
Internet Engineering Task Force SIMPLE WG
Internet Draft J.Rosenberg
 dynamicsoft
 B.Campbell
 dynamicsoft
draft-ietf-simple-presencelist-package-00.txt
June 24, 2002
Expires: December 2002

A SIP Event Package for List Presence

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Abstract

 This document presents a SIP event package for subscribing to a list
 of presentities. Instead of the subscriber sending a SUBSCRIBE to
 each presentity individually, the subscriber can subscribe to their
 presence list as a whole, and then receive notifications when the
 state of any of the presentities on the list changes.

J.Rosenberg et. al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-simple-presencelist-package-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft Presence list package June 24, 2002

 Table of Contents

1 Introduction .. 3
2 Overview of Operation 4
3 Event Package for "presencelist" 5
3.1 Event Package Name 6
3.2 Event Package Parameters 6
3.3 SUBSCRIBE Bodies 6
3.4 Subscription Duration 6
3.5 NOTIFY Bodies 7
3.6 Notifier Processing of SUBSCRIBE Requests 7
3.7 Notifier Generation of NOTIFY Requests 8
3.8 Subscriber Processing of NOTIFY Requests 8
3.9 Handling of Forked Requests 9
3.10 Rate of Notifications 9
3.11 State Agents .. 9
4 Presence List Information Data Format 10
4.1 Constructing Coherent Presence State 11
4.2 Example ... 12
4.3 XML Schema .. 12
5 Security Considerations 13
6 IANA Considerations 13
6.1 application/cpim-plidf+xml MIME Registration 13

 6.2 URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:plidf 14

7 Author's Addresses 15
8 Normative References 15
9 Informative References 16

J.Rosenberg et. al. [Page 2]

Internet Draft Presence list package June 24, 2002

1 Introduction

 The SIP for presence specification [1] allows a user (the subscriber)
 to request to be notified of changes in the presence state of a
 particular user (the presentity) [12]. This is accomplished by having
 the subscriber generate a SUBSCRIBE request for the presentity, which
 is processed at a presence agent in the domain of the presentity.
 Typically, a subscriber has a collection of presentities they are
 interested in. This collection is called a "presence list", and
 typically has anywhere from a few to even a hundred members.

 For environments where bandwidth is limited, such as a wireless
 network, subscribing to each presentity individually is problematic.
 The specific problems are:

 o It generates substantial message traffic, in the form of the
 initial SUBSCRIBE requests for each presentity, and the
 refreshes of each individual subscription.

 o The presence agent may insist on low refresh intervals, in
 order to avoid long lived subscription state. This means that
 the subscriber may need to generate subscriptions faster than
 it would like to, or has the capacity to.

 o The presence agent may generate NOTIFY requests more rapidly
 than the subscriber desires, causing NOTIFY traffic at a
 greater volume than is desired by the subscriber.

 o If a subscriber has only intermittent connectivity, and
 generally polls for presence rather than simply subscribing,
 the latency to obtain the presence state of the entire
 presence list can be large. The messaging required for each
 poll can also be substantial.

 To solve these problems, this specification defines a presence list
 event package. A presence list is identified by a SIP URI [2], and it
 represents a list of zero or more URIs. Each of those URIs, in turn,
 is either a presentity, or another presence list. The state of the
 presence list is the presence state of the list of presentities at
 the leaves of the tree defined by the URI. As a result, instead of
 subscribing to each presentity, a subscriber can subscribe to the
 presence list, and obtain the same information.

 The notifier for the presence list package is called a "presence list
 server", or PLS. In order to determine the state of the entire list,
 the PLS will typically generate a presence list or presence
 subscription to each element of the list.

J.Rosenberg et. al. [Page 3]

Internet Draft Presence list package June 24, 2002

 The presence list may exist within the domain of the subscriber, but
 it can also exist within a third party domain.

 The first section provides more detail on the operation of the PLS,
 and the second section defines the event package for presence list
 subscriptions.

2 Overview of Operation

 This section provides an overview of the typical mode of operation of
 this event package. It is not normative.

 When a user wishes to subscribe to the presence of a list of
 presentities, they create a presence list. This presence list is
 represented by a SIP URI. The list contains a set of URIs, each of
 which is either another list or a presentity. The presence list can
 exist at any domain. Typically, the user who creates the list (and
 subsequently subscribes to it) will have a trust relationship with
 the domain that hosts the list. The specific means by which the list
 is created and maintained is outside of the scope of this
 specification. The list could be manipulated through a web page,
 through a voice response system, or through some protocol.

 To learn the presence state of the set of elements on the list, the
 user sends a single SUBSCRIBE request targeted to the URI of the
 list. This will be routed to a PLS for that URI. The PLS acts as a
 notifier, authenticates the subscriber, and accepts the subscription.
 In order to provide the subscriber with the presence state of the
 presentities on the list, the PLS itself will subscribe to each
 element on the list, using the presence list event package. If the
 subscription is rejected because that package is not supported, the
 list element is a presentity, and not another list, and it can
 therefore fall back to a regular presence subscription. Since the PLS
 is acting on behalf of the user, it will provide the identity of the
 user in the From field. If the presentities require credentials in
 order to accept the subscription, the user will have had to provide
 them to the PLS ahead of time. This requires a trust relationship
 between the user and PLS.

 As notifications arrive from individual presentities, the PLS accepts
 them, extracts the presence information, and generates a notification
 to the subscriber. The PLS can, at its discretion, buffer
 notifications that it receives, and send the presence information to
 the subscriber in batches, rather than individually. This allows the
 PLS to provide rate limiting for the subscriber.

 As an example, consider a presence list with two presentities,

J.Rosenberg et. al. [Page 4]

Internet Draft Presence list package June 24, 2002

 Joe PLS User A User B
 | | | |
 |(1) SUBSCRIBE | | |
 | list | | |
 |---------------->| | |
 |(2) 200 OK | | |
 |<----------------| | |
 |(3) NOTIFY | | |
 |<----------------| | |
 |(4) 200 OK | | |
 |---------------->| | |
 | |(5) SUBSCRIBE a | |
 | |---------------->| |
 | |(6) SUBSCRIBE b | |
 | |---------------------------------->|
 | |(7) 200 OK | |
 | |<----------------| |
 | |(8) 200 OK | |
 | |<----------------------------------|
 | |(9) NOTIFY | |
 | |<----------------| |
 | |(10) 200 OK | |
 | |---------------->| |
 |(11) NOTIFY | | |
 | a's state | | |
 |<----------------| | |
 |(12) 200 OK | | |
 |---------------->| | |
 | |(13) NOTIFY | |
 | |<----------------------------------|
 | |(14) 200 OK | |
 | |---------------------------------->|
 |(15) NOTIFY | | |
 | b's state | | |
 |<----------------| | |
 |(16) 200 OK | | |
 |---------------->| | |

 Figure 1: Typical Package Usage

 sip:userA@a.com and sip:userB@b.com. A typical flow for a
 subscription to this presence list is shown in Figure 1.

3 Event Package for "presencelist"

J.Rosenberg et. al. [Page 5]

Internet Draft Presence list package June 24, 2002

 The following subsections formally define the presence list event
 package, following the requirements defined by the SIP events
 framework [3].

3.1 Event Package Name

 The name of this event package is "presencelist".

 The following is the information needed to register this event
 package with IANA:

 Package Name: presencelist

 Type: package

 Contact: Jonathan Rosenberg, jdrosen@dynamicsoft.com

 Reference: RFC XXXX [[Note to RFC Editor: replace with the RFC
 number for this specification]]

 OPEN ISSUE: We could potentially make this a template
 package. In template form, it would represent a
 "collection" template, that allows you to subscribe to a
 list of -something-, where -something- has an event
 package. In the case of presence, the subscription would be
 for presence.collection.

3.2 Event Package Parameters

 This specification does not define any parameters in the Event header
 for this package.

3.3 SUBSCRIBE Bodies

 The SUBSCRIBE message MAY contain a body whose purpose is to define
 filters on the operation of the buddylist. These filters would
 include any rate limitation desired for the notifications, or any
 aggregation that is desired. There is no default or mandatory body
 type defined for this purpose.

3.4 Subscription Duration

 Since the primary benefit of the buddy list server is to reduce the
 overall messaging volume to a handset, it is RECOMMENDED that the
 subscription duration to a buddylist be reasonably long. The default,
 when no duration is specified, is two hours. That reduces the need to
 refresh too frequently. Of course, the standard techniques [3] can be

J.Rosenberg et. al. [Page 6]

Internet Draft Presence list package June 24, 2002

 used to increase or reduce this amount.

3.5 NOTIFY Bodies

 There are two mandatory-to-implement body types for this package.

 The first mandatory-to-implement body type in notifications is
 application/cpim-plidf+xml. This type is defined in Section 4 of this
 specification. It is almost identical to the presence data format
 [4], but allows for lists of presenties, rather than a single one.
 All implementors of this package MUST support this type.

 The second mandatory-to-implement body type in notifications is
 application/cpim-pidf+xml [4]. The PIDF format only supports
 information for a single presentity. Therefore, its usage is limited
 to notifications that report a change in state for a single
 presentity. It is mandated in order to facilitate operation of the
 PLS. The PLS can simply pass on any presence documents it receives
 from the presentities in a notification, without modification.

 An implementation compliant to this specification MAY support the
 multipart/mixed type. As described in [4], this allows a notification
 to contain multiple presence documents. This type, like
 application/cpim-pidf+xml, can only be used in notifications that
 report changes in state, not full state. This is described in more
 detail in Section 4.1.

 OPEN ISSUE: It seems like there are two many choices here.
 Eliminating pidf and multipart/mixed will require PLS to
 generate their own documents, which would result in the
 loss of end-to-end signatures. The other alternative is to
 eliminate plidf, which is needed for partial state updates.

 The absence of an Accept header in the SUBSCRIBE indicates support
 for both application/cpim-pidf+xml and application/cpim-plidf+xml. If
 an Accept header is present, both these types MUST be included, in
 additional to any other types supported by the client.

3.6 Notifier Processing of SUBSCRIBE Requests

 All subscriptions for buddy lists SHOULD be authenticated. The use of
 the SIP HTTP Digest mechanism [2] over TLS is RECOMMENDED.

 Once authenticated, the subscription is authorized. Typically, each
 presence list is associated with a particular user (the one who
 created it and manages the set of elements in it), and only that user
 will be allowed to subscribe. Of course, there may be exceptions to

J.Rosenberg et. al. [Page 7]

Internet Draft Presence list package June 24, 2002

 this rule, and a notifier MAY use any authorization policy it
 chooses.

3.7 Notifier Generation of NOTIFY Requests

 This specification leaves the choice about how and when to generate
 NOTIFY requests at the discretion of the implementor. One of the
 value propositions of the PLS is the means by which it aggregates,
 rate limits, or optimizes the way in which notifications are
 generated.

 As a baseline behavior, if the PLS acts as a subscriber to determine
 the state of the presentities on the buddy list, it MAY generate a
 NOTIFY to the PLS subscriber whenever it receives a NOTIFY about a
 state change in one or more presentities. The body of the NOTIFY,
 assuming it's application/cpim-pidf+xml, would merely be copied from
 that NOTIFY into the NOTIFY sent by the PLS to the subscriber. If a
 subscription to a presentity is refused, the BLSS MAY generate a new
 presence document for that presentity, setting its status to
 "subscription refused", and then pass that NOTIFY to the subscriber.
 This would give the subscriber a visual clue that its subscription
 was refused, and that the presentity should probably be removed from
 the buddy list.

 OPEN ISSUE: This seems insufficient. There should probably
 be an explicit way to indicate that the subscription to a
 specific presentity has been refused. More generally, there
 should be an explicit way to pass information on the
 subscription states to particular presentities. Perhaps an
 additional element in application/cpim-plidf+xml.

 Immediate notifications triggered as a result of a SUBSCRIBE SHOULD
 result in the full state of all presentities to be present in the
 NOTIFY. This allows the subscriber to refresh their state, and to
 recover from lost notifications.

3.8 Subscriber Processing of NOTIFY Requests

 The SIP Events framework expects packages to specify how a subscriber
 processes NOTIFY requests in any package specific ways, and in
 particular, how it uses the NOTIFY requests to contruct a coherent
 view of the state of the subscribed resource.

 Notifications within this package can convey partial information;
 that is, they can indicate information about a subset of the state
 associated with the subscription. This means that an explicit
 algorithm needs to be defined in order to construct coherent and

J.Rosenberg et. al. [Page 8]

Internet Draft Presence list package June 24, 2002

 consistent state. The details of this mechanism are specific to the
 particular document type. See Section 4.1 for information on
 constructing coherent information from an application/cpim-plidf+xml
 document. If the document received is an application/cpim-pidf+xml
 document, the procedures of Section 4.1 are followed, as if it was a
 plidf document, with a version one higher than the current version,
 and a state of partial.

 OPEN ISSUE: This implies that version numbers of the
 documents are shared across pidf and plidf. Is that what we
 want?

 If the document received is of type multipart/mixed, the procedures
 of Section 4.1 are followed, as if it was an plidf document, with a
 version one higher than the previous version, and a state of partial.

3.9 Handling of Forked Requests

 Forking makes little sense with this event package, since the whole
 idea is a centralization of the source of notifications. Therefore, a
 subscriber MUST create just a single dialog as a result of a single
 subscription request, using the techniques described in [3].

3.10 Rate of Notifications

 One potential role of the PLS is to perform rate limitations on
 behalf of the subscriber. As such, this specification does not
 mandate any particular rate limitation, and rather leaves that to the
 discretion of the implementation.

3.11 State Agents

 Effectively, a presence list server is nothing more than a state
 agent for the presence event type. A separate event package is needed
 because of the differing body types which can be used in NOTIFY, and
 the need to construct complete state from the partial notifications.
 Furthermore, there are differing values of the subscription interval,
 differing recommendations on rate limitation, and so on.

 The usage of the PLS does introduce some security considerations. The
 end user is no longer the direct subscriber to the presence state of
 the presentity. If the PA for the presentity demands end-to-end
 authentication, the PLS will need to be provided the shared secrets
 for those presentities (assuming Digest is used). This requires a
 certain level of trust between the user and their PLS. This
 specification does not describe any particular means of uploading the
 shared secret for a particular subscriber to the PLS. However, that

J.Rosenberg et. al. [Page 9]

Internet Draft Presence list package June 24, 2002

 upload mechanism MUST ensure privacy of the key data; using HTTPS to
 fill out a form is a reasonable method.

 If the PA for the presentity is using a transitive trust to validate
 the subscriber, then this works well with the PLS concept. The PLS
 would authenticate the subscriber, and then MAY use the SIP
 extensions for network asserted identity [5] [6] to provide an
 authenticated identity to the PA.

4 Presence List Information Data Format

 Presence list information is an XML document [7] that MUST be well-
 formed and SHOULD be valid. Presence list documents MUST be based on
 XML 1.0 and MUST be encoded using UTF-8. This specification makes use
 of XML namespaces for identifying presence list documents and
 document fragments. The namespace URI for elements defined by this
 specification is a URN [8], using the namespace identifier 'ietf'
 defined by [9] and extended by [10]. This URN is:

 urn:ietf:params:xml:ns:cpim-plidf

 A presence list information document begins with the root element tag
 "presence-list". It consists of any number of "presence" sub-
 elements, each of which is describes a particular presentity. The
 "presence" element is defined in [4]. Elements from different
 namespaces MAY be present for the purposes of extensibility; elements
 or attributes from unknown namespaces MUST be ignored. There are
 three attributes associated with the "presence-list" element, all of
 which MUST be present:

 version: This attribute allows the recipient of presence list
 documents to properly order them. Versions start at 0, and
 increment by one for each new document sent to a
 subscriber. Versions are scoped within a subscription.
 Versions MUST be representable using a 32 bit integer.

 state: This attribute indicates whether the document contains
 the full presence list state, or whether it contains only
 information on those presentities which have changed since
 the previous document (partial).

 entity: This attribute contains a URI that identifies the
 presence list whose information is reported in the
 remainder of the document.

J.Rosenberg et. al. [Page 10]

Internet Draft Presence list package June 24, 2002

4.1 Constructing Coherent Presence State

 The presence list subscriber maintains a table for each presence
 list. The table contains a row for each presentity in the presence
 list. Each row is indexed by the URI for that presentity. That URI is
 obtained from the entity attribute of the "presence" element. The
 contents of each row contain the state of that presentity as conveyed
 in the presence document. The table is also associated with a version
 number. The version number MUST be initialized with the value of the
 "version" attribute from the "presence-list" element in the first
 document received. Each time a new document is received, the value of
 the local version number, and the "version" attribute in the new
 document, are compared. If the value in the new document is one
 higher than the local version number, the local version number is
 increased by one, and the document is processed. If the value in the
 document is more than one higher than the local version number, the
 local version number is set to the value in the new document, the
 document is processed, and the watcherinfo subscriber SHOULD generate
 a refresh request to trigger a full state notification. If the value
 in the document is less than the local version, the document is
 discarded without processing.

 The processing of the presence list document depends on whether it
 contains full or partial state. If it contains full state, indicated
 by the value of the "state" attribute in the "presence-list" element,
 the contents of the presence-list table are flushed. They are
 repopulated from the document. A new row in the table is created for
 each "presence" element. If the presence list document contains
 partial state, as indicated by the value of the "state" attribute in
 the "presence-list" element, the document is used to update the
 table. For each "presence" element in the document, the subscriber
 checks to see whether a row exists for that presentity. This check is
 done by comparing the URI in the "entity" attribute of the "presence"
 element with the URI associated with the row. If the presentity
 doesn't exist in the table, a row is added, and its state is set to
 the information from that "presence" element. If the presentity does
 exist, its state is updated to be the information from that
 "presence" element. If a row is updated or created, such that its
 state is now terminated, that entry MAY be removed from the table at
 any time.

 OPEN ISSUE: There is currently nothing that would indicate
 that the state of a presentity is "terminated"; this
 doesn't mean the user has been terminated (!), but rather,
 that the subscription from the PLS to the presentity has
 been terminated.

J.Rosenberg et. al. [Page 11]

Internet Draft Presence list package June 24, 2002

4.2 Example

 The following is an example presence list document:

 <?xml version="1.0"?>
 <list:presence-list entity="sip:myfriends@example.com"
 version="1"
 state="full"
 xmlns:list="urn:ietf:params:xml:ns:cpim-plidf"
 xmlns:impp="urn:ietf:params:xml:ns:cpim-pidf">
 <impp:presence entity="sip:someone@example.com">
 <impp:tuple id="mobile-phone">
 <impp:status>
 <impp:basic>open</impp:basic>
 </impp:status>
 <impp:contact priority="0.8">tel:09012345678</impp:contact>
 </impp:tuple>
 </impp:presence>
 </list:presence-list>

4.3 XML Schema

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:cpim-plidf"
 xmlns:tns="urn:ietf:params:xml:ns:cpim-plidf">
 <xs:import namespace="urn:ietf:params:xml:ns:cpim-pidf"
 schemaLocation="TBD"/>
 <xs:element name="presence-list">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="cpim-pidf:presence" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:nonNegativeInteger"
 use="required"/>
 <xs:attribute name="state" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="full"/>
 <xs:enumeration value="partial"/>
 </xs:restriction>

J.Rosenberg et. al. [Page 12]

Internet Draft Presence list package June 24, 2002

 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="entity" type="xs:anyURI" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:schema>

 OPEN ISSUE: In order to properly import the PIDF schema, it
 needs to have a well defined location. This presumably
 requires PIDF to have registered its schema with IANA, but
 it currently does not.

5 Security Considerations

 This package does introduce some security considerations, which are
 discussed in Section 3.11.

 OPEN ISSUE: Need to discuss the security issues with the
 choice of document formats; i.e., multipart/mixed vs.
 application/cpim-plidf+xml and their impact on end-to-end
 security.

6 IANA Considerations

 This document registers a new MIME type, application/cpim-plidf+xml
 and registers a new XML namespace.

6.1 application/cpim-plidf+xml MIME Registration

 MIME media type name: application

 MIME subtype name: cpim-plidf+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml
 as specified in RFC 3023 [11].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [11].

 Security considerations: See Section 10 of RFC 3023 [11] and
Section 5 of this specification.

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

J.Rosenberg et. al. [Page 13]

Internet Draft Presence list package June 24, 2002

 Interoperability considerations: none.

 Published specification: This document.

 Applications which use this media type: This document type has
 been used to support subscriptions to lists of
 presentities.

 Additional Information:

 Magic Number: None

 File Extension: .plidf or .xml

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, <jdrosen@jdrosen.net>

 Intended usage: COMMON

 Author/Change controller: The IETF.

6.2 URN Sub-Namespace Registration for urn:ietf:params:xml:ns:plidf

 This section registers a new XML namespace, as per the guidelines in
 [10].

 URI: The URI for this namespace is urn:ietf:params:xml:ns:plidf

 Registrant Contact: IETF, SIMPLE working group,
 <simple@mailman.dynamicsoft.com>, Jonathan Rosenberg
 <jdrosen@jdrosen.net>.

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Presence List Information Namespace</title>
 </head
 <body>
 <h1>Namespace for Presence List Information</h1>

J.Rosenberg et. al. [Page 14]

Internet Draft Presence list package June 24, 2002

 <h2>application/cpim-plidf+xml</h2>
 <p>See RFCXXXX.</p>
 </body>
 </html>
 END

7 Author's Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Ben Campbell
 dynamicsoft
 5100 Tennyson Parkway
 Suite 1200
 Plano, Texas 75024
 email: bcampbell@dynamicsoft.com

8 Normative References

 [1] J. Rosenberg, "Session initiation protocol (SIP) extensions for
 presence," Internet Draft, Internet Engineering Task Force, May 2002.
 Work in progress.

 [2] J. Rosenberg, H. Schulzrinne, et al. , "SIP: Session initiation
 protocol," Internet Draft, Internet Engineering Task Force, Feb.
 2002. Work in progress.

 [3] A. Roach, "SIP-specific event notification," Internet Draft,
 Internet Engineering Task Force, Mar. 2002. Work in progress.

 [4] H. Sugano, S. Fujimoto, et al. , "Common presence and instant
 messaging (CPIM)presence information data format," Internet Draft,
 Internet Engineering Task Force, May 2002. Work in progress.

 [5] C. Jennings, J. Peterson, and M. Watson, "Private extensions to
 the session initiation protocol (SIP) for asserted identity within
 trusted networks," Internet Draft, Internet Engineering Task Force,
 June 2002. Work in progress.

J.Rosenberg et. al. [Page 15]

Internet Draft Presence list package June 24, 2002

 [6] J. Peterson, "Enhancements for authenticated identity management
 in the session initiation protocol (SIP)," Internet Draft, Internet
 Engineering Task Force, Apr. 2002. Work in progress.

 [7] W. W. W. C. (W3C), "Extensible markup language (xml) 1.0." The
 XML 1.0 spec can be found at http://www.w3.org/TR/1998/REC-xml-

19980210.

 [8] R. Moats, "URN syntax," RFC 2141, Internet Engineering Task
 Force, May 1997.

 [9] R. Moats, "A URN namespace for IETF documents," RFC 2648,
 Internet Engineering Task Force, Aug. 1999.

 [10] M. Mealling, "The IANA XML registry," Internet Draft, Internet
 Engineering Task Force, Nov. 2001. Work in progress.

 [11] M. Murata, S. S. Laurent, and D. Kohn, "XML media types," RFC
3023, Internet Engineering Task Force, Jan. 2001.

9 Informative References

 [12] M. Day, J. Rosenberg, and H. Sugano, "A model for presence and
 instant messaging," RFC 2778, Internet Engineering Task Force, Feb.
 2000.

 Full Copyright Statement

 Copyright (c) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/rfc2648
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc2778

J.Rosenberg et. al. [Page 16]

Internet Draft Presence list package June 24, 2002

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J.Rosenberg et. al. [Page 17]

