
SIMPLE J. Rosenberg
Internet-Draft Cisco Systems
Expires: August 8, 2005 February 7, 2005

Extensible Markup Language (XML) Formats for Representing Resource
Lists

draft-ietf-simple-xcap-list-usage-05

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 8, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 In multimedia communications, presence and instant messaging systems,
 there is a need to define Uniform Resource Identifiers (URIs) that
 represent services which are associated with a group of users. One
 example is a resource list service. If a user sends a Session
 Initiation Protocol (SIP) SUBSCRIBE message to the URI representing
 the resource list service, the server will obtain the state of the
 users in the associated group, and provide it to the sender. To

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Rosenberg Expires August 8, 2005 [Page 1]

Internet-Draft XML Resource Lists February 2005

 facilitate definition of these services, this specification defines
 two Extensible Markup Language (XML) documents. One document
 contains service URIs, along with their service definition and a
 reference to the associated group of users. The second document
 contains the user lists which are referenced from the first. This
 list of users can be utilized by other applications and services.
 Both documents can be created and managed with the XML Configuration
 Access Protocol (XCAP).

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Resource Lists Documents 5
3.1 Structure . 5
3.2 Schema . 8
3.3 Example Document . 10
3.4 Usage with XCAP . 11
3.4.1 Application Unique ID 11
3.4.2 MIME Type . 11
3.4.3 XML Schema . 11
3.4.4 Default Namespace 12
3.4.5 Additional Constraints 12
3.4.6 Data Semantics . 12
3.4.7 Naming Conventions 13
3.4.8 Resource Interdependencies 13
3.4.9 Authorization Policies 14

4. RLS Services Documents . 14
4.1 Structure . 14
4.2 Schema . 15
4.3 Example Document . 16
4.4 Usage with XCAP . 17
4.4.1 Application Unique ID 17
4.4.2 MIME Type . 17
4.4.3 XML Schema . 17
4.4.4 Default Namespace 17
4.4.5 Additional Constraints 18
4.4.6 Data Semantics . 19
4.4.7 Naming Conventions 19
4.4.8 Resource Interdependencies 19
4.4.9 Authorization Policies 21

4.5 Usage of an RLS Services Document by an RLS 22
5. SIP URI Canonicalization 23
6. Extensibility . 24
7. Security Considerations 25
8. IANA Considerations . 25
8.1 XCAP Application Unique IDs 25
8.1.1 resource-lists . 25

Rosenberg Expires August 8, 2005 [Page 2]

Internet-Draft XML Resource Lists February 2005

8.1.2 rls-services . 26
8.2 MIME Type Registrations 26
8.2.1 application/resource-lists+xml 26
8.2.2 application/rls-services+xml 27

8.3 URN Sub-Namespace Registrations 28
8.3.1 urn:ietf:params:xml:ns:resource-lists 28
8.3.2 urn:ietf:params:xml:ns:rls-services 29

8.4 Schema Registrations 29
8.4.1 urn:ietf:params:xml:schema:resource-lists 29
8.4.2 urn:ietf:params:xml:schema:rls-services 30

9. Acknowledgements . 30
10. References . 30
10.1 Normative References . 30
10.2 Informative References 31

 Author's Address . 31
 Intellectual Property and Copyright Statements 32

Rosenberg Expires August 8, 2005 [Page 3]

Internet-Draft XML Resource Lists February 2005

1. Introduction

 The Session Initiation Protocol (SIP) [4] defines the SIP Uniform
 Resource Identifier (URI) as any resource to which a SIP request can
 be generated for the purposes of establishing some form of
 communications operation. These URIs can represent users (for
 example, sip:joe@example.com). The SIP URI can also represent a
 service, such as voicemail, conferencing, or a presence list. A
 common pattern across such SIP services is that the service is
 defined, and associated with a URI. In order to operate, that
 service needs to make use of a list of users (or, more generally, a
 list of resources). When a SIP request is sent to the service URI,
 the server providing the service reads that list, and then performs
 some kind of operation against each resource on the list. This is
 shown pictorially in Figure 1.

 /---\
 | |
 \---/ Resource
 +----| | List
 | | |
 | \---/
 |
 |
 |
 |
 V
 +-------------+
 | | -------->
 | SIP |
 ---------------> | Service | -------->
 service | |
 URI | | -------->
 +-------------+

 Figure 1

 One important example of such a service is a presence [12] list
 service. A presence list service allows a client to generate a SIP
 SUBSCRIBE request to ask for presence information for a list of
 users. The presence list server obtains the presence for the users
 on the list, and provides them back to the client. A presence list
 server is a specific case of a resource list server (RLS) [15], which
 allows a client to generate a SIP SUBSCRIBE request to ask for
 notifications of SIP events for a list of resources.

Rosenberg Expires August 8, 2005 [Page 4]

Internet-Draft XML Resource Lists February 2005

 Another example of such a service is an instant conference service.
 If a client sends a SIP INVITE request to the URI representing the
 instance conference service, the conference server will create a
 conference call containing the client and the associated group of
 users.

 It is very useful for a user of these systems to define the groups of
 users or resources (generally called a resource list) separately from
 the services which access those resource lists. Indeed, there are
 usages for resource lists even in the absence of any associated
 network-based service. As an example, rather than using a presence
 list service, a client might generate individual SUBSCRIBE requests
 to obtain the presence of each user in a locally stored presence
 list. In such a case, there is a need for a format for storing the
 list locally on disk. Furthermore, the user might wish to share the
 list with friends, and desire to email it to those friends. This
 also requires a standardized format for the resource list.

 As such, this document defines two Extensible Markup Language (XML)
 document formats. The first is used to represent resource lists,
 independent of any particular service. The second is used to define
 service URIs for an RLS, and to associate a resource list with the
 service URI. This document also defines an XML Configuration Access
 Protocol (XCAP) [10] application usage for managing each of these two
 documents.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
 indicate requirement levels for compliant implementations.

3. Resource Lists Documents

3.1 Structure

 A resource lists document is an XML [2] document that MUST be
 well-formed and MUST be valid according to schemas, including
 extension schemas, available to the validater and applicable to the
 XML document. Resource lists documents MUST be based on XML 1.0 and
 MUST be encoded using UTF-8. This specification makes use of XML
 namespaces for identifying resource lists documents and document
 fragments. The namespace URI for elements defined by this
 specification is a URN [3], using the namespace identifier 'ietf'
 defined by RFC 2648 [6] and extended by RFC 3688 [8]. This URN is:

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2648
https://datatracker.ietf.org/doc/html/rfc3688

Rosenberg Expires August 8, 2005 [Page 5]

Internet-Draft XML Resource Lists February 2005

 urn:ietf:params:xml:ns:resource-lists

 A resource lists document has the <resource-lists> element as the
 root element of the document. This element has no attributes. Its
 content is a sequence of one or more <list> elements, each of which
 defines a single resource list.

 Each <list> element can contain an optional "name" attribute. This
 attribute is a handle for the list. When present, it MUST be unique
 amongst all other <list> elements within the same parent element.
 THe <list> element may also contain attributes from other namespaces,
 for the purposes of extensibility.

 Each <list> element is composed of an optional display name, a
 sequence of zero or more elements, each of which may be an <entry>
 element, a <list> element, an <entry-ref> element, or an <external>
 element, followed by any number of elements from other namespaces,
 for the purposes of extensibility. The ability of a <list> element
 to contain other <list> elements means that a resource list can be
 hierarchically structured. The <display-name> then allows for a
 human-friendly name to be associated with each level in the
 hierarchy. An <entry> element describes a single resource, defined
 by a URI, that is part of the list. An <entry-ref> element allows an
 entry in a document within the same XCAP root to be included by
 reference, rather than by value. An <external> element contains a
 reference to a list stored on this or another server.

 The <entry> element describes a single resource. The <entry> element
 has a single mandatory attribute, "uri". This attribute is equal to
 the URI that is used to access the resource. The resource list
 format itself does not constrain the type of URI that can be used.
 However, the service making use of the resource list may require
 specific URI schemes. For example, RLS services will require URIs
 that represent subscribeable resources. This includes the SIP and
 pres [16] URIs. The "uri" attribute MUST be unique amongst all other
 "uri" attributes in <entry> elements within the same parent.
 Uniqueness is determined by case sensitive string comparisons. As
 such, it is possible that two "uri" attributes will have the same URI
 when compared using the functional equality rules defined for that
 URI scheme, but different ones when compared using case sensitive
 string comparison. The <entry> element can also contain attributes
 from other namespaces for the purposes of extensibility.

 The <entry> element contains a sequence of elements that provide
 information about the entry. Only one such element is defined at
 this time, which is <display-name>. This element provides a UTF-8
 encoded string, meant for consumption by a human user, that describes
 the resource. Unlike the "name" attribute of the <entry> element,

Rosenberg Expires August 8, 2005 [Page 6]

Internet-Draft XML Resource Lists February 2005

 the <display-name> has no uniqueness requirements. The
 <display-name> element can contain the "xml:lang" attribute, which
 provides the language of the display name. The <entry> element can
 contain other elements from other namespaces. This is meant to
 support the inclusion of other information about the entry, such as a
 phone number or postal address.

 The <entry-ref> element allows an entry to be included in the list by
 reference, rather than by value. This element is only meaningful
 when the document was obtained through XCAP. In such a case, the
 referenced entry has to exist within the same XCAP root. The <entry>
 element has a single mandatory attribute, "ref". The "ref" attribute
 MUST be unique amongst all other "ref" attributes in <entry-ref>
 elements within the same parent. Uniqueness is determined by case
 sensitive string comparisons. The <entry-ref> element also allows
 attributes from other namespaces, for the purposes of extensibility.
 The content of an <entry-ref> element is an optional display name,
 followed by any number of elements from other namespaces, for the
 purposes of extensibility. The display name is useful for providing
 a localized nickname as an alternative to the name defined in the
 <entry> to which the <entry-ref> refers.

 The content of the "ref" attribute is a relative HTTP URI [7].
 Specifically, it MUST be a relative path reference, where the base
 URI is equal to the XCAP root URI of the document in which the
 <entry-ref> appears. This relative URI, if resolved into an absolute
 URI according to the procedures in RFC 3986, MUST resolve to an
 <entry> element within a resource-lists document. For example, if an
 <entry> element within a specific XCAP root was identified by the
 following HTTP URI:

 http://xcap.example.com/root/resource-lists/users/bill/
 mylist/~~/resource-lists/list%5b@name=%22list1%22%5d/
 entry%5b@uri=%22sip:petri@example.com%22%5d

 If http://xcap.example.com/root is the XCAP root URI, then an
 <entry-ref> element pointing to this entry would have the form:

 <entry-ref ref="resource-lists/users/bill/
 mylist/~~/resource-lists/list%5b@name=%22list1%22%5d/
 entry%5b@uri=%22sip:petri@example.com%22%5d"/>

 Note that line folding within the HTTP URI and XML attribute above
 are for the purposes of readability only. Also note that, as
 described in RFC 3986, the relative path URI does not begin with the

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Rosenberg Expires August 8, 2005 [Page 7]

Internet-Draft XML Resource Lists February 2005

 "/". Since the relative URI used within the "ref" attribute must be
 a relative path URI, the "/" will never be present as the first
 character within the content of a "ref" attribute. Since the content
 of the "ref" attribute is a valid HTTP URI, it must be escape encoded
 within the XML document.

 The <external> element is similar to the <entry-ref> element. Like
 <entry-ref>, it is only meaningful in documents obtained from an XCAP
 server. It too is a reference to content stored elsewhere. However,
 it refers to an entire list, and furthermore, allows that list to be
 present on another server. The <external> element has a single
 mandatory attribute, "anchor", which specifies the external list by
 means of an absolute HTTP URI. The "anchor" attribute MUST be unique
 amongst all other "anchor" attributes in <external> elements within
 the same parent. Uniqueness is determined by case sensitive string
 comparisons. The <external> element can also contain attributes from
 other namespaces, for the purposes of extensibility. The content of
 an <external> element is an optional <display-name> followed by any
 number of elements from another namespace, for the purposes of
 extensibility. The value of the "anchor" attribute MUST be an
 absolute HTTP URI. This URI MUST identify an XCAP resource, and in
 particular, it MUST represent a <list> element within a resource
 lists document. The URI MUST be escape coded.

 For both the <entry-ref> and <external> elements, the responsibility
 of resolving their references falls upon the entity that is making
 use of the document. When used in conjunction with XCAP, this means
 that the burden falls on the XCAP client. If the XCAP client is a PC
 based application using the resource-lists document as a presence
 list, the references would likely be resolved upon explicit request
 by the user. They can, of course, be resolved at any time. If the
 XCAP client is an RLS itself, the references would be resolved when
 the RLS receives a SUBSCRIBE request for an RLS service associated
 with a resource list that contains one of these references (see
 below). An XCAP server defined by this specification will not
 attempt to resolve the references before returning the document to
 the client. Similarly, if, due to network errors or some other
 problem, the references cannot be resolved, the handling is specific
 to the usage of the document. For resource lists being used by RLS
 services, the handling is discussed below.

3.2 Schema

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:resource-lists"
 xmlns="urn:ietf:params:xml:ns:resource-lists"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

Rosenberg Expires August 8, 2005 [Page 8]

Internet-Draft XML Resource Lists February 2005

 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:complexType name="listType">
 <xs:sequence>
 <xs:element name="display-name" type="display-nameType" minOccurs="0"/>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element name="list">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="listType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="external" type="externalType"/>
 <xs:element name="entry" type="entryType"/>
 <xs:element name="entry-ref" type="entry-refType"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="entryType">
 <xs:sequence>
 <xs:element name="display-name" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="display-nameType"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="entry-refType">
 <xs:sequence>
 <xs:element name="display-name" type="display-nameType" minOccurs="0"/>
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="ref" type="xs:anyURI" use="required"/>

Rosenberg Expires August 8, 2005 [Page 9]

Internet-Draft XML Resource Lists February 2005

 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="externalType">
 <xs:sequence>
 <xs:element name="display-name" type="display-nameType" minOccurs="0"/>
 <xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="anchor" type="xs:anyURI"/>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:element name="resource-lists">
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="list" type="listType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="display-nameType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:schema>

3.3 Example Document

 The following is an example of a document compliant to the schema.
 All line feeds within element content are for display purposes only.

Rosenberg Expires August 8, 2005 [Page 10]

Internet-Draft XML Resource Lists February 2005

 <?xml version="1.0" encoding="UTF-8"?>
 <resource-lists xmlns="urn:ietf:params:xml:ns:resource-lists"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <list name="friends">
 <entry uri="sip:bill@example.com">
 <display-name>Bill Doe</display-name>
 </entry>
 <entry-ref ref="resource-lists/users/bill/mylist/~~/resource-lists/l
 ist%5b@name=%22list1%22%5d/entry%5b@uri=%22sip:petri@example.com%22%5d"/>
 <list name="close-friends">
 <display-name>Close Friends</display-name>
 <entry uri="sip:joe@example.com">
 <display-name>Joe Smith</display-name>
 </entry>
 <entry uri="sip:nancy@example.com">
 <display-name>Nancy Gross</display-name>
 </entry>
 <external anchor="http://www.example.org/xcap/resource-lists/users/a
 /foo/~~/resource-lists/list%5b@name=%22mkting%22%5d">
 <display-name>Marketing</display-name>
 </external>
 </list>
 </list>
 </resource-lists>

3.4 Usage with XCAP

 Resource lists documents can be manipulated with XCAP. This section
 provides the details necessary for such a usage.

3.4.1 Application Unique ID

 XCAP requires application usages to define a unique application usage
 ID (AUID) in either the IETF tree or a vendor tree. This
 specification defines the "resource-lists" AUID within the IETF tree,
 via the IANA registration in Section 8.

3.4.2 MIME Type

 The MIME type for this document is "application/resource-lists+xml".

3.4.3 XML Schema

 The XML Schema for this document is defined as the sole content of
Section 3.2.

Rosenberg Expires August 8, 2005 [Page 11]

Internet-Draft XML Resource Lists February 2005

3.4.4 Default Namespace

 The default namespace used in expanding URIs is
 urn:ietf:params:xml:ns:resource-lists.

3.4.5 Additional Constraints

 In addition to the schema, there are constraints on the values
 present in the the "name" attribute of the <list> element, the "uri"
 attribute of the <external> element, the "ref" attribute of the
 <entry-ref> element and the "anchor" attribute of the <external>
 element. These constraints are defined in Section 3.1. Some of
 these constraints are enforced by the XCAP server. Those constraints
 are:

 o The "name" attribute in a <list> element MUST be unique amongst
 all other "name" attributes of <list> elements within the same
 parent element. Uniqueness is determined by case sensitive string
 comparison.

 o The "uri" attribute in a <entry> element MUST be unique amongst
 all other "uri" attributes of <entry> elements within the same
 parent element. Uniqueness is determined by case sensitive string
 comparison.

 o The URI in the "ref" attribute of the <entry-ref> element MUST be
 unique amongst all other "ref" attributes of <entry-ref> elements
 within the same parent element. Uniqueness is determined by case
 sensitive string comparison. The value of the attribute MUST be a
 relative path reference. Note that the server is not responsible
 for verifying that the reference resolves to an <entry> element in
 a document within the same XCAP root.

 o The URI in the "anchor" attribute of the <external> element MUST
 be unique amongst all other "anchor" attributes of <external>
 elements within the same parent element. Uniqueness is determined
 by case sensitive string comparison. The value of the attribute
 MUST be an absolute HTTP URI. Note that the server is not
 responsible for verifying that the URI resolves to a <list>
 element in a document. Indeed, since the URI may reference a
 server in another domain, referential integrity cannot be
 guaranteed without adding substantial complexity to the system.

3.4.6 Data Semantics

 Semantics for the document content are provided in Section 3.1.

Rosenberg Expires August 8, 2005 [Page 12]

Internet-Draft XML Resource Lists February 2005

3.4.7 Naming Conventions

 Resource lists documents are usually identified as references from
 other application usages. For example, an RLS services document
 contains a reference to the resource list it uses.

 Frequently, an XCAP client will wish to insert or remove an <entry>,
 <entry-ref> or <external> element from a document without having a
 cached copy of that document. In such a case, the "uri" attribute of
 the <entry> element, the "ref" attribute of the <entry-ref> element
 or the "anchor" attribute of the <external> element is used as an
 index to select the element to operate upon. The XCAP server will
 determine uniqueness by case sensitive string comparison. However,
 each of these attributes contain URIs, and the URI equality rules for
 their schemes may allow for two URI to be the same, even if they are
 different by case sensitive string comparison. As such, it is
 possible that a client will attempt a PUT or DELETE in an attempt to
 modify or remove an existing element, but instead, the PUT ends up
 inserting a new element, or the DELETE ends up returning an error
 response.

 To mitigate against this case, if the client knows that the user
 intent is to explicitly modify an existing element, as opposed to
 creating a new one, the client SHOULD make the request conditional,
 using an If-Match header field with a value of *. This will cause
 the request to fail if it is not a replacement.

 If the XCAP client cannot determine whether the user intent is to
 create or replace, the client SHOULD canonicalize the URI before
 performing the operation. For a SIP URI (often present in the "uri"
 attribute of the <entry> element), this canonicalization procedure is
 defined in Section 5. We expect that the SIP URIs that will be
 placed into resource lists documents will usually be of the form
 sip:user@domain, and possibly include a user parameter. The
 canonicalization rules work perfectly for these URIs.

 For HTTP URIs, a basic canonicalization algorithm is as follows. If
 the the port in the URI is equal to the default port (80 for http
 URIs), the port is removed. The hostname is converted to all
 lowercase. Any characters that are escape encoded are un-escaped,
 and only re-escaped if they cannot be represented within their
 component of the URI. In other words, if the grammar for a part of
 the URI disallows a certain character, but that character needs to be
 present, it is escape coded.

3.4.8 Resource Interdependencies

 There are no resource interdependencies identified by this

Rosenberg Expires August 8, 2005 [Page 13]

Internet-Draft XML Resource Lists February 2005

 application usage.

3.4.9 Authorization Policies

 This application usage does not modify the default XCAP authorization
 policy, which is that only a user can read, write or modify their own
 documents. A server can allow privileged users to modify documents
 that they don't own, but the establishment and indication of such
 policies is outside the scope of this document. It is anticipated
 that a future application usage will define which users are allowed
 to modify a list resource.

4. RLS Services Documents

4.1 Structure

 An RLS services document is used to define URIs that represent
 services provided by a Resource List Server (RLS) as defined in [15].
 An RLS services document is an XML [2] document that MUST be
 well-formed and MUST be valid according to schemas, including
 extension schemas, available to the validater and applicable to the
 XML document. RLS services documents MUST be based on XML 1.0 and
 MUST be encoded using UTF-8. This specification makes use of XML
 namespaces for identifying RLS services documents and document
 fragments. The namespace URI for elements defined by this
 specification is a URN [3], using the namespace identifier 'ietf'
 defined by RFC 2648 [6] and extended by RFC 3688 [8]. This URN is:

 urn:ietf:params:xml:ns:rls-services

 The root element of an rls-services document is <rls-services>. It
 contains a sequence of <service> elements, each of which defines a
 service available at an RLS.

 Each <service> element has a single mandatory attribute, "uri". This
 URI defines the resource associated with the service. That is, if a
 client subscribes to that URI, they will obtain the service defined
 by the corresponding <service> element. The <service> element can
 also contain attributes from other namespaces, for the purposes of
 extensibility. The <service> element contains child elements that
 define the service. For an RLS service, very little service
 definition is needed - just the resource list to which the server
 will perform virtual subscriptions [15] and the set of event packages
 that the service supports. The former can be conveyed in one of two
 ways. There can be a <resource-list> element, which points to a
 <list> element in a resource-lists document, or there can be a <list>
 element, which includes the resource list directly. The supported
 packages are contained in the <packages> element. The <service>

https://datatracker.ietf.org/doc/html/rfc2648
https://datatracker.ietf.org/doc/html/rfc3688

Rosenberg Expires August 8, 2005 [Page 14]

Internet-Draft XML Resource Lists February 2005

 element can also contain elements from other namespaces, for the
 purposes of extensibility.

 By including the contents of the resource list directly, a user can
 create lists and add members to them with a single XCAP operation.
 However, the resulting list becomes "hidden" within the RLS service
 definition, and is not usable by other application usages. For this
 reason, the <resource-list> element exists as an alternative. It can
 reference a <list> element in a resource-lists document. Since the
 list is separated from the service definition, it can be easily
 reused by other application usages.

 The <list> element is of the list type defined by the schema for
 resource lists. It is discussed in Section 3.1.

 The <resource-list> element contains a URI. This element is only
 meaningful when the document was obtained through XCAP. The URI MUST
 be an absolute HTTP URI representing an XCAP element resource. Its
 XCAP root MUST be the same as the XCAP root of the RLS services
 document. When the RLS services document is present in a user's home
 directory, the HTTP URI MUST exist underneath that user's home
 directory in the resource-lists application usage. When the RLS
 services document is in the global directory, the HTTP URI MUST exist
 underneath any user's home directory in the resource-lists
 application usage. In either case, the element referenced by the URI
 MUST be a <list> element within a resource-lists document. All of
 these constraints except for the latter one (which is a referential
 integrity constraint) will be enforced by the XCAP server.

 The <packages> element contains a sequence of <package> elements.
 The content of each <package> element is the name of a SIP event
 package [14]. The <packages> element may also contain elements from
 additional namespaces, for the purposes of extensibility. The
 <packages> element is optional. When not present, it means that the
 RLS service will accept subscriptions for any event package.

4.2 Schema

Rosenberg Expires August 8, 2005 [Page 15]

Internet-Draft XML Resource Lists February 2005

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="urn:ietf:params:xml:ns:rls-services"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:rls-services"
 xmlns:rl="urn:ietf:params:xml:ns:resource-lists"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="rls-services">
 <xs:complexType>
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="service" type="serviceType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="serviceType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="resource-list" type="xs:anyURI"/>
 <xs:element name="list" type="rl:listType"/>
 </xs:choice>
 <xs:element name="packages" type="packagesType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="uri" type="xs:anyURI" use="required"/>
 <xs:anyAttribute namespace="##other"/>
 </xs:complexType>
 <xs:complexType name="packagesType">
 <xs:sequence minOccurs="0" maxOccurs="unbounded">
 <xs:element name="package" type="packageType"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="packageType">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 </xs:schema>

4.3 Example Document

 This document shows two services. One is sip:mybuddies@example.com,
 and the other is sip:marketing@example.com. The former service
 references a resource list in a resource-lists document, and the
 latter one includes a list locally. Both services are for the
 presence event package only.

Rosenberg Expires August 8, 2005 [Page 16]

Internet-Draft XML Resource Lists February 2005

 <?xml version="1.0" encoding="UTF-8"?>
 <rls-services xmlns="urn:ietf:params:xml:ns:rls-services"
 xmlns:rl="urn:ietf:params:xml:ns:resource-lists"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <service uri="sip:mybuddies@example.com">
 <resource-list>http://xcap.example.com/resource-lists/users/joe/index/~~/
 resource-lists/list%5b@name=%22l1%22%5d</resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 <service uri="sip:marketing@example.com">
 <list name="marketing">
 <rl:entry uri="sip:joe@example.com"/>
 <rl:entry uri="sip:sudhir@example.com"/>
 </list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

4.4 Usage with XCAP

 RLS services documents can be manipulated with XCAP. This section
 provides the details necessary for such a usage.

4.4.1 Application Unique ID

 XCAP requires application usages to define a unique application usage
 ID (AUID) in either the IETF tree or a vendor tree. This
 specification defines the "rls-services" AUID within the IETF tree,
 via the IANA registration in Section 8.

4.4.2 MIME Type

 The MIME type for this document is "application/rls-services+xml".

4.4.3 XML Schema

 The XML Schema for this document is defined as the sole content of
Section 4.2.

4.4.4 Default Namespace

 The default namespace used in expanding URIs is
 urn:ietf:params:xml:ns:rls-services.

Rosenberg Expires August 8, 2005 [Page 17]

Internet-Draft XML Resource Lists February 2005

4.4.5 Additional Constraints

 In addition to the schema, there are constraints on the URIs present
 in the <service> and <resource-list> elements. These constraints are
 defined in Section 3.1. Some of these constraints are enforced by
 the XCAP server. Those constraints are:

 o The URI in the "uri" attribute of the <service> element MUST be
 unique amongst all other URIs in "uri" elements in any <service>
 element in any document on a particular server. This uniqueness
 constraint spans across XCAP roots. Furthermore, the URI MUST NOT
 correspond to an existing resource within the domain of the URI.
 If a server is asked to set the URI to something that already
 exists, the server MUST reject the request with a 409, and use the
 mechanisms defined in [10] to suggest alternate URIs that have not
 yet been allocated.

 o The URI in a <resource-list> element MUST be an absolute URI. The
 server MUST verify that the URI path contains "resource-lists" in
 the path segment corresponding to the AUID. If the RLS services
 document is within the XCAP user tree (as opposed to the global
 tree), the server MUST verify that the XUI in the path is the same
 as the XUI in the URI of to the RLS services document. These
 checks are made by examining the URI value, as opposed to
 de-referencing the URI. The server is not responsible for
 verifying that the URI actually points to a <list> element within
 a valid resource lists document.

 o In addition, an RLS services document can contain a <list>
 element, which in turn can contain <entry>, <entry-ref> and
 <external> elements. The constraints defined for these elements
 in Section 3.4.7 MUST be enforced.

 o In some cases, an XCAP client will wish to create a new RLS
 service, and wish to assign it a "vanity URI", such as
 sip:friends@example.com. However, the client does not know
 whether this URI meets the uniqueness constraints defined above.
 In that case, it can simply attempt the creation operation, and if
 the result is a 409 that contains a detailed conflict report with
 the <uniqueness-failure> element, the client knows that the URI
 could not be assigned. It can then retry with a different vanity
 URI, or use one of the suggestions in the detailed conflict
 report.

 o If the client wishes to create a new RLS service, and it doesnt
 care what the URI is, the client creates a random one, and
 attempts the creation operation. As discussed in [10], if this
 should fail with a uniqueness conflict, the client can retry with

Rosenberg Expires August 8, 2005 [Page 18]

Internet-Draft XML Resource Lists February 2005

 different URIs with increasing randomness.

4.4.6 Data Semantics

 Semantics for the document content are provided in Section 4.1.

4.4.7 Naming Conventions

 Typically, there are two distinct XCAP clients that access RLS
 services documents. The first is a client acting on behalf of the
 end user in the system. This client edits and writes both resource
 lists and RLS services documents as they are created or modified by
 the end user. The other XCAP client is the RLS itself, which reads
 the RLS services documents in order to process SUBSCRIBE requests.

 To make it easier for an RLS to find the <service> element for a
 particular URI, the XCAP server maintains, within the global tree, a
 single RLS services document representing the union of all of the
 <service> elements across all documents created by all users within
 the same XCAP root. There is a single instance of this document, and
 its name is "index". Thus, if the root services URI is
 http://xcap.example.com/root, the following is the URI that an RLS
 would use to fetch this index:

 http://xcap.example.com/root/rls-services/global/index

 As discussed below, this index is created from all of the documents
 in the user tree that have the name "index" as well. An implication
 of this is that a client operating on behalf of a user SHOULD define
 its RLS services within the document named "index". If the root
 services URI is http://xcap.example.com/root, for user "joe" the URI
 for this document would be:

 http://xcap.example.com/root/rls-services/users/joe/index

 If a client elects to define RLS services in a different document,
 this document will not be "picked up" in the global index, and
 therefore, not used as an RLS service.

4.4.8 Resource Interdependencies

 As with other application usages, the XML schema along with the XCAP
 resource naming conventions describes most of the resource
 interdependencies applicable to this application usage.

Rosenberg Expires August 8, 2005 [Page 19]

Internet-Draft XML Resource Lists February 2005

 This application usage defines an additional resource interdependence
 between a single document in the global tree and all documents in the
 user tree with the name "index". This global document is formed as
 the union of all of the index documents for all users within the same
 XCAP root. In this case, the union operation implies that each
 <service> element in a user document will also be present as a
 <service> element in the global document. The inverse is true as
 well. Every <service> element in the global document exists within a
 user document within the same XCAP root.

 As an example, consider the RLS services document for user joe:

 <?xml version="1.0" encoding="UTF-8"?>
 <rls-services>
 <service uri="sip:mybuddies@example.com">
 <resource-list>http://xcap.example.com/resource-lists/users/joe/index/~~/
 resource-lists/list%5b@name=%22l1%22%5d</resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

 And consider the RLS services document for user bob:

 <?xml version="1.0" encoding="UTF-8"?>
 <rls-services>
 <service uri="sip:marketing@example.com">
 <list name="marketing">
 <rl:entry uri="sip:joe@example.com"/>
 <rl:entry uri="sip:sudhir@example.com"/>
 </list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

 The global document at
 http://xcap.example.com/root/rls-services/global/index would look
 like:

Rosenberg Expires August 8, 2005 [Page 20]

Internet-Draft XML Resource Lists February 2005

 <?xml version="1.0" encoding="UTF-8"?>
 <rls-services xmlns="urn:ietf:params:xml:ns:rls-services"
 xmlns:rl="urn:ietf:params:xml:ns:resource-lists"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <service uri="sip:mybuddies@example.com">
 <resource-list>http://xcap.example.com/resource-lists/users/joe/index/~~/
 resource-lists/list%5b@name=%22l1%22%5d</resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 <service uri="sip:marketing@example.com">
 <list name="marketing">
 <rl:entry uri="sip:joe@example.com"/>
 <rl:entry uri="sip:sudhir@example.com"/>
 </list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

 Requests made against the global document MUST generate responses
 that reflect the most recent state of all the relevant user
 documents. This requirement does not imply that the server must
 actually store this global document. It is anticipated that most
 systems will dynamically construct the responses to any particular
 request against the document resource.

 The uniqueness constraint on the "uri" attribute of <service> will
 ensure that no two <service> elements in the global document have the
 same value of that attribute.

4.4.9 Authorization Policies

 This application usage does not modify the default XCAP authorization
 policy, which is that only a user can read, write or modify their own
 documents. A server can allow privileged users to modify documents
 that they don't own, but the establishment and indication of such
 policies is outside the scope of this document. It is anticipated
 that a future application usage will define which users are allowed
 to modify an RLS services document.

 The index document maintained in the global tree represents sensitive
 information, as it contains the union of all of the information for
 all users on the server. As such, its access MUST be restricted to
 trusted elements within domain of the server. Typically, this would
 be limited to the RLSs that need access to this document.

Rosenberg Expires August 8, 2005 [Page 21]

Internet-Draft XML Resource Lists February 2005

4.5 Usage of an RLS Services Document by an RLS

 This section discusses how an RLS, on receipt of a SUBSCRIBE request,
 uses XCAP and the RLS services document to guide its operation.

 When an RLS receives a SUBSCRIBE request for a URI (present in the
 Request URI), it obtains the <service> element whose uri attribute
 matches (based on URI equality) the URI in the SUBSCRIBE request.
 This document makes no normative statements on how this might be
 accomplished. The following paragraph provides one possible
 approach.

 The RLS canonicalizes the Request URI as described in Section 5. It
 then performs an XCAP GET operation against the URI formed by
 combining the XCAP root with the document selector of the global
 index with a node selector of the form
 "rls-services/service[@uri=<canonical-uri>]", where <canonical-uri>
 is the canonicalized version of the Request URI. If the response is
 a 200 OK, it will contain the service definition for that URI.

 Once the <service> element has been obtained, it is examined. If the
 <packages> element is present, and the event package in the SUBSCRIBE
 request is not amongst those listed in the <package> elements within
 <packages>, the request MUST be rejected with a 489 (Bad Event)
 response code, as described in [14]. Otherwise, it SHOULD be
 processed. The next step is to authorize that the client is allowed
 to subscribe to the resource. This can be done using the data
 defined in [13], for example. Assuming the subscriber is authorized
 to subscribe to that resource, the subscription is processed
 according to the procedures defined in [15]. This processing
 requires the RLS to compute a flat list of URIs that are to be
 subscribed to. If the <service> element had a <list> element, it is
 extracted. If the <service> element had a <resource-list> element,
 its URI content is dereferenced. The result should be a <list>
 element. If it is not, the request SHOULD be rejected with a 502
 (Bad Gateway). Otherwise, that <list> element is extracted.

 At this point the RLS has a <list> element in its possession. The
 next step is to obtain a flat list of URIs from this element. To do
 that, it traverses the tree of elements rooted in the <list> element.
 Before traversal begins, the RLS initializes two lists - the "flat
 list", which will contain the flat list of URI after traversal, and
 the "traversed list", which contains a list of HTTP URIs in
 <external> elements that have already been visited. Once these lists
 are initialized, tree traversal begins. A server can use any
 tree-traversal ordering it likes, such as depth first search or
 breadth first search. The processing at each element in the tree
 depends on the name of the element:

Rosenberg Expires August 8, 2005 [Page 22]

Internet-Draft XML Resource Lists February 2005

 o If the element is <entry> the URI in the "uri" attribute of the
 element is added to the flat list if it is not already present
 (based on case sensitive string equality) in that list, and the
 URI scheme represents one that can be used to service
 subscriptions, such as SIP [4] and pres [16].

 o If the element is an <entry-ref>, the relative path reference
 making up the value of the "ref" attribute is resolved into an
 absolute URI. This is done using the procedures defined in

Section 5.2 of RFC 3986 [7], using the XCAP root of the RLS
 services document as the base URI. This absolute URI is resolved.
 If the result is not a 200 OK containing a <entry> element, the
 SUBSCRIBE request SHOULD be rejected with a 502 (Bad Gateway).
 Otherwise, the <entry> element returned is processed as described
 in the previous step.

 o If the element is an <external> element, the absolute URI making
 up the value of the "anchor" attribute of the element is examined.
 If the URI is on the traversed list, the server MUST cease
 traversing the tree, and SHOULD reject the SUBSCRIBE request with
 a 502 (Bad Gateway). If the URI is not on the traversed list, the
 server adds the URI to the traversed list, and de-references the
 URI. If the result is not a 200 OK containing an <list> element,
 the SUBSCRIBE request SHOULD be rejected with a 502 (Bad Gateway).
 Otherwise, the RLS replaces the <external> element in its local
 copy of the tree with the <list> element that was returned, and
 tree traversal continues.

 Because the <external> element is used to dynamically construct the
 tree, there is a posibility of recursive evaluation of references.
 The traversed list is used to prevent this from happening.

 Once the tree has been traversed, the RLS can create virtual
 subscriptions to each URI in the flat list, as defined in [15].

 In the processing steps outlined above, when an <entry-ref> or
 <external> element contains a reference that cannot be resolved,
 failing the request is at SHOULD strength. In some cases, an RLS may
 provide better service by creating virtual subscriptions to the URIs
 in the flat list that could be obtained, omitting those that could
 not. Only in those cases should the SHOULD recommendation be
 ignored.

5. SIP URI Canonicalization

 This section provides a technique for URI canonicalization. This
 canonicalization produces a URI that, in most cases, is equal to the
 original URI (where equality is based on the URI comparison rules in

https://datatracker.ietf.org/doc/html/rfc3986#section-5.2

Rosenberg Expires August 8, 2005 [Page 23]

Internet-Draft XML Resource Lists February 2005

RFC 3261). Furthermore, the canonicalized URI will usually be
 lexically equivalent to the canonicalized version of any other URI
 equal to the original.

 To canonicalize the URI, the following steps are followed:

 1. First, the domain part of the URI is converted into all
 lowercase, and any tokens (such as "user" or "transport" or
 "udp") are converted to all lowercase.

 2. Secondly, the URI is un-escape coded. Then, it is re-coded.
 However, when it is recoded, the only characters that are coded
 are those which are not permitted to appear based on the grammar
 of that portion of the URI. For example, if a SIP URI is
 sip:%6aoe%20smith@example.com, it is decoded to sip:joe
 smith@example.com and the re-coded to
 sip:joe%20smith@example.com. In the original URI, the character
 'j' was escape coded. This is allowed, but not required, since
 the grammar allows a 'j' to appear in the user part. As a
 result, it appears as 'j' after this step of canonicalization.

 3. Thirdly, any URI parameters are reordered so that they appear in
 lexical order based on parameter name. The ordering of a
 character is determined by the US-ASCII numerical value of that
 character, with smaller numbers coming first. Parameters are
 ordered with the leftmost character as most significant. For
 parameters that contain only letters, this is equivalent to an
 alphabetical ordering.

 4. Finally, any header parameters are discarded. This canonicalized
 URI is used instead of the original URI.

 If two URIs A and B are functionally equal (meaning that they are
 equal according to the URI comparison rules in RFC 3261), their
 canonicalized URIs are equal under case sensitive string comparison
 if the following are true:

 o Neither URI contains header parameters

 o If one of the URI contains a URI parameter not defined in RFC
3261, the other does as well.

6. Extensibility

 Resource-lists and RLS services documents are meant to be extended.
 An extension takes place by defining a new set of elements in a new
 namespace, governed by a new schema. Every extension MUST have an

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires August 8, 2005 [Page 24]

Internet-Draft XML Resource Lists February 2005

 appropriate XML namespace assigned to it. The XML namespace of the
 extension MUST be different from the namespaces defined in this
 specification. The extension MUST NOT change the syntax or semantics
 of the schemas defined in this document. All XML tags and attributes
 that are part of the extension MUST be appropriately qualified so as
 to place them within that namespace.

 This specification defines explict places where new elements or
 attributes from an extension can be placed. These are explicitly
 indicated in the schemas by the <any> and <anyAttribute> elements.
 Extensions to this specification MUST specify where their elements
 can be placed within the document.

 As a result, a document that contains extensions will require
 multiple schemas in order to determine its validity - a schema
 defined in this document, along with those defined by extensions
 present in the document. Because extensions occur by adding new
 elements and attributes governed by new schemas, the schemas defined
 in this document are fixed and would only be changed by a revision to
 this specification. Such a revision, should it take place, would
 endeavor to allow documents compliant to the previous schema to
 remain compliant to the new one. As a result, the schemas defined
 here don't provide explicit schema versions, as this is not expected
 to be needed.

7. Security Considerations

 The information contained in rls-services and resource-lists
 documents are particularly sensitive. It represents the principle
 set of people with whom a user would like to communicate. As a
 result, clients SHOULD use TLS when contacting servers in order to
 fetch this information. Note that this does not represent a change
 in requirement strength from XCAP.

8. IANA Considerations

 There are several IANA considerations associated with this
 specification.

8.1 XCAP Application Unique IDs

 This section registers two new XCAP Application Unique ID (AUID)
 according to the IANA procedures defined in [10].

8.1.1 resource-lists

Rosenberg Expires August 8, 2005 [Page 25]

Internet-Draft XML Resource Lists February 2005

 Name of the AUID: resource-lists

 Description: A resource lists application is any application that
 needs access to a list of resources, identified by a URI, to which
 operations, such as subscriptions, can be applied.

8.1.2 rls-services

 Name of the AUID: rls-services

 Description: An Resource List Server (RLS) services application is
 Session Initiation Protocol (SIP) application whereby a server
 receives SIP SUBSCRIBE requests for resource, and generates
 subscriptions towards the a resource list.

8.2 MIME Type Registrations

 This specification requests the registration of two new MIME types
 according to the procedures of RFC 2048 [9] and guidelines in RFC

3023 [5].

8.2.1 application/resource-lists+xml

 MIME media type name: application

 MIME subtype name: resource-lists+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [5].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [5].

 Security considerations: See Section 10 of RFC 3023 [5] and
Section 7 of RFC XXXX [[NOTE TO IANA/RFC-EDITOR: Please replace

 XXXX with the RFC number of this specification]].

 Interoperability considerations: none.

 Published specification: RFC XXXX [[NOTE TO IANA/RFC-EDITOR:
 Please replace XXXX with the RFC number of this specification]]

https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires August 8, 2005 [Page 26]

Internet-Draft XML Resource Lists February 2005

 Applications which use this media type: This document type has
 been used to support subscriptions to lists of users [15] for
 SIP-based presence [12].

 Additional Information:

 Magic Number: None

 File Extension: .rl

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

8.2.2 application/rls-services+xml

 MIME media type name: application

 MIME subtype name: rls-services+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml as
 specified in RFC 3023 [5].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [5].

 Security considerations: See Section 10 of RFC 3023 [5] and
Section 7 of RFC XXXX [[NOTE TO IANA/RFC-EDITOR: Please replace

 XXXX with the RFC number of this specification]].

 Interoperability considerations: none.

 Published specification: RFC XXXX [[NOTE TO IANA/RFC-EDITOR:
 Please replace XXXX with the RFC number of this specification]]

 Applications which use this media type: This document type has
 been used to support subscriptions to lists of users [15] for
 SIP-based presence [12].

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023#section-10

Rosenberg Expires August 8, 2005 [Page 27]

Internet-Draft XML Resource Lists February 2005

 Additional Information:

 Magic Number: None

 File Extension: .rs

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, jdrosen@jdrosen.net

 Intended usage: COMMON

 Author/Change controller: The IETF.

8.3 URN Sub-Namespace Registrations

 This section registers two new XML namespace, as per the guidelines
 in RFC 3688 [8].

8.3.1 urn:ietf:params:xml:ns:resource-lists

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:resource-lists.

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Resource Lists Namespace</title>
 </head>
 <body>
 <h1>Namespace for Resource Lists</h1>
 <h2>urn:ietf:params:xml:ns:resource-lists</h2>
 <p>See RFCXXXX [NOTE
 TO IANA/RFC-EDITOR: Please replace XXXX with the RFC number of this
 specification.].</p>

https://datatracker.ietf.org/doc/html/rfc3688

Rosenberg Expires August 8, 2005 [Page 28]

Internet-Draft XML Resource Lists February 2005

 </body>
 </html>
 END

8.3.2 urn:ietf:params:xml:ns:rls-services

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:rls-services.

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Resource List Server (RLS) Services Namespace</title>
 </head>
 <body>
 <h1>Namespace for Resource List Server (RLS) Services</h1>
 <h2>urn:ietf:params:xml:ns:rls-services</h2>
 <p>See RFCXXXX [NOTE
 TO IANA/RFC-EDITOR: Please replace XXXX with the RFC number of this
 specification.].</p>
 </body>
 </html>
 END

8.4 Schema Registrations

 This section registers two XML schemas per the procedures in [8].

8.4.1 urn:ietf:params:xml:schema:resource-lists

 URI: urn:ietf:params:xml:schema:resource-lists

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

Rosenberg Expires August 8, 2005 [Page 29]

Internet-Draft XML Resource Lists February 2005

 The XML for this schema can be found as the sole content of
Section 3.2.

8.4.2 urn:ietf:params:xml:schema:rls-services

 URI: urn:ietf:params:xml:schema:rls-services

 Registrant Contact: IETF, SIMPLE working group, (simple@ietf.org),
 Jonathan Rosenberg (jdrosen@jdrosen.net).

 The XML for this schema can be found as the sole content of
Section 4.2.

9. Acknowledgements

 The authors would like to thank Hisham Khartabil, Jari Urpalainen and
 Spencer Dawkins for their comments and input. Thanks to Ted Hardie
 for his encouragement and support of this work.

10. References

10.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Bray, T., Paoli, J., Sperberg-McQueen, C. and E. Maler,
 "Extensible Markup Language (XML) 1.0 (Second Edition)", W3C
 FirstEdition REC-xml-20001006, October 2000.

 [3] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [4] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [5] Murata, M., St. Laurent, S. and D. Kohn, "XML Media Types", RFC
3023, January 2001.

 [6] Moats, R., "A URN Namespace for IETF Documents", RFC 2648,
 August 1999.

 [7] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986,
 January 2005.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc2648
https://datatracker.ietf.org/doc/html/rfc3986

Rosenberg Expires August 8, 2005 [Page 30]

Internet-Draft XML Resource Lists February 2005

 [8] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [9] Freed, N., Klensin, J. and J. Postel, "Multipurpose Internet
 Mail Extensions (MIME) Part Four: Registration Procedures", BCP

13, RFC 2048, November 1996.

 [10] Rosenberg, J., "The Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP)",

draft-ietf-simple-xcap-05 (work in progress), November 2004.

10.2 Informative References

 [11] Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and
 Instant Messaging", RFC 2778, February 2000.

 [12] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [13] Rosenberg, J., "Presence Authorization Rules",
draft-ietf-simple-presence-rules-01 (work in progress), October

 2004.

 [14] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [15] Roach, A., Rosenberg, J. and B. Campbell, "A Session Initiation
 Protocol (SIP) Event Notification Extension for Resource
 Lists", draft-ietf-simple-event-list-07 (work in progress),
 January 2005.

 [16] Peterson, J., "Common Profile for Presence (CPP)", RFC 3859,
 August 2004.

Author's Address

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@cisco.com
 URI: http://www.jdrosen.net

https://datatracker.ietf.org/doc/html/bcp81
https://datatracker.ietf.org/doc/html/rfc3688
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc2048
https://datatracker.ietf.org/doc/html/draft-ietf-simple-xcap-05
https://datatracker.ietf.org/doc/html/rfc2778
https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-rules-01
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/draft-ietf-simple-event-list-07
https://datatracker.ietf.org/doc/html/rfc3859
http://www.jdrosen.net

Rosenberg Expires August 8, 2005 [Page 31]

Internet-Draft XML Resource Lists February 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg Expires August 8, 2005 [Page 32]

