponding servers.
In an ideal world, clients would all implement to standards and this
would not happen, but in current practice, the vast majority of
presence and IM endpoints work only (or only work well) with the server
from the same vendor. A domain might want each user to have both a
mobile client and a desktop client, which will require servers from
each vendor, leading to intra-domain bridging.

Similarly, presence can contain rich information, including activities
of the user (such as whether they are in a meeting or on the phone),
their geographic location, and their mood. This presence state can be
determined manually (where the user enters and updates the
information), or automatically. Automatic determination of these states
is far preferable, since it puts less burden on the user. Determination
of these presence states is done by taking "raw" data about the user,
and using it to generate corresponding presence states. This raw data
can come from any source that has information about the user, including
their calendaring server, their VoIP infrastructure, their VPN server,
their laptop operating system, and so on. Each of these components is
typically made by different vendors, each of which is likely to
integrate that data with their presence servers. Consequently, presence
servers from different vendors are likely to specialize in particular
pieces of presence data, based on the other infrastructure they
provide. The overall network will need to contain servers from those
vendors, composing together the various sources of information, in
order to combine their benefits. This use case 1is specific to presence,
and results in intra-domain bridging.

4. Considerations for Bridging Models TOC

When considering architectures for intra-domain presence and IM
bridging, several issues need to be considered. The first two of these
apply to both IM and presence (and indeed to any intra-domain
communications, including voice). The latter two are specific to
presence and IM respectively:

Routing: How are subscriptions and IMs routed to the right presence
and IM server(s)? This issue is more complex in intra-domain
models, since the right hand side of the @-sign cannot be used to
perform this routing.

Policy and Identity: Where do user policies reside, and what
presence and IM server(s) are responsible for executing that
policy? What identities does the user have in each system and how
do they relate?

Presence Data Ownership: Which presence servers are responsible for
which pieces of presence information, and how are those pieces
composed to form a coherent and consistent view of user presence?

Conversation Consistency: When considering instant messaging, if IM
can be delivered to multiple servers, how do we make sure that
the overall conversation is coherent to the user?

The sections below describe several different models for intra-domain
bridging. Each model is driven by a set of use cases, which are
described in an applicability subsection for each model. Each model
description also discusses how routing, policy, presence data ownership
and conversation consistency work.

5. Overview of the Models TOC

There are three models for intra-domain bridging. These are
partitioned, exclusive, and unioned. They can be explained relative to
each other via a decision tree.

Is a user | one

managed by |----- > PARTITIONED
one system |

or more than|

one? |

| Can the user |

| be managed by | no

| more than one |---> EXCLUSIVE
| system at the |

| same time? |

UNIONED

Figure 3: Decision Tree

The first question is whether any particular user is 'managed' by just
one system, or more than one? Here, 'managed' means that the user is
provisioned on the system, and can use it for some kind of presence and
IM services. In the partitioned model, the answer is no - a user is on
only one system. In that way, partitioned bridging is analagous to an
inter-domain model where a user is handled by a single domain.

If a user is 'managed' by more than one system, is it more than one at
the same time, or only one at a time? In the exclusive model, it is one
at a time. The user can log into one system, log out, and then log into
the other. For example, a user might have a PC client connected to
system one, and a different PC client connected to system two. They can
use one or the other, but not both. In unioned bridging, they can be
connected to more than one at the same time. For example, a user might
have a mobile client connected to one system, and a PC client connected
to another.

6. Partitioned TOC

In the partitioned model, a single domain has a multiplicity of
servers, each of which manages a non-overlapping set of users. That 1is,
for each user in the domain, their presence data, policy and IM
handling reside on a single server. Each "single server" may in fact be
a cluster.

Another important facet of the partitioned model is that, even though
users are partitioned across different servers, they each share the
same domain name in the right hand side of their URI, and this URI is
what those users use when communicating with other users both inside
and outside of the domain. There are many reasons why a domain would
want all of its users to share the same right-hand side of the @-sign
even though it is partitioned internally:

*The partitioning may reflect organizational or geographical
structures that a domain admistrator does not want to reflect
externally.

*If each partition had a separate domain name (i.e.,
engineering.example.com and sales.example.com), if a user changed
organizations, this would necessitate a change in their URI.

*For reasons of vanity, users often like to have their URI (which
appear on business cards, email, and so on), to be brief and
short.

*If a watcher wants to add a presentity based on username and does
not want to know, or does not know, which subdomain or internal
department the presentity belongs to, a single domain is needed.

This model is illustrated in Figure 4 (Partitioned Model). As the model
shows, the domain example.com has six users across three servers, each
of which is handling two of the users.

joe@example.com alice@example.com padma@example.com

bob@example.com zeke@example.com hannes@example.com
Fommmmo oo - + S SRS + B S +
| I I | | I
| Server | | Server | | Server
I 1 I I 2 I I 3 I
| I I | | I
E SE S, + S SRS + S +

Figure 4: Partitioned Model

6.1. Applicability TOC

The partitioned model arises naturally in larger domains, such as an
enterprise or service provider, where issues of scale, organizational
structure, or multi-vendor requirements cause the domain to be managed
by a multiplicity of independent servers.

In cases where each user has an AoR (Address of Record) that directly
points to its partition (for example, us.example.com), that model
becomes identical to the inter-domain federated model and is not
treated here further.

6.2. Routing TOC

The partitioned intra-domain model works almost identically to an
inter-domain federated model, with the primary difference being
routing. In inter-domain federation, the domain part of the URI can be
used to route presence subscriptions and IM messages from one domain to
the other. This is no longer the case in an intra-domain model.
Consider the case where Joe subscribes to his buddy list, which is

served by his presence server (server 1 in Figure 4 (Partitioned
Model)). Alice is a member of Joe's buddy list. How does server 1 know
that the back-end subscription to Alice needs to get routed to server
2?

There are several techniques that can be used to solve this problem,
which are outlined in the subsections below.

6.2.1. Centralized Database TOC
R +
alice? | |
e > | Database |
| server 2 | |
| e | |
| | Fommmme e +
(.
[
(.
(.
(.
[
| \%
joe@example.com alice@example.com padma@example.com
bob@example.com zeke@example.com hannes@example.com
Fomm e m oo + Fomm e oo o + R +
I I I I I I
| Server | | Server | | Server
I 1 I I 2 I I 3 I
I I I I I I
[R + Fomm e e e oo + [RS +

Figure 5: Centralized DB

One solution is to rely on a common, centralized database that
maintains mappings of users to specific servers, shown in Figure 5
(Centralized DB). When Joe subscribes to his buddy list that contains
Alice, server 1 would query this database, asking it which server is
responsible for alice@example.com. The database would indicate server
2, and then server 1 would generate the backend SUBSCRIBE request
towards server 2. Similarly, when Joe sends an INVITE to establish an
IM session with Padma, he would send the IM to his IM server, an it
would query the database to find out that Padma is supported on server
3. This is a common technique in large email systems. It is often
implemented using internal sub-domains; so that the database would
return alice@central.example.com to the query, and server 1 would
modify the Request-URI in the request to reflect this.

Routing database solutions have the problem that they require
standardization on a common schema and database protocol in order to
work in multi-vendor environments. For example, LDAP and SQL are both
possibilities. There is variety in LDAP schema; one possibility is H.
350.4, which could be adapted for usage here [RFC3944] (Johnson, T.,
Okubo, S., and S. Campos, “H.350 Directory Services,” December 2004.).

6.2.2. Routing Proxy TOC

Proxy

| SUB/INV alice

| \Y%

joe@example.com alice@example.com padma@example.com
bob@example.com zeke@example.com hannes@example.com

e + D TSRS - + tommmmemaaaa +

I I I I I I

| Server | | Server | | Server

I 1 I I 2 | | 3 I

I I I I I I

o m e e o - + o m e e o - + o m e e +

Figure 6: Routing Proxy

A similar solution is to rely on a routing proxy or B2BUA. Instead of a
centralized database, there would be a centralized SIP proxy farm.
Server 1 would send requests (SUBSCRIBE, INVITE, etc.) for users it
doesn't serve to this server farm, and the servers would lookup the
user in a database (which is now accessed only by the routing proxy),
and the resulting requests are sent to the correct server. A redirect
server can be used as well, in which case the flow is very much like
that of a centralized database, but uses SIP.

Routing proxies have the benefit that they do not require a common
database schema and protocol, but they do require a centralized server
function that sees all subscriptions and IM requests, which can be a
scale challenge. For IM, a centralized proxy is very challenging when
using pager mode, since each and every IM is processed by the central
proxy. For session mode, the scale is better, since the proxy handles
only the initial INVITE.

6.2.3. Subdomaining TOC

In this solution, each user is associated with a subdomain, and is
provisioned as part of their respective server using that subdomain.
Consequently, each server thinks it is its own, separate domain.
However, when a user adds a presentity to their buddy list without the
subdomain, they first consult a shared database which returns the
subdomained URI to subscribe or IM to. This sub-domained URI can be
returned because the user provided a search criteria, such as "Find
Alice Chang", or provided the non-subdomained URI (alice@example.com).
This is shown in Figure 7 (Subdomaining)

I

L R >| Database |
| alice@b.example.com | [
| - I I
| | R +
(!
|1
|1
|1
(!
|1
|1
| | joe@example.com alice@example.com padma@example.com
| | bob@example.com zeke@example.com hannes@example.com
| | +----------- + Fommmeemea - + Fommmmemeaas +
I I I I I I
| | | Server | | Server | | Server |
I 1 | I 2 | | 3 I
[I I I I I
| | +----------- + Fommm e + Feommmm - +
|1 A
(I I
(! I
|1 I
|1 I
|1 I
| | R +
| A-mmmmm >| I
| | Client [
I I I
L I I

o e e o +

Figure 7: Subdomaining

Subdomaining puts the burden of routing within the client. The servers
can be completely unaware that they are actually part of the same
domain, and integrate with each other exactly as they would in an
inter-domain model. However, the client is given the burden of
determining the subdomained URI from the original URI or buddy name,
and then subscribing or IMing directly to that server, or including the
subdomained URI in their buddylist. The client is also responsible for
hiding the subdomain structure from the user and storing the mapping
information locally for extended periods of time. In cases where users
have buddy list subscriptions, the client will need to resolve the
buddy name into the sub-domained version before adding to their buddy
list.

Subdmaining can be done via different databases. In order to provide
consistent interface to clients, a front-end of a SIP redirect proxies
can be implemented. A client would send the SIP request to one of the
redirect proxies and the redirect proxy will reply with the right
domain after consulting the database in whatever protocol the databases
exposes.

6.2.4. Peer-to-Peer TOC

Another model is to utilize a peer-to-peer network amongst all of the
servers, and store URI to server mappings in the distributed hash table
it creates. This has some nice properties but does require a
standardized and common peer-to-peer protocol across vendors.

6.2.5. Forking TOC

Yet another solution is to utilize forking. Each server is provisioned
with the domain names or IP addresses of the other servers, but not
with the mapping of users to each of those servers. When a server needs
to handle a request for a user it doesn't have, it forks the request to
all of the other servers. This request will be rejected with a 404 on
the servers which do not handle that user, and accepted on the one that
does. The approach assumes that servers can differentiate inbound
requests from end users (which need to get passed on to other servers -
for example via a back-end subscription) and from other servers (which
do not get passed on). This approach works very well in organizations
with a relatively small number of servers (say, two or three), and
becomes increasingly ineffective with more and more servers. Indeed, if
multiple servers exist for the purposes of achieving scale, this
approach can defeat the very reason those additional servers were
deployed.

6.2.6. Provisioned Routing TOC

Yet another solution is to provision each server with each user, but
for servers that don't actually serve the user, the provisioning merely
tells the server where to proxy the request. This solution has
extremely poor operational properties, requiring multiple points of
provisioning across disparate systems.

6.3. Policy TOC

A fundamental characteristic of the partitioned model is that there is
a single point of policy enforcement (authorization rules and
composition policy) for each user.

For more discussion regarding policy see Section 9 (More about Policy).

6.4. Presence Data TOC

Another fundamental characteristic of the partitioned model is that the
presence data for a user is managed authoritatively on a single server.
In the example of Figure 4 (Partitioned Model), the presence data for
Alice lives on server 2 alone (recall that server two may be physically
implemented as a multiplicity of boxes from a single vendor, each of
which might have a portion of the presence data, but externally it
appears to behave as if it were a single server). A subscription from
Bob to Alice may cause a transfer of presence information from server 2
to server 1, but server 2 remains authoritative and is the single root
source of all data for Alice.

6.5. Conversation Consistency TOC

Since the IM for a particular user are always delivered through a
particular server that handles the user, it is relatively easy to
achieve conversation consistency. That server receives all of the
messages and readily pass them onto the user for rendering.
Furthermore, a coherent view of message history can be assembled by the
server, since it sees all messages. If a user has multiple devices,
there are challenges in constructing a consistent view of the
conversation with page mode IM. However, those issues exist in general
with page mode and are not worsened by intra-domain bridging.

7. Exclusive TOC

In the former (static) partitioned model, the mapping of a user to a
specific server is done by some off-line configuration means. The
configuration assigns a user to a specific server and in order to use a
different server, the user needs to change (or request the
administrator to do so) the configuration.

In some environments, this restriction of a user to use a particular
server may be a limitation. Instead, it is desirable to allow users to
freely move back and forth between systems, though using only a single
one at a time. This is called Exclusive Bridging.

Some use cases where this can happen are:

*The organization is using multiple systems where each system has
its own characteristics. For example one server is tailored to
work with some CAD (Computer Aided Design) system and provide
presence and IM functionality along with the CAD system. The
other server is the default presence and IM server of the
organization. Users wish to be able to work with either system
when they wish to, they also wish to be able to see the presence
and IM with their buddies no matter which system their buddies
are currently using.

*An enterprise wishes to test presence servers from two different
vendors. In order to do so they wish to install a server from
each vendor and see which of the servers is better. In the static
partitioned model, a user will have to be statically assigned to
a particular server and could not compare the features of the two
servers. In the dynamic partitioned model, a user may choose on
whim which of the servers that are being tested to use. They can
move back and forth in case of problems.

*An enterprise is currently using servers from one vendor, but has
decided to add a second. They would like to gradually migrate
users from one to the other. In order to make a smooth
transition, users can move back and forth over a period of a few
weeks until they are finally required to stop going back, and get
deleted from their old system.

*A domain is using multiple clusters from the same vendor. To
simplify administration, users can connect to any of the
clusters, perhaps one local to their site. To accomplish this,
the clusters are connected using exclusive bridging.

7.1. Routing

Due to its nature, routing in the Exclusive bridging model is more
complex than the routing in the partitioned model.

Association of a user to a server can not be known until the user
publishes a presence document to a specific server or registers to that
server. Therefore, when Alice subscribes to Bob's presence information,
or sends him an IM, Alice's server will not easily know the server that
has Bob's presence and is handling his IM.

In addition, a server may get a subscription to a user, or an IM
targeted at a user, but the user may not be connected to any server
yet. In the case of presence, once the user appears in one of the
servers, the subscription should be sent to that server.

A user may use two servers at the same time and have hers/his presence
information on two servers. This should be regarded as a conflict and
one of the presence clients should be terminated or redirected to the
other server.

Fortunately, most of the routing approaches described for partitioned
bridging, excepting provisioned routing, can be adapted for exclusive
bridging.

7.1.1. Centralized Database TOC

A centralized database can be used, but will need to support a test-
and-set functionality. With it, servers can check if a user is already
in a specific server and set the user to the server if the user is not
on another server. If the user is already on another server, a redirect
(or some other error message) will be sent to that user.

When a client sends a subscription request for some target user, and
the target user is not associated with a server yet, the subscription
must be 'held' on the server of the watcher. Once the target user
connects and becomes bound to a server, the database needs to send a
change notification to the watching server, so that the 'held'
subscription can be extended to the server which is now handling
presence for the user.

Note that this approach actually moves the scaling problem of the
routing mechanism to the database, especially when the percentage of
the community that is offline is large.

7.1.2. Routing Proxy TOC

The routing proxy mechanism can be used for exclusive bridging as well.
However, it requires signaling from each server to the routing proxy to
indicate that the user is now located on that server. This can be done

by having each server send a REGISTER request to the routing proxy, for
that user, and setting the contact to itself. The routing proxy would
have a rule which allows only a single registered contact per user.
Using the registration event package [RFC3680] (Rosenberg, J., “A
Session Initiation Protocol (SIP) Event Package for Registrations,”
March 2004.), each server subscribes to the registration state at the
routing proxy for each user it is managing. If the routing proxy sees a
duplicate registration, it allows it, and then uses a reg-event
notification to the other server to de-register the user. Once the user
is de-registered from that server, it would terminate any subscriptions
in place for that user, causing the watching server to reconnect the
subscription to the new server. Something similar can be done for in-
progress IM sessions; however this may have the effect of causing a
disruption in ongoing sessions.

Note that this approach actually moves the scaling problem of the
routing mechanism to the registrar, especially when the percentage of
the community that is offline is large.

7.1.3. Subdomaining TOC

Subdomaining is just a variation on the centralized database. Assuming
the database supports a test-and-set mechanism, it can be used for
exclusive bridging.

However, the principle challenge in applying subdomaining to exclusive
bridging is database change notifications. When a user moves from one
server to another, that change needs to be propagated to all clients
which have ongoing sessions (presence and IM) with that user. This
requires a large-scale change notification mechanism - to each client
in the network.

7.1.4. Peer-to-Peer TOC

Peer-to-peer routing can be used for routing in exclusive bridging.
Essentially, it provides a distributed registrar function that maps
each AoR to the particular server that they are currently registered
against. When a UA registers to a particular server, that registration
is written into the P2P (Peer to Peer) network, such that queries for
that user are directed to that presence server.

However, change notifications can be troublesome. When a user
registered on server 1 now registers on server 2, server 2 needs to
query the P2P network, discover that server 1 is handling the user, and
then tell server 1 that the user has moved. Server 1 then needs to
terminate its ongoing subscriptions and send the to server 2.

Furthermore, P2P networks do not inherently provide a test-and-set
primitive, and consequently, it is possible for race conditions to
occur where there is an inconsistent view on where the user is
currently registered.

7.1.5. Forking TOC

The forking model can be applied to exclusive bridging. When a user
registers with a server or publishes a presence document to a server,
and that server is not serving the user yet, that server begins serving
the user. Furthermore, it needs to propagate a change notification to
all of the other servers. This can be done using a registration event
package; basically each server would subscribe to every other server
for reg-event notifications for users they serve.

When subscription or IM request is received at a server, and that
server doesn't serve the target user, it forks the subscription or IM
to all other servers. If the user is currently registered somewhere,
one will accept, and the others will reject with a 404. If the user is
registered nowhere, all others generate a 404. If the request is a
subscription, the server that received it would 'hold' the
subscription, and then subscribe for the reg-event package on every
other server for the target user. Once the target user registers
somewhere, the server holding the subscription gets a notification and
can propagate it to the new target server.

Like the P2P solution, the forking solution lacks an effective test-
and-set mechanism, and it is therefore possible that there could be
inconsistent views on which server is handling a user. One possible
scenario where multiple servers will think that thy are serving the
user would be when a subscription request is forked and reaches to
multiple servers, each of them thinks that it serves the user.

7.2. Policy TOC

Unless policy is somehow managed in the same database and is accessed
by the servers in the exclusive bridging model, policy becomes more
complicated in the exclusive bridging model. In the partitioned model,
a user had their presence and IM managed by the same server all of the
time. Thus, their policy can be provisioned and excecuted there. With
exclusive bridging, a user can freely move back and forth between
servers. Consequently, the policy for a particular user may need to
execute on multiple different servers over time.

The simplest solution is just to require the user to separately
provision and manage policies on each server. In many of the use cases
above, exclusive bridging is a transient situation that eventually

settles into partitioned bridging. Thus, it may not be unreasonable to
require the user to manage both policies during the transition. It is
also possible that each server provides different capabilities, and
thus a user will receive different service depending on which server
they are connected to. Again, this may be an acceptable limitation for
the use cases it supports.

For more discussion regarding policy see Section 8.1.2 (Policy and
Identity) and Section 9 (More about Policy).

7.3. Presence Data TOC

As with the partitioned model, in the exclusive model, the presence
data for a user resides on a single server at any given time. This
server owns all composition policies and procedures for collecting and
distributing presence data.

7.4. Conversation Consistency TOC

Because a user receives all of their IM on a single server at a time,
there aren't issues with seeing a coherent conversation for the
duration that a user is associated with that server.

However, if a user has sessions in progress while they move from one
server to another, it is possible that IM's can be misrouted or
dropped, or delivered out of order. Fortunately, this is a transient
event, and given that its unlikely that a user would actually have in-
progress IM sessions when they change servers, this may be an
acceptable limitation.

However, conversation history may be more troubling. IM message history
is often stored both in clients (for context of past conversations,
search, etc.) and in servers (for the same reasons, in addition to
legal requirements for data retention). If a user changes servers, some
of their past conversations will be stored on one server, and some on
another. Any kind of search or query facility provided amongst the
server-stored messages would need to search amongst all of the servers
to find the data.

T0C

8. Unioned

In the unioned model, each user is actually served by more than one
presence server at a time. In this case, "served" implies two
properties:

*A user is served by a server when that user is provisioned on
that server, and

*That server is authoritative for some piece of presence state
associated with that user or responsible for some piece of
registration state associated with that user, for the purposes of
IM delivery

In essence, in the unioned model, a user's presence and registration
data is distributed across many presence servers, while in the
partitioned and exclusive models, its centralized in a single server.
Furthermore, it is possible that the user is provisioned with different
identifiers on each server.

This definition speaks specifically to ownership of dynamic data -
presence and registration state - as the key property. This rules out
several cases which involve a mix of servers within the enterprise, but
do not constitute intra-domain unioned bridging:

*A user utilizes an outbound SIP proxy from one vendor, which
connects to a presence server from another vendor. Even though
this will result in presence subscriptions, notifications, and IM
requests flowing between servers, and the user is potentially
provisioned on both, there is no authoritative presence or
registration state in the outbound proxy, and so this is not
intra-domain bridging.

*A user utilizes a Resource List Server (RLS) from one vendor,
which holds their buddy list, and accesses presence data from a
presence server from another vendor. This case is actually the
partitioned case, not the unioned case. Effectively, the buddy
list itself is another "user", and it exists entirely on one
server (the RLS), while the actual users on the buddy list exist
entirely within another. Consequently, this case does not have
the property that a single presence resource exists on multiple
servers at the same time.

*A user subscribes to the presence of a presentity. This
subscription is first passed to their presence server, which acts
as a proxy, and instead sends the subscription to the UA of the
user, which acts as a presence edge server. In this model, it may
appear as if there are two presence servers for the user (the
actual server and their UA). However, the server is acting as a
proxy in this case - there is only one source of presence

information. For IM, there is only one source of registration
state - the server. Thus, this model is partitioned, but with
different servers owning IM and presence.

The unioned models arise naturally when a user is using devices from
different vendors, each of which has their own respective servers, or
when a user is using different servers for different parts of their
presence state. For example, Figure 8 (Unioned Case 1) shows the case
where a single user has a mobile client connected to server one and a
desktop client connected to server two.

alice@example.com alice@example.com
Fommme e aaas + S JSRU P +
I I I I
I I I I
| Server [--------c---- [Server |
I 1 | | 2 I
I I I I
I I I I
Y + SRS +
\ /
\ /
\ /
\ /
\ /
\ /
N e S
\ /
\ /
AN Fomm oo - +
| |+------ +|
oot || ||
| +-+] I I
| +-+] | #- - +]
o (EEPRRERY +
o EERETE /
+---+ [------ /
———————— /
Alice

Figure 8: Unioned Case 1

As another example, a user may have two devices from the same vendor,
both of which are asociated with a single presence server, but that
presence server has incomplete presence state about the user. Another
presence server in the enterprise, due to its access to state for that
user, has additional data which needs to be accessed by the first
presence server in order to provide a comprehensive view of presence
data. This is shown in Figure 9 (Unioned Case 2). This use case tends
to be specific to presence.

alice@example.com alice@example.com
Y + S SRS +
I | | I
| Presence | | Presence |
| Server [-----mmmm - [Server |
I 1 | | 2 I
I | | I
I I I I
Fommm e e oo + S +
A | |
I | |
I I I
///------- A\ | [
||| specialized ||| | |
|| state] | |
A\\--- - /77 | |
I I
| | T +
I [+------ +|
to--t | |
[+-+] | |
| +-+] |+------ +|
| | I +
| | [------ /
+---+ [------ /
———————— /
Alice

Figure 9: Unioned Case 2

Another use case for unioned bridging are subscriber moves. Consider a
domain which uses multiple servers, typically running in a partitioned
configuration. The servers are organized regionally so that each user
is served by a server handling their region. A user is moving from one
region to a new job in another, while retaining their SIP URI. In order
to provide a smooth transition, ideally the system would provide a
"make before break" functionality, allowing the user to be added onto
the new server prior to being removed from the old. During the
transition period, especially if the user had multiple clients to be
moved, they can end up with state existing on both servers at the same
time.

8.1. Hierarchical Model TOC

The unioned intra-bridging model can be realized in one of two ways -
using a hierarchical structure or a peer structure.

In the hierarchical model, presence subscriptions and IM requests for
the target are always routed first to one of the servers - the root. In
the case of presence, the root has the final say on the structure of
the presence document delivered to watchers. It collects presence data
from its child presence servers (through notifications or publishes
received from them) and composes them into the final presence document.
In the case of IM, the root applies IM policy and then passes the IM
onto the children for delivery. There can be multiple layers in the
hierarchical model. This is shown in Figure 10 (Hierarchical Model) for
presence.

X o e e e e m - - * | I
|Auth and |---->] Presence | <--- root
|Composition| | Server |
X o e e e e e - - - * | |
I |
S +
/ S
/ —ee
/ -
/ -
v -V
o mm e e + Fomm e +
I I I I
M * | Presence | e * | Presence |
|Auth and [-->| Server | |Auth and [-->| Server |
| Composition]| [| | Composition| | |
X o o e e e e e -2 * | | K o o e e e e e — oo * | |
S + B S +
| -
e

[
Y --V
S + Y +
I I I
M *
Auth and [-->
Composition]
X o e e e e e o * | | X o e e e e e e - o * | I
tommmmeaaaaa + S TR - +

Figure 10: Hierarchical Model

It is important to note that this hierarchy defines the sequence of
presence composition and policy application, and does not imply a
literal message flow. As an example, consider once more the use case of
Figure 8 (Unioned Case 1). Assume that presence server 1 is the root,
and presence server 2 is its child. When Bob's PC subscribes to Bob's
buddy list (on presence server 2), that subscription will first go to
presence server 2. However, that presence server knows that it is not
the root in the hierarchy, and despite the fact that it has presence

state for Alice (who is on Bob's buddy list), it creates a back-end
subscription to presence server 1. Presence server 1, as the root,
subscribes to Alice's state at presence server 2. Now, since this
subscription came from presence server 1 and not Bob directly, presence
server 2 provides the presence state. This is received at presence
server 1, which composes the data with its own state for Alice, and
then provides the results back to presence server 2, which, having
acted as an RLS, forwards the results back to Bob. Consequently, this
flow, as a message sequence diagram, involves notifications passing
from presence server 2, to server 1, back to server 2. However, in
terms of composition and policy, it was done first at the child node
(presence server 2), and then those results used at the parent node
(presence server 1).

Note that we are assuming that presence servers will subscribe to each
other. It is also possible to assume that given the hierarchy
configuration knowledge, a presence server can send PUBLISH messages to
other presence servers based on the configured hierarchy. However,
sending PUBLISH messages from one presence server to another presence
server will actually make the presence server that sends the PUBLISH
messages a presence source and not a presence server from the point of
view of the receiving presence server. Therefore, we will assume that
presence servers will subscribe to each other but PUBLISH messages
instead of subscriptions could be used if they are preferred.

8.1.1. Routing TOC

In the hierarchical model, the servers need to collectively be
provisioned with the topology of the network. This topology defines the
root and the parent/child relationships. These relationships could in
fact be different on a user-by-user basis; however, this is complex to
manage. In all likelihood, the parent and child relationships are
identical for each user. The overall routing algorithm can be described
thusly:

*If a SUBCRIBE is received from the parent node for this
presentity, perform subscriptions to each child node for this
presentity, and then take the results, apply composition and
authorization policies, and propagate to the parent. If a node is
the root, the logic here applies regardless of where the request
came from.

*If an IM request is received from the parent node for a user,
perform IM processing and then proxy the request to each child IM
server for this user. If a node is the root, the logic here
applies regardless of where the request came from.

*If a request is received from a node that is not the parent node
for this presentity, proxy the request to the parent node. This
includes cases where the node that sent the request is a child
node. Note that if the node that receives the request can send
the request directly to the root, it should do so thus reducing
the traffic in the system.

This routing rule is relatively simple, and in a two-server system is
almost trivial to provision. Interestingly, it works in cases where
some users are partitioned and some are unioned. When the users are
partitioned, this routing algorithm devolves into the forking algorithm
of Section 6.2.5 (Forking). This points to the forking algorithm as a
good choice since it can be used for both partitioned and unioned.

An important property of the routing in the hierarchical model is that
the sequence of composition and policy operations for any IM or
presence session is identical, regardless of the watcher or sender of
the IM. The result is that the overall presence state provided to a
watcher, and overall IM behavior, is always consistent and independent
of the server the client is connected to. We call this property the
consistency property, and it is an important metric in assessing the
correctness of a bridged presence and IM system.

8.1.2. Policy and Identity TOC

Policy and identity are a clear challenge in the unioned model.
Firstly, since a user is provisioned on many servers, it is possible
that the identifier they utilize could be different on each server. For
example, on server 1, they could be joe@example.com, whereas on server
2, they are joe.smith@example.com. In cases where the identifiers are
not equivalent, a mapping function needs to be provisioned. This
ideally happens on root server.

Secondly, the unioned model will result in back-end subscriptions
extending from one presence server to another presence server. These
subscriptions, though made by the presence server, need to be made on-
behalf-of the user that originally requested the presence state of the
presentity. Since the presence server extending the back-end
subscription will not often have credentials to claim identity of the
watcher, asserted identity using techniques like P-Asserted-ID
[RFC3325] (Jennings, C., Peterson, J., and M. Watson, “Private
Extensions to the Session Initiation Protocol (SIP) for Asserted
Identity within Trusted Networks,” November 2002.) or authenticated
identity [RFC4474] (Peterson, J. and C. Jennings, “Enhancements for
Authenticated Identity Management in the Session Initiation Protocol
(SIP),"” August 2006.) are required, along with the associated trust
relationships between servers. Optimizations, such as view sharing
[I-D.ietf-simple-view-sharing] (Rosenberg, J., Donovan, S., and K.

McMurry, “Optimizing Federated Presence with View Sharing,”

November 2008.) can help improve performance. The same considerations
apply for IM.

The principle challenge in a unioned model is policy, including both
authorization and composition policies. There are three potential
solutions to the administration of policy in the hierarchical model
(only two of which apply in the peer model, as we'll discuss below).
These are root-only, distributed provisioned, and central provisioned.

8.1.2.1. Root Only TOC

In the root-only policy model, authorization policy, IM policy, and
composition policy are applied only at the root of the tree. This is
shown in Figure 11 (Root Only).

K o e o e e e e e - * | I
| | ---->| | <--- root
| Policy | | Server |
K o e e e e e - - - *
I I
I I
SR +
/ R
/ .-
/ -
/ -
v -V
S + S +
I I I I
I I I I
[Server | | Server |
I I I I
I I I I
R + [+
| - -
| _____
R p——
| _____
| _____
| _____
% --V
[RS + [RS +
I I I I
I I I I
| Server | | Server |
I I I I
I I I I
S RSO + S RO +

Figure 11: Root Only

As long as a subscription request came from its parent, every child
presence server would automatically accept the subscription, and
provide notifications containing the full presence state it is aware
of. Similarly, any IM received from a parent would be simply propagated
onwards towards children. Any composition performed by a child presence
server would need to be lossless, in that it fully combines the source
data without loss of information, and also be done without any per-user

provisioning or configuration, operating in a default or administrator-
provisioned mode of operation.

The root-only model has the benefit that it requires the user to
provision policy in a single place (the root). However, it has the
drawback that the composition and policy processing may be performed
very poorly. Presumably, there are multiple presence servers in the
first place because each of them has a particular speciality. That
speciality may be lost in the root-only model. For example, if a child
server provides geolocation information, the root presence server may
not have sufficient authorization policy capabilities to allow the user
to manage how that geolocation information is provided to watchers.

8.1.2.2. Distributed Provisioning TOC

The distributed provisioned model looks exactly like the diagram of
Figure 10 (Hierarchical Model). Each server is separately provisioned
with its own policies, including what users are allowed to watch, what
presence data they will get, how it will be composed, what IMs get
blocked, and so on.

One immediate concern is whether the overall policy processing, when
performed independently at each server, is consistent, sane, and
provides reasonable degrees of privacy. It turns out that it can, if
some guidelines are followed.

For presence, consider basic "yes/no" authorization policies. Lets say
a presentity, Alice, provides an authorization policy in server 1 where
Bob can see her presence, but on server 2, provides a policy where Bob
cannot. If presence server 1 is the root, the subscription is accepted
there, but the back-end subscription to presence server 2 would be
rejected. As long as presence server 1 then rejects the subscription,
the system provides the correct behavior. This can be turned into a
more general rule:

*To guarantee privacy safety, if the back-end subscription
generated by a presence server is denied, that server must deny
the triggering subscription in turn, regardless of its own
authorization policies. This means that a presence server cannot
send notifications on its own until it has confirmed
subscriptions from downstream servers.

For IM, basic yes/no authorization policies work in a similar way. If
any one of the servers has a policy that says to block an IM, the IM is
not propagated further down the chain. Whether the overall system
blocks IMs from a sender depends on the topology. If there is no
forking in the hierarchy, the system has the property that, if a sender
is blocked at any server, the user is blocked overall. However, in tree

structures where there are multiple children, it is possible that an IM
could be delivered to some downstream clients, and not others.

Things get more complicated when one considers presence authorization
policies whose job is to block access to specific pieces of
information, as opposed to blocking a user completely. For example,
lets say Alice wants to allow Bob to see her presence, but not her
geolocation information. She provisions a rule on server 1 that blocks
geolocation information, but grants it on server 2. The correct mode of
operation in this case is that the overall system will block
geolocation from Bob. But will it? In fact, it will, if a few
additional guidelines are followed:

*If a presence server adds any information to a presence document
beyond the information received from its children, it must
provide authorization policies that govern the access to that
information.

*If a presence server does not understand a piece of presence data
provided by its child, it should not attempt to apply its own
authorization policies to access of that information.

*A presence server should not add information to a presence
document that overlaps with information that can be added by its
parent. Of course, it is very hard for a presence server to know
whether this information overlaps. Consequently, provisioned
composition rules will be required to realize this.

If these rules are followed, the overall system provides privacy safety
and the overall policy applied is reasonable. This is because these
rules effectively segment the application of policy based on specific
data, to the servers that own the corresponding data. For example,
consider once more the geolocation use case described above, and assume
server 2 is the root. If server 1 has access to, and provides
geolocation information in presence documents it produces, then server
1 would be the only one to provide authorization policies governing
geolocation. Server 2 would receive presence documents from server 1
containing (or not) geolocation, but since it doesn't provide or
control geolocation, it lets that information pass through. Thus, the
overall presence document provided to the watcher will contain
gelocation if Alice wanted it to, and not otherwise, and the controls
for access to geolocation would exist only on server 1.

For more discussion regarding policy see Section 9 (More about Policy).

8.1.2.3. Central Provisioning TOC

The central provisioning model is a hybrid between root-only and
distributed provisioning. Each server does in fact execute its own

authorization and composition policies. However, rather than the user
provisioning them independently in each place, there is some kind of
central portal where the user provisions the rules, and that portal
generates policies for each specific server based on the data that the
corresponding server provides. This is shown in Figure 12 (Central
Provisioning).

|provisioning portal |...........
o e e e e e +
\VJ Fomm e +
X o e e e e e - - - * | |
|Auth and |---->] Presence | <--- root
|Composition| | Server |
K o e e e e e e e - o * | |
I I
Y +
| [
| _______
I pp———
| _______
\% ---V V
F--- e - + . I
I I v I
M * | Presence | M * |Presence
.>|Auth and | -->] Server | |Auth and | -->| Server
| Composition| | | | Composition| |
Ko o o * | | * o o e * o e e e o -
oo e e - +
/ \
/ \
/ \
/ \
/ \
/ \
\% \Y,

. R + e + .

v I I I I v
e * | Presence | | Presence | e *
|Auth and [-->| Server | | Server |<----]|Auth and |
| Composition| | | | | | Composition|

| I R EhaanEts

Figure 12: Central Provisioning

Centralized provisioning brings the benefits of root-only (single point
of user provisioning) with those of distributed provisioning (utilize
full capabilities of all servers). Its principle drawback is that it
requires another component - the portal - which can represent the union
of the authorization policies supported by each server, and then
delegate those policies to each corresponding server.

The other drawback of centralized provisioning is that it assumes
completely consistent policy decision making on each server. There is a
rich set of possible policy decisions that can be taken by servers, and
this is often an area of differentiation.

8.1.2.4. Centralized PDP TOC

The centralized provisioning model assumes that there is a single point
of policy administration, but that there is independent decision making
at each presence and IM server. This only works in cases where the
decision function - the policy decision point - is identical in each
server.

An alternative model is to utilize a single point of policy
administration and a single point of policy decision making. Each
presence server acts solely as an enforcement point, asking the policy
server (through a policy protocol of some sort) how to handle the
presence or IM. The policy server then comes back with a policy
decision - whether to proceed with the subscription or IM, and how to
filter and process it. This is shown in Figure 13 (Central PDP).

|Provisioning|=====>|Policy Decision]|
| Portal | [Point (PDP) |
S SRS + R e +
#
HHHHHH AR HHH BB HAHIRT # #O# HAHHH AR HHH AR HHAH R
#
H##HHHHHH H HHHHBHEHA R R
e + #
| | #
| [root #
| Server | #
| | #
| | #
e + #
/ --- #
/ ---- #
/ ---- #
/ --—-- #
\% -V#
F--- - - - - + F--- - - +
I I I |
I I I |
| Server | | Server |
I I I |
I I I |
R + F--m - - +
| ---
| -----
| eeee-
| eeee-
|l e
|l eeaas
\Y --V
R + R +
I I I |
HUH I | | | | #
| Server | | Server |###
I I I I
I I I I
S + B S +

===== Provisioning Protocol
Policy Protocol
----- SIP

Figure 13: Central PDP

The centralized PDP has the benefits of central provisioning, and
consistent policy operation, and decouples policy decision making from
presence and IM processing. This decoupling allows for multiple
presence and IM servers, but still allows for a single policy function
overall. The individual presence and IM servers don't need to know
about the policies themselves, or even know when they change. Of
course, if a server is caching the results of a policy decision, change
notifications are required from the PDP to the server, informing it of
the change (alternatively, traditional TTL-based expirations can be
used if delay in updates are acceptable).

It is also possible to move the decision making process into each
server. In that case, there is still a centralized policy portal and
centralized repository of the policy data. The interface between the
servers and the repository then becomes some kind of standardized
database interface.

For the centralized and distributed provisioning approaches, and the
centralized decision approach, the hierarchical model suffers overall
from the fact that the root of the policy processing may not be tuned
to the specific policy needs of the device that has subscribed. For
example, in the use case of Figure 8 (Unioned Case 1), presence server
1 may be providing composition policies tuned to the fact that the
device is wireless with limited display. Consequently, when Bob
subscribes from his mobile device, when presence server 2 is the root,
presence server 2 may add additional data and provide an overall
presence document to the client which is not optimized for that device.
This problem is one of the principal motivations for the peer model,
described below.

For more discussion regarding policy see Section 9 (More about Policy).

8.1.3. Presence Data T0C

The hierarhical model is based on the idea that each presence server in
the chain contributes some unique piece of presence information,
composing it with what it receives from its child, and passing it on.
For the overall presence document to be reasonable, several guidelines
need to be followed:

*A presence server must be prepared to receive documents from its
peer containing information that it does not understand, and to
apply unioned composition policies that retain this information,
adding to it the unique information it wishes to contribute.

*A user interface rendering some presence document provided by its
presence server must be prepared for any kind of presence

document compliant to the presence data model, and must not
assume a specific structure based on the limitations and
implementation choices of the server to which it is paired.

If these basic rules are followed, the overall system provides
functionality equivalent to the combination of the presence
capabilities of the servers contained within it, which is highly
desirable.

8.1.4. Conversation Consistency TOC

Unioned bridging introduces a particular challenge for conversation
consistency. A user with multiple devices attached to multiple servers
could potentially try to participate in the conversation on multiple
devices at once. This would clearly pose a challenge. There are really
two approaches that produce a sensible user experience.

The first approach simulates the "phone experience" with IM. When a
user (say Alice) sends an IM to Bob, and Bob is a unioned user with two
devices on two servers, Bob receives that IM on both devices. However,
when he "answers" by typing a reply from one of those devices, the
conversation continues only on that device. The other device on the
other server receives no further IMs for this session - either from
Alice or from Bob. Indeed, the IM window on Bob's unanswered device may
even disappear to emphasize this fact.

This mode of operation, which we'll call uni-device IM, is only
feasible with session mode IM, and its realization using traditional
SIP signaling is described in [RFC4975] (Campbell, B., Mahy, R., and C.
Jennings, “The Message Session Relay Protocol (MSRP),”

September 2007.).

The second mode of operation, called multi-device IM, is more of a
conferencing experience. The initial IM from Alice is delivered to both
Bob's devices. When Bob answers on one, that response is shown to Alice
but is also rendered on Bob's other device. Effectively, we have set up
an IM conference where each of Bob's devices is an independent
participant in the conference. This model is feasible with both session
and pager mode IM; however conferencing works much better overall with
session mode.

A related challenge is conversation history. In the uni-device IM mode,
this past history for a user's conversation may be distributed amongst
the different servers, depending on which clients and servers were
involved in the conversation. As with the exclusive model, IM search
and retrieval services may need to access all of the servers on which a
user might be located. This is easier for the unioned case than the
exclusive one, since in the unioned case, the user's location is on a
fixed number of servers based on provisioning. This problem is even

more complicated in IM page mode when multiple devices are present, due
to the limitation of page mode in these configurations.

8.2. Peer Model TOC

In the peer model, there is no one root. When a watcher subscribes to a
presentity, that subscription is processed first by the server to which
the watcher is connected (effectively acting as the root), and then the
subscription is passed to other child presence servers. The same goes
for IM; when a client sends an IM, the IM is processed first by the
server associated with the sender (effectively acting as the root), and
then the IM is passed to the child IM servers. In essence, in the peer
model, there is a per-client hierarchy, with the root being a function
of the client. Consider the use case in Figure 8 (Unioned Case 1) If
Bob has his buddy list on presence server 1, and it contains Alice,
presence server 1 acts as the root, and then performs a back-end
subscription to presence server 2. However, if Joe has his buddy list
on presence server 2, and his buddy list contains Alice, presence
server 2 acts as the root, and performs a back-end subscription to
presence server 1. Similarly, if Bob sends an IM to Alice, it is
processed first by server 1 and then server 2. If Joe sends an IM to
Alice, it is first processed by server 2 and then server 1. This is
shown in Figure 14 (Peer Model).

alice@example.com alice@example.com

S + Y +
| | <o | | <-mmmeee +
I I I I I
Connect | Server [| Server | |
Alice | 1 [| 2 | Connect |
+---->| [------------- > | | Alice |
I I I I I I
[Fommme e eeaaa + e + |
I \ / I
I \ / I
I \ / I
I \ / I
I \ / I
| \ / I
[t N e /e [t
\ /
\ / Fomemmeaa +
| \ R + |[+------ +|
I I [+------ +|]]
to- -t to- - N N N N
[+-+] [+-+] N N [+------ +|
| +-+] [+-+] [+------ +| Fommmmm - - +
[(. to------- + [mmmn--
(. (. [=----- / [=-----
+---+ +---+ [----=- / .. eeeeaa- /
———————— /
Bob Alice Joe

Figure 14: Peer Model

Whereas the hierarchical model clearly provides the consistency
property, it is not obvious whether a particular deployment of the peer
model provides the consistency property. When policy decision making is
distributed amongst the servers, it ends up being a function of the
composition policies of the individual servers. If Pi() represents the
composition and authorization policies of server i, and takes as input
one or more presence documents provided by its children, and outputs a
presence document, the overall system provides consistency when:

Pi(Pj()) = PI(P1i())

which is effectively the commutativity property.

8.2.1. Routing TOC

Routing in the peer model works similarly to the hierarchical model.
Each server would be configured with the children it has when it acts
as the root. The overall presence routing algorithm then works as
follows:

*If a presence server receives a subscription for a presentity
from a particular watcher, and it already has a different
subscription (as identified by dialog identifiers) for that
presentity from that watcher, it rejects the second subscription
with an indication of a loop. This algorithm does rule out the
possibility of two instances of the same watcher subscribing to
the same presentity.

*If a presence server receives a subscription for a presentity
from a watcher and it doesn't have one yet for that pair, it
processes it and generates back end subscriptions to each
configured child. If a back-end subscription generates an error
due to loop, it proceeds without that back-end input.

The algorithm for IM routing works almost identically.

For example, consider Bob subscribing to Alice. Bob's client is
supported by server 1. Server 1 has not seen this subscription before,
so it acts as the root and passes it to server 2. Server 2 hasn't seen
it before, so it accepts it (now acting as the child), and sends the
subscription to its child, which is server 1. Server 1 has already seen
the subscription, so it rejects it. Now server 2 basically knows it is
the child, and so it generates documents with just its own data.

As in the hierarchical case, it is possible to intermix partitioned and
peer models for different users. In the partitioned case, the routing
for hierarchical devolves into the forking routing described in

Section 6.2.5 (Forking). However, intermixing peer and exclusive
bridging for different users is challenging and is out of scope.

T0C

8.2.2. Policy

The policy considerations for the peer model are very similar to those
of the hierarchical model. However, the root-only policy approach is
non-sensical in the peer model, and cannot be utilized. The distributed
and centralized provisioning approaches apply, and the rules described
above for generating correct results provide correct results in the
peer model as well.

However, the centralized PDP model works particularly well in concert
with the peer model. It allows for consistent policy processing
regardless of the type of rules, and has the benefit of having a single
point of provisioning. At the same time, it avoids the need for
defining and having a single root; indeed there is little benefit for
utilizing the hierarchical model when a centralized PDP is used.
However, the distributed processing model in the peer model eliminates
the problem described in Section 8.1.2.3 (Central Provisioning). The
problem is that composition and authorization policies may be tuned to
the needs of the specific device that is connected. In the hierarchical
model, the wrong server for a particular device may be at the root, and
the resulting presence document poorly suited to the consuming device.
This problem is alleviated in the peer model. The server that is paired
or tuned for that particular user or device is always at the root of
the tree, and its composition policies have the final say in how
presence data is presented to the watcher on that device.

For more discussion regarding policy see Section 9 (More about Policy).

8.2.3. Presence Data TOC

The considerations for presence data and composition in the
hierarchical model apply in the peer model as well. The principle issue
is consistency, and whether the overall presence document for a watcher
is the same regardless of which server the watcher connects from. As
mentioned above, consistency is a property of commutativity of
composition, which may or may not be true depending on the
implementation.

Interestingly, in the use case of Figure 9 (Unioned Case 2), a
particular user only ever has devices on a single server, and thus the
peer and hierarchical models end up being the same, and consistency is
provided.

T0C

8.2.4. Conversation Consistency

The hierarchical and peer models have no impact on the issue of
conversation consistency; the problem exists identically for both
approaches.

9. More about Policy TOC

There are several models that are described in this document that may
create some ambiguity regarding what the subscribing user will see when
the policy is not managed in a centralized way (Section 8.1.2.3
(Central Provisioning), Section 8.1.2.4 (Centralized PDP)).

*Exclusive model - In this case one server may have a certain
policy and the other server may have a different policy. Bob
subscribing one day to server 1 will not be able to see Alice's
presence while he will be able to see her presence when he
subscribes to server 2.

*Hierarchical unioned model - Since only the root will provide the
presence information all the users will see the same presence
information. However, if there are some contradicting rules in
the servers, what the subscriber will see will in most cases be
the strictest and most minimal view and will be dependent on the
hierarchy of the servers in the hierarchical model.

*Peer unioned model - In this case one peer server may have a
certain policy and the other server may have a different policy.
Bob subscribing one day to peer server 1 will not be able to see
Alice's presence while he will be able to see her presence when
he subscribes to peer server 2.

There are several reasons why distributed policy model may needed:

*Adapting policy to the presence server type - The particular
presence server may be adapted to specific type of presence
information and devices. It will be hard or not feasible to
provide a centralized policy for all the types of presence
servers/devices

*A presence server that is part of the intradomain bridging may
not be able to use the centralized policy provisioning since it
does not support this feature.

It is probable that although confusing for users, distributed
provisioning will be used at least in the initial deployments of the

intradomain bridging until standards for central policy provisioning
will be developed and implemented by various presence servers.

10. Acknowledgements TOC

The authors would like to thank Paul Fullarton, David Williams, Sanjay
Sinha, and Paul Kyzivat for their comments. Thanks to Adam Roach, Ben
Campbell Michael Froman, Alan Johanston and Christer Holmberg for their
dedicated review.

11. Security Considerations TOC

While the normal presence and IM protocol (as SIP) mechanisms for
securing presecne and IM should be used, The principle issue in intra-
domain bridging is that of privacy. It is important that the system
meets user expectations, and even in cases of user provisioning errors
or inconsistencies, it provides appropriate levels of privacy. This is
an issue in the unioned models, where user privacy policies can exist
on multiple servers at the same time. The guidelines described here for
authorization policies help ensure that privacy properties are
maintained.

12. IANA Considerations TOC

There are no IANA considerations associated with this specification.

13. Informative References
TOC

[RFC2778] Day, M., Rosenberg, J., and H. Sugano, “A Model for
Presence and Instant Messaging,” RFC 2778,

February 2000 (TXT).

[RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G.,
Johnston, A., Peterson, J., Sparks, R., Handley, M.,
and E. Schooler, “SIP: Session Initiation Protocol,”
RFC 3261, June 2002 (TXT).

[RFC3265] Roach, A., “Session Initiation Protocol (SIP)-
Specific Event Notification,” RFC 3265, June 2002
(TXT).

[RFC3325]

mailto:mday@alum.mit.edu
mailto:jdrosen@dynamicsoft.com
mailto:suga@flab.fujitsu.co.jp
http://tools.ietf.org/html/rfc2778
http://tools.ietf.org/html/rfc2778
http://www.rfc-editor.org/rfc/rfc2778.txt
http://tools.ietf.org/html/rfc3261
http://www.rfc-editor.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc3265
http://tools.ietf.org/html/rfc3265
http://www.rfc-editor.org/rfc/rfc3265.txt

Authors'

[RFC3428]

[RFC3680]

[RFC3856]

[RFC3863]

[RFC3903]

[RFC3944]

[RFC4474]

[RFC4479]

[RFC4662]

[RFC4975]

[RFC5344]

[I-D.ietf-

simple-view-

sharing]

Addresses

Jennings, C., Peterson, J., and M. Watson, “Private
Extensions to the Session Initiation Protocol (SIP)
for Asserted Identity within Trusted Networks,”

RFC 3325, November 2002 (TXT).

Campbell, B., Rosenberg, J., Schulzrinne, H.,
Huitema, C., and D. Gurle, “Session Initiation
Protocol (SIP) Extension for Instant Messaging,”

RFC 3428, December 2002 (TXT).

Rosenberg, J., “A Session Initiation Protocol (SIP)
Event Package for Registrations,” RFC 3680,

March 2004 (TXT).

Rosenberg, J., “A Presence Event Package for the
Session Initiation Protocol (SIP),” RFC 3856,

August 2004 (TXT).

Sugano, H., Fujimoto, S., Klyne, G., Bateman, A.,
Carr, W., and J. Peterson, “Presence Information Data
Format (PIDF),” RFC 3863, August 2004 (TXT).

Niemi, A., “Session Initiation Protocol (SIP)
Extension for Event State Publication,” RFC 3903,
October 2004 (TXT).

Johnson, T., Okubo, S., and S. Campos, “H.350
Directory Services,” RFC 3944, December 2004 (TXT).
Peterson, J. and C. Jennings, “Enhancements for
Authenticated Identity Management in the Session
Initiation Protocol (SIP),” RFC 4474, August 2006
(TXT).

Rosenberg, J., “A Data Model for Presence,” RFC 4479,
July 2006 (TXT).

Roach, A., Campbell, B., and J. Rosenberg, “A Session
Initiation Protocol (SIP) Event Notification
Extension for Resource Lists,” RFC 4662, August 2006
(TXT).

Campbell, B., Mahy, R., and C. Jennings, “The Message
Session Relay Protocol (MSRP),” RFC 4975,

September 2007 (TXT).

Houri, A., Aoki, E., and S. Parameswar, “Presence and
Instant Messaging Peering Use Cases,” RFC 5344,
October 2008 (TXT).

Rosenberg, J., Donovan, S., and K. McMurry,
“Optimizing Federated Presence with View Sharing,”
draft-ietf-simple-view-sharing-02 (work in progress),
November 2008 (TXT).

TOC
Jonathan Rosenberg

http://tools.ietf.org/html/rfc3325
http://tools.ietf.org/html/rfc3325
http://tools.ietf.org/html/rfc3325
http://www.rfc-editor.org/rfc/rfc3325.txt
http://tools.ietf.org/html/rfc3428
http://tools.ietf.org/html/rfc3428
http://www.rfc-editor.org/rfc/rfc3428.txt
http://tools.ietf.org/html/rfc3680
http://tools.ietf.org/html/rfc3680
http://www.rfc-editor.org/rfc/rfc3680.txt
http://tools.ietf.org/html/rfc3856
http://tools.ietf.org/html/rfc3856
http://www.rfc-editor.org/rfc/rfc3856.txt
http://tools.ietf.org/html/rfc3863
http://tools.ietf.org/html/rfc3863
http://www.rfc-editor.org/rfc/rfc3863.txt
http://tools.ietf.org/html/rfc3903
http://tools.ietf.org/html/rfc3903
http://www.rfc-editor.org/rfc/rfc3903.txt
http://tools.ietf.org/html/rfc3944
http://tools.ietf.org/html/rfc3944
http://www.rfc-editor.org/rfc/rfc3944.txt
http://tools.ietf.org/html/rfc4474
http://tools.ietf.org/html/rfc4474
http://tools.ietf.org/html/rfc4474
http://www.rfc-editor.org/rfc/rfc4474.txt
http://tools.ietf.org/html/rfc4479
http://www.rfc-editor.org/rfc/rfc4479.txt
http://tools.ietf.org/html/rfc4662
http://tools.ietf.org/html/rfc4662
http://tools.ietf.org/html/rfc4662
http://www.rfc-editor.org/rfc/rfc4662.txt
http://tools.ietf.org/html/rfc4975
http://tools.ietf.org/html/rfc4975
http://www.rfc-editor.org/rfc/rfc4975.txt
http://tools.ietf.org/html/rfc5344
http://tools.ietf.org/html/rfc5344
http://www.rfc-editor.org/rfc/rfc5344.txt
http://www.ietf.org/internet-drafts/draft-ietf-simple-view-sharing-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-simple-view-sharing-02.txt

Email:
URT:

Email:

Email:

Email:

jdrosen.net

Monmouth, NJ

us

jdrosen@jdrosen.net
http://www.jdrosen.net

Avshalom Houri

IBM

Science Park, Rehovot
Israel
avshalom@il.ibm.com

Colm Smyth

Avaya

Dublin 18, Sandyford Business Park
Ireland

smythc@avaya.com

Francois Audet
Skype
francois.audet@skype.net

mailto:jdrosen@jdrosen.net
http://www.jdrosen.net
mailto:avshalom@il.ibm.com
mailto:smythc@avaya.com
mailto:francois.audet@skype.net

	Models for Intra-Domain Presence and Instant Messaging (IM) Bridgingdraft-ietf-simple-intradomain-federation-05
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Intra-Domain Bridging vs. Clustering
	3. Use Cases for Intra-Domain Bridging
	3.1. Scale
	3.2. Organizational Structures
	3.3. Multi-Vendor Requirements
	3.4. Specialization
	4. Considerations for Bridging Models
	5. Overview of the Models
	6. Partitioned
	6.1. Applicability
	6.2. Routing
	6.2.1. Centralized Database
	6.2.2. Routing Proxy
	6.2.3. Subdomaining
	6.2.4. Peer-to-Peer
	6.2.5. Forking
	6.2.6. Provisioned Routing
	6.3. Policy
	6.4. Presence Data
	6.5. Conversation Consistency
	7. Exclusive
	7.1. Routing
	7.1.1. Centralized Database
	7.1.2. Routing Proxy
	7.1.3. Subdomaining
	7.1.4. Peer-to-Peer
	7.1.5. Forking
	7.2. Policy
	7.3. Presence Data
	7.4. Conversation Consistency
	8. Unioned
	8.1. Hierarchical Model
	8.1.1. Routing
	8.1.2. Policy and Identity
	8.1.2.1. Root Only
	8.1.2.2. Distributed Provisioning
	8.1.2.3. Central Provisioning
	8.1.2.4. Centralized PDP
	8.1.3. Presence Data
	8.1.4. Conversation Consistency
	8.2. Peer Model
	8.2.1. Routing
	8.2.2. Policy
	8.2.3. Presence Data
	8.2.4. Conversation Consistency
	9. More about Policy
	10. Acknowledgements
	11. Security Considerations
	12. IANA Considerations
	13. Informative References
	Authors' Addresses

