
Internet Engineering Task Force SIP WG
Internet Draft Schulzrinne/Rosenberg
draft-ietf-sip-callerprefs-02.txt Columbia U./dynamicsoft
July 13, 2000
Expires: January 2001

SIP Caller Preferences and Callee Capabilities

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as work in progress.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document describes a set of extensions to SIP which allow a
 caller to express preferences about request handling in servers.
 These preferences include the ability to select which URIs a call
 gets proxied or redirected to, and to specify certain request
 handling directives in proxies and redirect servers. It does so by
 defining three new request headers, Accept-Contact, Reject-Contact
 and Request-Disposition, which specify the callers preferences. The
 extension also defines new parameters for the Contact header. These
 extra parameters are present in the Contact header in REGISTER
 requests, and are used to associated attributes with particular
 addresses.

1 Introduction

 When a SIP [1] server receives a request, there are a number of

Schulzrinne/Rosenberg [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-sip-callerprefs-02.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft SIP Caller Prefs July 13, 2000

 decisions it can make regarding processing of the request. These
 include

 o whether to proxy or redirect the request;

 o which URIs to proxy or redirect to;

 o whether to fork or not;

 o whether to search recursively or not;

 o whether to search in parallel or sequentially;

 The server can base these decisions on any local policy. This policy
 can be statically configured, or can be based on programmtic
 execution or database access.

 However, the administrator of the server is the not the only entity
 with an interest in call processing. There are at least three parties
 which have an interest: (1) the administrator of the server, (2) the
 callee, and (3) the caller. The directives of the administrator are
 embedded in the policy of the server. The preferences of the callee
 can be expressed most easily through a script written in the call
 processing language (CPL) [2]. However, no mechanism exists to
 incorporate the preferences of the caller. This extension fills that
 gap by specifying mechanisms by which a caller can provide
 preferences on processing of a call. These preferences include the
 ability to select which URIs a call gets proxied or redirected to,
 and to specify certain request handling directives in proxies and
 redirect servers. It does so by defining three new request headers,
 Accept-Contact, Reject-Contact and Request-Disposition, which specify
 the callers preferences. The extension also defines new parameters
 for the Contact header. These extra parameters are present in the
 Contact header in REGISTER requests, and are used to associated
 attributes with particular addresses.

2 Overview of Operation

 This extension defines a set of additional parameters to the Contact
 header. These parameters specify attributes that define the
 characteristics of the UA at the address in the header. For example,
 there is a mobility parameter which indicates whether the UA is fixed
 or mobile. When a UA registers, it places these parameters in the
 Contact headers to characterize the URIs it is registering. This
 allows the proxy to have information about the contact addresses for
 a user.

 The INVITE message, and its response, also contain Contact headers

Schulzrinne/Rosenberg [Page 2]

Internet Draft SIP Caller Prefs July 13, 2000

 used to route subsequent messaging. This extension allows these
 headers to contain extension parameters to provide additional
 information about the type of user agent being used. For example, by
 including the feature parameter with value "voicemail" in the 200 OK
 to an INVITE, the UAS can indicate to the UAC that it is a voicemail
 server. This information is useful for user interfaces, as well as
 automated call handling.

 When a caller sends an INVITE, it can optionally include new headers
 which request certain handling at a proxy. These preferences fall
 into two categories. The first category, carried in the Request-
 Disposition header, describe desired server behavior. This includes
 whether the caller wishes the server to proxy or redirect, and
 whether sequential or parallel search is desired. These preferences
 can be applied at every proxy or redirect server on the call
 signaling path.

 The second category of preferences are carried in both the Accept-
 Contact and Reject-Contact headers. These preferences contain rules
 that describe the set of desired URIs that the caller would like the
 server to proxy or redirect to. These rules are matched against the
 Contact headers sent in a registration (or through some other
 configuration means). If a rule in a Reject-Contact header matches a
 Contact header, that address is not proxied or redirected to. If a
 rule in a Accept-Contact header matches a Contact header, the q
 values in the rule are combined with the q values in the Contact
 header, resulting in a "merged" q value. This merged q value is then
 used by the proxy to determine the ordering of addresses to proxy or
 redirect to.

 Note that this second category of preferences can only be applied at
 a proxy which accesses a registration database.

3 Design Alternatives

 There are a number of alternatives for expressing caller preferences.
 Ideally, caller preferences, callee preferences, and administrator
 prefernces "meet" at each server which makes processing decisions. In
 practicality, a callee cannot install logic at each server in the
 network. It can only do so (using the CPL, for example), at those
 servers with which it has some kind of established trust
 relationship. These servers are those whose main goal is to provide
 services for the callee.

 One might try to place caller logic at these "callee servers" in much
 the same way the callee places logic there - through the CPL or some
 other programmtic directives. However, this is also infeasible. A
 caller cannot apriori install logic in every server for every

Schulzrinne/Rosenberg [Page 3]

Internet Draft SIP Caller Prefs July 13, 2000

 individual he might call.

 As another alternative, one could embed a script in the request, to
 be executed by proxy or redirect servers when making forwarding
 decisions. This would be an application-layer version of active
 networks. However, the generality of a script does not seem to be
 needed. It also makes combining caller and callee preferences a
 rather difficult problem and raises possible performance and security
 issues. Unlike the callee script, which needs to handle unknown
 callers, with a wide range of call properties, at unknown times in
 the future, a caller knows all but the set of communications
 capabilities of the callee. The caller can present the servers with
 its preferences on a call-by-call basis. Callers can thus place their
 preferences for this particular call in the request message. We
 propose a simple ordered list of preferences to make it possible to
 reconcile caller and callee preferences algorithmically.

 In summary, there is a strong asymmetry in how preferences for
 callers and callees can be presented to the network. While a caller
 takes an active role by initiating the call, the callee takes a
 passive role in waiting for calls. This motivates the use of callee-
 supplied scripts and caller preferences included in the call request.

 This asymmetry is also reflected in the appropriate relationship
 between caller and callee preferences. A server for a callee SHOULD
 respect the wishes of the caller to avoid certain locations, while
 the preferences among locations has to be the callee's choice, as it
 determines where, for example, the phone rings and whether the callee
 incurs mobile telephone charges for incoming calls.

 The problem of feature negotation has also been approached in a more
 general way by [3]. However, that proposal is far more complicated
 than appears to be needed here, with syntax that does not fit into
 the current SIP syntax structure.

4 Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
 indicate requirement levels for compliant SIP caller preferences
 implementations.

5 Header Field Definitions

 Table 5 specifies an extension of Table 5 in RFC 2543 [1] for the
 three new headers defined here.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2543

Schulzrinne/Rosenberg [Page 4]

Internet Draft SIP Caller Prefs July 13, 2000

 where enc e-e ACK BYE CAN INV OPT REG

 Accept-Contact R n h - o o o o -
 Reject-Contact R n h - o o o o -
 Request-Disposition R n h - o o o o o

 Table 1: Summary of header fields. "o": optional "-": not applicable,
 "R': request header, "r": response header, "g": general header, "*":
 needed if message body is not empty. A numeric value in the "type"
 column indicates the status code the header field is used with.

5.1 Contact, Accept-Contact and Reject-Contact Parameters

 This specification adds the following extension parameters to the
 Contact header field and defines the same parameters for the Accept-
 Contact and Reject-Contact header fields. These parameters apply to a
 single URI. When used in a Contact header, they specify
 characteristics of that URI. When used in the Accept-Contact or
 Reject-Contact headers, they specify rules to apply for matching
 URIs.

 cp-params = class-param | duplex-param |
 feature-param | language-param | media-param |
 mobility-param | other-param
 class-param = "class" "=" <"> [<!>] 1#class-value <">
 duplex-param = "duplex" "=" <"> [<!>] 1#duplex-value <">
 feature-param = "feature" "=" <"> [<!>] 1#feature-value <">
 language-param = "language" "=" <"> [<!>] 1#language-tag <">
 media-param = "media" "=" <"> [<!>] 1#media-value <">
 mobility-param = "mobility" "=" <"> [<!>] 1#mobility-value <">

 other-param = other-name "=" <"> [<!>] 1#other-value <">
 mobility-value = "fixed" | "mobile" | other-value
 class-value = "personal" | "business" | other-value
 duplex-value = "full" | "half" | "receive-only" |
 "send-only" | other-value
 media-value = ("*/*" | (type "/" "*") |
 (type "/" subtype))
 feature-value = "voice-mail" | "attendant" | other-value
 other-name = UTF8-TOKEN
 other-value = UTF8-TOKEN
 UTF8-TOKEN = <any UTF-8 character encoding
 except separator, CTL, and LWS>

Schulzrinne/Rosenberg [Page 5]

Internet Draft SIP Caller Prefs July 13, 2000

 The BNF and semantics of the language-tag are defined in Section 3.10
 of RFC 2616 [5]. Note, however, that in their usage here they are
 case sensitive, and MUST appear as all lowercase. Also note that
 there MUST NOT be any linear white space between the tokens and
 quoted strings of the media-value. This is to align with HTTP 1.1
 [5].

 The exclamation mark in the parameter value MUST NOT be included if
 the cp-params are included in a Contact header. Most importantly,
 there MUST NOT be more than one class-value, duplex-value, or
 mobility-value when cp-params is included in a Contact header. These
 parameters refer to attributes which are mutually exclusive. As a
 result, a URI can only have one as a characteristic, whereas a rule
 in the Accept-Contact or Reject-Contact can specify more than one.

 The parameters and their values have the following meanings:

 class: The class parameter indicates whether the UA is found in
 a residential or business setting. (A caller may defer a
 personal call if only a business line is available, for
 example.)

 duplex: The duplex parameter lists whether the UA can
 simultaneously send and receive media ("full"), alternate
 between sending and receiving ("half"), can only receive
 ("receive-only") or only send ("send-only"). Typically, a
 caller will prefer a full-duplex UA over a half-duplex UA
 and these over receive-only or send-only UAs.

 features: The feature parameter enumerates additional features
 of the UA. It is assumed that these features are
 orthogonal, and could occur in any combination. "voice-
 mail" means that an automated system exists at this UA,
 which is capable of recording messages. "attendant" means
 that a human operator is available to take messages.

 language: The language parameter lists the languages spoken by
 user or system behind the UA. This parameter may, for
 example, be used to have a caller automatically be directed
 to the appropriate attendant or customer service
 representative. Note that this parameter has a different
 functionality than the Accept-Language and Content-Language
 header fields, which describe the acceptable languages and
 languages used in the request and the media description,
 not the actual communications.

https://datatracker.ietf.org/doc/html/rfc2616#section-3.10
https://datatracker.ietf.org/doc/html/rfc2616#section-3.10

Schulzrinne/Rosenberg [Page 6]

Internet Draft SIP Caller Prefs July 13, 2000

 media: The media parameter lists the media types supported by
 the UA. In this context, supported means that the media
 type is acceptable as part of the media session established
 by SIP (and usually described by SDP [6]). It does not
 refer to the media types which can be supported within the
 bodies of SIP messages. Media types can be the standard
 Internet media types ("audio", "video", "text",
 "application"), optionally followed by a subtype (e.g.,
 "text/html").

 mobility: The mobility parameter indicates if the UA is fixed or
 mobile. In some locales, this may affect audio quality or
 charges.

 In addition, the Contact header field may contain the description-
 param, methods-param and priority-param parameters.

 The description parameter further describes, as text, the terminal.
 The description parameter MUST NOT be used in the matching operation
 described in Section 6.3.1.

 The priority parameter indicates the minimum priority level this UA
 is to be used for. It can be used for automatically restricting the
 choice of terminals available to the caller. The priority parameter
 is not used in the matching operation described in Section 6.3.1. Its
 application is described in the procedure in Section 6.3.2.

 The methods parameter indicates the methods this UA understands. It
 MUST NOT be used in any request excepting REGISTER. The methods
 parameter is not used in the matching operation described in Section

6.3.1. Its application is described in the procedure in Section
6.3.2.

 priority-param = "priority" "=" <"> priority-value <">
 description-param = "description" "=" quoted-string
 methods-param = "methods" "=" <"> 1#methods-value <">
 methods-value = ("INVITE" | "OPTIONS" | "BYE" | "REGISTER"
 | token)

 Note that priority-value is defined in section 6.25 of [1].

 There is some overlap between the indication of receiver
 capabilities in the session description message body and

Schulzrinne/Rosenberg [Page 7]

Internet Draft SIP Caller Prefs July 13, 2000

 the Accept-Contact and Reject-Contact header fields.
 However, current session description formats cannot express
 the preferences described here. Also, the capabilities
 described here are fundamental to call-routing and thus
 should not depend on the particulars of the various session
 description formats that might be used.

5.2 Accept-Contact

 The syntax for the Accept-Contact header is defined below:

 Accept-Contact = "Accept-Contact" ":" 1# rule
 rule = (name-addr | addr-spec | "*")
 [*(";" (cp-params | q-param | scheme-param))]
 q-param = "q" "=" qvalue
 scheme-param = "scheme" "=" <"> [<!>] 1#scheme <">

 The header field specifies contact addresses which are acceptable to
 the caller. If a "*" is specified instead of a name-addr or addr-
 spec, it means the UAC doesn't care about the URI of the user
 eventually reached. Only the parameters of the Contact header are
 important. If the name-addr or addr-spec is present, and the userinfo
 field of the SIP URL is not present, it means the UAC doesn't care
 about the username of the user eventually reached. If the host
 portion of the SIP URL is a hostname, and has the value "x", it means
 the UAC doesn't care about the host portion of the URI eventually
 reached. If the name-addr or addr-spec is present, and contains URI
 parameters, if means the UAC wishes to be connected to an address
 that has been registered with these parameters.

 We use "x" as the wildcard domain because of the URI
 formatting constraints. The domain must be present in a SIP
 URL, and cannot be the "*" character. The "x" character is
 allowed and looks kind of similar.

 The scheme parameter describes the set of URI schemes which the
 caller is willing to accept redirects to or communicate with. The BNF
 for scheme is given in RFC 2396 [7], and can be any valid URI scheme.

 In the following example, the caller would prefer not to talk to
 sales@acme.com later. She has a slight preference for fixed as
 opposed to mobile phones.

https://datatracker.ietf.org/doc/html/rfc2396

Schulzrinne/Rosenberg [Page 8]

Internet Draft SIP Caller Prefs July 13, 2000

 Accept-Contact: sip:sales@acme.com ;q=0,
 *;media="!video" ;q=0.1,
 *;mobility="fixed" ;q=0.6,
 *;mobility="!fixed" ;q=0.4

 In the next example, the caller would prefer to speak to someone from
 sales.org that supports video:

 Accept-Contact: sip:sales.org;media="video"

5.3 Reject-Contact

 The Reject-Contact header field specifies a list of URIs that the
 caller does not wish to communicate with. The BNF for the header is:

 Reject-Contact = "Reject-Contact" ":"
 1# ((name-addr | addr-spec | "*")
 [*(";" cp-params | scheme-param)])

 If name-addr or addr-spec is not present (the "*" is present), it
 means the UAC does not care about the particular user or domain the
 request is routed to. The cp-params are used to filter out contact
 addresses based on their parameters alone. This process is described
 in Section 6.3.1. If either name-addr or addr-spec is present, and
 the URI does not contain a userinfo field, it means the UAC does not
 have a preference regarding the user name and/or password of the UA
 eventually reached. If domain of the URI is equal to "x", it means
 the UAC does not have a preference regarding the domain of the UA
 eventually reached.

 The scheme parameter describes the set of URI schemes which the
 caller is not willing to accept redirects to or communicate with. The
 BNF for scheme is given in RFC 2396 [7], and can be any valid URI
 scheme.

5.4 Contact Header

 The cp-params parameter is allowed as an extension attribute to the
 Contact header, along with the priority-param, methods-param and
 description-param. This effectively means that the BNF for

https://datatracker.ietf.org/doc/html/rfc2396

Schulzrinne/Rosenberg [Page 9]

Internet Draft SIP Caller Prefs July 13, 2000

 extension-attribute, defined in Section 6.13 of RFC 2543 [1] can be
 redefined as:

 extension-attribute = (cp-params |
 priority-param | methods-param |
 description-param |
 (extension-name ["=" extension-value]))

 The example below describes a SIP terminal whose owner speaks
 English, Spanish and German. The terminal is capable of sending and
 receiving audio and video and can participate in a chat session.
 However, the owner only wants callers to use the terminal if the call
 is of priority "urgent" or higher. This Contact header would normally
 be included in a REGISTER message.

 Contact: Carol <sip:carol@example.com> ;language="en,es,de"
 ;media="audio,video,application/chat"
 ;duplex="full"
 ;priority="urgent"

 As another example, an INVITE message is sent with a Contact header
 that includes some of the parameters defined here:

 INVITE sip:user@example.com SIP/2.0
 Via: SIP/2.0/UDP host.example.com
 From: sip:caller@university.edu
 To: sip:user@example.com
 Call-ID: 9sdnasdbasd@1.2.3.4
 CSeq: 3 INVITE
 Contact: Joe Caller <sip:caller@university.edu>;mobility="mobile"

 In this case, Joe is indicating he is calling from a mobile host.

5.5 Request-Disposition

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular feature.

https://datatracker.ietf.org/doc/html/rfc2543#section-6.13

Schulzrinne/Rosenberg [Page 10]

Internet Draft SIP Caller Prefs July 13, 2000

 When the caller specifies a feature, the server SHOULD treat it as a
 hint, not as a requirement and MAY ignore the feature request.

 The header field has the following syntax:

 Request-Disposition = "Request-Disposition" ":"
 1# (proxy-feature | cancel-feature |
 fork-feature | recurse-feature |
 parallel-feature | queue-feature |
 extension-feature)
 proxy-feature = "proxy" | "redirect"
 cancel-feature = "cancel" | "no-cancel"
 fork-feature = "fork" | "no-fork"
 recurse-feature = "recurse" | "no-recurse"
 parallel-feature = "parallel" | "sequential"
 queue-feature = "queue" | "no-queue"
 extension-feature = token

 proxy-feature: This feature indicates whether the caller would
 like each server to proxy or redirect.

 cancel-feature: This feature indicates whether the caller would
 like each proxy server to send a CANCEL request downstream
 in response to a 200 OK from the downstream server, or
 whether this function should be left to the caller.

 fork-feature: This feature indicates whether a proxy should fork
 a request, or proxy to only a single address. If the server
 is requested not to fork, the server SHOULD proxy the
 request to the "best" address (generally the one with the
 highest q value). The feature is ignored if "redirect" has
 been requested.

 recurse-feature: This feature indicates whether a proxy server
 receiving a 300-class response should send requests to the
 addresses listed in the response (i.e., recurse), or
 forward the list of addresses upstream towards the caller.
 The feature is ignored if "redirect" has been requested.

 parallel-feature: For a forking proxy server, this feature
 indicates whether the caller would like the proxy server to
 proxy the request to all known addresses at once, or go

Schulzrinne/Rosenberg [Page 11]

Internet Draft SIP Caller Prefs July 13, 2000

 through them sequentially, contacting the next address only
 after it has received a non-200 or non-600 final response
 for the previous one. The feature is ignored if "redirect"
 has been requested.

 queue-feature: If the called party is temporarily unreachable,
 e.g., because it is in another call, the caller can
 indicate that it wants to have its call queued rather than
 rejected immediately. If the call is queued, the server
 returns "182 Queued". A pending call be terminated by a
 SIP CANCEL or BYE request.

 Example:

 Request-Disposition: proxy, recurse, parallel

 The Request-Disposition header also allows an extension-feature,
 which can be used to specify additional dispositions. Section 8
 specifies procedures for registration of new extension-features. Note
 that features requested in Request-Disposition MUST always be
 optional for the proxy to apply. In other words, if the client has a
 feature it insists on using, the Request-Disposition header MUST NOT
 be used for that purpose.

6 Protocol Semantics

6.1 UAS Behavior

 User agent servers MAY include cp-params, priority-param, methods-
 param or description-param parameters as part of each Contact
 addresses they register. These parameters can be set through
 configuration, user input, or any means the implementor seeks to use.
 They SHOULD reflect actual characteristics of the URLs being
 registered.

 Furthermore, the REGISTER request MAY contain a Require header with
 the option tag "pref" if the client wants to be sure that the
 registration server honors caller preferences.

 When a UAS receives a request with the Accept-Contact, Reject-Contact
 and Request-Disposition, it MAY ignore these headers so long as it
 does not redirect the request. If the request is redirected, the UAS
 SHOULD follow the rules described in Section 6.3 for a proxy/redirect

Schulzrinne/Rosenberg [Page 12]

Internet Draft SIP Caller Prefs July 13, 2000

 server.

6.2 UAC Behavior

 A UAC wishing to express preferences for a request includes the
 Accept-Contact, Reject-Contact, or Request-Disposition headers in the
 request, depending on its particular preferences. No additional
 behavior is required after the request is sent.

 If the client wants to be sure that servers understand the headers
 described in this specification, it MAY include a Proxy-Require and
 Require option tag of "pref". However, this is NOT RECOMMENDED, as it
 leads to interoperability problems. In any case, client preferences
 can only be considered as preferences - there is no guarantee that
 the requested service or capability is executed. As such, inclusion
 of Proxy-Require and Require does not mean the preferences will be
 executed.

6.3 Proxy Behavior

 The behavior described here assumes a server (proxy or redirect) has
 received a valid request with either the Accept-Contact or Reject-
 Contact headers, and that this proxy has a list of Contact headers
 obtained from looking up the Request-URI in the location service. The
 location service may have obtained this data through registrations,
 as described in Section 6.1, but other means may exist.

 The processing depends heavily on a rule matching operation. This
 operation takes a rule (defined as a single element from the comma
 separate list of elements in the Accept-Contact or Reject-Contact
 headers), and matches it against the contact list obtained from the
 location service.

6.3.1 Rule Matching Procedures

 The contact list is composed of a set of contact entries. Each
 contact entry consists of a URI along with a set of parameters. A
 rule, like a contact entry, consists of a URI (or the "*" character),
 and a set of parameters. If the rule does not contain a URI (just the
 "*" character), the rule matches the contact entry if and only if the
 parameters in the rule and the parameters in the contact entry match.
 If the rule contains a URI, both the URI and parameters must match
 for the rule to match the contact entry.

 The URI in the rule and the URI in the contact entry match depending
 on the scheme. For non-SIP URIs, matching is based on the URI
 equivalency rules for that scheme. For SIP URLs, the userinfo, host,
 and URI parameters must match, where matching is defined as follows.

Schulzrinne/Rosenberg [Page 13]

Internet Draft SIP Caller Prefs July 13, 2000

 Note that these matching rules are not the same as the general URI
 matching rules in SIP [1].

 If the rule contains a userinfo field, that userinfo field must match
 the userinfo field in the URI in the contact entry. Matching is based
 on case sensitive string comparison. If the rule contains a userinfo
 field, but the URI in the contact address does not, the userinfo in
 the rule does not match the userinfo in the contact entry. If the
 rule does not contain a userinfo field, the userinfo component
 matches.

 If the rule contains a host not equal to "x", the host in the URI of
 the rule must match the host of the URI in the contact entry.
 Matching is based on case insensitive string comparison. If the rule
 has a host equal to "x", it matches any value of the host in the URI
 in the contact entry.

 If the URI in the rule contains URI parameters (port is considered a
 URI parameter for purposes of this discussion), each parameter in the
 URI in the rule must match a parameter in the URI in the contact
 entry. Matching is based on case sensitive string comparison of both
 parameter names and values. Note, however, if the URI in the rule
 contains a parameter with a default value, this matches a contact
 entry with a URI that does not contain this parameter. If the URI in
 the rule contains a URI parameter that is not the default value, this
 does not match a contact entry whose URI does not contain this
 parameter. If there are no URI parameters in the rule, this is
 considered a match to any set of URI parameters in the contact entry.

 To determine if the parameters in the rule match the parameters in
 the contact entry, the following process is followed.

 The parameters match if and only if each parameter in the rule
 matches the contact entry. A single parameter in the rule matches the
 contact entry if that parameter is present in the contact entry, and
 their values match. If a parameter exists in the rule, and there is
 no parameter of the same name in the contact entry, whether or not
 this is a match is context dependent. If the rule is present in the
 Accept-Contact header, it is considered a match. If the rule is
 present in the Reject-Contact header, it is not considered a match.

 Parameter names are matched by case-sensitive comparison. Parameter
 values are matched by set-comparisons. Parameter values in quoted
 strings are interpreted as sets, with elements separated by commas.
 Two elements in the set match if they are equal based on a case
 sensitive string comparison. There are two cases: if the quoted-
 string parameter value in a rule starts with an exclamation mark (!),
 the rule matches if the intersection of the set in the rule and in

Schulzrinne/Rosenberg [Page 14]

Internet Draft SIP Caller Prefs July 13, 2000

 the contact entry is empty. Otherwise, the rule matches if the
 intersection of the rule set with the contact set is non-empty. Note
 that this process does not apply to the priority-param, methods-
 param, description-param or scheme-param.

 Case sensitive comparisons are necessary because of
 internationalization. Case insensitive matching in UTF-8
 depends on regional rules, and overly complicates the
 procedure.

 If there is a scheme-param in the rule, and the quoted-string
 parameter value in the rule starts with an exclamation mark, the
 scheme of the URI in the contact entry must not match any of the
 schemes listed in the rule. If the quoted-string parameter value in
 the scheme-param doesn't start with an exclamation mark, the scheme
 of the URI in the contact entry must match one of the schemes listed
 in the rule. Matching of schemes is done by case insensitive string
 comparison [7].

 The C code below describes the matching procedure between a rule and
 a contact entry. The function intersect() takes two arrays of
 strings, and returns true if there are any values common to both
 arrays, false otherwise. The function getparameterbyname() takes a
 rule and a string defining a parameter name. It returns a parameter
 from the rule with that name. However, if the parameter name is
 "scheme", the function returns a "scheme" parameter. This parameter
 structure has the name set to "scheme", the exclamation set to false,
 and the values array with a single value, containing the name of the
 scheme in the URI of the rule.

 /* context values */
 #define ACCEPT_CONTACT 0
 #define REJECT_CONTACT 1

 typedef int boolean;

 typedef struct uri_parameters_s {
 char *name;
 char *value;
 } uri_parameters_t;

 typedef struct uri_s {
 char *scheme;
 char *userinfo;

Schulzrinne/Rosenberg [Page 15]

Internet Draft SIP Caller Prefs July 13, 2000

 char *host;
 uri_parameters_t **params;
 } uri_t;

 typedef struct parameter_s {
 char *name; /* parameter name */
 boolean exclamation; /* whether ! was present in value */
 char **values; /* list of elements in the value */
 } parameter_t;

 typedef struct rule_s {
 uri_t *URI; /* URI */
 parameter_t **para; /* list of parameters */
 } rule_t;

 /* little helper function to look up a parameter by its
 name within an entry */

 parameter_t *getparameterbyname(rule_t *r, char *name) {

 int i;
 parameter_t *p;

 if(strcmp(name,"scheme") == 0) {

 p = calloc(1, sizeof(parameter_t));
 p->name = "scheme";
 p->values = calloc(2, sizeof(char *));
 p->values[0] = malloc(sizeof(char) * (strlen(r->URI->scheme) + 1));
 strcpy(p->values[0], r->URI->scheme);

 return(p);
 }

 for(i=0; r->para[i] != NULL; i++) {

 if(strcmp(r->para[i]->name, name) == 0)
 return(r->para[i]);
 }

 return(NULL);
 }

 /* check if two sets of strings share at least one
 common value */

 boolean intersect(char *a[], char *b[]) {

Schulzrinne/Rosenberg [Page 16]

Internet Draft SIP Caller Prefs July 13, 2000

 int i,j;

 for(i = 0; a[i] != NULL; i++) {
 for(j = 0; b[j] != NULL; j++) {

 if(strcmp(a[i], b[j]) == 0)
 return(TRUE);
 }
 }

 return(FALSE);
 }

 /* returns the default value of a URI parameter */
 char *defaultvalue(char *name) {

 if(strcmp(name, "transport") == 0)
 return("udp");

 return("some-value-which-matches-no parameter");
 }

 boolean matchuriparameters(uri_parameters_t **r, uri_parameters_t **e) {
 int i,j;
 boolean match;

 /* for each rule */
 for(i=0; r[i] != NULL; i++) {

 match = FALSE;
 for(j=0; e[j] != NULL; j++) {

 /* found the matching URI parameter in the entry */
 if(strcmp(r[i]->name, e[j]->name) == 0) {

 /* if they're not equal, return FALSE. Otherwise, set match
 to TRUE, indicating that we found a matching parameter*/
 if(strcmp(r[i]->value, e[j]->value) != 0)
 return(FALSE);
 else
 match = TRUE;
 }
 }

 /* parameter in rule not in entry */
 if(match == FALSE) {

 /* check if rule contains default value */

Schulzrinne/Rosenberg [Page 17]

Internet Draft SIP Caller Prefs July 13, 2000

 if(strcmp(defaultvalue(r[i]->name), r[i]->value) != 0)
 return(FALSE);

 }
 }

 return(TRUE);
 }

 boolean MATCH(rule_t *r, rule_t *e, int context) {
 boolean match;
 int i;
 parameter_t *p, *q;

 match = TRUE;

 /* We represent a rule with a * as the match for URIs, as
 a URI with a scheme of * */

 if (strcmp(r->URI->scheme, "*") != 0) {

 /* the schemes must match */
 if (strcasecmp(r->URI->scheme, e->URI->scheme) == 0) {

 /* for sip, perform our SIP rules */
 if (strcasecmp(r->URI->scheme, "sip") == 0) {

 /* check for match of user and host */
 match=(((strcasecmp(r->URI->host, "x") == 0) ||
 (strcasecmp(r->URI->host, e->URI->host) == 0)) &&
 ((r->URI->userinfo == NULL) ||
 ((e->URI->userinfo != NULL) &&
 (strcmp(r->URI->userinfo, e->URI->userinfo) == 0))));

 if(match == FALSE) return(FALSE);

 /* match URI parameters */
 match = matchuriparameters(r->URI->params, e->URI->params);
 if(match == FALSE) return(FALSE);

 } else {
 /* match = scheme-appropriate comparison; */
 if(match == FALSE) return(FALSE);
 }
 } else {
 /* schemes don't match */

Schulzrinne/Rosenberg [Page 18]

Internet Draft SIP Caller Prefs July 13, 2000

 return FALSE;
 }
 }

 /* compare parameters */
 for(i = 0; r->para[i] != NULL; i++) {

 p = r->para[i];

 /* is this parameter defined in the contact entry */
 if ((q =getparameterbyname(e, p->name)) != NULL) {

 /* is this an empty set match */
 if (p->exclamation == TRUE) {

 if (intersect(p->values, q->values) == TRUE) {
 return FALSE;
 }
 } else {

 /* not an empty set case */
 if (intersect(p->values, q->values) == FALSE) {
 return FALSE;
 }
 }
 } else {
 /* this parameter is not present in the entry.
 whether its a match or not is dependent on
 context */

 if(context == REJECT_CONTACT)
 return(FALSE);
 }
 }
 return TRUE;
 }

 For example, the rule:

 sip:example.com;language="!en,de"

 matches the contact entry:

Schulzrinne/Rosenberg [Page 19]

Internet Draft SIP Caller Prefs July 13, 2000

 sip:joe@example.com;language="es,nl"

 but not any of:

 sip:joe@example.com;language="en"
 sip:bob@example.com;language="de,en"
 sip:alice@example.com;language="en,es,fi"

 As another example, the rule

 *;duplex="full,half"

 matches the contact entry

 sip:user@host;duplex="full"

 but not

 sip:user@host;duplex="send-only"

 The rule

 *;scheme="http"

 matches the contact entry

 http://www.example.com

 A server need not be aware of the particular semantics of any of the
 parameters. This allows for the definition of new parameters and
 values without explicitly programming them into the servers.

Schulzrinne/Rosenberg [Page 20]

Internet Draft SIP Caller Prefs July 13, 2000

6.3.2 Contact List Processing

 Given the matching rule above, the formal processing rules at the
 server proceed as follows. The server begins with a contact list for
 the callee, and a set of rules in the Accept-Contact and Reject-
 Contact headers.

 The server first removes any contact entry from the contact list that
 matches a rule in the Reject-Contact header field.

 A contact entry may contain a priority parameter. This means that a
 request should not be proxied or redirected to that contact entry
 unless the request is of equal or higher priority. The priority value
 of the request is derived from the Priority header field. If the
 request does not contain a Priority header field, the request
 priority is set to "non-urgent". Priorities are ordered from "non-
 urgent" (lowest), "normal", "urgent" to "emergency" (highest).
 Priority values not known to the server are mapped to "non-urgent".
 The server then removes any contact entry from the contact list whose
 priority value is higher than that of the request.

 A contact entry may contain a methods parameter. This means that a
 request should not be proxied or redirected to that contact entry
 unless the method of the request is listed among those in the contact
 entry. The server removes any contact entry from the contact list
 whose method list does not include the method of the SIP request.

 Each rule in the Accept-Contact header field is then processed. If
 the rule matches a contact entry (according to the matching rule in

section 6.3.1, the q value of that entry is updated, in order to
 incorporate the caller's preferences. If the rule does not match a
 contact entry, nothing is done. This document does not prescribe a
 specific algorithm for updating the q value. Among many
 possibilities, a server MAY set the q value to the average of the
 original value specified by the callee, and the average q value of
 the caller's rules that match the contact entry. This gives equal
 weight to caller and callee preferences. If a rule or contact entry
 does not have a q value, it is taken to be one (this is in agreement
 with the HTTP defaults). The only requirement for the updating
 process is that if a contact entry has a q value of q1, and the q
 values among the matching rules are q2,q3,..qn, the merged q value,
 qm, must satisfy:

 MIN(q1,q2,q3,..qn) <= qm <= MAX(q1,q2,q3,..,qn)

Schulzrinne/Rosenberg [Page 21]

Internet Draft SIP Caller Prefs July 13, 2000

 For those contact entries which did not match any rule in the
 Accept-Contact header, their final q value is set to zero.

 Note that this preference computation only determines the
 ordering of call attempts, so that the properties of the
 preference computation are of secondary importance. The q-
 value ordering provides only limited flexibility to
 indicate, for example, that a particular parameter is more
 important than another one or that combinations of two
 parameters should be weighed heavily.

 If the server proxies, the contact list is then sorted according to
 the q value. Processing from this point depends on the configuration
 and policy of the server. If the server elects to do a sequential
 proxy, it SHOULD try the highest q value contact entry first, trying
 addresses with decreasing q values as each attempt fails. If the
 server elects to do a forking proxy, it SHOULD group contact entries
 with "close" q values together, and try the group with the highest q
 value first, then the group with the next lowest q values, and so on.
 The precise method of the grouping is left to the implementor. A
 reasonable choice is to round each q value to the nearest tenth, and
 group those with the same rounded value.

 If a proxy server is recursing, it SHOULD apply the caller
 preferences to the Contact headers returned in the redirect
 responses. Any contact entries remaining after the application of
 caller preferences should be added to the list of untried addresses.
 This list is then resorted based on q values. The server uses this
 list for subsequent proxy operations.

 If the server is redirecting, it SHOULD return all entries in the
 contact list, including those with a zero q value.

 If the server is executing any other type of policy, as a general
 guideline, it SHOULD prefer contact entries with higher q values than
 those with lower q values.

6.3.3 Request-Disposition Processing

 If the request contains a Request-Disposition header, the server
 SHOULD execute the behaviors described by the tokens, unless it has
 local policy configured to direct it otherwise.

7 Interactions with CPL

 When the called party has a Call Processing Language (CPL) [8] script
 present, feature interactions are introduced. CPL addresses this by

Schulzrinne/Rosenberg [Page 22]

Internet Draft SIP Caller Prefs July 13, 2000

 allowing the CPL script to control whether caller preferences are
 applied to the location list or not. CPL also allows the called party
 to discard certain rules from the caller preferences before their
 application. For more information, see [8].

8 IANA Registration Procedures

8.1 cp-params

 New cp-params parameters and values can be defined at any time and
 registered with IANA. When registering new parameters and values, the
 following information MUST be provided:

 Contact: Name, organization, email address, and phone number of
 person registering the attributes.

 Attributes: A list of the new attributes being registered. For
 each, the meaning of the attribute must be described, in
 sufficient detail so that a user agent would be able to
 ascertain whether the parameter applies to it, and if so,
 which value to use. The attributes MUST also be associated
 with a finite set of values, each of which is a valid
 UTF8-TOKEN. For each value, a description of the value must
 be provided. The registration MUST indicate whether the
 parameter values are mutually exclusive or not; that is,
 whether only one, or more than one, can appear in the
 Contact header.

8.2 Request-Disposition

 New request disposition values can be defined at any time and
 registered with IANA. Request dispositions MUST always be optional
 for a proxy to grant. When registering new values, the following
 information MUST be provided:

 Contact: Name, organization, email address, and phone number of
 person registering the value.

 Behavior: The requested behavior when the attribute appears in
 the request disposition.

 Interactions with other Values: Any interactions with other
 values specified or here registered with IANA.

Schulzrinne/Rosenberg [Page 23]

Internet Draft SIP Caller Prefs July 13, 2000

9 Changes since -01

 o Specified that parameters can be included in Contact in INVITE
 and its 200 OK response as well.

 o Allow Request-Disposition in REGISTER.

 o Added IANA registration for request-disposition values.

 o Added methods to contact parameters.

 o Alterned bnf so that cp-params can be applied to Contact,
 Accept-Contact, and Reject-Contact.

 o Updated code, compiled and verified

 o Removed ring-feature

10 Open Issues

 o Is IANA registrations for request-disposition values a good
 idea?

11 Security Considerations

 The presence of caller preferences in a request has a significant way
 in which the request is handled at a server. As a result, is is
 especially important that requests with caller preferences be
 authenticated. The same holds true for registrations with contact
 parameters.

 Processing of caller preferences requires set operations and searches
 which can require some amount of computation. This enables a DOS
 attack whereby a user can send requests with substantial numbers of
 caller preferences, in the hopes of overloading the server. To
 counter this, servers SHOULD reject requests with too many rules. A
 reasonable number is around 20.

12 Acknowledgements

 Parameters of the terminal negotiation mechanism in Section 5.1 were
 influenced by Scott Petrack's CMA design. Jonathan Lennox and John
 Hearty provided helpful comments.

13 Author's Addresses

Schulzrinne/Rosenberg [Page 24]

Internet Draft SIP Caller Prefs July 13, 2000

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

14 Bibliography

 [1] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 session initiation protocol," Request for Comments 2543, Internet
 Engineering Task Force, Mar. 1999.

 [2] J. Lennox and H. Schulzrinne, "Call processing language framework
 and requirements," Request for Comments 2824, Internet Engineering
 Task Force, May 2000.

 [3] G. Klyne, "A syntax for describing media feature sets," Request
 for Comments 2533, Internet Engineering Task Force, Mar. 1999.

 [4] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels," Request for Comments 2119, Internet Engineering Task Force,
 Mar. 1997.

 [5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
 Leach, and T. Berners-Lee, "Hypertext transfer protocol -- HTTP/1.1,"
 Request for Comments 2616, Internet Engineering Task Force, June
 1999.

 [6] M. Handley and V. Jacobson, "SDP: session description protocol,"
 Request for Comments 2327, Internet Engineering Task Force, Apr.
 1998.

 [7] T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform resource
 identifiers (URI): generic syntax," Request for Comments 2396,
 Internet Engineering Task Force, Aug. 1998.

 [8] J. Lennox and H. Schulzrinne, "CPL: a language for user control

Schulzrinne/Rosenberg [Page 25]

Internet Draft SIP Caller Prefs July 13, 2000

 of internet telephony services," Internet Draft, Internet Engineering
 Task Force, Mar. 1999. Work in progress.

 Table of Contents

1 Introduction .. 1
2 Overview of Operation 2
3 Design Alternatives 3
4 Terminology ... 4
5 Header Field Definitions 4

 5.1 Contact, Accept-Contact and Reject-Contact
 Parameters ... 5

5.2 Accept-Contact 8
5.3 Reject-Contact 9
5.4 Contact Header 9
5.5 Request-Disposition 10
6 Protocol Semantics 12
6.1 UAS Behavior .. 12
6.2 UAC Behavior .. 13
6.3 Proxy Behavior 13
6.3.1 Rule Matching Procedures 13
6.3.2 Contact List Processing 21
6.3.3 Request-Disposition Processing 22
7 Interactions with CPL 22
8 IANA Registration Procedures 23
8.1 cp-params ... 23
8.2 Request-Disposition 23
9 Changes since -01 24
10 Open Issues ... 24
11 Security Considerations 24
12 Acknowledgements 24
13 Author's Addresses 24
14 Bibliography .. 25

Schulzrinne/Rosenberg [Page 26]

