
SIMPLE J. Rosenberg
Internet-Draft Cisco Systems
Expires: April 16, 2007 October 13, 2006

The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP)

draft-ietf-simple-xcap-12

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 16, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This specification defines the Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP). XCAP allows a client to read,
 write and modify application configuration data, stored in XML format
 on a server. XCAP maps XML document sub-trees and element attributes
 to HTTP URIs, so that these components can be directly accessed by
 HTTP.

Rosenberg Expires April 16, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft XCAP October 2006

Table of Contents

1. Introduction . 4
2. Overview of Operation . 4
3. Terminology . 5
4. Definitions . 5
5. Application Usages . 7
5.1. Application Unique ID (AUID) 7
5.2. Default Document Namespace 8
5.3. Data Validation . 9
5.4. Data Semantics . 10
5.5. Naming Conventions . 10
5.6. Resource Interdependencies 11
5.7. Authorization Policies 12
5.8. Data Extensibility . 12
5.9. Documenting Application Usages 13
5.10. Guidelines for Creating Application Usages 13

6. URI Construction . 15
6.1. XCAP Root . 15
6.2. Document Selector . 16
6.3. Node Selector . 18
6.4. Namespace Bindings for the Selector 23

7. Client Operations . 24
7.1. Create or Replace a Document 25
7.2. Delete a Document . 26
7.3. Fetch a Document . 26
7.4. Create or Replace an Element 26
7.5. Delete an Element . 28
7.6. Fetch an Element . 29
7.7. Create or Replace an Attribute 30
7.8. Delete an Attribute 31
7.9. Fetch an Attribute . 31
7.10. Fetch Namespace Bindings 32
7.11. Conditional Operations 32

8. Server Behavior . 34
8.1. POST Handling . 35
8.2. PUT Handling . 35
8.2.1. Locating the Parent 35
8.2.2. Verifying Document Content 36
8.2.3. Creation . 37
8.2.4. Replacement . 41
8.2.5. Validation . 42
8.2.6. Conditional Processing 43
8.2.7. Resource Interdependencies 44

8.3. GET Handling . 44
8.4. DELETE Handling . 45
8.5. Managing Etags . 46

9. Cache Control . 46

Rosenberg Expires April 16, 2007 [Page 2]

Internet-Draft XCAP October 2006

10. Namespace Binding Format 47
11. Detailed Conflict Reports 47
11.1. Document Structure . 48
11.2. XML Schema . 49

12. XCAP Server Capabilities 53
12.1. Application Unique ID (AUID) 54
12.2. XML Schema . 54
12.3. Default Document Namespace 55
12.4. MIME Type . 55
12.5. Validation Constraints 55
12.6. Data Semantics . 56
12.7. Naming Conventions . 56
12.8. Resource Interdependencies 56
12.9. Authorization Policies 56

13. Examples . 56
14. Security Considerations 59
15. IANA Considerations . 60
15.1. XCAP Application Unique IDs 60
15.2. MIME Types . 61
15.2.1. application/xcap-el+xml MIME Type 61
15.2.2. application/xcap-att+xml MIME Type 62
15.2.3. application/xcap-ns+xml MIME Type 63
15.2.4. application/xcap-error+xml MIME Type 64
15.2.5. application/xcap-caps+xml MIME Type 65

15.3. URN Sub-Namespace Registrations 66
15.3.1. urn:ietf:params:xml:ns:xcap-error 66
15.3.2. urn:ietf:params:xml:ns:xcap-caps 66

15.4. XML Schema Registrations 67
15.4.1. XCAP Error Schema Registration 67
15.4.2. XCAP Capabilities Schema Registration 67

16. Acknowledgements . 68
17. References . 68
17.1. Normative References 68
17.2. Informative References 70

 Author's Address . 71
 Intellectual Property and Copyright Statements 72

Rosenberg Expires April 16, 2007 [Page 3]

Internet-Draft XCAP October 2006

1. Introduction

 In many communications applications, such as Voice over IP, instant
 messaging, and presence, it is necessary for network servers to
 access per-user information in the process of servicing a request.
 This per-user information resides within the network, but is managed
 by the end user themselves. Its management can be done through a
 multiplicity of access points, including the web, a wireless handset,
 or a PC application.

 There are many examples of per-user information. One is presence
 [20] authorization policy, which defines rules about which watchers
 are allowed to subscribe to a presentity, and what information they
 are allowed to access. Another is presence lists, which are lists of
 users whose presence is desired by a watcher [26]. One way to obtain
 presence information for the list is to subscribe to a resource which
 represents that list [21]. In this case, the Resource List Server
 (RLS) requires access to this list in order to process a SIP [16]
 SUBSCRIBE [28] request for it. Another way to obtain presence for
 the users on the list is for a watcher to subscribe to each user
 individually. In that case, it is convenient to have a server store
 the list, and when the client boots, it fetches the list from the
 server. This would allow a user to access their resource lists from
 different clients.

 This specification describes a protocol that can be used to
 manipulate this per-user data. It is called the Extensible Markup
 Language (XML) Configuration Access Protocol (XCAP). XCAP is a set
 of conventions for mapping XML documents and document components into
 HTTP URIs, rules for how the modification of one resource affects
 another, data validation constraints, and authorization policies
 associated with access to those resources. Because of this
 structure, normal HTTP primitives can be used to manipulate the data.
 XCAP is based heavily on ideas borrowed from the Application
 Configuration Access Protocol (ACAP) [25], but it is not an extension
 of it, nor does it have any dependencies on it. Like ACAP, XCAP is
 meant to support the configuration needs for a multiplicity of
 applications, rather than just a single one.

2. Overview of Operation

 Each application (where an application refers to a use case that
 implies a collection of data and associated semantics) that makes use
 of XCAP specifies an application usage (Section 5). This application
 usage defines the XML schema [2] for the data used by the
 application, along with other key pieces of information. The
 principal task of XCAP is to allow clients to read, write, modify,

Rosenberg Expires April 16, 2007 [Page 4]

Internet-Draft XCAP October 2006

 create and delete pieces of that data. These operations are
 supported using HTTP/1.1 [6]. An XCAP server acts as a repository
 for collections of XML documents. There will be documents stored for
 each application. Within each application, there are documents
 stored for each user. Each user can have a multiplicity of documents
 for a particular application. To access some component of one of
 those documents, XCAP defines an algorithm for constructing a URI
 that can be used to reference that component. Components refer to
 any element or attribute within the document. Thus, the HTTP URIs
 used by XCAP point to a document, or to pieces of information that
 are finer grained than the XML document itself. An HTTP resource
 which follows the naming conventions and validation constraints
 defined here is called an XCAP resource.

 Since XCAP resources are also HTTP resources, they can be accessed
 using HTTP methods. Reading an XCAP resource is accomplished with
 HTTP GET, creating or modifying one is done with HTTP PUT, and
 removing one of the resources is done with an HTTP DELETE. XCAP
 resources do not represent processing scripts; as a result, POST
 operations to HTTP URIs representing XCAP resources are not defined.
 Properties that HTTP associates with resources, such as entity tags,
 also apply to XCAP resources. Indeed, entity tags are particularly
 useful in XCAP, as they allow a number of conditional operations to
 be performed.

 XML documents which are equivalent for the purposes of many
 applications may differ in their physical representation. With XCAP
 resources, the canonical form with comments [19] of an XML document
 determines the logical equivalence. In other words, the canonical
 specification determines, how significant whitespace MUST be
 processed and for example, that new inserted attributes may appear in
 any order within the physical representation.

3. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [7] and
 indicate requirement levels for compliant implementations.

4. Definitions

 The following terms are used throughout this document:

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg Expires April 16, 2007 [Page 5]

Internet-Draft XCAP October 2006

 XCAP Resource: An HTTP resource representing an XML document, an
 element within an XML document, or an attribute of an element
 within an XML document that follows the naming and validation
 constraints of XCAP.

 XCAP Server: An HTTP server that understands how to follow the naming
 and validation constraints defined in this specification.

 XCAP Client: An HTTP client that understands how to follow the naming
 and validation constraints defined in this specification.

 Application: A collection of software components within a network
 whose operation depends on data managed and stored on an XCAP
 server.

 Application Usage: Detailed information on the interaction of an
 application with the XCAP server.

 Application Unique ID (AUID): A unique identifier within the
 namespace of application unique IDs created by this specification
 that differentiates XCAP resources accessed by one application
 from XCAP resources accessed by another.

 Naming Conventions: The part of an application usage that specifies
 well-known URIs used by an application, or more generally,
 specifies the URIs that are typically accessed by an application
 during its processing.

 XCAP User Identifier (XUI): The XUI is a string, valid as a path
 element in an HTTP URI, that is associated with each user served
 by the XCAP server.

 XCAP Root: A context that contains all of the documents across all
 application usages and users that are managed by the server.

 Document Selector: A sequence of path segments, with each segment
 being separated by a "/", that identify the XML document within an
 XCAP root that is being selected.

 Node Selector: A sequence of path segments, with each segment being
 separated by a "/", that identify the XML node (element or
 attribute) being selected within a document.

 Node Selector Separator: A single path segment equal to two tilde
 characters "~~" that is used to separate the document selector
 from the node selector within an HTTP URI.

Rosenberg Expires April 16, 2007 [Page 6]

Internet-Draft XCAP October 2006

 Document URI: The HTTP URI containing the XCAP root and document
 selector, resulting in the selection of a specific document. As a
 result, performing a GET against the document URI would retrieve
 the document.

 Node URI: The HTTP URI containing the XCAP root, document selector,
 node selector separator and node selector, resulting in the
 selection of a specific XML node.

 XCAP Root URI: An HTTP URI that representing the XCAP root. Although
 a syntactically valid URI, the XCAP Root URI does not correspond
 to an actual resource on an XCAP server. Actual resources are
 created by appending additional path information to the XCAP Root
 URI.

 Global Tree: A URI that represents the parent for all global
 documents for a particular application usage within a particular
 XCAP root.

 Home Directory: A URI that represents the parent for all documents
 for a particular user for a particular application usage within a
 particular XCAP root.

 Positional Insertion: A PUT operation that results in the insertion
 of a new element into a document such that its position relative
 to other children of the same parent is set by the client.

5. Application Usages

 Each XCAP resource on a server is associated with an application. In
 order for an application to use those resources, application specific
 conventions must be specified. Those conventions include the XML
 schema that defines the structure and constraints of the data, well
 known URIs to bootstrap access to the data, and so on. All of those
 application specific conventions are defined by the application
 usage.

5.1. Application Unique ID (AUID)

 Each application usage is associated with a name, called an
 Application Unique ID (AUID). This name uniquely identifies the
 application usage within the namespace of application usages, and is
 different from AUIDs used by other applications. AUIDs exist in one
 of two namespaces. The first namespace is the IETF namespace. This
 namespace contains a set of tokens, each of which is registered with
 IANA. These registrations occur with the publication of standards
 track RFCs [27] based on the guidelines in Section 15. The second

Rosenberg Expires April 16, 2007 [Page 7]

Internet-Draft XCAP October 2006

 namespace is the vendor-proprietary namespace. Each AUID in that
 namespace is prefixed with the reverse domain name of the
 organization creating the AUID, followed by a period, followed by any
 vendor defined token. As an example, the example.com domain can
 create an AUID with the value "com.example.foo" but cannot create one
 with the value "org.example.foo". AUIDs within the vendor namespace
 do not need to be registered with IANA. The vendor namespace is also
 meant to be used in lab environments where no central registry is
 needed. The syntax for AUIDs, expressed in ABNF [12] (and using some
 of the BNF defined in RFC 3986 [13]) is:

 AUID = global-auid / vendor-auid
 global-auid = auid
 auid = 1*auid-char
 vendor-auid = rev-hostname "." auid
 rev-hostname = toplabel *("." domainlabel)
 domainlabel = alphanum
 / alphanum *(alphanum / "-") alphanum
 toplabel = ALPHA / ALPHA *(alphanum / "-") alphanum
 auid-char = auid-unreserved / pct-encoded / sub-delims
 / ":" / "@"
 auid-unreserved = ALPHA / DIGIT / "-" / "_" / "~"

 The allowed characters for the auid production is a subset of the
 pchar production defined in RFC3986. In particular, it omits the
 ".", which allows for the auid to be separated from the reverse
 hostname.

5.2. Default Document Namespace

 In order for the XCAP server to match a URI to an element or
 attribute of a document, any XML namespace prefixes used within the
 URI must be expanded [3]. This expansion requires a namespace
 binding context. That context maps namespace prefixes to namespace
 URIs. It also defines a default namespace that applies to elements
 in the URI without namespace prefixes. The namespace binding context
 comes from two sources. Firstly, the mapping of namespace prefixes
 to namespace URIs is obtained from the URI itself (see Section 6.4).
 However, the default document namespace is defined by the application
 usage itself, and applies to all URIs referencing resources within
 that application usage. All application usages MUST define a
 namespace URI that represents the default document namespace to be
 used when evaluating URIs. The default document namespace does not
 apply to elements or attributes within the documents themselves - it
 applies only to the evaluation of URIs within that application usage.
 Indeed, the term 'default document namespace' is distinct from the
 term 'default namespace'. The latter has the standard meaning within

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Rosenberg Expires April 16, 2007 [Page 8]

Internet-Draft XCAP October 2006

 XML documents, and the former refers to the default used in
 evaluation of XCAP URIs. XCAP does not change in any way the
 mechanisms for determining the default namespace within XML
 documents. However, if a document contains a URI representing an
 XCAP resource, the default document namespace defined by the
 application usage applies to that URI as well.

5.3. Data Validation

 One of the responsibilities of an XCAP server is to validate the
 content of each XCAP resource when an XCAP client tries to modify
 one. This is done using two mechanisms. Firstly, all application
 usages MUST describe their document contents using XML schema [2].
 The application usage MUST also identify the MIME type for documents
 compliant to that schema.

 Unfortunately, XML schemas cannot represent every form of data
 constraint. As an example, one XML element may contain an integer
 which defines the maximum number of instances of another element.
 This constraint cannot be represented with XML schema. However, such
 constraints may be important to the application usage. The
 application usage defines any additional constraints beyond those in
 the schema.

 Of particular importance are uniqueness constraints. In many cases,
 an application will require that there only be one instance of some
 element or attribute within a particular scope. Each uniqueness
 constraint needs to be specified by identifying the field, or
 combinations of fields, that need to be unique, and then identifying
 the scope in which that uniqueness applies. One typical scope is the
 set of all elements of a certain name within the same parent.
 Another typical scope is the set of all URIs valid within a
 particular domain. In some cases these constraints can be specified
 using XML schema, which provides the <unique> element for this
 purpose. Other uniqueness constraints, such as URI uniqueness across
 a domain, cannot be expressed by schema. Whether or not the schema
 is used to express some of the uniqueness requirements, the
 application usage MUST specify all uniqueness requirements when it
 defines its data validation needs.

 For example, the resource lists application usage [22] requires that
 each <list> element have a unique value for the "name" attribute
 within a single parent. As another example, the RLS services
 application usage [22] requires that the value of the "uri" attribute
 of the <service> element be a URI that is unique within the domain of
 the URI.

 URI constraints represent another form of constraints. These are

Rosenberg Expires April 16, 2007 [Page 9]

Internet-Draft XCAP October 2006

 constraints on the scheme or structure of the scheme specific part of
 the URI. These kinds of constraints cannot be expressed in an XML
 schema. If these constraints are important to an application usage,
 they need to be explicitly called out.

 Another important data constraint is referential integrity.
 Referential integrity is important when the name or value of an
 element or attribute is used as a key to select another element or
 attribute. An application usage MAY specify referential integrity
 constraints. However, XCAP servers are not a replacement for
 Relational Database Management Systems (RDBMS), and therefore clients
 MUST NOT depend on servers to maintain referential integrity. XCAP
 clients are responsible for making all of the appropriate changes to
 documents in order to maintain referential integrity.

 Another constraint is character encoding. XML allows documents to be
 encoded using several different character sets. However, this
 specification mandates that all documents used with XCAP MUST be
 encoded using UTF-8. This cannot be changed by an application usage.

 The data validation information is consumed by both clients, which
 use them to make sure they construct requests that will be accepted
 by the server, and by servers, which validate the constraints when
 they receive a request (with the exception of referential integrity
 constraints, which are not validated by the server).

5.4. Data Semantics

 For each application usage, the data present in the XML document has
 a well defined semantic. The application usage defines that
 semantic, so that a client can properly construct a document in order
 to achieve the desired result. They are not used by the server, as
 it is purposefully unaware of the semantics of the data it is
 managing. The data semantics are expressed in English prose by the
 application usage.

 One particularly important semantic is the base URI to be used for
 the resolution of any relative URI references pointed to XCAP
 resources. As discussed below, relative URI references pointing to
 XCAP resources cannot be resolved using the retrieval URI as the base
 URI. Therefore, it is up to the application usage to specify the
 base URI.

5.5. Naming Conventions

 In addition to defining the meaning of the document in the context of
 a particular application, an application usage has to specify how the
 applications obtain the documents they need. In particular, it needs

Rosenberg Expires April 16, 2007 [Page 10]

Internet-Draft XCAP October 2006

 to define any well-known URIs used for bootstrapping purposes, and
 document any other conventions on the URIs used by an application.
 It should also document how documents reference each other. These
 conventions are called naming conventions.

 For many application usages, users need only a single document. In
 such a case, it is RECOMMENDED that the application usage require
 that this document be called "index" and exist within the users home
 directory.

 As an example, the RLS services application usage allows an RLS to
 obtain the contents of a resource list when the RLS receives a
 SUBSCRIBE request for a SIP URI identifying an RLS service. The
 application usage specifies that the list of service definitions is
 present within a specific document with a specific name within the
 global tree. This allows the RLS to perform a single XCAP request to
 fetch the service definition for the service associated with the SIP
 URI in a SUBSCRIBE request.

 Naming conventions are used by XCAP clients to construct their URIs.
 The XCAP server does not make use of them.

5.6. Resource Interdependencies

 When a user modifies an XCAP resource, the content of many other
 resources is affected. For example, when a user deletes an XML
 element within a document, it does so by issuing a DELETE request
 against the URI for the element resource. However, deleting this
 element also deletes all child elements and their attributes, each of
 which is also an XCAP resource. As such, manipulation of one
 resource affects the state of other resources.

 For the most part, these interdependencies are fully specified by the
 XML schema used by the application usage. However, in some
 application usages, there is a need for the server to relate
 resources together, and such a relationship cannot be specified
 through a schema. This occurs when changes in one document will
 affect another document. Typically, this is the case when an
 application usage is defining a document that acts as a collection of
 information defined in other documents.

 As an example, when a user creates a new RLS service (that is, it
 creates a new <service> element within an RLS services document), the
 server adds that element to a read-only global list of services
 maintained by the server in the global tree. This read-only global
 list is accessed by the RLS when processing a SIP SUBSCRIBE request.

 Resource interdependencies are used by both XCAP clients and servers.

Rosenberg Expires April 16, 2007 [Page 11]

Internet-Draft XCAP October 2006

5.7. Authorization Policies

 By default, each user is able to access (read, modify, and delete)
 all of the documents below their home directory, and any user is able
 to read documents within the global directory. However, only trusted
 users, explicitly provisioned into the server, can modify global
 documents.

 The application usage can specify a different authorization policy
 that applies to all documents associated with that application usage.
 An application usage can also specify whether another application
 usage is used to define the authorization policies. An application
 usage for setting authorization policies can also be defined
 subsequent to the definition of the the main application usage. In
 such a case, the main application usage needs only to specify that
 such a usage will be defined in the future.

 If an application usage does not wish to change the default
 authorization policy, it can merely state that the default policy is
 used.

 The authorization policies defined by the application usage are used
 by the XCAP server during its operation.

5.8. Data Extensibility

 An XCAP server MUST understand an application usage in order to
 process an HTTP request made against a resource for that particular
 application usage. However, it is not required for the server to
 understand all of the contents of a document used by an application
 usage. A server is required to understand the baseline schema
 defined by the application usage. However, those schemas can define
 points of extensibility where new content can be added from other
 namespaces and corresponding schemas. Sometimes, the server will
 understand those namespaces and therefore have access to their
 schemas. Sometimes, it will not.

 A server MUST allow for documents that contain elements from
 namespaces not known to the server. In such a case, the server
 cannot validate that such content is schema compliant; it will only
 verify that the XML is well-formed.

 If a client wants to verify that a server supports a particular
 namespace before operating on a resource, it can query the server for
 its capabilities using the XCAP Capabilities application usage,
 discussed in Section 12.

Rosenberg Expires April 16, 2007 [Page 12]

Internet-Draft XCAP October 2006

5.9. Documenting Application Usages

 Application usages are documented in specifications which convey the
 information described above. In particular, an application usage
 specification MUST provide the following information:

 o Application Unique ID (AUID): If the application usage is meant
 for general use on the Internet, the application usage MUST
 register the AUID into the IETF tree using the IANA procedures
 defined in Section 15.

 o XML Schema

 o Default Document Namespace

 o MIME Type

 o Validation Constraints

 o Data Semantics

 o Naming Conventions

 o Resource Interdependencies

 o Authorization Policies

5.10. Guidelines for Creating Application Usages

 The primary design task when creating a new application usage is to
 define the schema. Although XCAP can be used with any XML document,
 intelligent schema design will improve the efficiency and utility of
 the document when it is manipulated with XCAP.

 XCAP provides three fundamental ways to select elements amongst a set
 of siblings - by the expanded name of the element, by its position,
 or by the value of a specific attribute. Positional selection always
 allows a client to get exactly what it wants. However, it requires a
 client to cache a copy of the document in order to construct the
 predicate. Furthermore, if a client performs a PUT, it requires the
 client to reconstruct the PUT processing that a server would follow
 in order to update its local cached copy. Otherwise, the client will
 be forced to re-GET the document after every PUT, which is
 inefficient. As such, it is a good idea to design schemas such that
 common operations can be performed without requiring the client to
 cache a copy of the document.

 Without positional selection, a client can pick the element at each

Rosenberg Expires April 16, 2007 [Page 13]

Internet-Draft XCAP October 2006

 step by its expanded name or the value of an attribute. Many schemas
 include elements that can be repeated within a parent (often,
 minOccurs equals zero or one, and maxOccurs is unbounded). As such,
 all of the elements have the same name. This leaves the attribute
 value as the only way to select an element. Because of this, if an
 application usage expects user to manipulate elements or attributes
 that are descendants of an element which can repeat, that element
 SHOULD include, in its schema, an attribute which can be suitably
 used as a unique index. Furthermore, the naming conventions defined
 by that application usage SHOULD specify this uniqueness constraint
 explicitly.

 URIs often make a good choice for such unique index. They have
 fundamental uniqueness properties, and are also usually of semantic
 significance in the application usage. However, care must be taken
 when using a URI as an attribute value. URI equality is usually
 complex. However, attribute equality is performed by the server
 using XML rules, which are based on case sensitive string comparison.
 Thus, XCAP will match URIs based on lexical equality, not functional
 equality. In such cases, an application usage SHOULD consider these
 implications carefully.

 XCAP provides the ability of a client to operate on a single element,
 attribute or document at a time. As a result, it may be possible
 that common operations the client might perform will require a
 sequence of multiple requests. This is inefficient, and introduces
 the possibility of failure conditions when another client modifies
 the document in the middle of a sequence. In such a case, the client
 will be forced to detect this case using entity tags (discussed below
 in Section 7.11), and undo its previous changes. This is very
 difficult.

 As a result, the schemas SHOULD be defined so that common operations
 generally require a single request to perform. Consider an example.
 Lets say an application usage is defining permissions for users to
 perform certain operations. The schema can be designed in two ways.
 The top level of the tree can identify users, and within each user,
 there can be the permissions associated with the user. In an
 alternative design, the top level of the tree identifies each
 permission, and within that permission, the set of users who have it.
 If, in this application usage, it is common to change the permission
 for a user from one value to another, the former schema design is
 better for xcap; it will require a single PUT to make such a change.
 In the latter case, either the entire document needs to be replaced
 (which is a single operation), or two PUT operations need to occur -
 one to remove the user from the old permission, and one to add the
 user to the new permission.

Rosenberg Expires April 16, 2007 [Page 14]

Internet-Draft XCAP October 2006

 Naming conventions form another key part of the design of an
 application usage. The application usage should be certain that XCAP
 clients know where to "start" to retrieve and modify documents of
 interest. Generally, this will involve the specification of a well-
 known document at a well-known URI. That document can contain
 references to other documents that the client needs to read or
 modify.

6. URI Construction

 In order to manipulate an XCAP resource, the data must be represented
 by an HTTP URI. XCAP defines a specific naming convention for
 constructing these URIs. The URI is constructed by concatenating the
 XCAP root with the document selector with the node selector separator
 with a percent-encoded form of the node selector. This is followed
 by an optional query component that defines namespace bindings used
 in evaluating the URI. The XCAP root is the enclosing context in
 which all XCAP resources live. The document selector is a path that
 identifies a document within the XCAP root. The node selector
 separator is a path segment with a value of double tilde ("~~"), and
 SHOULD NOT be percent-encoded, as advised in Section 2.3 of RFC 3986
 [13]. URIs containing %7E%7E should be normalized to ~~ for
 comparison; they are equivalent. The node selector separator is
 piece of syntactic sugar that separates the document selector from
 the node selector. The node selector is an expression that
 identifies a component of the document, such as an element or
 attribute.

 The sections below describe these components in more detail.

6.1. XCAP Root

 The root of the XCAP hierarchy is called the XCAP root. It defines
 the context in which all other resources exist. The XCAP root is
 represented with an HTTP URI, called the XCAP Root URI. This URI is
 a valid HTTP URI; however, it doesn't point to any resource that
 actually exists on the server. Its purpose is to identify the root
 of the tree within the domain where all XCAP documents are stored.
 It can be any valid HTTP URI, but MUST NOT contain a query component
 (a complete XCAP URI may have a query component, but it is not part
 of the XCAP root URI). It is RECOMMENDED that it be equal to
 xcap.domain where domain is the domain of the provider. As an
 example, "http://xcap.example.com" might be used as the XCAP root URI
 within the example.com domain. Typically, the XCAP root URI is
 provisioned into client devices. If not explicitly provisioned,
 clients SHOULD assume the form xcap.domain where domain is the domain
 of their service provider (for SIP, this would be the domain part of

https://datatracker.ietf.org/doc/html/rfc3986#section-2.3

Rosenberg Expires April 16, 2007 [Page 15]

Internet-Draft XCAP October 2006

 their Address-of-Record (AOR)). A server or domain MAY support
 multiple XCAP root URIs. In such a case, it is effectively operating
 as if it were serving separate domains. There is never information
 carryover or interactions between resources in different XCAP root
 URIs.

 When a client generates an HTTP request to a URI identifying an XCAP
 resource, RFC 2616 procedures for the construction of the Request-URI
 apply. In particular, the authority component of the URI may not be
 present in the Request-URI if the request is sent directly to the
 origin server.

 The XCAP root URI can also be a relative HTTP URI. It is the
 responsibility of the application usage to specify the base URI for
 an HTTP URI representing an XCAP resource whenever such a URI appears
 within a document defined by that application usage. Generally
 speaking, it is unsafe to use the retrieval URI as the base URI.
 This is because any URI that points to an ancestor for a particular
 element or attribute can contain content including that element or
 attribute. If that element or attribute contained a relative URI
 reference, it would be resolved relative to whatever happened to be
 used to retrieve the content, and this will often not be the base URI
 defined by the application usage.

6.2. Document Selector

 Each document within the XCAP root is identified by its document
 selector. The document selector is a sequence of path segments,
 separated by a slash ("/"). These path segments define a
 hierarchical structure for organizing documents within any XCAP root.
 The first path segment MUST be the XCAP AUID. So, continuing the
 example above, all of the documents used by the resource lists
 application would be under "http://xcap.example.com/resource-lists".

 Implementors making use of HTTP servlets should be aware that XCAP
 may require them to get authorization from the server
 administrator to place resources within this specific subset of
 the URI namespace.

 It is assumed that each application will have data that is set by
 users, and/or it will have global data that applies to all users. As
 a result, beneath each AUID there are two sub-trees. One, called
 "users", holds the documents that are applicable to specific users,
 and the other, called "global", holds documents applicable to all
 users. The subtree beneath "global" is called the global tree. The
 path segment after the AUID MUST either be "global" or "users".

 Within the "users" tree are zero or more sub-trees, each of which

https://datatracker.ietf.org/doc/html/rfc2616

Rosenberg Expires April 16, 2007 [Page 16]

Internet-Draft XCAP October 2006

 identifies documents that apply to a specific user. Each user known
 to the server is associated with a username, called the XCAP User
 Identifier (XUI). Typically, an endpoint is provisioned with the
 value of the XUI. For systems that support SIP applications, it is
 RECOMMENDED that the XUI be equal to the Address-of-Record (AOR) for
 the user (i.e., sip:joe@example.com). Since SIP endpoints generally
 know their AOR, they will also know their XUI. As a consequence, if
 no XUI is explicitly provisioned, a SIP UA SHOULD assume it is equal
 to their AOR. This XUI MUST be used as the path segment beneath the
 "users" segment. Since the SIP URI allows for characters which are
 not permitted in HTTP URI path segments (such as the '?' and '/'
 characters, which are permitted in the user part of the SIP URI), any
 such characters MUST be percent encoded. The subtree beneath an XUI
 for a particular user is called their home directory. "User" in this
 context should be interpreted loosely; a user might correspond to
 device, for example.

 XCAP does not itself define what it means for documents to "apply" to
 a user, beyond specification of a baseline authorization policy,
 described below in Section 8. Each application usage can specify
 additional authorization policies which depend on data used by the
 application itself.

 The remainder of the document selector (the path following "global"
 or the XUI) points to specific documents for that application usage.
 Subdirectories are permitted, but are NOT RECOMMENDED. XCAP provides
 no way to create sub-directories or to list their contents, thus
 limiting their utility. If subdirectories are used, there MUST not
 be a document in a directory with the same name as a sub-directory.

 The final path segment in the document selector identifies the actual
 document in the hierarchy. This is equivalent to a filename, except
 that XCAP does not require that its document resources be stored as
 files in a file system. However, the term "filename" is used to
 describe the final path segment in the document selector. In
 traditional filesystems, the filename would have a filename
 extension, such as ".xml". There is nothing in this specification
 that requires or prevents such extensions from being used in the
 filename. In some cases, the application usage will specify a naming
 convention for documents, and those naming conventions may or may not
 specify a file extension. For example, in the RLS services
 application usage [22], documents in the user's home directory with
 the filename "index" will be used by the server to compute the global
 index, which is also a document with the filename "index". Barring
 specific guidelines in the application usage, if a user has a single
 document for a particular application usage, this SHOULD be called
 "index".

Rosenberg Expires April 16, 2007 [Page 17]

Internet-Draft XCAP October 2006

 When the naming conventions in an application usage do not constrain
 the filename conventions (or, more generally, the document selector),
 an application will know the filename (or more generally, the
 document selector) because it is included as a reference in a
 document which is at a well known location. As another example,
 within the index document defined by RLS services, the <service>
 element has a child element called <resource-list> whose content is a
 URI pointing to a resource list within the users home directory.

 As a result, if the user creates a new document, and then references
 that document from a well-known document (such as the index document
 above), it doesn't matter whether the user includes an extension in
 the filename or not, as long as the user is consistent and maintains
 referential integrity.

 As an example, the path segment
 "/resource-lists/users/sip:joe@example.com/index" is a document
 selector. Concatenating the XCAP root URI with the document selector
 produces the HTTP URI "http://xcap.example.com/resource-lists/users/
 sip:joe@example.com/index". In this URI, the AUID is "resource-
 lists", and the document is in the user tree with the XUI
 "sip:joe@example.com" with filename "index".

6.3. Node Selector

 The node selector specifies specific nodes of the XML document which
 are to be accessed. A node refers to an XML element, an attribute of
 an element, or a set of namespace bindings. The node selector is an
 expression which identifies an element, attribute or set of namespace
 bindings. Its grammar is:

 node-selector = element-selector ["/" terminal-selector]
 terminal-selector = attribute-selector / namespace-selector /
 extension-selector
 element-selector = step *("/" step)
 step = by-name / by-pos / by-attr / by-pos-attr /
 extension-selector
 by-name = NameorAny
 by-pos = NameorAny "[" position "]"
 position = 1*DIGIT
 attr-test = "@" att-name "=" att-value
 by-attr = NameorAny "[" attr-test "]"
 by-pos-attr = NameorAny "[" position "]" "[" attr-test "]"
 NameorAny = QName / "*" ; QName from XML Namespaces
 att-name = QName
 att-value = AttValue ; from XML specification
 attribute-selector = "@" att-name

Rosenberg Expires April 16, 2007 [Page 18]

Internet-Draft XCAP October 2006

 namespace-selector = "namespace::*"
 extension-selector = 1*(%x00-2e / %x30-ff) ; anything but "/"

 The QName grammar is defined in the XML namespaces [3] specification,
 and the AttValue grammar is defined in the XML specification XML 1.0
 [1].

 The extension-selector is included for purposes of extensibility. It
 can be composed of any character except the slash, which is the
 delimeter amongst steps. Any characters in an extension that cannot
 be represented in a URI MUST be percent-encoded before placement into
 a URI.

 Note that the double quote, left square bracket and right square
 bracket characters, which are meaningful to XCAP, cannot be directly
 represented in the HTTP URI. As a result, they are percent-encoded
 when placed within the HTTP URI. In addition to these characters, an
 apostrophe (') character can be used as a delimiter within XPath
 expressions. Furthermore, since XML allows for non-ASCII characters,
 the names of elements and attributes may not be directly
 representable in a URI. Any such characters MUST be represented by
 converting them to an octet sequence corresponding to their
 representation in UTF-8, and then percent-encoding that sequence of
 octets.

 Similarly, the XML specification defines the QName production for the
 grammar for element and attribute names, and the AttValue production
 for the attribute values. Unfortunately, the characters permitted by
 these productions include some that are not allowed for pchar, which
 is the production for the allowed set of characters in path segments
 in the URI. The AttValue production allows many such characters
 within the US-ASCII set, including the space. Those characters MUST
 be percent- encoded when placed in the URI. Furthermore, QName and
 AttValue allow many Unicode characters, outside of US-ASCII. When
 these characters need to be represented in the HTTP URI, they are
 percent- encoded. To do this, the data should be encoded first as
 octets according to the UTF-8 character encoding [18] and then only
 those octets that do not correspond to characters in the pchar set
 should be percent-encoded. For example, the character A would be
 represented as "A", the character LATIN CAPITAL LETTER A WITH GRAVE
 would be represented as "%C3%80", and the character KATAKANA LETTER A
 would be represented as "%E3%82%A2".

 As a result, the grammar above represents the expressions processed
 by the XCAP server internally after it has decoded the URI. The on-
 the-wire format is dictated by RFC 3986 [13]. In the discussions and
 examples below, when the node selectors are not part of an HTTP URI,
 they are presented in their internal format prior to encoding. If an

https://datatracker.ietf.org/doc/html/rfc3986

Rosenberg Expires April 16, 2007 [Page 19]

Internet-Draft XCAP October 2006

 example includes a node selector within an HTTP URI, it is presented
 in its percent-encoded form.

 The node selector is based on the concepts in XPath [10]. Indeed,
 the node selector expression, before it is percent-encoded for
 representation in the HTTP URI, happens to be a valid XPath
 expression. However, XPath provides a set of functionality far
 richer than is needed here, and its breadth would introduce much
 unneeded complexity into XCAP.

 To determine the XML element, attribute or namespace bindings
 selected by the node selector, processing begins at the root node of
 the XML document. The first step in the element selector is then
 taken. Each step chooses a single XML element within the current
 document context. The document context is the point within the XML
 document from which a specific step is evaluated. The document
 context begins at the root node of the document. When a step
 determines an element within that context, that element becomes the
 new context for evaluation of the next step. Each step can select an
 element by its name (expanded), by a combination of name and
 attribute value, by name and position, or by name, position and
 attribute. In all cases, the name can be wildcarded, so that all
 elements get selected.

 The selection operation operates as follows. Within the current
 document context, the children of that context are enumerated in
 document order. If the context is the root node of the document, its
 child element is the root element of the document. If the context is
 an element, its children are all of the children of that element
 (naturally). Next, those elements whose name is not a match for
 NameorAny are discarded. An element name is a match if NameorAny is
 the wildcard, or, if its not a wildcard, the element name matches
 NameorAny. Matching is discussed below. The result is an ordered
 list of elements.

 The elements in the list are further filtered by the predicates,
 which are the expressions in square brackets following NameorAny.
 Each predicate further prunes the elements from the current ordered
 list. These predicates are evaluated in order. If the content of
 the predicate is a position, the position-th element is selected
 (that is, treat "position" as a variable, and take the element whose
 position equals that variable), and all others are discarded. If
 there are fewer elements in the list than the value of position, the
 result is a no-match.

 If the content of the predicate is an attribute name and value, all
 elements possessing that attribute with that value are selected, and
 all others are discarded. Note that, although a document can have

Rosenberg Expires April 16, 2007 [Page 20]

Internet-Draft XCAP October 2006

 namespace declarations within elements, those elements cannot be
 selected using a namespace declaration as a predicate. That is, a
 step like "el-name[@xmlns='namespace']" will never match an element,
 even if there is an element in the list that specifies a default
 namespace of "namespace". In other words, a namespace node is NOT an
 attribute. If the namespaces in scope for an element are needed,
 they can be selected using the namespace-selector described below.
 If there are no elements with attributes having the given name and
 value, the result is a no-match.

 After the predicates have been applied, the result will be a no-
 match, one element, or multiple elements. If the result is multiple
 elements, the node selector is invalid. Each step in a node selector
 MUST produce a single element to form the context for the next step.
 This is more restrictive than general XPath expressions, which allow
 a context to contain multiple nodes. If the result is a no-match,
 the node selector is invalid. The node selector is only valid if a
 single element was selected. This element becomes the context for
 the evaluation of the next step in the node selector expression.

 The last location step is either the previously described element
 selector or a "terminal selector". If the terminal selector is an
 attribute selector, the server checks to see if there is an attribute
 with the same expanded name in the current element context. If there
 is not, the result is considered a no-match. Otherwise, that
 attribute is selected. If the terminal selector is a namespace
 selector, the result is equal to the set of namespace bindings in
 scope for the element, including the possible default namespace
 declaration. This specification defines a syntax for representing
 namespace bindings, so they can be returned to the client in an HTTP
 response.

 As a result, once the entire node selector is evaluated against the
 document, the result will either be a no-match, invalid, a single
 element, a single attribute or a set of namespace bindings.

 Matching of element names is performed as follows. The element being
 compared in the step has its name expanded as described in XML
 namespaces [3]. The element name in the step is also expanded. This
 expansion requires that any namespace prefix is converted to its
 namespace URI. Doing that requires a set of bindings from prefixes
 to namespace URIs. This set of bindings is obtained from the query
 component of the URI (see Section 6.4). If the prefix of the QName
 of an element is empty, the corresponding URI is then the default
 document namespace URI defined by the application usage, or null if
 not defined. Comparisons are then performed as described in XML
 namespaces [3]. Note that the namespace prefix expansions described
 here are different than those specified in the XPath 1.0

Rosenberg Expires April 16, 2007 [Page 21]

Internet-Draft XCAP October 2006

 specification, but are closer to those currently defined by the XPath
 2.0 specification [24].

 Matching of attribute names proceeds in a similar way. The attribute
 in the document has its name expanded as described in XML namespaces
 [3]. If the attribute name in the attribute selector has a namespace
 prefix, its name is expanded using the namespace bindings obtained
 from the query component of the URI. An unprefixed attribute QName
 is in no namespace.

 Comments, text content (including whitespace), and processing
 instructions can be present in a document, but cannot be selected by
 the expressions defined here. Of course, if such information is
 present in a document, and a user selects an XML element enclosing
 that data, that information would be included in a resulting GET, for
 example. Furthermore, whitespace is respected by XCAP. If a client
 PUTs an element or document that contains whitespace, the server
 retains that whitespace, and will return the element or document back
 to the client with exactly the same whitespace. Similarly, when an
 element is inserted, no additional whitespace is added around the
 inserted element, and the element gets inserted in a very specific
 location relative to any whitespace, comments or processing
 instructions around it. Section 8.2.3 describes where the insertion
 occurs.

 As an example, consider the following XML document:

 <?xml version="1.0"?>
 <watcherinfo xmlns="urn:ietf:params:xml:ns:watcherinfo"
 version="0" state="full">
 <watcher-list resource="sip:professor@example.net"
 package="presence">
 <watcher status="active"
 id="8ajksjda7s"
 duration-subscribed="509"
 event="approved">sip:userA@example.net</watcher>
 <watcher status="pending"
 id="hh8juja87s997-ass7"
 display-name="Mr. Subscriber"
 event="subscribe">sip:userB@example.org</watcher>
 </watcher-list>
 </watcherinfo>

 Figure 3: Example XML Document

 Assuming that the default document namespace for this application
 usage is "urn:ietf:params:xml:ns:watcherinfo", the node selector

Rosenberg Expires April 16, 2007 [Page 22]

Internet-Draft XCAP October 2006

 watcherinfo/watcher-list/watcher[@id="8ajksjda7s"] would select the
 following XML element:

 <watcher status="active"
 id="8ajksjda7s"
 duration-subscribed="509"
 event="approved">sip:userA@example.net</watcher>

6.4. Namespace Bindings for the Selector

 In order to expand the namespace prefixes used in the node selector,
 a set of bindings from those namespace prefixes to namespace URI must
 be used. Those bindings are contained in the query component of the
 URI. If no query component is present, it means that only the
 default document namespace (as identified by the application usage)
 is defined. The query component is formatted as a valid xpointer
 expression [5] after suitable URI encoding as defined in Section 4.1
 of the Xpointer framework. This xpointer expression SHOULD only
 contain expressions from the xmlns() scheme [4]. A server compliant
 to this specification MUST ignore any xpointer expressions not from
 the xmlns() scheme. The xmlns() xpointer expressions define the set
 of namespace bindings in use for evaluating the URI.

 Note that xpointer expressions were originally designed for usage
 within fragment identifiers of URIs. However, within XCAP, they are
 used within query components of URIs.

 The following example shows a more complex matching operation, this
 time including the usage of namespace bindings. Consider the
 following document:

 <?xml version="1.0"?>
 <foo xmlns="urn:test:default-namespace">
 <ns1:bar xmlns:ns1="urn:test:namespace1-uri"
 xmlns="urn:test:namespace1-uri">
 <baz/>
 <ns2:baz xmlns:ns2="urn:test:namespace2-uri"/>
 </ns1:bar>
 <ns3:hi xmlns:ns3="urn:test:namespace3-uri">
 <there/>
 </ns3:hi>
 </foo>

 Assume that this document has a document URI of
 "http://xcap.example.com/test/users/sip:joe@example.com/index", where
 "test" is the application usage. This application usage defines a

Rosenberg Expires April 16, 2007 [Page 23]

Internet-Draft XCAP October 2006

 default document namespace of "urn:test:default-namespace". The XCAP
 URI:

 http://xcap.example.com/test/users/sip:joe@example.com/index/
 ~~/foo/a:bar/b:baz?xmlns(a=urn:test:namespace1-uri)
 xmlns(b=urn:test:namespace1-uri)

 will select the first <baz> child element of the <bar> element in the
 document. The XCAP URI:

 http://xcap.example.com/test/users/sip:joe@example.com/index/
 ~~/foo/a:bar/b:baz?xmlns(a=urn:test:namespace1-uri)
 xmlns(b=urn:test:namespace2-uri)

 will select the second <baz> child element of the <bar> element in
 the document. The following XCAP URI will also select the second
 element in the document:

 http://xcap.example.com/test/users/sip:joe@example.com/index/
 ~~/d:foo/a:bar/b:baz?xmlns(a=urn:test:namespace1-uri)
 xmlns(b=urn:test:namespace2-uri)
 xmlns(d=urn:test:default-namespace)

7. Client Operations

 An XCAP client is an HTTP/1.1 compliant client. Specific data
 manipulation tasks are accomplished by invoking the right set of HTTP
 methods with the right set of headers on the server. This section
 describes those in detail.

 In all cases where the client modifies a document, by deleting or
 inserting a document, element or attribute resource, the client
 SHOULD verify that, if the operation were to succeed, the resulting
 document would meet the data constraints defined by the application
 usage, including schema validation. For example, if the client
 performs a PUT operation to "http://xcap.example.com/rls-services/
 users/sip:joe@example.com/mybuddies", rls-services is the application
 unique ID, and the constraints defined by it SHOULD be followed.

 The client will know what URI to use based on the naming conventions
 described by the application usage.

 If the document, after modification, does not meet the data
 constraints, the server will reject it with a 409. The 409 response

Rosenberg Expires April 16, 2007 [Page 24]

Internet-Draft XCAP October 2006

 may contain an XML body, formatted according to the schema in
Section 11.2, which provides further information on the nature of the

 error. The client MAY use this information to try and alter the
 request so that this time, it might succeed. The client SHOULD NOT
 simply retry the request without changing some aspect of it.

 In some cases, the application usage will dictate a uniqueness
 constraint that the client cannot guarantee on its own. One such
 example is that a URI has to be unique within a domain. Typically,
 the client is not the owner of the domain, and so it cannot be sure
 that a URI is unique. In such a case, the client can either generate
 a sufficiently random identifier, or it can pick a "vanity"
 identifier in the hopes that it is not taken. In either case, if the
 identifier is not unique, the server will reject the request with a
 409 and suggest alternatives that the client can use to try again.
 If the server does not suggest alternatives, the client SHOULD
 attempt to use random identifiers with increasing amounts of
 randomness.

 HTTP also specifies that PUT and DELETE requests are idempotent.
 This means that, if the client performs a PUT on a document and it
 succeeds, it can perform the same PUT, and the resulting document
 will look the same. Similarly, when a client performs a DELETE, if
 it succeeds, a subsequent DELETE to the same URI will generate a 404;
 the resource no longer exists on the server since it was deleted by
 the previous DELETE operation. To maintain this property, the client
 SHOULD construct its URIs such that, after the modification has taken
 place, the URI in the request will point to the resource just
 inserted for PUT (i.e., the body of the request), and will point to
 nothing for DELETE. If this property is maintained, it is the case
 that GET to the URI in the PUT will return the same content (i.e.,
 GET(PUT(X)) == x). This property implies idempotency. Although a
 request can still be idempotent if it does not possess this property,
 XCAP does not permit such requests. If the client's request does not
 have this property, the server will reject the request with a 409 and
 indicate a cannot-insert error condition.

 If the result of the PUT is a 200 or 201 response, the operation was
 successful. Other response codes to any request, such as a
 redirection, are processed as per RFC 2616 [6].

7.1. Create or Replace a Document

 To create or replace a document, the client constructs a URI that
 references the location where the document is to be placed. This URI
 MUST be a document URI, and therefore contain the XCAP root and
 document selector. The client then invokes a PUT method on that URI.

https://datatracker.ietf.org/doc/html/rfc2616

Rosenberg Expires April 16, 2007 [Page 25]

Internet-Draft XCAP October 2006

 The MIME content type MUST be the type defined by the application
 usage. For example, it would be "application/rls-services+xml" for
 an RLS services [22] document, and not "application/xml".

 If the Request-URI identifies a document that already exists in the
 server, the PUT operation replaces that document with the content of
 the request. If the Request-URI does not identify an existing
 document, the document is created on the server at that specific URI.

7.2. Delete a Document

 To delete a document, the client constructs a URI that references the
 document to be deleted. This URI MUST be a document URI. The client
 then invokes a DELETE operation on the URI to delete the document.

7.3. Fetch a Document

 As one would expect, fetching a document is trivially accomplished by
 performing an HTTP GET request with the Request URI set to the
 document URI.

7.4. Create or Replace an Element

 To create or replace an XML element within an existing document, the
 client constructs a URI whose document selector points to the
 document to be modified. The node selector MUST be present in the
 URI, delimited from the document selector with the node selector
 separator. The query component MUST be present if the node selector
 makes use of namespace prefixes, in which case the xmlns()
 expressions in the query component MUST define those prefixes. To
 create this element within the document, the node selector is
 constructed such that it is a no-match against the current document,
 but if the element in the body of the request was added to the
 document as desired by the client, the node selector would select
 that element. To replace an element in the document, the node
 selector is constructed so that it is a match against the element in
 the current document to be replaced, as well as a match to the new
 element (present in the body of the PUT request) that is to replace
 it.

 Oftentimes, the client will wish to insert an element into a document
 in a certain position relative to other children of the same parent.
 This is called a positional insertion. They often arise because the
 schema constrains where the element can occur, or because ordering of
 elements is significant within the schema. To accomplish this, the
 client can use a node selector of the following form:

Rosenberg Expires April 16, 2007 [Page 26]

Internet-Draft XCAP October 2006

 parent/*[position][unique-attribute-value]

 Here, "parent" is an expression for the parent of the element to be
 inserted. "position" is the position amongst the existing child
 elements of this parent where the new element is to be inserted.
 "unique-attribute-value" is an attribute name and value for the
 element to be inserted, which is different from the current element
 in "position". The second predicate is needed so that the overall
 expression is a no-match when evaluated against the current children.
 Otherwise, the PUT would replace the existing element in that
 position. Note that in addition to wildcard "*" a QName can also be
 used as a node test. The insert logic is described in more detail in

Section 8.2.3.

 Consider the example document in Figure 3. The client would like to
 insert a new <watcher> element as the second element underneath
 <watcher-list>. However, it cannot just PUT to a URI with the
 watcherinfo/watcher-list/*[2] node selector; this node selector would
 select the existing 2nd child element of <watcher-list> and replace
 it. Thus, the PUT has to be made to a URI with watcherinfo/
 watcher-list/*[2][@id="hhggff"] as the node selector, where "hhggff"
 is the value of the "id" attribute of the new element to be inserted.
 This node-selector is a no-match against the current document, and
 would be a match against the new element if it was inserted as the
 2nd child element of <watcher-list>.

 The "*" indicates that all element children of <watcher-info> are to
 be considered when computing the position for insertion. If, instead
 of a wildcard *, an element name (QName) was present, the expression
 above would insert the new element as the position-th element amongst
 those with the same expanded name (see Section 8.2.3 for a discussion
 on insertion rules).

 Once the client constructs the URI, it invokes the HTTP PUT method.
 The content in the request MUST be an XML element. Specifically, it
 contains the element, starting with the opening bracket for the begin
 tag for that element, including the attributes and content of that
 element (whether it be text or other child elements), and ending with
 the closing bracket for the end tag for that element. The MIME type
 in the request MUST be "application/xcap-el+xml", defined in

Section 15.2.1. If the node selector, when evaluated against the
 current document, results in a no-match, the server performs a
 creation operation. If the node selector, when evaluated against the
 current document, is a match for an element in the current document,
 the server replaces it with the content of the PUT request. This
 replacement is complete; that is, the old element (including its
 attributes, namespace declarations and content: text, element,
 comment and processing instruction nodes) are removed, and the new

Rosenberg Expires April 16, 2007 [Page 27]

Internet-Draft XCAP October 2006

 one, including its attributes, namespace declarations and content, is
 put in its place.

 To be certain that element insertions have the GET(PUT(x))==x
 property, the client can check that the attribute predicates in the
 final path segment of the URI match the attributes of the element in
 the body of the request. As an example of an request that would not
 have this property and therefore not be idempotent, consider the
 following PUT request (URIs are line-folded for readability):

 PUT
 /rls-services/users/sip:bill@example.com/index/~~/rls-services/
 service%5b@uri=%22sip:good-friends@example.com%22%5d
 HTTP/1.1
 Content-Type:application/xcap-el+xml
 Host: xcap.example.com

 <service uri="sip:mybuddies@example.com">
 <resource-list>http://xcap.example.com/resource-lists/users
 /sip:joe@example.com/index/~~/resource-lists/list%5b@name=%22l1%22%5d
 </resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>

 This request will fail with a 409. The Request URI contains a final
 path segment with a predicate based on attributes -
 @uri="sip:good-friends@example.com". However, this will not match
 the value of the "uri" attribute in the element in the body
 (sip:mybuddies@example.com).

 The GET(PUT(x))==x property introduces some limitations on the types
 of operations possible. It will not be possible to replace an
 element with one that has a new value for an attribute that is the
 sole unique element identifier, if the URI contained a node selector
 which was using the previous value of that attribute for purposes of
 selecting the element. This is exactly the use case in the example
 above. To get around this limitation, the selection can be done by
 position instead of attribute value, or the parent of the element to
 be replaced can be selected, and then the body of the PUT operation
 would contain the parent, the child to be replaced, and all other
 siblings.

7.5. Delete an Element

 To delete an element from a document, the client constructs a URI

Rosenberg Expires April 16, 2007 [Page 28]

Internet-Draft XCAP October 2006

 whose document selector points to the document containing the element
 to be deleted. The node selector MUST identify a single element.
 The node selector MUST be present following the node selector
 separator, and identify the specific element to be deleted.
 Furthermore, the node selector MUST match no element after the
 deletion of the target element. This is required to maintain the
 idempotency property of HTTP deletions. The query component MUST be
 present if the node selector makes use of namespace prefixes, in
 which case the xmlns() expressions in the query component MUST define
 those prefixes.

 If the client wishes to delete an element in a specific position,
 this is referred to as a positional deletions. Like a positional
 insertion, the node selector has the following form:

 parent/*[position][unique-attribute-value]

 Where "parent" is an expression for the parent of the element to be
 deleted, "position" is the position of the element to be deleted
 amongst the existing child elements of this parent, and "unique-
 attribute-value" is an attribute name and value for the element to be
 deleted, where this attribute name and value are different than any
 of the siblings of the element.

 Positional deletions without using a unique attribute name and value
 are possible, but only in limited cases where idempotency is
 guaranteed. In particular, if a DELETE operation refers to an
 element by name and position alone (parent/elname[n]), this is
 permitted only when the element to be deleted is the last element
 amongst all its siblings with that name. Similarly, if a DELETE
 operation refers to an element by position alone (parent/*[n]), this
 is permitted only when the elemented to be deleted is the last
 amongst all sibling elements, regardless of name.

 The client then invokes the HTTP DELETE method. The server will
 remove the element from the document (including its attributes,
 namespace declarations and its descendant nodes, such as any
 children).

7.6. Fetch an Element

 To fetch an element of a document, the client constructs a URI whose
 document selector points to the document containing the element to be
 fetched. The node selector MUST be present following the node
 selector separator, and must identify the element to be fetched. The
 query component MUST be present if the node selector makes use of
 namespace prefixes, in which case the xmlns() expressions in the

Rosenberg Expires April 16, 2007 [Page 29]

Internet-Draft XCAP October 2006

 query component MUST define those prefixes.

 The client then invokes the GET method. The 200 OK response will
 contain that XML element. Specifically, it contains the content of
 the XML document, starting with the opening bracket for the begin tag
 for that element, and ending with the closing bracket for the end tag
 for that element. This will, as a result, include all attributes,
 namespace declarations and descendant nodes: elements, comments, text
 and processing instructions of that element.

7.7. Create or Replace an Attribute

 To create or replace an attribute in an existing element of a
 document, the client constructs a URI whose document selector points
 to the document to be modified. The node selector, following the
 node selector separator, MUST be present. The node selector MUST be
 constructed such that, if the attribute was created or replaced as
 desired, the node selector would select that attribute. If the node
 selector, when evaluated against the current document, results in a
 no-match, it is a creation operation. If it matches an existing
 attribute, it is a replacement operation. The query component MUST
 be present if the node selector makes use of namespace prefixes, in
 which case the xmlns() expressions in the query component MUST define
 those prefixes.

 The client then invokes the HTTP PUT method. The content defined by
 the request MUST be the value of the attribute, compliant to the
 grammar for AttValue as defined in XML 1.0 [1]. Note that, unlike
 when AttValue is present in the URI, there is no percent-encoding
 which only applies to URIs. This request MUST be sent with the
 Content-Type of "application/xcap-att+xml" as defined in

Section 15.2.2. The server will add that attribute such that, if the
 node selector is evaluated on the resulting document, it returns the
 attribute present in the request.

 To be certain that attribute insertions have the GET(PUT(x))==x
 property, the client can check that any attribute predicate in the
 path segment that selects the element into which the attribute is
 inserted, matches a different attribute than the one being inserted
 by the request. As an example of a request that would not have this
 property and therefore not be idempotent, consider the following PUT
 request (URIs are line folded for readability):

Rosenberg Expires April 16, 2007 [Page 30]

Internet-Draft XCAP October 2006

 PUT
 /rls-services/users/sip:bill@example.com/index/~~/rls-services
 /service%5b@uri=%22sip:good-friends@example.com%22%5d/@uri
 HTTP/1.1
 Content-Type:application/xcap-att+xml
 Host: xcap.example.com

 "sip:bad-friends@example.com"

 As with element insertions and replacements, the GET(PUT(x))==x
 property introduces limitations on attribute insertions and
 replacements. It will not be possible to replace the attribute value
 of an attribute, when that attribute is the sole unique element
 identifier, and the URI contains a node selector that uses the
 previous value of the attribute to select the affected element. This
 is the use case in the example above. Instead, the element can be
 selected positionally, or its entire parent replaced.

 This request will fail with a 409.

7.8. Delete an Attribute

 To delete attributes from the document, the client constructs a URI
 whose document selector points to the document containing the
 attributes to be deleted. The node selector MUST be present
 following the node selector separator, and evaluate to an attribute
 in the document to be deleted. The query component MUST be present
 if the node selector makes use of namespace prefixes, in which case
 the xmlns() expressions in the query component MUST define those
 prefixes.

 The client then invokes the HTTP DELETE method. The server will
 remove the attribute from the document.

7.9. Fetch an Attribute

 To fetch an attribute of a document, the client constructs a URI
 whose document selector points to the document containing the
 attribute to be fetched. The node selector MUST be present following
 the node selector separator, containing an expression identifying the
 attribute whose value is to be fetched. The query component MUST be
 present if the node selector makes use of namespace prefixes, in
 which case the xmlns() expressions in the query component MUST define
 those prefixes.

 The client then invokes the GET method. The 200 OK response will
 contain an "application/xcap-att+xml" document with the specified
 attribute, formatted according to the grammar of AttValue as defined

Rosenberg Expires April 16, 2007 [Page 31]

Internet-Draft XCAP October 2006

 in the XML 1.0 specifications.

7.10. Fetch Namespace Bindings

 If a client wishes to insert an element or attribute into a document,
 and that element or attribute is part of a namespace declared
 elsewhere in the document, the client will need to know the namespace
 bindings in order to construct the XML content in the request. If
 the client has a cached copy of the document, it will know the
 bindings. However, if it doesn't have the whole document cached, it
 can be useful to fetch just the bindings that are in scope for an
 element, in order to construct a subsequent PUT request.

 To get those bindings, the client constructs a URI whose document
 selector points to the document containing the element whose
 namespace bindings are to be fetched. The node selector MUST be
 present following the node selector separator, containing an
 expression identifying the desired namespace bindings. The query
 component MUST be present if the node selector makes use of namespace
 prefixes, in which case the xmlns() expressions in the query
 component MUST define those prefixes.

 The client then invokes the GET method. The 200 OK response will
 contain an "application/xcap-ns+xml" document with the namespace
 definitions. The format for this document is defined in Section 10.

 A client cannot set the namespace prefixes in scope for an element.
 As such, a node selector that identifies namespace prefixes MUST NOT
 appear in a PUT or DELETE request.

7.11. Conditional Operations

 The HTTP specification defines several header fields that can be used
 by a client to make the processing of the request conditional. In
 particular, the If-None-Match and If-Match header fields allow a
 client to make them conditional on the current value of the entity
 tag for the resource. These conditional operations are particularly
 useful for XCAP resources.

 For example, it is anticipated that clients will frequently wish to
 cache the current version of a document. So, when the client starts
 up, it will fetch the current document from the server and store it.
 When it does so, the GET response will contain the entity tag for the
 document resource. Each resource within a document maintained by the
 server will share the same value of the entity tag. As a result, the
 entity tag returned by the server for the document resource is
 applicable to element and attribute resources within the document.

Rosenberg Expires April 16, 2007 [Page 32]

Internet-Draft XCAP October 2006

 If the client wishes to insert or modify an element or attribute
 within the document, but it wants to be certain that the document
 hasn't been modified since the client last operated on it, it can
 include an If-Match header field in the request, containing the value
 of the entity tag known to the client for all resources within the
 document. If the document has changed, the server will reject this
 request with a 412 response. In that case, the client will need to
 flush its cached version, fetch the entire document, and store the
 new entity tag returned by the server in the 200 OK to the GET
 request. It can then retry the request, placing the new entity tag
 in the If-Match header field. If this succeeds, the Etag header
 field in the response to PUT contains the entity tag for the resource
 that was just inserted or modified. Because all resources in a
 document share the same value for their entity tag, this entity tag
 value can be applied to the modification of other resources.

 A client can also conditionally delete elements or attributes by
 including an If-Match header field in DELETE requests. Note that the
 200 OK responses to a DELETE will contain an Etag header field,
 containing the entity tag for all of the other resources in the
 document, even though the resource identified by the DELETE request
 no longer exists.

 When a client uses conditional PUT and DELETE operations, it can
 apply those changes to its local cached copy, and update the value of
 the entity tag for the locally cached copy based on the Etag header
 field returned in the response. As long as no other clients try to
 modify the document, the client will be able to perform conditional
 operations on the document without ever having to perform separate
 GET operations to synchronize the document and it's entity tags with
 the server. If another client tries to modify the document, this
 will be detected by the conditional mechanisms, and the client will
 need to perform a GET to resynchronize its copy unless it has some
 other means to learn about the change.

 If a client does not perform a conditional operation, but did have a
 cached copy of the document, that cached copy will become invalid
 once the operation is performed (indeed, it may have become invalid
 even beforehand). Unconditional operations should only be performed
 by clients when knowledge of the entire document is not important for
 the operation to succeed.

 In another example, a client may wish to insert a new element into a
 document, but wants to be sure that the insertion will only take
 place if that element does not exist. In other words, the client
 wants the PUT operation to be a creation, not a replacement. To
 accomplish that, the client can insert the If-None-Match header field
 into the PUT request, with a value of *. This tells the server to

Rosenberg Expires April 16, 2007 [Page 33]

Internet-Draft XCAP October 2006

 reject the request with a 412 if resource exists.

 As another example, a when a client fetches a document, and there is
 an older version cached, it is useful for clients to use a
 conditional GET in order to reduce network usage if the cached copy
 is still valid. This is done by including, in the GET request, the
 If-None-Match header field with a value equal to the current etag
 held by the client for the document. The server will only generate a
 200 OK reponse if the etag held by the server differs than that held
 by the client. If it doesn't differ, the server will respond with a
 304 response.

8. Server Behavior

 An XCAP server is an HTTP/1.1 compliant origin server. The behaviors
 mandated by this specification relate to the way in which the HTTP
 URI is interpreted and the content is constructed.

 An XCAP server MUST be explicitly aware of the application usage
 against which requests are being made. That is, the server must be
 explicitly configured to handle URIs for each specific application
 usage, and must be aware of the constraints imposed by that
 application usage.

 When the server receives a request, the treatment depends on the URI.
 If the URI refers to an application usage not understood by the
 server, the server MUST reject the request with a 404 (Not Found)
 response. If the URI refers to a user that is not recognized by the
 server, it MUST reject the request with a 404 (Not Found). If the
 URI includes extension-selectors that the server doesn't understand,
 it MUST reject the request with a 404 (Not Found).

 Next, the server authenticates the request. All XCAP servers MUST
 implement HTTP Digest [11]. Furthermore, servers MUST implement HTTP
 over TLS, RFC 2818 [14]. It is RECOMMENDED that administrators use
 an HTTPS URI as the XCAP root URI, so that the digest client
 authentication occurs over TLS.

 Next, the server determines if the client has authorization to
 perform the requested operation on the resource. The application
 usage defines the authorization policies. An application usage may
 specify that the default is used. This default is described in

Section 5.7.

 Next, the server makes sure that it can properly evaluate the request
 URI. The server MUST check the node selector in the request URI, if
 present. If any qualified names are present that use a namespace

https://datatracker.ietf.org/doc/html/rfc2818

Rosenberg Expires April 16, 2007 [Page 34]

Internet-Draft XCAP October 2006

 prefix, and that prefix is not defined in an xmlns() expression in
 the query component of the request URI, the server MUST reject the
 request with a 400 response.

 After checking the namespace prefix definitions, the specific
 behavior depends on the method and what the URI refers to.

8.1. POST Handling

 XCAP resources do not represent processing scripts. As a result,
 POST operations to HTTP URIs representing XCAP resources are not
 defined. A server receiving such a request for an XCAP resource
 SHOULD return a 405.

8.2. PUT Handling

 The behavior of a server in receipt of a PUT request is as specified
 in HTTP/1.1 Section 9.6 - the content of the request is placed at the
 specified location. This section serves to define the notion of
 "placement" and "specified location" within the context of XCAP
 resources.

 If the request URI contained a namespace-selector, the server MUST
 reject the request with a 405 (Method Not Allowed) and MUST include
 an Allow header field including the GET method.

8.2.1. Locating the Parent

 The first step the server performs is to locate the parent, whether
 it is a directory or element, in which the resource is to be placed.
 To do that, the server removes the last path segment from the URI.
 The rest of the URI refers to the parent. This parent can be a
 document, element, or prefix of a document selector (called a
 directory, even though this specification does not mandate that
 documents are actually stored in a filesystem). This URI is called
 the parent URI. The path segment that was removed is called the
 target selector, and the node (element, document or attribute) it
 describes is called the target node.

 If the parent URI has no node selector separator, it is referring to
 the directory into which the document should be inserted. In normal
 XCAP operations, this will be either the users home directory or the
 global directory, which will always exist on the server. However, if
 an application usage is making use of subdirectories (despite the
 fact that this is not recommended), it is possible that the directory
 into which the document should be inserted does not exist. In this
 case, the server MUST return a 409 response, and SHOULD include a
 detailed conflict report including the <no-parent> element. Detailed

Rosenberg Expires April 16, 2007 [Page 35]

Internet-Draft XCAP October 2006

 conflict reports are discussed in Section 11. If the directory does
 exist, the server checks to see if there is a document with the same
 filename as the target node. If there is, the operation is the
 replacement operation discussed in Section 8.2.4. If it does not
 exist, it is the creation operation, discussed in Section 8.2.3.

 If the parent URI has a node selector separator, the document
 selector is extracted, and that document is retrieved. If the
 document does not exist, the server MUST return a 409 response, and
 SHOULD include a detailed conflict report including the <no-parent>
 element. If it does exist, the node selector is extracted, and
 decoded (recall that the node selector is percent-encoded). The node
 selector is applied to the document based on the matching operations
 discussed in Section 6.3. If the result is a no-match or invalid,
 the server MUST return a 409 response, and SHOULD include a detailed
 conflict report including the <no-parent> element.

 If the node-selector is valid, the server examines the target
 selector, and evaluates it within the context of the parent node. If
 the target node exists within the parent, the operation is a
 replacement, as described in Section 8.2.4. If it does not exist, it
 is the creation operation, discussed in Section 8.2.3.

 Before performing the replacement or creation, as determined based on
 the logic above, the server validates the content of the request as
 described in Section 8.2.2

8.2.2. Verifying Document Content

 If the PUT request is for a document (the request URI had no node
 selector separator), the content of the request body has to be a
 well-formed XML document. If it is not, the server MUST reject the
 request with a 409 response code. That response SHOULD include a
 detailed conflict report including the <not-well-formed> element. If
 the document is well-formed but not UTF-8 encoded, the server MUST
 reject the request with a 409 response code. That response SHOULD
 include a detailed conflict report including the <not-utf-8> element.
 If the MIME type in the Content-Type header field of the request is
 not equal to the MIME type defined for the application usage, the
 server MUST reject the request with a 415.

 If the PUT request is for an element, the content of the request body
 has to be a well-balanced region of an XML document, also known as an
 XML fragment body in The XML Fragment Interchange [23] specification,
 including only a single element. If it is not, the server MUST
 reject the request with a 409 response code. That response SHOULD
 include a detailed conflict report including the <not-xml-frag>
 element. If the fragment body is well-balanced but contains

Rosenberg Expires April 16, 2007 [Page 36]

Internet-Draft XCAP October 2006

 characters outside of the UTF-8 character set, the server MUST reject
 the request with a 409 response code. That response SHOULD include a
 detailed conflict report including the <not-utf-8> element. If the
 MIME type in the Content-Type header field of the request is not
 equal to "application/xcap-el+xml", the server MUST reject the
 request with a 415.

 If the PUT request is for an attribute, the content of the request
 body has to be a sequence of characters that comply with the grammar
 for AttValue as defined above. If it is not, the server MUST reject
 the request with a 409 response code. That response SHOULD include a
 detailed conflict report including the <not-xml-att-value> element.
 If the attribute value is valid but contains characters outside of
 the UTF-8 character set, the server MUST reject the request with a
 409 response code. That response SHOULD include a detailed conflict
 report including the <not-utf-8> element.If the MIME type in the
 Content-Type header field of the request is not equal to
 "application/xcap-att+xml", the server MUST reject the request with a
 415.

8.2.3. Creation

 The steps in this sub-section are followed if the PUT request will
 result in the creation of a new document, element or attribute.

 If the PUT request is for a document, the content of the request body
 is placed into the directory, and its filename is associated with the
 target node, which is a document.

 If the PUT request is for an element, the server inserts the content
 of the request body as a new child element of the parent element
 selected in Section 8.2.1. The insertion is done such that, the
 request URI, when evaluated, would now point to the element which was
 inserted. There exist three possible ways how new elements are
 positioned.

 First, if there were no other sibling elements with the same expanded
 name, and the insertion is not positionally constrained, the new
 element is inserted such that it is the last element amongst all
 element siblings. Furthermore, if there were comment, text, or
 processing instruction nodes after the former last element, they MUST
 occur prior to the insertion of the new element. This case occurs
 when one of the following are true:

 o The element name in the target selector is not wildcarded. There
 could be an attribute selector (in which case, it would have to
 match an attribute of the element being inserted), and the
 position in the target selector will either be absent or have a

Rosenberg Expires April 16, 2007 [Page 37]

Internet-Draft XCAP October 2006

 value of 1 (a value greater than one would always result in
 rejection of the request, since this is the first element with the
 given name underneath the parent).

 o The element name in the target selector is wildcarded, but there
 are no other elements underneath the same parent. There could be
 an attribute selector (in which case, it would have to match an
 attribute of the element being inserted), and the position in the
 target selector will either be absent or have a value of 1 (a
 value greater than one would always result in rejection of the
 request, since this is the first element underneath the parent).

 o The element name in the target selector is wildcarded, and there
 are other elements underneath the same parent. However, there is
 an attribute selector which matches none of the attributes in the
 other sibling elements underneath the parent, but does match an
 attribute of the element to be inserted. The position in the
 target selector is absent.

 Secondly, if there were sibling elements with the same name already
 in the document, but the insertion is positionally unconstrained, the
 server MUST insert the element such that it is in the "earliest last"
 position. "Earliest last" means that the new element MUST be
 inserted so that there are no elements after it with the same
 expanded name, and for all insertion positions where this is true, it
 is inserted such that as many sibling nodes (element, comment, text
 or processing instruction) appear after it as possible. This case
 occurs when the target selector is defined by a by-name or by-attr
 production, and there is no position indicated.

 Lastly, if the element is positionally constrained, the server MUST
 insert the element so that it is in the "earliest nth" position.
 When n>1 and NameofAny is not a wildcard, the element MUST be
 inserted so that there are n-1 sibling elements before it with the
 same expanded name. If there are not n-1 sibling elements with the
 same expanded name, the request will fail. When n>1 and NameorAny is
 a wildcard, the element MUST be inserted so that there are n-1
 sibling elements before it, each of which can have any expanded name.
 If there are not n-1 sibling elements in the document, the request
 will fail. In both of these cases, the new element is inserted such
 that as many sibling nodes appear after it as possible. When n=1 and
 NameorAny is not a wildcard, the insertion is positionally
 constrained when an element with the same expanded name already
 appears as a child of the same parent. In this case, the new element
 MUST appear just before the existing first element with this same
 expanded name. When n=1 and NameorAny is wildcarded, the insertion
 is positionally constrained when there is also an attribute selector
 that didn't match the first sibling of the parent (if it did match,

Rosenberg Expires April 16, 2007 [Page 38]

Internet-Draft XCAP October 2006

 or was absent, this wouldn't have been an insertion). In this case,
 the new element MUST appear just before all existing elements
 regardless of their expanded name.

 In practice, this insertion logic keeps elements with the same
 expanded names closely together. This simplifies the application
 logic when the content model is described by XML schema with
 <sequence> rules and maxOccurs="unbounded" cardinalities, like:

 <xs:element name="foobar">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="foo" maxOccurs="unbounded" />
 <xs:element ref="bar" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 Based on this schema, the document contains some number of <foo>
 elements followed by some number of <bar> elements. Either <bar> or
 <foo> elements may easily be added without wildcards and positional
 constraints. Note that if "minOccurs" cardinality of <foo> element
 were zero and <foo> elements don't exist yet, a positional predicate
 with the * wildcard must be used.

 The whole insert logic is best described by complete examples,
 consider the following document:

 <?xml version="1.0"?>
 <root>
 <el1 att="first"/>
 <el1 att="second"/>
 <!-- comment -->
 <el2 att="first/>
 </root>

 A PUT request whose content is <el1 att="third"/> and whose node
 selector is root/el1[@att="third"] would result in the following
 document:

 <?xml version="1.0"?>
 <root>
 <el1 att="first"/>
 <el1 att="second"/><el1 att="third">
 <!-- comment -->

Rosenberg Expires April 16, 2007 [Page 39]

Internet-Draft XCAP October 2006

 <el2 att="first/>
 </root>

 Notice how it has been inserted as the third <el1> element in the
 document, and just before the comment and whitespace nodes. It would
 have been inserted in exactly the same place if the node selector had
 been root/el1[3][@att="third"] or root/*[3][@att="third"].

 If the content of the request had been <el3 att="first"/> and the
 node selector was root/el3, it would result in the following
 document:

 <?xml version="1.0"?>
 <root>
 <el1 att="first"/>
 <el1 att="second"/>
 <!-- comment -->
 <el2 att="first/>
 <el3 att="first"/></root>

 A PUT request whose content is <el2 att="2"/> and whose node selector
 is root/el2[@att="2"] would result in the following document:

 <?xml version="1.0"?>
 <root>
 <el1 att="first"/>
 <el1 att="second"/>
 <!-- comment -->
 <el2 att="first"/><el2 att="2"/>
 </root>

 It would have been inserted in exactly the same place if the node
 selector had been root/el2[2][@att="2"]. However, a selector root/
 *[2][@att="2"] would result in the following document:

 <?xml version="1.0"?>
 <root>
 <el1 att="first"/><el2 att="2"/>
 <el1 att="second"/>
 <!-- comment -->
 <el2 att="first"/>
 </root>

 Lastly, if the node selector had been root/el2[1][@att="2"] the
 result would be:

Rosenberg Expires April 16, 2007 [Page 40]

Internet-Draft XCAP October 2006

 <?xml version="1.0"?>
 <root>
 <el1 att="first"/>
 <el1 att="second"/>
 <!-- comment -->
 <el2 att="2"/><el2 att="first"/>
 </root>

 It is possible that the element cannot be inserted such that the
 request URI, when evaluated, returns the content provided in the
 request. Such a request is not allowed for PUT. This happens when
 the element in the body is not described by the expression in the
 target selector. An example of this case is described in

Section 7.4. If this happens the server MUST NOT perform the
 insertion, and MUST reject the request with a 409 response. The body
 of the response SHOULD contain a detailed conflict report containing
 the <cannot-insert> element. It is important to note that schema
 compliance does not play a role while performing the insertion. That
 is, the decision of where the element gets inserted is dictated
 entirely by the structure of the request-URI, the current document,
 and the rules in this specification.

 If the element being inserted (or any of its children) contain
 namespace declarations, those declarations are retained when the
 element is inserted, even if those same declarations exist in a
 parent element after insertion. The XCAP server MUST NOT remove
 redundant namespace declarations or otherwise change the namespace
 declarations that were present in the element being inserted.

 If the PUT request is for an attribute, the server inserts the
 content of the request body as the value of the attribute. The name
 of the attribute is equal to the att-name from the attribute-selector
 in the target selector.

 Assuming that the insertion can be accomplished, the server verifies
 that the insertion results in a document that meets the constraints
 of the application usage. This is dicussed in Section 8.2.5.

8.2.4. Replacement

 The steps in this sub-section are followed if the PUT request will
 result in the replacement of a document, element or attribute with
 the contents of the request.

 If the PUT request is for a document, the content of the request body
 is placed into the directory, replacing the document with the same
 filename.

Rosenberg Expires April 16, 2007 [Page 41]

Internet-Draft XCAP October 2006

 If the PUT request is for an element, the server replaces the target
 node with the content of the request body. As in the creation case,
 it is possible that, after replacement, the request URI does not
 select the element that was just inserted. If this happens the
 server MUST NOT perform the replacement, and MUST reject the request
 with a 409 response. The body of the response SHOULD contain a
 detailed conflict report containing the <cannot-insert> element.

 As with creation, replacement of an element does not result in the
 changing or elimination of namespace declarations within the newly
 modified element.

 If the PUT request is for an attribute, the server sets the value of
 the selected attribute to the content of the request body. It is
 possible in the replacement case (but not in the creation case),
 that, after replacement of the attribute, the request URI no longer
 selects the attribute that was just replaced. The scenario in which
 this can happen is discussed in Section 7.7. If this is the case,
 the server MUST NOT perform the replacement, and MUST reject the
 request with a 409 response. The body of the response SHOULD contain
 a detailed conflict report containing the <cannot-insert> element.

8.2.5. Validation

 Once the document, element or attribute has been tentatively inserted
 the server needs to verify that the resulting document meets the data
 constraints outlined by the application usage.

 First, the server checks that the final document is compliant to the
 schema. If it is not, the server MUST NOT perform the insertion. It
 MUST reject the request with a 409 response. That response SHOULD
 contain a detailed conflict report containing the <schema-validation-
 error> element. If a schema allows for elements or attributes from
 other namespaces, and the new document contains elements or
 attributes from an unknown namespace, the server MUST allow the
 change. In other words, it is not necessary for an XCAP server to
 understand the namespaces and corresponding schemas for elements and
 attributes within a document, as long as the schema itself allows for
 such elements or attributes to be included. Of course, such unknown
 namespaces would not be advertised by the server in its XCAP
 capabilities document Section 12.

 If the final document contains elements or attributes from a
 namespace that the server does understand (and has consequently
 advertised in its XCAP capabilities document), but the server does
 not have the schema for that particular element or attribute, the
 server MUST reject the request with a 409 response. That response
 SHOULD contain a detailed conflict report containing the <schema-

Rosenberg Expires April 16, 2007 [Page 42]

Internet-Draft XCAP October 2006

 validation-error> element.

 Next, the server checks for any uniqueness constraints identified by
 the application usage. If the application usage required that a
 particular element or attribute had a unique value within a specific
 scope, the server would check that this uniqueness property still
 exists. If the application usage required that a URI within the
 document was unique within the domain, the server checks whether it
 is the case. If any of these uniqueness constraints are not met, the
 server MUST NOT perform the insertion. It MUST reject the request
 with a 409 response. That response SHOULD contain a detailed
 conflict report containing the <uniqueness-failure> element. That
 element can contain suggested values that the client can retry with.
 These SHOULD be values that, at the time the server generates the
 409, would meet the uniqueness constraints.

 The server also checks for URI constraints and other non-schema data
 constraints. If the document fails one of these constraints, the
 server MUST NOT perform the insertion. It MUST reject the request
 with a 409 response. That response SHOULD contain a detailed
 conflict report containing the <constraint-failure> element. That
 element indicates that the document failed non-schema data
 constraints explicitly called out by the application usage.

 Element or attribute removals have similar constraints. The server
 checks the document for schema validity and compliance to constraints
 defined by the application usage, and rejects the request as
 described above if either check fails.

8.2.6. Conditional Processing

 A PUT request for an XCAP resource, like any other HTTP resource, can
 be made conditional through usage of the If-Match and If-None-Match
 header fields. For a replacement, these are processed as defined in
 [6]. For an insertion of an element or attribute, conditional
 operations are permitted. The entity tag that is used for the
 procedures in [6] is the one for all of the resources within the same
 document as the parent of the element or attribute being inserted.
 One way to think of this is that, logically speaking, on receipt of
 the PUT request, the XCAP server instantiates the etag for the
 resource referenced by the request, and then applies the processing
 of the request. Because of this behavior, it is not possible to
 perform a conditional insert on an attribute or element conditioned
 on the operation being an insertion and not a replacement. In other
 words, a conditional PUT of an element or attribute with an If-None-
 Match: * will always fail.

Rosenberg Expires April 16, 2007 [Page 43]

Internet-Draft XCAP October 2006

8.2.7. Resource Interdependencies

 Because XCAP resources include elements, attributes and documents,
 each of which has its own HTTP URI, the creation or modification of
 one resource affects the state of many others. For example,
 insertion of a document creates resources on the server for all of
 the elements and attributes within that document. After the server
 has performed the insertion associated with the PUT, the server MUST
 create and/or modify those resources affected by that PUT. The
 structure of the document completely defines the inter-relationship
 between those resources.

 However, the application usage can specify other resource inter-
 dependencies. The server MUST create or modify the resources
 specified by the application usage.

 If the creation or replacement was successful, and the resource
 interdependencies are resolved, the server returns a 201 Created or
 or 200 OK, respectively. Note that a 201 Created is generated for
 creation of new documents, elements, or attributes. A 200 OK
 response to PUT MUST not contain any content. Per the
 recommendations of RFC 2616, the 201 can contain a Location header
 field and entity that identify the resource that was created. An
 entity tag MUST be included in all successful responses to a PUT.

8.3. GET Handling

 The semantics of GET are as specified in RFC 2616. This section
 clarifies the specific content to be returned for a particular URI
 that represents an XCAP resource.

 If the request URI contains only a document selector, the server
 returns the document specified by the URI if it exists, else returns
 a 404 response. The MIME type of the body of the 200 OK response
 MUST be the MIME type defined by that application usage (i.e.,
 "application/resource-lists+xml").

 If the request URI contains a node selector, the server obtains the
 document specified by the document selector, and if it is found,
 evaluates the node-selector within that document. If no document is
 found, or if the node-selector is a no-match or invalid, the server
 returns a 404 response. Otherwise, the server returns a 200 OK
 response. If the node selector identifies an XML element, that
 element is returned in the 200 OK response as an XML fragment body
 containing the selected element. The server MUST NOT add namespace
 bindings representing namespaces used by the element or its children,
 but declared in ancestor elements; the client will either know these
 bindings already (since it has a cached copy of the whole document),

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Rosenberg Expires April 16, 2007 [Page 44]

Internet-Draft XCAP October 2006

 or it can learn them by explicitly querying for the bindings. The
 MIME type of the response MUST be "application/xcap-el+xml". If the
 node selector identifies an XML attribute, the value of that
 attribute is returned in the body of the response. The MIME type of
 the response MUST be "application/xcap-att+xml". If the node
 selector identifies a set of namespace bindings, the server computes
 the set of namespace bindings in scope for the element (including the
 default) and encodes it using the "application/xcap-ns+xml" format
 defined in Section 10. That document is then returned in the body of
 the response.

 GET operations can be conditional, and follow the procedures defined
 in [6].

 Note that the GET of a resource that was just PUT might not be octet-
 for-octet equivalent to what was PUT, due to XML normalization and
 equivalency rules.

 A successful response to a GET MUST include an entity tag.

8.4. DELETE Handling

 The semantics of DELETE are as specified in RFC 2616. This section
 clarifies the specific content to be deleted for a particular URI
 that represents an XCAP resource.

 If the request URI contained a namespace-selector, the server MUST
 reject the request with a 405 (Method Not Allowed) and MUST include
 an Allow header field including the GET method.

 If the request URI contains only a document selector, the server
 deletes the document specified by the URI if it exists and returns a
 200 OK, else returns a 404 response.

 If the request URI contains a node selector, the server obtains the
 document specified by the document selector, and if it is found,
 evaluates the node-selector within that document. If no document is
 found, or if the node-selector is a no-match or invalid (note that it
 will be invalid if multiple elements or attributes are selected), the
 server returns a 404 response. Otherwise, the server removes the
 specified element or attribute from the document and performs the
 validation checks defined in Section 8.2.5. Note that this deletion
 does not include any white space around the element that was deleted;
 the XCAP server MUST preserve surrounding whitespace. It is possible
 that, after deletion, the request URI selects another element in the
 document. If this happens the server MUST NOT perform the deletion,
 and MUST reject the request with a 409 response. The body of the
 response SHOULD contain a detailed conflict report containing the

https://datatracker.ietf.org/doc/html/rfc2616

Rosenberg Expires April 16, 2007 [Page 45]

Internet-Draft XCAP October 2006

 <cannot-delete> element. If the deletion will cause a failure of one
 of the constraints, the deletion MUST NOT take place. The server
 follows the procedures in Section 8.2.5 for computing the 409
 response. If the deletion results in a document that is still valid,
 the server MUST perform the deletion, process the resource
 interdependencies defined by the application usage, and return a 200
 OK response.

 DELETE operations can be conditional, and follow the procedures
 defined in [6].

 Before the server returns the 200 OK response to a DELETE, it MUST
 process the resource interdependencies as defined in Section 8.2.7.
 As long as the document still exists after the delete operation, any
 successful response to DELETE MUST include the entity tag of the
 document.

8.5. Managing Etags

 An XCAP server MUST maintain entity tags for all resources that it
 maintains. This specification introduces the additional constraint
 that when one resource within a document (including the document
 itself) changes, that resource is assigned a new etag, and all other
 resources within that document MUST be assigned the same etag value.
 Effectively, there is a single etag for the entire document. An XCAP
 server MUST include the Etag header field in all 200 or 201 responses
 to PUT, GET, and DELETE, assuming the document itself still exists
 after the operation. In the case of a DELETE, the entity tag refers
 to the value of the entity tag for the document after the deletion of
 the element or attribute.

 XCAP resources do not introduce new requirements on the strength of
 the entity tags.

 As a result of this constraint, when a client makes a change to an
 element or attribute within a document, the response to that
 operation will convey the entity tag of the resource that was just
 affected. Since the client knows that this entity tag value is
 shared by all of the other resources in the document, the client can
 make conditional requests against other resources using that entity
 tag.

9. Cache Control

 An XCAP resource is a valid HTTP resource, and therefore, it can be
 cached by clients and network caches. Network caches, however, will
 not be aware of the interdependencies between XCAP resources. As

Rosenberg Expires April 16, 2007 [Page 46]

Internet-Draft XCAP October 2006

 such, a change to an element in a document by a client will
 invalidate other XCAP resources affected by the change. For
 application usages contain data that is likely to be dynamic or
 written by clients, servers SHOULD indicate a no-cache directive.

10. Namespace Binding Format

 A node-selector can identify a set of namespace bindings that are in
 scope for a particular element. In order to convey these bindings in
 a GET response, a way is needed to encode them.

 Encoding is trivially done by including a single XML element in an
 XML fragment body. This element has the same local-name as the
 element whose namespace bindings are desired, and also the same
 namespace-prefix. The element has an xmlns attribute identifying the
 default namespace in scope, and an xmlns:prefix declaration for each
 prefix that is in scope.

 For example, consider the XML document in Section 6.4. The node-
 selector df:foo/df2:bar/df2:baz/namespace::* will select the
 namespaces in scope for the <baz> element in the document, assuming
 the request is accompanied by a query component that contains
 xmlns(df=urn:test:default-namespace) and
 xmlns(df2=urn:test:namespace1-uri). A GET containing this node
 selector and namespace bindings will produce the following result:

 <baz xmlns="urn:test:namespace1-uri"
 xmlns:ns1="urn:tes:namespace1-uri"/>

 It is important to note that the client does not need to know the
 actual namespace bindings in order to construct the URI. It does
 need to know the namespace URI for each element in the node-selector.
 The namespace bindings present in the query component are defined by
 the client, mapping those URI to a set of prefixes. The bindings
 returned by the server are the actual bindings used in the document.

11. Detailed Conflict Reports

 In cases where the server returns a 409 error response, that response
 will usually include a document in the body of the response which
 provides further details on the nature of the error. This document
 is an XML document, formatted according to the schema of

Section 11.2. Its MIME type, registered by this specification, is
 "application/xcap-error+xml".

Rosenberg Expires April 16, 2007 [Page 47]

Internet-Draft XCAP October 2006

11.1. Document Structure

 The document structure is simple. It contains the root element
 <xcap-error>. The content of this element is a specific error
 condition. Each error condition is represented by a different
 element. This allows for different error conditions to provide
 different data about the nature of the error. All error elements
 support a "phrase" attribute, which can contain text meant for
 rendering to a human user.

 The following error elements are defined by this specification:

 <not-well-formed>: This indicates that the body of the request was
 not a well-formed XML document.

 <not-xml-frag>: This indicates that the request was supposed to
 contain a valid XML fragment body, but did not. Most likely this
 is because the XML in the body was malformed or not balanced.

 <no-parent>: This indicates that an attempt to insert a document,
 element, or attribute failed because the directory, document or
 element into which the insertion was supposed to occur does not
 exist. This error element can contain an optional <ancestor>
 element, which provides an HTTP URI that represents the closest
 parent that would be a valid point of insertion. This HTTP URI
 MAY be a relative URI, relative to the document itself. Because
 this is a valid HTTP URI, its node selector component MUST be
 percent-encoded.

 <schema-validation-error>: This element indicates that the document
 was not compliant to the schema after the requested operation was
 performed.

 <not-xml-att-value>: This indicates that the request was supposed to
 contain a valid XML attribute value, but did not.

 <cannot-insert>: This indicates that the requested PUT operation
 could not be performed because a GET of that resource after the
 PUT would not yield the content of the PUT request.

 <cannot-delete>: This indicates that the requested DELETE operation
 could not be performed because it would not be idempotent.

 <uniqueness-failure>: This indicates that the requested operation
 would result in a document that did not meet a uniqueness
 constraint defined by the application usage. For each URI,
 element or attribute specified by the client which is not unique,
 an <exists> element is present as the content of the error

Rosenberg Expires April 16, 2007 [Page 48]

Internet-Draft XCAP October 2006

 element. Each <exists> element has a "field" attribute that
 contains a relative URI identifying the XML element or attribute
 whose value needs to be unique, but wasn't. The relative URI is
 relative to the document itself, and will therefore start with the
 root element. The query component of the URI MUST be present if
 the node selector portion of the URI contains namespace prefixes.
 Since the "field" node selector is a valid HTTP URI, it MUST be
 percent-encoded. The <exists> element can optionally contain a
 list of <alt-value> elements. Each one is a suggested alternate
 value which does not currently exist on the server.

 <constraint-failure>: This indicates that the requested operation
 would result in a document that failed a data constraint defined
 by the application usage, but not enforced by the schema or a
 uniqueness constraint.

 <extension>: This indicates an error condition that is defined by an
 extension to XCAP. Clients which do not understand the content of
 the extension element MUST discard the xcap-error document and
 treat the error as an unqualified 409.

 As an example, the following document indicates that the user
 attempted to create an RLS service using the URI
 sip:friends@example.com, but that URI already exists:

 <?xml version="1.0" encoding="UTF-8"?>
 <xcap-error xmlns="urn:ietf:params:xml:ns:xcap-error">
 <uniqueness-failure>
 <exists field="rls-services/service/@uri">
 <alt-value>sip:mybuddies@example.com</alt-value>
 </exists>
 </uniqueness-failure>
 </xcap-error>

11.2. XML Schema

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:xcap-error"
 xmlns="urn:ietf:params:xml:ns:xcap-error"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xs:element name="error-element" abstract="true"/>

 <xs:element name="xcap-error">

Rosenberg Expires April 16, 2007 [Page 49]

Internet-Draft XCAP October 2006

 <xs:annotation>
 <xs:documentation>Indicates the reason for the error.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="error-element"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="extension" substitutionGroup="error-element">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="schema-validation-error"
 substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This element indicates
 that the document was not compliant to the schema after the requested
 operation was performed.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="not-xml-frag" substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the request was supposed to
 contain a valid XML fragment body, but did not.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="no-parent" substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that an attempt to insert
 an element, attribute or document failed because the document or
 element into which the insertion was
 supposed to occur does not exist</xs:documentation>

Rosenberg Expires April 16, 2007 [Page 50]

Internet-Draft XCAP October 2006

 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="ancestor" type="xs:anyURI" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Contains an HTTP URI that points to the
 element which is the closest ancestor that does exist.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="cannot-insert" substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the requested
 PUT operation could not be performed because a GET of that resource
 after the PUT would not yield the content of the PUT request.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="not-xml-att-value"
 substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the
 request was supposed to contain a valid XML attribute value, but did
 not.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="uniqueness-failure"
 substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the
 requested operation would result in a document that did not meet a
 uniqueness constraint defined by the application usage.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>

Rosenberg Expires April 16, 2007 [Page 51]

Internet-Draft XCAP October 2006

 <xs:sequence>
 <xs:element name="exists" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>For each URI,
 element or attribute specified by the client which is not unique,
 one of these is present.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0">
 <xs:element name="alt-value" type="xs:string"
 maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>An optional set of alternate values can be
 provided.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="field" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="not-well-formed"
 substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the body of the request was
 not a well-formed document.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="constraint-failure"
 substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the
 requested operation would result in a document that failed a data
 constraint defined by the application usage, but not enforced by the
 schema or a uniqueness constraint.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

Rosenberg Expires April 16, 2007 [Page 52]

Internet-Draft XCAP October 2006

 <xs:element name="cannot-delete" substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that the requested DELETE
 operation could not be performed because it would not be
 idempotent.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="not-utf-8" substitutionGroup="error-element">
 <xs:annotation>
 <xs:documentation>This indicates that request could not be
 completed because it would have produced a document not
 encoded in UTF-8.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:attribute name="phrase" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

12. XCAP Server Capabilities

 XCAP can be extended through the addition of new application usages
 and extensions to the core protocol. Application usages may define
 MIME types with XML schemas that allow new extension nodes from new
 namespaces. It will often be necessary for a client to determine
 what extensions, application usages or namespaces a server supports
 before making a request. To enable that, this specification defines
 an application usage with the AUID "xcap-caps". All XCAP servers
 MUST support this application usage. This usage defines a single
 document within the global tree which lists the capabilities of the
 server. Clients can read this well-known document, and therefore
 learn the capabilities of the server.

 The structure of the document is simple. The root element is <xcap-
 caps>. Its children are <auids>, <extensions>, and <namespaces>.
 Each of these contain a list of AUIDs, extensions and namespaces
 supported by the server. Extensions are named by tokens defined by
 the extension, and typically define new selectors. Namespaces are
 identified by their namespace URI. To 'support' a namespace, the
 server must have the schemas for all elements within that namespace,
 and be able to validate them if they appear within documents. Since
 all XCAP servers support the "xcap-caps" AUID, it MUST be listed in

Rosenberg Expires April 16, 2007 [Page 53]

Internet-Draft XCAP October 2006

 the <auids> element and the "urn:ietf:params:xml:ns:xcap-caps"
 namespace MUST be listed in the <namespaces> element.

 The following sections provide the information needed to define this
 application usage.

12.1. Application Unique ID (AUID)

 This specification defines the "xcap-caps" AUID within the IETF tree,
 via the IANA registration in Section 15.

12.2. XML Schema

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:xcap-caps"
 xmlns="urn:ietf:params:xml:ns:xcap-caps"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="xcap-caps">
 <xs:annotation>
 <xs:documentation>Root element for xcap-caps</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="auids">
 <xs:annotation>
 <xs:documentation>List of supported AUID.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="auid" type="auidType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="extensions" minOccurs="0">
 <xs:annotation>
 <xs:documentation>List of supported extensions.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="extension" type="extensionType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="namespaces">
 <xs:annotation>

Rosenberg Expires April 16, 2007 [Page 54]

Internet-Draft XCAP October 2006

 <xs:documentation>List of supported namespaces.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="namespace" type="namespaceType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:any namespace="##other" processContents="lax"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:simpleType name="auidType">
 <xs:annotation>
 <xs:documentation>AUID Type</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="extensionType">
 <xs:annotation>
 <xs:documentation>Extension Type</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:simpleType name="namespaceType">
 <xs:annotation>
 <xs:documentation>Namespace type</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:anyURI"/>
 </xs:simpleType>
 </xs:schema>

12.3. Default Document Namespace

 The default document namespace used in evaluating a URI is
 urn:ietf:params:xml:ns:xcap-caps.

12.4. MIME Type

 Documents conformant to this schema are known by the MIME type
 "application/xcap-caps+xml", registered in Section 15.2.5.

12.5. Validation Constraints

 There are no additional validation constraints associated with this

Rosenberg Expires April 16, 2007 [Page 55]

Internet-Draft XCAP October 2006

 application usage.

12.6. Data Semantics

 Data semantics are defined above.

12.7. Naming Conventions

 A server MUST maintain a single instance of the document in the
 global tree, using the filename "index". There MUST NOT be an
 instance of this document in the users tree.

12.8. Resource Interdependencies

 There are no resource interdependencies in this application usage
 beyond those defined by the schema.

12.9. Authorization Policies

 This application usage does not change the default authorization
 policy defined by XCAP.

13. Examples

 This section goes through several examples, making use of the
 resource-lists and rls-services [22] XCAP application usages.

 First, a user Bill creates a new document (see Section 7.1). This
 document is a new resource-list, initially with a single list, called
 friends, with no users in it:

 PUT
 /resource-lists/users/sip:bill@example.com/index HTTP/1.1
 Content-Type:application/resource-lists+xml
 Host: xcap.example.com

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list name="friends">
 </list>
 </resource-lists>

 Figure 24: New Document

 Next, Bill creates an RLS services document defining a single RLS
 service referencing this list. This service has a URI of

Rosenberg Expires April 16, 2007 [Page 56]

Internet-Draft XCAP October 2006

 sip:myfriends@example.com (URIs are line-folded for readability):

 PUT
 /rls-services/users/sip:bill@example.com/index HTTP/1.1
 Content-Type:application/rls-services+xml
 Host: xcap.example.com

 <?xml version="1.0" encoding="UTF-8"?>
 <rls-services xmlns="urn:ietf:params:xml:ns:rls-services">
 <service uri="sip:myfriends@example.com">
 <resource-list>http://xcap.example.com/resource-lists/users/
 sip:bill@example.com/index/~~/resource-lists/
 list%5b@name=%22friends%22%5d
 </resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

 Figure 25: RLS Services Example

 Next, Bill creates an element in the resource-lists document
 (Section 7.4). In particular, he adds an entry to the list:

 PUT
 /resource-lists/users/sip:bill@example.com/index
 /~~/resource-lists/list%5b@name=%22friends%22%5d/entry HTTP/1.1
 Content-Type:application/xcap-el+xml
 Host: xcap.example.com

 <entry uri="sip:bob@example.com">
 <display-name>Bob Jones</display-name>
 </entry>

 Figure 26: Resource Lists Document

 Next, Bill fetches the document (Section 7.3):

 GET
 /resource-lists/users/sip:bill@example.com/index HTTP/1.1

 Figure 27: Fetch Operation

 And the result is (note how white space text nodes appear in the

Rosenberg Expires April 16, 2007 [Page 57]

Internet-Draft XCAP October 2006

 document):

 HTTP/1.1 200 OK
 Etag: "wwhha"
 Content-Type: application/resource-lists+xml

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists">
 <list name="friends">
 <entry uri="sip:bob@example.com">
 <display-name>Bob Jones</display-name>
 </entry></list>
 </resource-lists>

 Figure 28: Results of Fetch

 Next, Bill adds another entry to the list, which is another list that
 has three entries. This is another element creation (Section 7.4):

 PUT
 /resource-lists/users/sip:bill@example.com/index/~~/
 resource-lists/list%5b@name=%22friends%22%5d/
 list%5b@name=%22close-friends%22%5d HTTP/1.1
 Content-Type: application/xcap-el+xml
 Host: xcap.example.com

 <list name="close-friends">
 <entry uri="sip:joe@example.com">
 <display-name>Joe Smith</display-name>
 </entry>
 <entry uri="sip:nancy@example.com">
 <display-name>Nancy Gross</display-name>
 </entry>
 <entry uri="sip:petri@example.com">
 <display-name>Petri Aukia</display-name>
 </entry>
 </list>

 Figure 29: Adding an Entry

 Then, Bill decides he doesn't want Petri on the list, so he deletes
 the entry (Section 7.5):

Rosenberg Expires April 16, 2007 [Page 58]

Internet-Draft XCAP October 2006

 DELETE
 /resource-lists/users/sip:bill@example.com/index/
 ~~/resource-lists/list/list/
 entry%5b@uri=%22sip:petri@example.com%22%5d HTTP/1.1
 Host: xcap.example.com

 Figure 30: Deleting an Entry

 Bill decides to check on the URI for Nancy, so he fetches a
 particular attribute (Section 7.6):

 GET
 /resource-lists/users/sip:bill@example.com/index/
 ~~/resource-lists/list/list/entry%5b2%5d/@uri HTTP/1.1
 Host: xcap.example.com

 Figure 31: Fetching an Attribute

 and the server responds:

 HTTP/1.1 200 OK
 Etag: "ad88"
 Content-Type:application/xcap-att+xml

 "sip:nancy@example.com"

 Figure 32: Results of Fetch

14. Security Considerations

 Frequently, the data manipulated by XCAP contains sensitive
 information. To avoid eavesdroppers from seeing this information, it
 is RECOMMENDED that an admistrator hand out an https URI as the XCAP
 root URI. This will result in TLS-encrypted communications between
 the client and server, preventing any eavesdropping. Clients MUST
 implement TLS, assuring that such URIs will be usable by the client.

 Client and server authentication are also important. A client needs
 to be sure it is talking to the server it believes it is contacting.
 Otherwise, it may be given false information, which can lead to
 denial of service attacks against a client. To prevent this, a
 client SHOULD attempt to upgrade [15] any connections to TLS.
 Similarly, authorization of read and write operations against the
 data is important, and this requires client authentication. As a
 result, a server SHOULD challenge a client using HTTP Digest [11] to

Rosenberg Expires April 16, 2007 [Page 59]

Internet-Draft XCAP October 2006

 establish its identity, and this SHOULD be done over a TLS
 connection. Clients MUST implement digest authentication, assuring
 interoperability with servers which challenge the client. Servers
 MUST NOT perform basic authentication without a TLS connection to the
 client.

 Because XCAP is a usage of HTTP and not a separate protocol, it runs
 on the same port numbers as HTTP traffic normally does. This makes
 it difficult to apply port-based filtering rules in firewalls to
 separate the treatment of XCAP traffic from other HTTP traffic.
 However, this problem exists broadly today because HTTP is used to
 access a wide breadth of content, all on the same port, and XCAP
 views application configuration documents as just another type of
 HTTP content. As such, separate treatment of XCAP traffic from other
 HTTP traffic requires firewalls to examine the URL itself. There is
 no foolproof way to identify a URL as pointing to an XCAP resource.
 However, the presence of the double tilde (~~) is a strong hint that
 the URL points to an XML element or attribute. As always, care must
 be taken in looking for the double-tilde due to the breadth of ways
 in which a URI can be encoded on-the-wire [29] [13].

15. IANA Considerations

 There are several IANA considerations associated with this
 specification.

15.1. XCAP Application Unique IDs

 This specification instructs IANA to create a new registry for XCAP
 application unique IDs (AUIDs). This registry is defined as a table
 that contains three colums:

 AUID: This will be a string provided in the IANA registrations into
 the registry.

 Description: This is text that is supplied by the IANA registration
 into the registry.

 Document: This is a reference to the RFC containing the registration.

 This specification instructs IANA to create this table with an
 initial entry. The resulting table would look like:

Rosenberg Expires April 16, 2007 [Page 60]

Internet-Draft XCAP October 2006

 Application Unique Description Document
 ID (AUID)

 xcap-caps Capabilities of an RFC XXXX
 XCAP server

 [[NOTE TO IANA/RFC-EDITOR: Please replace XXXX with the RFC number of
 this specification.]]

 XCAP AUIDs are registered by the IANA when they are published in
 standards track RFCs. The IANA Considerations section of the RFC
 must include the following information, which appears in the IANA
 registry along with the RFC number of the publication.

 Name of the AUID. The name MAY be of any length, but SHOULD be no
 more than twenty characters long. The name MUST consist of
 alphanum and mark [16] characters only.

 Descriptive text that describes the application usage.

15.2. MIME Types

 This specification requests the registration of several new MIME
 types according to the procedures of RFC 2048 [8] and guidelines in

RFC 3023 [9].

15.2.1. application/xcap-el+xml MIME Type

 MIME media type name: application

 MIME subtype name: xcap-el+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [9].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [9].

 Security considerations: See Section 10 of RFC 3023 [9].

 Interoperability considerations: none.

https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires April 16, 2007 [Page 61]

Internet-Draft XCAP October 2006

 Published specification: RFC XXXX [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this
 specification.]].

 Applications which use this media type: This document type has been
 used to support transport of XML fragment bodies in RFC XXXX
 [[NOTE TO RFC EDITOR: Please replace XXXX with the published RFC
 number of this specification.]], the XML Configuration Access
 Protocol (XCAP).

 Additional Information:

 Magic Number: None

 File Extension: .xel

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

15.2.2. application/xcap-att+xml MIME Type

 MIME media type name: application

 MIME subtype name: xcap-att+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [9].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [9].

 Security considerations: See Section 10 of RFC 3023 [9].

 Interoperability considerations: none.

 Published specification: RFC XXXX [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this
 specification.]].

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires April 16, 2007 [Page 62]

Internet-Draft XCAP October 2006

 Applications which use this media type: This document type has been
 used to support transport of XML attribute values in RFC XXXX
 [[NOTE TO RFC EDITOR: Please replace XXXX with the published RFC
 number of this specification.]], the XML Configuration Access
 Protocol (XCAP).

 Additional Information:

 Magic Number: None

 File Extension: .xav

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

15.2.3. application/xcap-ns+xml MIME Type

 MIME media type name: application

 MIME subtype name: xcap-ns+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [9].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [9].

 Security considerations: See Section 10 of RFC 3023 [9].

 Interoperability considerations: none.

 Published specification: RFC XXXX [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this
 specification.]].

 Applications which use this media type: This document type has been
 used to support transport of XML fragment bodies in RFC XXXX
 [[NOTE TO RFC EDITOR: Please replace XXXX with the published RFC
 number of this specification.]], the XML Configuration Access
 Protocol (XCAP).

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires April 16, 2007 [Page 63]

Internet-Draft XCAP October 2006

 Additional Information:

 Magic Number: None

 File Extension: .xns

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

15.2.4. application/xcap-error+xml MIME Type

 MIME media type name: application

 MIME subtype name: xcap-error+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [9].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [9].

 Security considerations: See Section 10 of RFC 3023 [9].

 Interoperability considerations: none.

 Published specification: RFC XXXX [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this
 specification.]].

 Applications which use this media type: This document type conveys
 error conditions defined in RFC XXXX. [[NOTE TO RFC EDITOR:
 Please replace XXXX with the published RFC number of this
 specification.]]

 Additional Information:

 Magic Number: None

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires April 16, 2007 [Page 64]

Internet-Draft XCAP October 2006

 File Extension: .xer

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

15.2.5. application/xcap-caps+xml MIME Type

 MIME media type name: application

 MIME subtype name: xcap-caps+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [9].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [9].

 Security considerations: See Section 10 of RFC 3023 [9].

 Interoperability considerations: none.

 Published specification: RFC XXXX [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this
 specification.]].

 Applications which use this media type: This document type conveys
 capabililites of an XML Configuration Access Protocol (XCAP)
 server, as defined in RFC XXXX. [[NOTE TO RFC EDITOR: Please
 replace XXXX with the published RFC number of this
 specification.]]

 Additional Information:

 Magic Number: None

 File Extension: .xca

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires April 16, 2007 [Page 65]

Internet-Draft XCAP October 2006

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

15.3. URN Sub-Namespace Registrations

 This specification registers several new XML namespaces, as per the
 guidelines in RFC 3688 [17].

15.3.1. urn:ietf:params:xml:ns:xcap-error

 URI: The URI for this namespace is urn:ietf:params:xml:ns:xcap-error

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>XCAP Error Namespace</title>
 </head>
 <body>
 <h1>Namespace for XCAP Error Documents</h1>
 <h2>urn:ietf:params:xml:ns:xcap-error</h2>
 <p>See RFCXXXX [[NOTE
 TO RFC-EDITOR/IANA: Please replace XXXX with the RFC Number of
 this specification]].</p>
 </body>
 </html>
 END

15.3.2. urn:ietf:params:xml:ns:xcap-caps

https://datatracker.ietf.org/doc/html/rfc3688

Rosenberg Expires April 16, 2007 [Page 66]

Internet-Draft XCAP October 2006

 URI: The URI for this namespace is urn:ietf:params:xml:ns:xcap-caps

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>XCAP Capabilities Namespace</title>
 </head>
 <body>
 <h1>Namespace for XCAP Capability Documents</h1>
 <h2>urn:ietf:params:xml:ns:xcap-caps</h2>
 <p>See RFCXXXX [[NOTE
 TO RFC-EDITOR/IANA: Please replace XXXX with the RFC Number of
 this specification]].</p>
 </body>
 </html>
 END

15.4. XML Schema Registrations

 This section registers two XML schemas per the procedures in [17].

15.4.1. XCAP Error Schema Registration

 URI: urn:ietf:params:xml:schema:xcap-error

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML Schema: The XML for this schema can be found as the sole content
 of Section 11.2.

15.4.2. XCAP Capabilities Schema Registration

 URI: urn:ietf:params:xml:schema:xcap-caps

Rosenberg Expires April 16, 2007 [Page 67]

Internet-Draft XCAP October 2006

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML Schema: The XML for this schema can be found as the sole content
 of Section 12.2.

16. Acknowledgements

 The author would like to thank Jari Urpalainen, who has contributed
 many important comments and has assisted with edit passes in the
 document. The author would also like to thank Ben Campbell, Eva-
 Maria Leppanen, Hisham Khartabil, Chris Newman, Joel Halpern, , Lisa
 Dusseault, Tim Bray, Pete Cordell, Jeroen van Bemmel, Christian
 Schmidt, and Spencer Dawkins for their input and comments. A special
 thanks to Ted Hardie for his input and support.

17. References

17.1. Normative References

 [1] Sperberg-McQueen, C., Maler, E., Bray, T., Paoli, J., and F.
 Yergeau, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium
 Recommendation http://www.w3.org/TR/2004/REC-xml-20040204,
 February 2004.

 [2] Beech, D., Mendelsohn, N., Maloney, M., and H. Thompson, "XML
 Schema Part 1: Structures Second Edition", World Wide Web
 Consortium Recommendation http://www.w3.org/TR/2004/

REC-xmlschema-1-20041028, October 2004.

 [3] Bray, T., Hollander, D., and A. Layman, "Namespaces in XML",
 World Wide Web Consortium
 Recommendation http://www.w3.org/TR/1999/

REC-xml-names-19990114, January 1999.

 [4] DeRose, S., Daniel, R., Maler, E., and J. Marsh, "XPointer
 xmlns() Scheme", World Wide Web Consortium Recommendation http:
 //www.w3.org/TR/2003/REC-xptr-xmlns-20030325, March 2003.

 [5] Marsh, J., Grosso, P., Walsh, N., and E. Maler, "XPointer
 Framework", World Wide Web Consortium Recommendation http://

www.w3.org/TR/2003/REC-xptr-framework-20030325, March 2003.

 [6] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
 Leach, P., and T. Berners-Lee, "Hypertext Transfer Protocol --

http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2003/REC-xptr-framework-20030325
http://www.w3.org/TR/2003/REC-xptr-framework-20030325

Rosenberg Expires April 16, 2007 [Page 68]

Internet-Draft XCAP October 2006

 HTTP/1.1", RFC 2616, June 1999.

 [7] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [8] Freed, N., Klensin, J., and J. Postel, "Multipurpose Internet
 Mail Extensions (MIME) Part Four: Registration Procedures",

BCP 13, RFC 2048, November 1996.

 [9] Murata, M., St. Laurent, S., and D. Kohn, "XML Media Types",
RFC 3023, January 2001.

 [10] Clark, J. and S. DeRose, "XML Path Language (XPath) Version
 1.0", World Wide Web Consortium
 Recommendation http://www.w3.org/TR/1999/REC-xpath-19991116,
 November 1999.

 [11] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP Authentication:
 Basic and Digest Access Authentication", RFC 2617, June 1999.

 [12] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [13] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

 [14] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [15] Khare, R. and S. Lawrence, "Upgrading to TLS Within HTTP/1.1",
RFC 2817, May 2000.

 [16] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [17] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [18] Yergeau, F., "UTF-8, a transformation format of ISO 10646",
 STD 63, RFC 3629, November 2003.

 [19] Boyer, J., "Canonical XML Version 1.0", World Wide Web
 Consortium
 Recommendation http://www.w3.org/TR/2001/REC-xml-c14n-20010315,
 March 2001.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
http://www.w3.org/TR/1999/REC-xpath-19991116
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/rfc3629
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Rosenberg Expires April 16, 2007 [Page 69]

Internet-Draft XCAP October 2006

17.2. Informative References

 [20] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [21] Roach, A., Rosenberg, J., and B. Campbell, "A Session
 Initiation Protocol (SIP) Event Notification Extension for
 Resource Lists", draft-ietf-simple-event-list-07 (work in
 progress), January 2005.

 [22] Rosenberg, J., "Extensible Markup Language (XML) Formats for
 Representing Resource Lists",

draft-ietf-simple-xcap-list-usage-05 (work in progress),
 February 2005.

 [23] Grosso, P. and D. Veillard, "XML Fragment Interchange", World
 Wide Web Consortium CR CR-xml-fragment-20010212, February 2001,
 <http://www.w3.org/TR/2001/CR-xml-fragment-20010212>.

 [24] Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M.,
 Robie, J., and J. Simeon, "XML Path Language (XPath) 2.0",
 World Wide Web Consortium
 CR http://www.w3.org/TR/2005/CR-xpath20-20051103,
 November 2005.

 [25] Newman, C. and J. Myers, "ACAP -- Application Configuration
 Access Protocol", RFC 2244, November 1997.

 [26] Day, M., Rosenberg, J., and H. Sugano, "A Model for Presence
 and Instant Messaging", RFC 2778, February 2000.

 [27] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [28] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [29] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/draft-ietf-simple-event-list-07
https://datatracker.ietf.org/doc/html/draft-ietf-simple-xcap-list-usage-05
http://www.w3.org/TR/2001/CR-xml-fragment-20010212
http://www.w3.org/TR/2005/CR-xpath20-20051103
https://datatracker.ietf.org/doc/html/rfc2244
https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc3987

Rosenberg Expires April 16, 2007 [Page 70]

Internet-Draft XCAP October 2006

Author's Address

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 Email: jdrosen@cisco.com
 URI: http://www.jdrosen.net

Rosenberg Expires April 16, 2007 [Page 71]

http://www.jdrosen.net

Internet-Draft XCAP October 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg Expires April 16, 2007 [Page 72]

