
SIMPLE J. Rosenberg
Internet-Draft dynamicsoft
Expires: August 15, 2004 February 15, 2004

The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP)

draft-ietf-simple-xcap-02

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 15, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This specification defines the Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP). XCAP allows a client to read,
 write and modify application configuration data, stored in XML format
 on a server. XCAP is not a new protocol. XCAP maps XML document
 sub-trees and element attributes to HTTP URIs, so that these
 components can be directly accessed by HTTP.

Rosenberg Expires August 15, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XCAP February 2004

Table of Contents

1. Introduction . 4
2. Overview of Operation 5
3. Terminology . 6
4. Application Usages . 7
4.1 Application Usage ID (AUID) 7
4.2 Data Validation . 7
4.3 Data Semantics . 8
4.4 Naming Conventions . 8
4.5 Data Interdependencies 8
4.6 Authorization Policies 8
4.7 Data Extensibility . 9
4.7.1 XML Schema . 10
4.8 Documenting Application Usages 10
5. URI Construction . 11
5.1 Identifying the XML Document 11
5.2 Identifying the XML Nodes 12
6. Client Operations . 15
6.1 Create or Replace a Document 15
6.2 Delete a Document . 15
6.3 Fetch a Document . 15
6.4 Create or Replace an Element 16
6.5 Delete an Element . 17
6.6 Fetch an Element . 17
6.7 Create or Replace an Attribute 17
6.8 Delete an Attribute 18
6.9 Fetch an Attribute . 18
6.10 Read/Modify/Write Transactions 19
6.11 Reading Server Assigned Data 19
7. Server Behavior . 21
7.1 POST Handling . 21
7.2 PUT Handling . 22
7.2.1 Detailed Conflict Reports 23
7.2.1.1 XML Schema . 25
7.3 GET Handling . 27
7.4 DELETE Handling . 28
7.5 Managing Etags . 28
8. Examples . 30
9. Security Considerations 33
10. IANA Considerations 34
10.1 XCAP Application Usage IDs 34
10.2 application/xml-fragment-body MIME Type 34
10.3 application/xml-attribute-value MIME Type 35
10.4 application/xcap-error+xml MIME Type 36

 10.5 URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:xcap-must-understand 37
 10.6 URN Sub-Namespace Registration for

Rosenberg Expires August 15, 2004 [Page 2]

Internet-Draft XCAP February 2004

 urn:ietf:params:xml:ns:xcap-error 38
10.7 XCAP Error Schema Registration 38
10.8 XCAP Mandatory Namespace Schema Registration 39
11. Acknowledgements . 40

 Normative References 41
 Informative References 43
 Author's Address . 44
 Intellectual Property and Copyright Statements 45

Rosenberg Expires August 15, 2004 [Page 3]

Internet-Draft XCAP February 2004

1. Introduction

 In many communications applications, such as Voice over IP, instant
 messaging, and presence, it is necessary for network servers to
 access per-user information in the process of servicing a request.
 This per-user information resides within the network, but is managed
 by the end user themselves. Its management can be done through a
 multiplicity of access points, including the web, a wireless handset,
 or a PC application.

 Examples of per-user information are presence [17] authorization
 policy and presence lists. Presence lists are lists of users whose
 presence is desired by a watcher. One way to obtain presence
 information for the list of is to subscribe to a resource which
 represents that list [20]. In this case, the Resource List Server
 (RLS) requires access to this list in order to process a SIP
 [15]SUBSCRIBE [25] request for it. Another way to obtain presence for
 the users on the list is for a watcher to subscribe to each user
 individually. In that case, it is convenient to have a server store
 the list, and when the client boots, it fetches the list from the
 server. This would allow a user to access their resource lists from
 different clients.

 Requirements for manipulation of presence lists and authorization
 policies have been specified by the SIMPLE working group [21].

 This specification describes a protocol that can be used to
 manipulate this per-user data. It is called the Extensible Markup
 Language (XML) Configuration Access Protocol (XCAP). XCAP is not a
 new protocol. Rather, it is a set of conventions for mapping XML
 documents and document components into HTTP URIs, rules for how the
 modification of one resource affects another, data validation
 constraints, and authorization policies associated with access to
 those resources. Because of this structure, normal HTTP primitives
 can be used to manipulate the data. XCAP is based heavily on ideas
 borrowed from the Application Configuration Access Protocol (ACAP)
 [23], but it is not an extension of it, nor does it have any
 dependencies on it. Like ACAP, XCAP is meant to support the
 configuration needs for a multiplicity of applications, rather than
 just a single one.

Rosenberg Expires August 15, 2004 [Page 4]

Internet-Draft XCAP February 2004

2. Overview of Operation

 Each application that makes use of XCAP specifies an application
 usage (Section 4). This application usage defines the XML schema [2]
 for the data used by the application, along with other key pieces of
 information. The principal task of XCAP is to allow clients to read,
 write, modify, create and delete pieces of that data. These
 operations are supported using HTTP 1.1 [5]. An XCAP server acts as a
 repository for collections of XML documents. There will be documents
 stored for each application. Within each application, there are
 documents stored for each user. Each user can have a multiplicity of
 documents for a particular application. To access some component of
 one of those documents, XCAP defines an algorithm for constructing a
 URI that can be used to reference that component. Components refer to
 any subtree of the document, or any attribute for any element within
 the document. Thus, the HTTP URIs used by XCAP point to pieces of
 information that are finer grained than the XML document itself.

 With a standardized naming convention for mapping components of XML
 documents to HTTP URIs, the basic operations for accessing the data
 are provided by existing HTTP primitives. Reading one of the
 components is accomplished with HTTP GET, creating or modifying one
 of the components is done with an HTTP PUT, and removing one of the
 components is done with an HTTP DELETE. To provide atomic read/
 modify/write operations, HTTP entity tags are used.

Rosenberg Expires August 15, 2004 [Page 5]

Internet-Draft XCAP February 2004

3. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [6] and
 indicate requirement levels for compliant implementations.

Rosenberg Expires August 15, 2004 [Page 6]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft XCAP February 2004

4. Application Usages

 A central concept in XCAP is that of an application usage. An
 application usage defines the way in which a specific application
 makes use of XCAP.

4.1 Application Usage ID (AUID)

 Each application usage is associated with a name, called an AUID.
 This name uniquely identifies the application usage, and is different
 from all other AUIDs. AUIDs exist in one of two namespaces. The first
 namespace is the IETF namespace. This namespace contains a set of
 tokens, each of which is registered with IANA. These registrations
 occur with the publication of standards track RFCs [24] based on the
 guidelines in Section 10. The second namespace is the
 vendor-proprietary namespace. Each AUID in that namespace is prefixed
 with the reverse domain name name of the organization creating the
 AUID, followed by a period, followed by any vendor defined token. As
 an example, the example.com domain can create an AUID with the value
 "com.example.foo" but cannot create one with the value
 "org.example.foo". AUIDs within the vendor namespace do not need to
 be registered with IANA. The vendor namespace is also meant to be
 used in lab environments where no central registry is needed. The
 syntax for AUIDs, expressed in ABNF [11] (and using some of the BNF
 defined in RFC 2396 [12]) is:

 AUID = global-auid / vendor-auid
 global-auid = auid
 auid = alphanum / mark
 vendor-auid = rev-hostname "." auid
 rev-hostname = toplabel *("." domainlabel)
 domainlabel = alphanum
 / alphanum *(alphanum / "-") alphanum
 toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum

4.2 Data Validation

 One of the responsibilities of the server is to validate the data
 generated by the client. This is done using two mechanisms. Firstly,
 all application usages MUST describe their document contents using
 XML schema [2]. Unfortunately, XML schemas cannot represent every
 form of data constraint. As an example, one XML element may contain
 an integer which defines the maximum number of instances of another
 element. This constraint cannot be represented with XML schema.
 However, such constraints may be important to the application usage.
 The application usage defines any additional constraints beyond those

https://datatracker.ietf.org/doc/html/rfc2396

Rosenberg Expires August 15, 2004 [Page 7]

Internet-Draft XCAP February 2004

 in the schema.

4.3 Data Semantics

 For each application usage, the data present in the XML document has
 a well defined semantic. The application usage defines that semantic,
 so that a client can properly construct a document in order to
 achieve the desired result.

4.4 Naming Conventions

 In addition to defining the meaning of the document in the context of
 a particular application, and application usage has to specify how
 elements in that application obtain the various documents necessary
 for operation of that application. In particular, what the relevant
 URIs are that point to documents used by the application.

 As an example, one application that can make use of XCAP is a SIP
 event list subscription [20]. In this application, an entity is
 defined called a Resource List Server (RLS). When the RLS receives a
 subscription to a SIP URI that represents a list, it "expands" the
 list and subscribes to its members. The XCAP resource list
 application usage [22] specifies how the RLS uses XCAP to find the
 XML document that defines the contents of the list.

 These conventions are defined as naming conventions.

4.5 Data Interdependencies

 In many cases, when a user modifies an XCAP resource, other data
 managed by the server needs to change as well. Such interdependencies
 are application usage dependent. As an example, when a user performs
 a PUT operation to create a new presence list, the server may need to
 fill in the URI associated with that list. These interdependencies
 need to be specified by the application usage.

4.6 Authorization Policies

 By default, an XCAP server will only allow a user to access (read,
 write, delete or modify) their own documents. The application usage
 can specify differing default authorization policies. An application
 usage can also specify whether another application usage is used to
 define the authorization policies. An application usage for setting
 authorization policies can also be defined subsequent to the
 definition of the the main application usage. In such a case, the
 main application usage needs only to specify that such a usage will
 be defined in the future.

Rosenberg Expires August 15, 2004 [Page 8]

Internet-Draft XCAP February 2004

4.7 Data Extensibility

 An XCAP server MUST understand an application usage in order to
 process an HTTP request made against a resource for that particular
 application usage. However, it is not required for the server to
 understand all of the contents of a document used by an application
 usage. A server is required to understand the baseline schema defined
 by the application usage. However, those schemas can define points of
 extensibility where new content can be added from other namespaces
 and corresponding schemas. Sometimes, the server will understand
 those namespaces and therefore have access to their schemas.
 Sometimes, it will not.

 A server MUST allow for documents that contain elements from
 namespaces not known to the server. In such a case, the server cannot
 validate that such content is schema compliant; it will only verify
 that the XML is well-formed.

 Unfortunately, it may be the case that a client needs the server to
 understand these new namespaces in order to process a document. This
 will be the case when the new content contains data interdependcies
 that the server has to understand. To allow for this, this
 specification defines an XML element called "mandatory-ns". A server
 will look for the presence of this element as the child of the root
 node of any document. If it finds it, the server will make sure that
 it is familiar with any namespaces (and their corresponding schemas)
 listed there.

 The implication is that the schema for all XCAP application usages
 MUST allow for the "mandatory-ns" element to be present as a child of
 the root node of any document. This can be done by explicitly
 importing its namespace and including it in the schema, or allowing
 elements from other namespaces to be present in the schema as
 children of the root node.

Rosenberg Expires August 15, 2004 [Page 9]

Internet-Draft XCAP February 2004

4.7.1 XML Schema

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema
 targetNamespace="urn:ietf:params:xml:ns:xcap-must-understand"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="urn:ietf:params:xml:ns:xcap-must-understand"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="mandatory-ns">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ns" type="xs:anyURI" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

4.8 Documenting Application Usages

 Application usages are documented in specifications which convey the
 information described above. In particular, an application usage
 specification MUST provide the following information:

 Application Usage ID (AUID): The application usage MUST register the
 AUID using the IANA procedures defined in Section 10.

 MIME Type: Each application usage will have a MIME type for its
 documents. This can either be an existing MIME type, or a new one
 registered by the application usage.

 XML Schema: The schema for documents used by the application.

 Additional Constraints: Any constraints that can not be represented
 by the XML schema.

 Data Semantics:

 Naming Conventions:

 Resource Interdependencies:

 Authorization Policies: If the application usage changes the default
 authorization policies, it should specify that. If not, it should
 specify that the default is used.

Rosenberg Expires August 15, 2004 [Page 10]

Internet-Draft XCAP February 2004

5. URI Construction

 In order to manipulate a piece of configuration data, the data must
 be represented by an HTTP URI. XCAP defines a specific naming
 convention for constructing these URIs. In particular, the host part
 identifies the XCAP server. The abs_path component of the HTTP URI
 identifies the specific piece of data to be modified. This path is
 broken into a two parts. The first part identifies the particular XML
 document. XCAP servers organize XML documents in a specific
 hierarchical fashion, as described in Section 5.1. The second part of
 the path is called a node selector. When present, it contains an XML
 component identifier formatted according to Section 5.2. The node
 selector identifies the specific component of the XML document. The
 HTTP URI without the node selector is called the document URI.

 Note that there is nothing in the grammar for the HTTP URI that
 separates the document URI from the node selector. The path extends
 naturally from the document into the XML hierarchy within the
 document. Separating the two components is something a server can do
 based on its awareness of the structure of the document directory.

5.1 Identifying the XML Document

 XCAP mandates that a server MUST organize documents according to a
 defined hierarchy. The root of this hierarchy is an HTTP URI called
 the XCAP services root URI. This URI identifies the root of the tree
 within the domain where all XCAP documents are stored. It can be any
 valid HTTP URL, but MUST NOT contain a query string. As an example,
 http://xcap.example.com/services might be used as the XCAP services
 root URI within the example.com domain. Typically, the XCAP services
 root URI is provisioned into client devices for bootstrapping
 purposes.

 Beneath the XCAP services root URI is a tree structure for organizing
 documents. The first level of this tree consists of the XCAP AUID.
 So, continuing the example above, all of the documents used by the
 presence list application would be under http://xcap.example.com/
 services/presence-lists.

 It is assumed that each application will have data that is set by
 users, and/or it will have global data that applies to all users. As
 a result, within the directory structure for each application usage,
 there are two sub-trees. One, called "users", holds the documents
 that are applicable to specific users, and the other, called
 "global", holds documents applicable to all users.

 Within the "users" tree are zero or more sub-trees, each of which
 identifies documents that apply to a specific user. XCAP does not

Rosenberg Expires August 15, 2004 [Page 11]

Internet-Draft XCAP February 2004

 itself define what it means for documents to "apply" to a user,
 beyond specification of a baseline authorization policy, described
 below in Section 7. Each application usage can specify additional
 authorization policies which depend on data used by the application
 itself.

 The remainder of the URI (the path following "global" or the specific
 user) is not constrained by this specification. The application usage
 MAY introduce constraints, or may allow any structure to be used.

5.2 Identifying the XML Nodes

 The node selector specifies specific nodes of the XML document which
 are to be accessed. A node refers to either an XML element or an
 attribute of an element. The node selector is an expression which
 identifies an element or attribute. Its grammar is:

 node-selector = element-selector ["/" attribute-selector]
 element-selector = step *("/" step)
 step = by-name / by-pos / by-attr
 by-name = QName ; from XML Namespaces
 by-pos = QName "[" position "]"
 position = 1*DIGIT
 by-attr = QName "[" "@" att-name "=" <">
 att-value <"> "]"
 att-name = QName
 att-value = AttValue ; from XML specification
 attribute-selector = "@" att-name

 The QName grammar is defined the XML namespaces specification [3].

 The node selector is based on the concepts in XPath [9]. Indeed, the
 node selector expression happens to be a valid XPath expression.
 However, XPath provides a set of functionality far richer than is
 needed here, and its breadth would introduce complexity into XCAP.

 To determine the XML element or attribute selected by the node
 selector, processing begins at the root of the XML document. The
 first step in the element selector is then taken. Each step chooses a
 specific XML element within the current document context. The
 document context is the point within the XML document from which a
 specific step is evaluated. The document context begins at the root
 of the document. When a step determines an element within that
 context, that element becomes the new context for evaluation of the
 next step. Each step can select an element by its name, by a
 combination of name and attribute value, or by name and position. If
 the step is attempting selection by name, the server looks for all

Rosenberg Expires August 15, 2004 [Page 12]

Internet-Draft XCAP February 2004

 elements within the current context with that name. Name matching is
 performed as described below. If there is more than one element with
 the specified name, the result is considered a no-match.

 If the step is attempting selection by name and attribute, the server
 looks for all elements within the current document context with that
 name. Of those that match, it looks for ones that have the given
 attribute name, where that attribute has the given value. If there is
 no match, or if more than one element matches, the result is
 considered a no-match. Note that elements cannot be selected based on
 any namespace attributes. Any such attributes are effectively ignored
 in terms of the matching operations defined here.

 If the step is attempting selection by name and position, the server
 looks for all elements within the current document context with that
 name. These are then sorted in document order, as defined by Xpath.
 The position-th element is then selected. If there are fewer than
 position number of elements with that name, the result is considered
 a no-match.

 Once the last step is executed, if there is no attribute selector,
 the result of the node selection is the last selected element. If
 there is an attribute selector, the server checks to see if there is
 an attribute with that name within the currently selectoed element.
 If there is not, the result is considered a no-match. Otherwise, that
 attribute is selected. Note that namespace attributes cannot be
 selected.

 Matching of element names and attributes is performed by expanding
 them into the expanded name form, as described in XML Namespaces, and
 then performing the comparison of the results. When evaluating the
 QNames in the node selector, the default namespace and namespace
 definitions from the document URI apply.

 Comments, text content, and processing declarations in the XML
 document cannot be selected by the expressions defined here. Of
 course, if such information is present in a document, and a user
 selects an XML element enclosing that data, that information would be
 included in a resulting GET, for example.

 As an example, consider the following XML document:

Rosenberg Expires August 15, 2004 [Page 13]

Internet-Draft XCAP February 2004

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:professor@example.net" package="presence">
 <watcher status="active"
 id="8ajksjda7s"
 duration-subscribed="509"
 event="approved" >sip:userA@example.net</watcher>
 <watcher status="pending"
 id="hh8juja87s997-ass7"
 display-name="Mr. Subscriber"
 event="subscribe">sip:userB@example.org</watcher>
 </watcher-list>
 </watcherinfo>

 The node selector "watcherinfo/watcher-list/
 watcher[@id="8ajksjda7s"]" would select the following XML element:

 <watcher status="active"
 id="8ajksjda7s"
 duration-subscribed="509"
 event="approved" >sip:userA@example.net</watcher>

Rosenberg Expires August 15, 2004 [Page 14]

Internet-Draft XCAP February 2004

6. Client Operations

 An XCAP client is an HTTP 1.1 compliant client. Specific data
 manipulation tasks are accomplished by invoking the right set of HTTP
 methods with the right set of headers on the server. This section
 describes those in detail

6.1 Create or Replace a Document

 To create or replace a document, the client constructs a URI that
 references the location where the document is to be placed. This URI
 MUST NOT contain a NodeSelector component. The client then invokes a
 PUT method on that URI.

 The content in the request MUST be an XML document compliant to the
 schema associated with the application usage defined by the URI. For
 example, if the client performs a PUT operation to http://
 xcap.example.com/services/presence-lists/users/joe/mybuddies,
 presence-lists is the application unique ID, and the schema defined
 by it would dictate the body of the request. The MIME content type
 SHOULD be as specific as possible. For example, "application/
 resource-lists+xml" for a resource list [22], instead of just
 "application/xml".

 If the Request-URI identifies a document that already exists in the
 server, the PUT operation replaces that document with the content of
 the request. If the Request-URI does not identify an existing
 document, the document is created on the server at that specific URI.

 If the result of the PUT is a 200 or 202 response, the operation was
 successful. If it was a 409, the user performed some action which
 resulted in an invalid document. The 409 response may contain an XML
 body, formatted according to the schema in Section 7.2.1.1, which
 provides further information on the nature of the error. The client
 MAY use this information to try and alter the request so that this
 time, it might succeed. The client SHOULD NOT simply retry the
 request without changing some aspect of it.

6.2 Delete a Document

 To delete a document, the client constructs a URI that references the
 document to be deleted. By definition this URI will not contain a
 NodeSelector component. The client then invokes a DELETE operation on
 the URI to delete the document.

6.3 Fetch a Document

 As one would expect, fetching a document is trivially accomplished by

Rosenberg Expires August 15, 2004 [Page 15]

Internet-Draft XCAP February 2004

 performing an HTTP GET request with the Request URI set to the
 document to be fetched. When a client fetches a document, and there
 is an older version cached, it is useful for clients to perform
 conditional GETs using the If-Match header field, in order to reduce
 network usage if the cached copy is still valid. An HTTP server MUST
 return Etags for entities that represent resources managed by XCAP.

6.4 Create or Replace an Element

 To create or replace an XML element within an existing document, the
 client constructs a URI whose document URI points to the document to
 be modified. The node selector MUST be present in the URI. The node
 selector is constructed such that, if the element was added to the
 document as desired by the client, the node selector would select
 that element.

 The client then invokes the HTTP PUT method. The content in the
 request MUST be an XML element. Specifically, it contains the
 element, starting with the opening bracket for the begin tag for that
 element, including the attributes and content of that element
 (whether it be text or other child elements), and ending with the
 closing bracket for the end tag for that element. The MIME type in
 the request SHOULD be "application/xml-fragment-body", defined in

Section 10.2. The server will insert the element (including all its
 attributes and its content) into the document such that the node
 selector, if evaluated by the server, would return the content
 present in the request. If the node selector, when evaluated against
 the current document, results in a no-match, the server performs a
 creation operation. If the node selector, when evaluated against the
 current document, is a match for an element in the current document,
 the server replaces it with the content of the PUT request. This
 replacement is complete; that is, the old element (including its
 attributes and content) are removed, and the new one, including its
 attributes and content, is put in its place. The client SHOULD be
 certain, before making the request, that the resulting modified
 document will also be conformant to the schema.

 It is important to note that the element might potentially be
 inserted in the document in several different ways, and still meet
 the constraints defined above. This is analagous to the case when a
 new file is PUT into a directory on a server; the location of that
 file within the directory is not specified, and is up to the local
 file system to decide. The only guarantee is that GET(PUT(x)) returns
 document x.

 If the result of the PUT is a 200 or 202 response, the operation was
 successful. If it was a 409, the user performed some action which
 resulted in an invalid document. The 409 response may contain an XML

Rosenberg Expires August 15, 2004 [Page 16]

Internet-Draft XCAP February 2004

 body, formatted according to the schema in Section 7.2.1.1, which
 provides further information on the nature of the error. The client
 MAY use this information to try and alter the request so that this
 time, it might succeed. The client SHOULD NOT simply retry the
 request without changing some aspect of it.

6.5 Delete an Element

 To delete an element from a document, the client constructs a URI
 whose document URI points to the document containing the element to
 be deleted. The node selector MUST be present, and identify the
 specific element to be deleted.

 The client then invokes the HTTP DELETE method. The server will
 remove the element from the document (including its attributes and
 its content, such as any children). The client SHOULD be certain,
 before making the request, that the resulting modified document will
 also be conformant to the schema.

 If the result of the DELETE is a 200 response, the operation was
 successful. If it was a 409, the user performed some action which
 resulted in an invalid document. The 409 response may contain an XML
 body, formatted according to the schema in Section 7.2.1.1, which
 provides further information on the nature of the error. The client
 MAY use this information to try and alter the request so that this
 time, it might succeed. The client SHOULD NOT simply retry the
 request without changing some aspect of it.

6.6 Fetch an Element

 To fetch an element of a document, the client constructs a URI whose
 document URI points to the document containing the element to be
 fetched. The node selector MUST be present, and must identify the
 element to be fetched.

 The client then invokes the GET method. The response will contain
 that XML element. Specifically, it contains the content of the XML
 document, starting with the opening bracket for the begin tag for
 that element, and ending with the closing bracket for the end tag for
 that element. This will, as a result, include all attributes and
 child elements of that element.

6.7 Create or Replace an Attribute

 To create or replace an attribute in an existing element of a
 document, the client constructs a URI whose document URI points to
 the document to be modified. The node selector MUST be present. The
 node selector MUST be constructed such that, if the attribute was

Rosenberg Expires August 15, 2004 [Page 17]

Internet-Draft XCAP February 2004

 created or replaced as desired, the node selector would select that
 attribute. If the node selector, when evaluated against the current
 document, results in a no-match, it is a creation operation. If it
 matches an existing attribute, it is a replacement operation.

 The client then invokes the HTTP PUT method. The content defined by
 the request MUST be compliant to the grammar for AttValue as defined
 in XML 1.0. This request MUST be sent with the Content-Type of
 "application/xml-attribute-value" as defined in Section 10.3. The
 server will add that attribute such that, if the node selector is
 evaluated on the resulting document, it returns the attribute present
 in the request. The client SHOULD be certain, before making the
 request, that the resulting modified document will also be conformant
 to the schema.

 If the result of the PUT is a 200 or 202 response, the operation was
 successful. If it was a 409, the user performed some action which
 resulted in an invalid document. The 409 response may contain an XML
 body, formatted according to the schema in Section 7.2.1.1, which
 provides further information on the nature of the error. The client
 MAY use this information to try and alter the request so that this
 time, it might succeed. The client SHOULD NOT simply retry the
 request without changing some aspect of it.

6.8 Delete an Attribute

 To delete attributes from the document, the client constructs a URI
 whose document URI points to the document containing the attributes
 to be deleted. The node selector MUST be present, and evaluate to an
 attribute in the document to be deleted.

 The client then invokes the HTTP DELETE method. The server will
 remove the attribute from the document. The client SHOULD be certain,
 before making the request, that the resulting modified document will
 also be conformant to the schema.

 If the result of the DELETE is a 200 response, the operation was
 successful. If it was a 409, the user performed some action which
 resulted in an invalid document. The 409 response may contain an XML
 body, formatted according to the schema in Section 7.2.1.1, which
 provides further information on the nature of the error. The client
 MAY use this information to try and alter the request so that this
 time, it might succeed. The client SHOULD NOT simply retry the
 request without changing some aspect of it.

6.9 Fetch an Attribute

 To fetch an attribute of a document, the client constructs a URI

Rosenberg Expires August 15, 2004 [Page 18]

Internet-Draft XCAP February 2004

 whose Document-URI points to the document containing the attribute to
 be fetched. The node selector MUST be present, containing an
 expression identifying the attribute whose value is to be fetched.

 The client then invokes the GET method. The response will contain an
 "application/xml-attribute-value" document with the specified
 attribute, formatted according to the grammar of AttValue as defined
 in the XML 1.0 specifications.

6.10 Read/Modify/Write Transactions

 It is anticipated that a common operation will be to read the current
 version of a document or element, modify it on the client, and then
 write the change back to the server. In order for the results to be
 consistent with the client's expectations, the operation must be
 atomic.

 To accomplish this, the client makes use of entity tags returned by
 the server in a GET operation used to read the element, attribute, or
 document that is to be modified. To guarantee atomicity, the PUT
 operation used to write the changes back to the server MUST contain
 an If-Match header field, whose value is equal to the entity tag from
 the prior GET response. If the request fails with a 412 response, the
 client knows that another update of the data has occurred before it
 was able to write the results back. The client can then fetch the
 most recent version, and attempt its modification again.

 Because there are no batching operations defined in HTTP that would
 allow for a number of separate create, modify or delete operations to
 be performed atomically, designers of application usages should take
 care to structure their schemas so that operations that need to be
 performed atomically can be done in a single operation.

6.11 Reading Server Assigned Data

 In some application usages, components of the document cannot be set
 by the user. Rather, they must be filled in by the server. Such cases
 are documented as part of the application usage. Frequently, the
 client will want to know the value assigned by the server. As an
 example, in the resource list application usage [22], the server
 assigns the uri for a resource list. The client will need this URI to
 subscribe to the resource list, for example.

 There are two ways such discovery can be accomplished. In the first,
 once the client PUTs a document or element that requires the data to
 be filled in, the client can do a subsequent GET to find the URI.
 This GET can be for the entire document, the same URI that was used
 in the PUT, or a URI that points just to the specific data assigned

Rosenberg Expires August 15, 2004 [Page 19]

Internet-Draft XCAP February 2004

 by the server. The result of the GET will tell the client about the
 assigned data. Note that the Etag present in the response is
 significant, as it will be different from the one returned in the
 previous response to PUT. That's because, as a result of the server's
 assignment, the document has changed, and is therefore assigned a new
 Etag.

 The second way a client can learn about the change is through an
 event package that might be used to find out about changes to XCAP
 resources.

 It is important to note that the 200 OK response to a PUT is always
 empty, and will not contain the document or element after the server
 has computed the necessary data.

Rosenberg Expires August 15, 2004 [Page 20]

Internet-Draft XCAP February 2004

7. Server Behavior

 An XCAP server is an HTTP 1.1 compliant origin server. The behaviors
 mandated by this specification relate to the way in which the HTTP
 URI is interpreted and the content is constructed.

 An XCAP server MUST be explicitly aware of the application usage
 against which requests are being made. That is, the server must be
 explicitly configured to handle URIs for each specific application
 usage, and must be aware of the constraints imposed by that
 application usage.

 When the server receives a request, the treatment depends on the URI.
 If the URI refers to an application usage not understood by the
 server, the server MUST reject the request with a 404 (Not Found)
 response. If the URI refers to a user that is not recognized by the
 server, it MUST reject the request with a 404 (Not Found).

 Next, the server authenticates the request. All XCAP servers MUST
 implement HTTP Digest [10]. Furthermore, servers MUST implement HTTP
 over TLS, RFC 2818 [13]. It is RECOMMENDED that administrators use an
 HTTPS URI as the XCAP root services URI, so that the digest client
 authentication occurs over TLS.

 Next, the server determines if the client has authorization to
 perform the requested operation on the resource. The default
 authorization policy is that only client X can access (create, read,
 write, modify or delete) resources under the "users/X" directory.
 Only priviledged administrators can write resources under the
 "global" directory, but all users can read them.

 An application usage can specify an alternate default authorization
 policy specific to that usage. The server may also know of an
 application usage that itself defines authorization policies for
 another application usage. Of course, an administrator or privileged
 user can override the default authorization policy, although this
 specification provides no means for doing that.

 Once authorized, the specific behavior depends on the method and what
 the URI refers to.

7.1 POST Handling

 Resources managed by XCAP do not represent processing scripts. As a
 result, POST operations to XCAP URIs are not defined. A server
 receiving such a request for an xcap resource SHOULD return a 405.

https://datatracker.ietf.org/doc/html/rfc2818

Rosenberg Expires August 15, 2004 [Page 21]

Internet-Draft XCAP February 2004

7.2 PUT Handling

 The behavior of a server in receipt of a PUT request is as specified
 in HTTP 1.1 Section 9.6 - the content of the request is placed at the
 specified location. This section serves to define the notion of
 "placement" and "specified location" within the context of XCAP
 resources.

 If the request URI represents a document (i.e., there is no node
 selector component), the content of the request MUST be a valid XML
 document, and MUST be compliant to the schema associated with the
 application usage in the URI. If it is not, the request MUST be
 rejected with a 409 response. If the request URI matches a document
 that exists on the server, that document is replaced by the content
 of the request. If the request URI does not match a document that
 exists on the server, the server adds the document to its repository,
 and associates it with the URI in the request URI. Note that this may
 require the creation of one or more "directories" on the server.

 If the Request URI represents an XML element (i.e., it contains a
 node selector, but no attribute selector) the server MUST verify that
 the document defined by the document URI exists. If no such document
 exists on the server, the server MUST reject the request with a 404
 response code. The content of the request MUST be a single XML
 element and associated content (including children elements), whose
 MIME type is "application/xml-fragment-body". If the request does not
 contain a valid XML fragment body, the request is rejected with a 409
 response code. If the request URI matches an element within the
 document, that element is removed, and replaced with the content of
 the request. If the request URI does not match an element in the
 document, the server inserts the content of the request as a new
 element in the document, such that the resulting document is
 compliant to the schema, and such that the request URI, when
 evaluated, would now point to the element which was inserted. There
 may be more than one way to perform such an insertion; in that case,
 it is the discretion of the implementor as to how it is done. It may
 also be possible that the insertion cannot be done because the parent
 of the element does not exist in the document, or cannot be done
 because document, after the element is added, would not be compliant
 to the schema, or because the new element cannot be described by the
 node-selector no matter what its point of insertion. In such a case,
 the server MUST return a 409 response code. In all cases, the
 resulting document MUST be compliant to the schema.

 If the Request URI represents an XML attribute (i.e., it contains a
 node selector and an attribute selector) the server MUST verify that
 the document defined by the document URI exists. If no such document
 exists on the server, the server MUST reject the request with a 404

Rosenberg Expires August 15, 2004 [Page 22]

Internet-Draft XCAP February 2004

 response code. The content of the request will be a MIME object of
 type "application/xml-attribute-value", which represents a single XML
 attribute. This attribute will be compliant to the grammar for
 AttValue as defined in XML 1.0. If the content is not a valid
 xml-attribute-value, the server rejects the request with a 409
 response. If the request URI matches an existing attribute within the
 document, that attribute is removed, and replaced with the content of
 the request. If the request URI does not match an attribute in the
 document, the server inserts the content of the request as a new
 attribute in the document, such that the resulting document is
 compliant to the schema, and such that the request URI, when
 evaluated, would now point to the attribute which was inserted. There
 may be more than one way to perform such an insertion; in that case,
 it is the discretion of the implementor as to how it is done. It may
 also be possible that the insertion cannot be done because the
 containing element does not exist, or cannot be done because the
 result of the change would be a document that is not compliant to the
 schema. In such a case, the server MUST return a 409 response code.

 The server MUST check the resulting document for the presence of the
 "mandatory-schemas" element, which will always be a child of the root
 element. If this element is present, the server checks each of the
 schemas listed. If a schema is listed which the server does not
 support, the server MUST reject the request with a 409 response.

 If the application usage indicates that there is a data dependency,
 the server checks to see if the information contained in the PUT
 requires the server to compute some component of the document. If it
 does, the server MUST perform the computation, and then update the
 document with the result. Since the document has changed, it
 represents a new instance of the resource, and the server MUST assign
 a new etag.

 If the application usage indicates that there is a data dependency,
 and that dependency requires the server to perform some kind of data
 validation beyond that specified in the XML schema, the server MUST
 perform the validation. If the document fails the validation, the
 server MUST reject the request with a 409 response. The server MAY
 add an error report to the response, indicating the nature of the
 validation error.

 If the creation or insertion was successful, the server returns a 200
 OK or 201 Created, as appropriate. This response MUST not contain any
 content.

7.2.1 Detailed Conflict Reports

 In cases where the server returns a 409 error response due to any of

Rosenberg Expires August 15, 2004 [Page 23]

Internet-Draft XCAP February 2004

 the conditions described above, it MAY include a document in the body
 of the response which provides further details on the nature of the
 error. This document is an XML document, formatted according to the
 schema of Section 7.2.1.1. Its MIME type, registered by this
 specification, is "application/xcap-error+xml".

 The document structure is simple. It contains the root element
 "xcap-error". The content of this element is a specific error
 condition. Each error condition is represented by a different
 element. This allows for different error conditions to provide
 different data about the nature of the error. All error elements
 support a "phrase" attribute, which can contain text meant for
 rendering to a human user.

 The "schema-validation-error" element indicates that the document was
 not compliant to the schema after the requested operation was
 performed. The "not-xml-frag" element indicates that the request was
 supposed to contain a valid XML fragment body, but did not. Most
 likely this is because the XML in the body was malformed or not
 balanced. The "no-parent" element indicates that an attempt to insert
 an element failed, because the element into which the insertion was
 supposed to occur did not exist. This element can contain an optional
 "ancestor" element, which provides an HTTP URI pointed to the xcap
 resource that identifies the closest ancestor element that does exist
 in the document. The "cannot-insert" element provides a generic
 catch-all for other insertion cases. The "no-xml-att-value" element
 indicates that the request was supposed to contain a valid XML
 attribute value, but did not. The "no-element" element indicates that
 an attempt to insert an attribute was made, but the element in which
 the attribute was to be inserted does not exist.

 The "uri-exists" element supports application usages that define data
 constraints. In particular, it is expected that many application
 usages will require the server to compute a URI, or allow the client
 to provide a URI. In either case, the URI needs to be unique within
 the domain of the server. If the client provides a URI, and the URI
 already exists, it would be an error. This element describes that
 condition. For each URI provided by the client which already exists,
 an "exists" element is present as the content of "uri-exists". Each
 "exists" element has a "uri" attribute that contains the URI which
 exists. The "exists" element, in turn, can optionally contain a list
 of suggested alternate URIs which do not currently exist on the
 server.

 The "unknown-mand-ns" element indicates that the document contained a
 "mandatory-ns" element that listed a namespace not understood by the
 server. The content of the "unknown-mand-ns" element is a list of
 "ns" elements, each one containing a URI identifying a namespace

Rosenberg Expires August 15, 2004 [Page 24]

Internet-Draft XCAP February 2004

 listed as mandatory in the document, but was not understood by the
 server.

 As an example, the following document indicates that the user
 attempted to create a resource list using the URI
 sip:friends@example.com, but that URI already exists:

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-error xmlns="urn:ietf:params:xml:ns:xcap-error"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <uri-exists>
 <exists uri="sip:friends@example.com">
 <alt-uri>sip:friends2@example.com</alt-uri>
 </exists>
 </uri-exists>
 </xcap-error>

7.2.1.1 XML Schema

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:xcap-error"
xmlns="urn:ietf:params:xml:ns:xcap-error" xmlns:xs="http://www.w3.org/2001/
XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="xcap-error">
 <xs:annotation>
 <xs:documentation>Indicates the reason for the error.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:choice>
 <xs:element name="schema-validation-error">
 <xs:annotation>
 <xs:documentation>The resulting document was not compliant to the
schema.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="not-xml-frag">
 <xs:annotation>
 <xs:documentation>The request did not contain a valid xml fragment
body.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>

 </xs:complexType>
 </xs:element>
 <xs:element name="no-parent">
 <xs:annotation>

Rosenberg Expires August 15, 2004 [Page 25]

Internet-Draft XCAP February 2004

 <xs:documentation>The element could not be inserted because its parent
does not exist in the document.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ancestor" type="xs:anyURI" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Contains an HTTP URI that points to the element
which is the closest ancestor that does exist.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="cannot-insert">
 <xs:annotation>
 <xs:documentation>The element could not be inserted.</
xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="not-xml-att-value">
 <xs:annotation>
 <xs:documentation>The request did not contain a valid xml attribute
value.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="no-element">
 <xs:annotation>
 <xs:documentation>The attribute could not be inserted because the
element in which to insert does not exist.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="uri-exists">
 <xs:annotation>
 <xs:documentation>The user tried to set a URI that the server must
constrain to be unique, and this URI exists.</xs:documentation>
 </xs:annotation>
 <xs:complexType>

 <xs:sequence>
 <xs:element name="exists" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>There is an instance of this element for each URI
in the document which suffered this failure.</xs:documentation>
 </xs:annotation>
 <xs:complexType>

Rosenberg Expires August 15, 2004 [Page 26]

Internet-Draft XCAP February 2004

 <xs:sequence minOccurs="0">
 <xs:element name="alt-uri" type="xs:string" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>An optional set of alternate URIs can be
provided.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="unknown-mand-ns">
 <xs:annotation>
 <xs:documentation>The document had a mandatory namespace which was not
understood by the server.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ns" type="xs:anyURI" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Each unknown namespace is listed.</
xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>

7.3 GET Handling

 The semantics of GET are as specified in RFC 2616. This section
 clarifies the specific content to be returned for a particular URI
 that represents an XCAP resource.

 If the request URI contains only a document URI, the server returns
 the document specified by the URI if it exists, else returns a 404

https://datatracker.ietf.org/doc/html/rfc2616

 response. The MIME type of the response SHOULD be the most specific
 type known for that document (i.e., "application/resource-lists+xml"
 instead of "application/xml"). If the request URI contains a node
 selector, and that node selector identifies an XML element in an

Rosenberg Expires August 15, 2004 [Page 27]

Internet-Draft XCAP February 2004

 existing document, that element is returned in the 200 response. The
 MIME type of the response MUST be "application/xml-fragment-body".
 The content of the response is the portion of the XML document
 starting with the left bracket of the begin tag of the element,
 ending with the right bracket of the end tag of the element. If the
 request URI contains a node selector, and that node selector contains
 an attribute selector, and that attribute exists in the specified
 document, the server returns that attribute. The MIME type of the
 response MUST be "application/xml-attribute-value", which contains an
 XML attribute value formatted according to the grammar of AttValue in
 the XML 1.0 specifications. In all cases, if the referenced resource
 does not exist, a 404 is returned.

7.4 DELETE Handling

 The semantics of DELETE are as specified in RFC 2616. This section
 clarifies the specific content to be deleted for a particular URI
 that represents an XCAP resource.

 If the request URI contains only a Document-URI, the server deletes
 the document specified by the URI if it exists and returns a 200 OK
 response, else returns a 404 response. If the request URI specifies a
 Node-Selector, the server verifies that the document specified by the
 Document-URI exists. If it does not exist, the server returns a 404
 (Not Found) response. If the document does exist, and the node
 selector specifies an XML element that exists, that element is
 removed from the document. If the document does exist, and the node
 selector specifies an XML attribute that exists in the document, that
 attribute is removed from the document. If the node selector returns
 a no-match, a 404 (Not Found) is returned. However, if removal of the
 element or attribute would result in a document which does not comply
 with the XML schema for the application usage, the server MUST NOT
 perform the deletion, and MUST reject the request with a 409
 (Conflict).

7.5 Managing Etags

 An XCAP server MUST maintain entity tags for all resources that can
 be referenced by a URI within a particular document. RFC 2616 allows
 for entity tags for one resource to be applied to other resources. In
 the case of XCAP resources, a server MUST use the same etag to
 reference all resources that define elements within a particular
 document. In other words, the server effectively maintains a single
 etag per document, and all resources within that document inherit the
 same etag.

 This constraint is necessary for a client to make changes to various
 parts of a document even though it only posesses the etag for the

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Rosenberg Expires August 15, 2004 [Page 28]

Internet-Draft XCAP February 2004

 overall document.

Rosenberg Expires August 15, 2004 [Page 29]

Internet-Draft XCAP February 2004

8. Examples

 This section goes through several examples, making use of the
 resource-lists [22] XCAP application usage.

 First, a user Bill creates a new document (see Section 6.1). This
 document is a new resource-list, initially with no users in it:

 PUT
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml HTTP/1.1
 Content-Type:application/presence-lists+xml

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <list name="friends" uri="sip:friends@example.com" subscribeable="true">
 </list>
 </resource-lists>

 Next, Bill creates an element in this document (Section 6.4). In
 particular, he adds an entry to the list:

 PUT
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml/
 resource-lists/list[@name="friends"]/entry HTTP/1.1
 Content-Type:application/xml-fragment-body

 <entry name="Bob" uri="sip:bob@example.com">
 <display-name>Bob Jones</display-name>
 </entry>

 Next, Bill fetches the document (Section 6.3):

 GET
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml HTTP/1.1

 And the result is:

Rosenberg Expires August 15, 2004 [Page 30]

Internet-Draft XCAP February 2004

 HTTP/1.1 200 OK
 Etag: "wwhha"
 Content-Type: application/presence-lists+xml

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <list name="friends" uri="sip:friends@example.com"
 subscribeable="true">
 <entry name="Bob" uri="sip:bob@example.com">
 <display-name>Bob Jones</display-name>
 </entry>
 </list>
 </resource-lists>

 Next, Bill adds another entry to the list, which is another list that
 has three entries. This is another element creation (Section 6.4):

 PUT
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml/
 presence-lists/list[@name="friends"]/list[@name="close-friends"] HTTP/1.1
 Content-Type: application/xml-fragment-body

 <list name="close-friends" uri="sip:close-friends@example.com"
 subscribeable="true">
 <entry name="Joe" uri="sip:joe@example.com">
 <display-name>Joe Smith</display-name>
 </entry>
 <entry name="Nancy" uri="sip:nancy@example.com">
 <display-name>Nancy Gross</display-name>
 </entry>
 <entry name="Petri" uri="sip:petri@example.com">
 <display-name>Petri Aukia</display-name>
 </entry>
 </list>

 Then, Bill decides he doesnt want Petri on the list, so he deletes
 the entry (Section 6.5):

 DELETE
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml/
 presence-lists/list/list/entry[@name="Petri"] HTTP/1.1

 Bill decides to check on the URI for Nancy, so he fetches a
 particular attribute (Section 6.6):

Rosenberg Expires August 15, 2004 [Page 31]

Internet-Draft XCAP February 2004

 GET
 http://xcap.example.com/services/presence-lists/users/bill/fr.xml/
 presence-lists/list/list/entry[@name="Nancy"]/@uri HTTP/1.1

 and the server responds:

 HTTP/1.1 200 OK
 Etag: "ad88"
 Content-Type:application/xml-attribute-value

 "sip:nancy@example.com"

Rosenberg Expires August 15, 2004 [Page 32]

Internet-Draft XCAP February 2004

9. Security Considerations

 Frequently, the data manipulated by XCAP contains sensitive
 information. To avoid eavesdroppers from seeing this information, it
 is RECOMMENDED that an admistrator hand out an https URI as the XCAP
 root services URI. This will result in TLS-encrypted communications
 between the client and server, preventing any eavesdropping.

 Client and server authentication are also important. A client needs
 to be sure it is talking to the server it believes it is contacting.
 Otherwise, it may be given false information, which can lead to
 denial of service attacks against a client. To prevent this, a client
 SHOULD attempt to upgrade [14] any connections to TLS. Similarly,
 authorization of read and write operations against the data is
 important, and this requires client authentication. As a result, a
 server SHOULD challenge a client using HTTP Digest [10] to establish
 its identity, and this SHOULD be done over a TLS connection.

Rosenberg Expires August 15, 2004 [Page 33]

Internet-Draft XCAP February 2004

10. IANA Considerations

 There are several IANA considerations associated with this
 specification.

10.1 XCAP Application Usage IDs

 This specification instructs IANA to create a new registry for XCAP
 application usage IDs (AUIDs).

 XCAP AUIDs are registered by the IANA when they are published in
 standards track RFCs. The IANA Considerations section of the RFC
 must include the following information, which appears in the IANA
 registry along with the RFC number of the publication.

 Name of the AUID. The name MAY be of any length, but SHOULD be no
 more than twenty characters long. The name MUST consist of
 alphanum [15] characters only.

 Descriptive text that describes the application usage.

10.2 application/xml-fragment-body MIME Type

 This specification registers a new MIME type according to the
 procedures of RFC 2048 [7] and guidelines in RFC 3023 [8].

 MIME media type name: application

 MIME subtype name: xml-fragment-body

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [8].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [8].

 Security considerations: See Section 10 of RFC 3023 [8].

 Interoperability considerations: none.

 Published specification: The XML Fragment Interchange [4], which
 defines an XML fragment body as a well-balanced region of an XML
 document being considered as (logically and/or physically)
 separate from the rest of the document for the purposes of
 defining it as a fragment.

https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires August 15, 2004 [Page 34]

Internet-Draft XCAP February 2004

 Applications which use this media type: This document type has been
 used to support transport of XML fragment bodies in RFC XXXX
 [[NOTE TO RFC EDITOR: Please replace XXXX with the published RFC
 number of this specification.]], the XML Configuration Access
 Protocol (XCAP).

 Additional Information:

 Magic Number: None

 File Extension: .xfb or .xml

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

10.3 application/xml-attribute-value MIME Type

 This specification registers a new MIME type according to the
 procedures of RFC 2048 [7] and guidelines in RFC 3023 [8].

 MIME media type name: application

 MIME subtype name: xml-attribute-value

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [8].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [8].

 Security considerations: See Section 10 of RFC 3023 [8].

 Interoperability considerations: none.

 Published specification: An entity of this MIME type is compliant to
 the grammar for AttValue as specified in XML 1.0 [1].

https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires August 15, 2004 [Page 35]

Internet-Draft XCAP February 2004

 Applications which use this media type: This document type has been
 used to support transport of XML attribute values in RFC XXXX
 [[NOTE TO RFC EDITOR: Please replace XXXX with the published RFC
 number of this specification.]], the XML Configuration Access
 Protocol (XCAP).

 Additional Information:

 Magic Number: None

 File Extension: .xav

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

10.4 application/xcap-error+xml MIME Type

 This specification registers a new MIME type according to the
 procedures of RFC 2048 [7] and guidelines in RFC 3023 [8].

 MIME media type name: application

 MIME subtype name: xcap-error+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [8].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [8].

 Security considerations: See Section 10 of RFC 3023 [8].

 Interoperability considerations: none.

 Published specification: This specification.

 Applications which use this media type: This document type conveys
 error conditions defined in RFC XXXX. [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this

https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires August 15, 2004 [Page 36]

Internet-Draft XCAP February 2004

 specification.]]

 Additional Information:

 Magic Number: None

 File Extension: .xe

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

10.5 URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:xcap-must-understand

 This section registers a new XML namespace, as per the guidelines in
RFC 3688 [16].

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:xcap-must-understand

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Resource Lists Namespace</title>
 </head>
 <body>
 <h1>Namespace for XCAP Must Understand Element</h1>
 <h2>urn:ietf:params:xml:ns:xcap-must-understand</h2>
 <p>See RFCXXXX.</p>
 </body>

https://datatracker.ietf.org/doc/html/rfc3688

Rosenberg Expires August 15, 2004 [Page 37]

Internet-Draft XCAP February 2004

 </html>
 END

10.6 URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:xcap-error

 This section registers a new XML namespace, as per the guidelines in
RFC 3688 [16].

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:xcap-error

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Resource Lists Namespace</title>
 </head>
 <body>
 <h1>Namespace for XCAP Error Documents</h1>
 <h2>urn:ietf:params:xml:ns:xcap-error</h2>
 <p>See RFCXXXX.</p>
 </body>
 </html>
 END

10.7 XCAP Error Schema Registration

 This section registers an XML schema per the procedures in [16].

 URI: please assign.

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

https://datatracker.ietf.org/doc/html/rfc3688

Rosenberg Expires August 15, 2004 [Page 38]

Internet-Draft XCAP February 2004

 The XML for this schema can be found as the sole content of
Section 7.2.1.1.

10.8 XCAP Mandatory Namespace Schema Registration

 This section registers an XML schema per the procedures in [16].

 URI: please assign.

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 The XML for this schema can be found as the sole content of
Section 4.7.1.

Rosenberg Expires August 15, 2004 [Page 39]

Internet-Draft XCAP February 2004

11. Acknowledgements

 The author would like to thank Ben Campbell, Eva-Maria Leppanen,
 Hisham Khartabil, and Chris Newman for their input and comments.

Rosenberg Expires August 15, 2004 [Page 40]

Internet-Draft XCAP February 2004

Normative References

 [1] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C
 FirstEdition REC-xml-20001006, October 2000.

 [2] Thompson, H., Beech, D., Maloney, M. and N. Mendelsohn, "XML
 Schema Part 1: Structures", W3C REC REC-xmlschema-1-20010502,
 May 2001.

 [3] Bray, T., Hollander, D. and A. Layman, "Namespaces in XML", W3C
 REC REC-xml-names-19990114, January 1999.

 [4] Grosso, P. and D. Veillard, "XML Fragment Interchange", W3C CR
 CR-xml-fragment-20010212, February 2001.

 [5] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

 [6] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [7] Freed, N., Klensin, J. and J. Postel, "Multipurpose Internet
 Mail Extensions (MIME) Part Four: Registration Procedures", BCP

13, RFC 2048, November 1996.

 [8] Murata, M., St. Laurent, S. and D. Kohn, "XML Media Types", RFC
3023, January 2001.

 [9] Clark, J. and S. DeRose, "XML Path Language (XPath) Version
 1.0", W3C REC REC-xpath-19991116, November 1999.

 [10] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A. and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [11] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [12] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [13] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [14] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1",
RFC 2817, May 2000.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2817

Rosenberg Expires August 15, 2004 [Page 41]

Internet-Draft XCAP February 2004

 [15] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [16] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

Rosenberg Expires August 15, 2004 [Page 42]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688

Internet-Draft XCAP February 2004

Informative References

 [17] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", draft-ietf-simple-presence-10 (work
 in progress), January 2003.

 [18] Rosenberg, J., "A Watcher Information Event Template-Package
 for the Session Initiation Protocol (SIP)",

draft-ietf-simple-winfo-package-05 (work in progress), January
 2003.

 [19] Rosenberg, J., "An Extensible Markup Language (XML) Based
 Format for Watcher Information",

draft-ietf-simple-winfo-format-04 (work in progress), January
 2003.

 [20] Roach, A., Rosenberg, J. and B. Campbell, "A Session Initiation
 Protocol (SIP) Event Notification Extension for Resource
 Lists", draft-ietf-simple-event-list-04 (work in progress),
 June 2003.

 [21] Rosenberg, J. and M. Isomaki, "Requirements for Manipulation of
 Data Elements in Session Initiation Protocol (SIP) for Instant
 Messaging and Presence Leveraging Extensions (SIMPLE) Systems",

draft-ietf-simple-data-req-03 (work in progress), June 2003.

 [22] Rosenberg, J., "An Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP) Usage for Presence
 Lists", draft-ietf-simple-xcap-list-usage-01 (work in
 progress), October 2003.

 [23] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [24] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October
 1998.

 [25] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-10
https://datatracker.ietf.org/doc/html/draft-ietf-simple-winfo-package-05
https://datatracker.ietf.org/doc/html/draft-ietf-simple-winfo-format-04
https://datatracker.ietf.org/doc/html/draft-ietf-simple-event-list-04
https://datatracker.ietf.org/doc/html/draft-ietf-simple-data-req-03
https://datatracker.ietf.org/doc/html/draft-ietf-simple-xcap-list-usage-01
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3265

Rosenberg Expires August 15, 2004 [Page 43]

Internet-Draft XCAP February 2004

Author's Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

Rosenberg Expires August 15, 2004 [Page 44]

http://www.jdrosen.net

Internet-Draft XCAP February 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Rosenberg Expires August 15, 2004 [Page 45]

Internet-Draft XCAP February 2004

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg Expires August 15, 2004 [Page 46]

