
Internet Engineering Task Force SIP WG
Internet Draft J. Rosenberg
 dynamicsoft
 H. Schulzrinne
 Columbia U.
draft-ietf-sip-callerprefs-07.txt
November 4, 2002
Expires: May 2003

Session Initiation Protocol (SIP) Caller Preferences and Callee Capabilities

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Abstract

 This document describes a set of extensions to the Session Initiation
 Protocol (SIP) which allow a caller to express preferences about
 request handling in servers. These preferences include the ability to
 select which URIs a request gets routed to, and to specify certain
 request handling directives in proxies and redirect servers. It does
 so by defining four new request headers, Accept-Contact, Reject-
 Contact, Require-Contact and Request-Disposition, which specify the
 caller's preferences. The extension also defines new parameters for
 the Contact header that describe the capabilities and characteristics
 of a UA.

J. Rosenberg et. al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-sip-callerprefs-07.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft SIP Caller Preferences November 4, 2002

 Table of Contents

1 Introduction .. 3
2 Terminology ... 4
3 Definitions ... 4
4 Overview of Operation 6
5 Usage of the Content Negotiation Framework 7
6 UA Behavior ... 8
6.1 Expressing Capabilities in a Registration 8
6.2 Expressing Preferences in a Request 10
6.2.1 Request Handling Preferences 11
6.2.2 Feature Set Preferences 11
6.3 Indicating Feature Sets in Remote Target URIs 12
6.4 Request Handling and Feature Set Preferences 13
7 Proxy Behavior 14
7.1 Request-Disposition Processing 14
7.2 Preference and Capability Matching 14
7.2.1 Extracting Explicit Preferences 14
7.2.2 Extracting Implicit Preferences 15
7.2.2.1 Priority .. 15
7.2.2.2 Methods ... 16
7.2.2.3 Event Packages 16
7.2.2.4 Media Types ... 17
7.2.2.5 Languages ... 17
7.3 Constructing Contact Predicates 18
7.4 Matching .. 19
8 Header Field Definitions 21
8.1 Request Disposition 21

 8.2 Accept-Contact, Reject-Contact, and Require-
 Contact Header Fields .. 23

8.3 Contact Header Field 23
9 Media Feature Tag Definitions 24
9.1 Attendant ... 24
9.2 Audio ... 25
9.3 Automata .. 25
9.4 Class ... 26
9.5 Duplex .. 26
9.6 Image ... 27
9.7 Message ... 28
9.8 Mobility .. 28
9.9 Description ... 29
9.10 Event Packages 29

9.11 Priority .. 30

J. Rosenberg et. al. [Page 2]

Internet Draft SIP Caller Preferences November 4, 2002

9.12 Methods ... 31
9.13 Schemes ... 32
9.14 Text .. 33
9.15 Video ... 33
9.16 Voicemail ... 34
10 Augmented BNF 34

 11 Mapping Feature Parameters and Feature Set
 Predicates ... 35

12 Security Considerations 38
13 IANA Considerations 39
13.1 Media Feature Tags 39
13.2 SIP Header Fields 39
13.3 SIP Option Tags 40
14 Acknowledgements 40
15 Author's Addresses 40
16 Normative References 41
17 Informative References 42
A Overview of RFC 2533 43

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 3]

Internet Draft SIP Caller Preferences November 4, 2002

1 Introduction

 When a Session Initiation Protocol (SIP) [1] server receives a
 request, there are a number of decisions it can make regarding
 processing of the request. These include:

 o whether to proxy or redirect the request

 o which URIs to proxy or redirect to

 o whether to fork or not

 o whether to search recursively or not

 o whether to search in parallel or sequentially

 The server can base these decisions on any local policy. This policy
 can be statically configured, or can be based on programmatic
 execution or database access.

 However, the administrator of the server is the not the only entity
 with an interest in request processing. There are at least three
 parties which have an interest: (1) the administrator of the server,
 (2) the user that sent the request, and (3) the user to whom the
 request is directed. The directives of the administrator are embedded
 in the policy of the server. The preferences of the user to whom the
 request is directed (referred to as the callee, even though the
 request may not be INVITE) can be expressed most easily through a
 script written in some type of scripting language, such as the Call
 Processing Language (CPL) [16]. However, no mechanism exists to
 incorporate the preferences of the user that sent the request (also
 referred to as the caller, even though the request may not be
 INVITE). For example, the caller might want to speak to a specific
 user, but want to reach them only at work, because the call is a
 business call. As another example, the caller might want to reach a
 user, but not their voicemail, since it is important that the caller
 talk to the called party. In both of these examples, the caller's
 preference amounts to having a proxy make a particular routing choice
 based on the preferences of the caller.

 This extension allows the requestor to have these preferences met. It
 does so by specifying mechanisms by which a caller can provide
 preferences on processing of a request. There are two types of
 preferences. One of them, called request handling preferences, are
 encapsulated in the Request-Disposition header field. They provides
 specific request handling directives for a server. The other, called
 feature preferences, are present in the Accept-Contact, Reject-
 Contact, and Require-Contact header fields. They allow the caller to

J. Rosenberg et. al. [Page 3]

Internet Draft SIP Caller Preferences November 4, 2002

 provide a feature set [2] that expresses its preferences on the
 characteristics of the UA that is to be reached. These are matched
 with a feature set carried in the Contact header of a REGISTER
 request, which describes the capabilities of the UA represented by
 the Contact URI. The extension is very general purpose, and not tied
 to a particular service. Rather, it is a tool that can be used in the
 development of many services.

 Indeed, the feature sets uploaded to the server in REGISTER requests
 can be used for a variety of purposes, not just meeting caller
 preferences. Applications can use this information to tailor
 information sent to a user as part of an instant message, for example
 [17].

2 Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [3] and
 indicate requirement levels for compliant SIP implementations.

3 Definitions

 Caller: Within the context of this specification, a caller
 refers to the user on whose behalf a UAC is operating. It
 is not limited to a user who's UAC sends the INVITE method.

 Feature: As defined in RFC 2703 [18], a piece of information
 about the media handling properties of a message passing
 system component or of a data resource. For example, the
 SIP methods supported by a UA represent a feature.

 Feature Tag: As defined in RFC 2703 [18], a feature tag is a
 name that identifies a feature.

 Media Feature: As defined in RFC 2703, [18], a media feature is
 information that indicates facilities assumed to be
 available for the message content to be properly rendered
 or otherwise presented. Media features are not intended to
 include information that affects message transmission.

 In the context of this specification, a media feature is
 information that indicates facilities for handling SIP
 requests, rather than specifically for content. In that
 sense, it is used synonymously with feature.

 Feature Collection: As defined in RFC 2533 [2], a feature
 collection is a collection of different media features and

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 4]

Internet Draft SIP Caller Preferences November 4, 2002

 associated values. This might be viewed as describing a
 specific rendering of a specific instance of a document or
 resource by a specific recipient.

 Feature Set: As defined in RFC 2703 [18], a feature set is
 Information about a sender, recipient, data file or other
 participant in a message transfer which describes the set
 of features that it can handle. Where a 'feature' describes
 a single identified attribute of a resource, a 'feature
 set' describes full set of possible attributes.

 Feature Preferences: Caller preferences that described desired
 properties of a UA that the request is to be routed to.
 These preferences are carried in the Accept-Contact,
 Reject-Contact and Require-Contact header fields.

 Request Handling Preferences: Caller preferences that describe
 desired request treatment at a server. These preferences
 are carried in the Request-Disposition header field.

 Feature Parameters: A set of SIP header field parameters that
 can appear in the Contact, Accept-Contact, Reject-Contact
 and Require-Contact header fields. The feature parameters
 represent an encoding of a feature set. There is a one-one
 mapping between a set of feature parameters and a feature
 set predicate, as both represent alternative encodings of a
 feature set.

 Capability: As defined in RFC 2703 [18], a capability is an
 attribute of a sender or receiver (often the receiver)
 which indicates an ability to generate or process a
 particular type of message content.

 Filter: A single expression in a feature predicate.

 Simple Filter: An expression in a feature predicate which is a
 comparison (equality or inequality) of a feature tag
 against a feature value.

 Disjunction: A boolean OR operation across some number of terms.

 Predicate: A boolean expression.

 Feature Set Predicate: From RFC 2533 [2], a feature set
 predicate is a function of an arbitrary feature collection
 value which returns a Boolean result. A TRUE result is
 taken to mean that the corresponding feature collection
 belongs to some set of media feature handling capabilities

https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 5]

Internet Draft SIP Caller Preferences November 4, 2002

 defined by this predicate.

 Contact Predicate: The feature set predicate associated with a
 URI registered in the Contact header field of a REGISTER
 request. The contact predicate is derived from the feature
 parameters in the Contact header field.

4 Overview of Operation

 This extension defines a set of additional parameters to the Contact
 header field, called feature parameters. Each parameter name is a
 feature tag, as defined in RFC 2703 [18], that defines a capability
 for the UA associated with the Contact header field value. For
 example, there is a parameter for the SIP methods supported by the
 UA. Each feature parameter has a value; that value is the set of
 feature values for that feature tag. Put together, all of the feature
 parameters specify a feature set that is supported by the UA
 associated with that Contact header field value.

 When a UA registers, it places these parameters in the Contact header
 field value to provide a feature set for each URI it is registering.
 The feature parameters are also mirrored in the Contact header field
 in a REGISTER response. The proxy can use this feature set to route
 requests based on caller preferences. Furthermore, Contact header
 fields in requests and responses that establish a dialog can contain
 these parameters. That allows a UA in a dialog to indicate its
 feature set to its peer. For example, by including the "voicemail"
 feature tag with value "TRUE" in the 200 OK to an INVITE, the UAS can
 indicate to the UAC that it is a voicemail server. This information
 is useful for user interfaces, as well as automated call handling.

 When a caller sends a request, it can optionally include new header
 fields which request certain handling at a server. These preferences
 fall into two categories. The first category, called request handling
 preferences, are carried in the Request-Disposition header field.
 They describe specific behavior that is desired at a server. Request
 handling preferences include whether the caller wishes the server to
 proxy or redirect, and whether sequential or parallel search is
 desired. These preferences can be applied at every proxy or redirect
 server on the call signaling path.

 The second category of preferences, called feature preferences, are
 carried in the Accept-Contact, Reject-Contact, and Require-Contact
 header fields. These header fields also contain feature sets,
 represented by the same feature parameters that are used in the
 Contact header. Here, the feature parameters represent the caller's
 preferences. The Accept-Contact header field contains feature sets
 that describe UAs that the caller would like to reach. The Reject-

https://datatracker.ietf.org/doc/html/rfc2703

J. Rosenberg et. al. [Page 6]

Internet Draft SIP Caller Preferences November 4, 2002

 Contact header field contains feature sets which, if matched by a UA,
 imply that the request should not be routed to that UA. The Require-
 Contact header field contains feature sets which, if not matched by a
 UA, imply that the request should not be routed to that UA. Require-
 Contact and Accept-Contact are similar, but Require-Contact is more
 forceful. Contacts which don't match are outright rejected, whereas
 with Accept-Contact, they are tried as fallbacks.

 Proxies use the information in the Accept-Contact, Reject-Contact and
 Require-Contact header fields to select amongst registered contacts.
 Proxies also compute implicit preferences from the request. These are
 caller preferences that are not explicitly placed into the request,
 but can be inferred from the presence of other message components. As
 an example, if the request method is INVITE, this is an implicit
 preference to route the call to a UA that supports the INVITE method.

 Both request handling and feature preferences can appear in any
 request, not just INVITE. However, they are only useful in requests
 where proxies need to determine a request target. If the domain in
 the request URI is not owned by any proxies along the request path,
 those proxies will never access a location service, and therefore,
 never have the opportunity to apply the caller preferences. This
 makes sense; typically, the request URI will identify a UAS for mid-
 dialog requests. In those cases, the routing decisions were already
 made on the initial request, and it makes no sense to redo them for
 subsequent requests in the dialog.

5 Usage of the Content Negotiation Framework

 This specification makes heavy use of the terminology and concepts in
 the content negotiation work carried out within the IETF, and
 documented in several RFCs. The ones relevant to this specification
 are RFC 2506 [4] which provides a template for registering media
 feature tags, RFC 2533 [2] which presents a syntax and matching
 algorithm for media feature sets, RFC 2738 [5], which provides a
 minor update to RFC 2533, and RFC 2703 [18] which provides a general
 framework for content negotiation.

 In case the reader does not have the time to read those
 specifications, Appendix A provides a brief overview of the concepts
 and terminology in those documents that is critical for understanding
 this specification.

 Since the content negotiation work was primarily meant to apply to
 documents or other resources with a set of possible renderings, it is
 not immediately apparent how it is used to model the SIP entities at
 hand. The goal of this specification is to allow a UA to express its
 feature set, and for a caller to express a feature set that describes

https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2738
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2703

J. Rosenberg et. al. [Page 7]

Internet Draft SIP Caller Preferences November 4, 2002

 properties of a desirable (or undesirable) UA. Therefore, we are
 using feature sets to describe SIP user agents.

 A feature set is composed of a set of feature collections, each of
 which represents a specific rendering supported by the entity
 described by the feature set. In the context of a SIP user agent, a
 feature collection represents an instantaneous modality. That is, if
 you look at the run time processing of a SIP UA, and take a snapshot
 in time, the feature collection describes what it is doing at that
 very instant.

 This model is important, since it provides guidance on how to
 determine whether something is a value for a particular feature tag,
 or a feature tag by itself. If two properties can be exhibited by a
 UA simultaneously, so that both are present in an instantaneous
 modality, they need to be represented by separate media feature tags.
 For example, a UA may be able to support some number of media types -
 audio, video, and messaging. Should each of these be different values
 for a single "media-types" feature tag, or should each of them be a
 separate boolean feature tag? The model provides the answer. Since,
 at any instant of time, a UA could be handling both audio and video,
 they need to be separate media feature tags. However, the SIP methods
 supported by a UA can each be represented as different values for the
 same media feature tag (the "methods" tag), because fundamentally, a
 UA processes a single request at a time. It may be multi-threading,
 so that it appears that this is not so, but at a purely functional
 level, it is true.

 Clearly, there are weaknesses in this model, but it serves as a
 useful guideline for applying the concepts of RFC 2533 to the problem
 at hand.

6 UA Behavior

 UA behavior covers four separate cases. The first is registration,
 where a UA can declare its capabilities. The second is expression of
 preferences, where a UA can tell a proxy how it wants the request to
 be processed and routed. The third is expressing of capabilities,
 through a feature set, in the Contact header field of a target
 refresh request or response. The fourth is UAS processing of the
 request handling and feature preferences.

6.1 Expressing Capabilities in a Registration

 When a UA registers, it MAY construct a feature predicate for each
 Contact URI it registers. In the text that follows, this process is
 described in terms of RFC 2533 [2] (and its minor update, [5]) syntax
 and constructs, followed by a conversion to the syntax used in this

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 8]

Internet Draft SIP Caller Preferences November 4, 2002

 specification. However, this represents a logical flow of processing.
 There is no requirement that an implementation actually use RFC 2533
 syntax as an intermediate step.

 The feature predicate constructed by a UA MUST be an AND of terms.
 Each term is either an OR of simple filters (called a disjunction),
 or a single simple filter. In the case of an OR of simple filters,
 each filter MUST indicate feature values for the same feature tag
 (i.e., the disjunction represents a set of values for a particular
 feature tag), and each element of the conjunction MUST be for a
 different feature tag. Each filter can be an equality, the negation
 of an equality, or in the case of numeric feature tags, an inequality
 or range. This feature predicate is then converted to a list of
 feature parameters using the procedure specified in Section 11. Those
 feature parameters are added to the the Contact header field value
 containing the URI that the parameters apply to.

 A UA MAY use any feature tags that are registered through IANA in the
 IETF or global trees [4]; this document registers several that are
 appropriate for SIP. It is also permissible to use the URI tree [4]
 for expressing vendor-specific feature tags. Feature tags in any
 other trees created through IANA MAY also be used.

 A UA MAY include the "schemes" feature tag in its feature parameters.
 However, this tag MUST include a value that matches the scheme of the
 URI being registered. For example, if a SIP URI is being registered,
 the schemes parameter can include a SIP and TEL URI [6]. If this
 feature tag is omitted, the proxy will assume an implicit value for
 it, equal to the scheme of the registered URI.

 It is RECOMMENDED that a UA provide complete information in its
 feature parameters. That is, it SHOULD provide information on as many
 feature tags as possible. The mechanisms in this specification work
 best when user agents register complete feature sets. This includes
 features that are supported, and those that are not. For example, if
 a UA does not support video, it SHOULD include a 'video="FALSE"'
 parameter in its registered Contact. Furthermore, when a UA registers
 values for a particular feature tag, it MUST list all values that it
 supports. For example, when including the methods feature tag, a UA
 MUST list all methods it supports. The matching algorithms in this
 specification assume that ommission of a value from a list means that
 the value is not supported.

 The REGISTER request MAY contain a Require header field with the
 value "pref" if the client wants to be sure that the registrar
 understands the extensions defined in this specification. In absence
 of the Require header field, a server that does not understand this
 extension will simply ignore the Contact header field parameters.

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 9]

Internet Draft SIP Caller Preferences November 4, 2002

 As an example, a UA that supports audio and video media types, is a
 voicemail server, and is not mobile would construct a feature
 predicate like this:

 (& (audio=TRUE)
 (video=TRUE)
 (voicemail=TRUE)
 (mobility=fixed)
 (| (methods=INVITE) (methods=BYE) (methods=OPTIONS) (methods=ACK)
 (methods=CANCEL)))

 These would be converted into feature parameters and included in the
 REGISTER request:

 REGISTER sip:example.com SIP/2.0
 From: sip:user@example.com;tag=asd98
 To: sip:user@example.com
 Call-ID: hh89as0d-asd88jkk@host.example.com
 CSeq: 9987 REGISTER
 Max-Forwards: 70
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds8
 Contact: <sip:user@host.example.com>;audio="TRUE";video="TRUE"
 ;voicemail="TRUE";mobility="fixed"
 ;methods="INVITE,BYE,OPTIONS,ACK,CANCEL"
 Content-Length: 0

6.2 Expressing Preferences in a Request

 A caller wishing to express preferences for a request includes
 Accept-Contact, Reject-Contact, Require-Contact or Request-
 Disposition header fields in the request, depending on their
 particular preferences. No additional behavior is required after the
 request is sent.

 The Accept-Contact, Reject-Contact, Require-Contact and Request-
 Disposition header fields in an ACK for a non-2xx final response, or
 in a CANCEL request, MUST be equal to the values in the original
 request being acknowledged or cancelled. This is to ensure proper
 operation through stateless proxies.

J. Rosenberg et. al. [Page 10]

Internet Draft SIP Caller Preferences November 4, 2002

 If the UAC wants to be sure that servers understand the header fields
 described in this specification, it MAY include a Proxy-Require
 header field with a value of "pref". However, this is NOT
 RECOMMENDED, as it leads to interoperability problems. In any case,
 caller preferences can only be considered preferences - there is no
 guarantee that the requested service or capability is executed. As
 such, inclusion of a Proxy-Require header field does not mean the
 preferences will be executed, just that the caller preferences
 extension is understood by the proxies.

6.2.1 Request Handling Preferences

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular processing directive.

 The syntax of the header field can be found in Section 10, and the
 semantics of the directives are described in Section 8.1.

6.2.2 Feature Set Preferences

 A UAC can indicate caller preferences for the capabilities of a UA
 that should be reached or not reached as a result of sending a SIP
 request. To do that, it adds one or more Accept-Contact, Reject-
 Contact, and Require-Contact header field values. Each header field
 value is either a URI or the wildcard "*", along with feature
 parameters that define a feature set. In the case of Accept-Contact,
 each value can also have a q-value parameter.

 Each feature set MUST follow the constraints of Section 6.1. That is,
 when represented by a feature set predicate, each predicate MUST be a
 conjunction of terms. Each term is either an OR of simple filters
 (called a disjunction), or a single simple filter. In the case of an
 OR of simple filters, each filter MUST indicate feature values for
 the same feature tag (i.e., the disjunction represents a set of
 values for a particular feature tag), and each element of the
 conjunction MUST be for a different feature tag. Each filter can be
 an equality, the negation of an equality, or in the case of numeric
 feature tags, an inequality or range.

 The feature sets placed into these header fields MAY overlap; that
 is, a UA MAY indicate preferences for feature sets that match
 according to the matching algorithm of RFC 2533 [2]. The UA MAY use
 any feature tag in an IANA registry or in a vendor defined URI tree.

 Note that the UAC can express explicit preferences for the methods,
 event packages and priorities supported by a UA. As described in

Section 7.2.2, a proxy will compute implicit preferences from the

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 11]

Internet Draft SIP Caller Preferences November 4, 2002

 request if explicit ones are not provided.

 The Reject-Contact header field allows the UAC to specify that a UA
 should not be contacted if it matches any of the values of the header
 field. Each value of the Reject-Contact header field contains a URI
 or a "*" and is parameterized by a set of feature parameters. Any UA
 whose capabilities match the feature set described by the feature
 parameters, and whose URI matches the URI in the value (if
 specified), matches the value. A value of "*" indicates a wildcard
 operation on the URI, so that any URI matches. As with registrations,
 it is not necessary for a UAC to construct the feature set in RFC

2533 syntax as an intermediate step. The only requirement is that the
 feature parameters, if converted back to RFC 2533 format, meet the
 requirements above.

 The Require-Contact header field allows the UAC to specify that a UA
 should not be contacted if it doesn't match all of the values of the
 header field. Each value of the Require-Contact header field contains
 a URI or a "*" and is parameterized by set of feature parameters. Any
 UA whose capabilities match the feature set described by the feature
 parameters, and whose URI matches the URI in the value (if
 specified), matches the value. A value of "*" indicates a wildcard
 operation on the URI, so that any URI matches. As with registrations,
 it is not necessary for a UAC to construct the feature set in RFC

2533 syntax as an intermediate step. The only requirement is that the
 feature parameters, if converted back to RFC 2533 format, meet the
 requirements above.

 The Accept-Contact header field allows the UAC to specify that a UA
 should be contacted if it matches some or all of the values of the
 header field. If a UA matches none of the values, it should be
 contacted as a last resort. Each value of the Accept-Contact header
 field contains a URI or a "*" and is parameterized by a set of
 feature parameters. Any UA whose capabilities match the feature set
 described by the feature parameters, and whose URI matches the URI in
 the value (if specified), matches the value. A value of "*" indicates
 a wildcard operation on the URI, so that any URI matches. The q-value
 provides a weighting operation, allowing the UAC to request
 preferential routing to UAs that match that value above other values.
 As with registrations, it is not necessary for a UAC to construct the
 feature set in RFC 2533 syntax as an intermediate step. The only
 requirement is that the feature parameters, if converted back to RFC

2533 format, meet the requirements above.

6.3 Indicating Feature Sets in Remote Target URIs

 Target refresh requests and responses are used to establish and
 modify the remote target URI. The remote target URI is contained in

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 12]

Internet Draft SIP Caller Preferences November 4, 2002

 the Contact header field. A UAC or UAS MAY add feature parameters to
 the Contact header field value in target refresh requests and
 responses, for the purpose of indicating the capabilities of the UA.
 To do that, it constructs a feature set predicate according to the
 constraints of Section 6.1, and converts it to a set of feature
 parameters using the rules in Section 11. These are then added as
 Contact header field parameters in the request or response.

 The feature parameters can be included in both initial requests and
 mid-dialog request, and MAY change mid-dialog to signal a change in
 UA capabilities.

 There is overlap in the caller preferences mechanism with the Allow,
 Accept, Accept-Language, and Allow-Events [7] header fields, which
 can also be used in target refresh requests. Specifically, the Allow
 header field and methods feature tag indicate the same information.
 The Accept header field and the type feature tag indicate the same
 information. The Accept-Language header field and the language
 feature tag indicate the same information. The Allow-Events header
 field and the events feature tag indicate the same information. It is
 possible that other header fields and feature tags defined in the
 future may also overlap. When there exists a feature tag that
 describes a capability that can also be represented with a SIP header
 field, a UA MUST use the header field to describe the capability. A
 UA receiving a message that contains both the header field and the
 feature tag MUST use the header field, and not the feature tag.

6.4 Request Handling and Feature Set Preferences

 When a UAS compliant to this specification receives a request whose
 request-URI correspods to one of its registered Contacts, it SHOULD
 apply the behavior described in Section 7 as if it were a proxy for
 the domain in the request-URI. The UAS acts as if its location
 database contains a single request target for the request-URI. That
 target is associated with a feature set. The feature set is the same
 as the one placed in the registration of the URI in the request-URI.
 It also adds the uri-user and uri-domain terms to the conjunction as
 described in Section 7.2.1.

 Having a UAS perform the matching operations as if it were
 a proxy has many benefits. First, it allows caller
 preferences to be honored even if the proxy doesn't support
 the extension. Secondly, and perhaps more importantly,
 feature set processing of preferences for the URI will only
 occur at a UA, not at a proxy. Thats because the UA is the
 only one that adds the uri-user and uri-domain terms to the
 feature set describing a request target.

J. Rosenberg et. al. [Page 13]

Internet Draft SIP Caller Preferences November 4, 2002

7 Proxy Behavior

 Proxy behavior consists of two orthogonal sets of rules - one for
 processing the Request-Disposition header field, and one for
 processing the URI and feature set preferences in the Accept-Contact,
 Reject-Contact, and Require-Contact header fields.

7.1 Request-Disposition Processing

 If the request contains a Request-Disposition header field, the
 server SHOULD execute the directives as described in Section 8.1,
 unless it has local policy configured to direct it otherwise.

7.2 Preference and Capability Matching

 A proxy compliant to this specification MUST NOT apply the
 preferences matching operation described here to a request unless it
 is the owner of the domain in the request URI, and accessing a
 location service that has capabilities associated with request
 targets. However, if it is the owner of the domain, and accessing a
 location service that has capabilities associated wth request
 targets, it SHOULD apply the processing described in this section.
 Typically, this is a proxy that is using a registration database to
 determine the request targets. However, if a proxy knows about
 capabilities through some other means, it SHOULD apply the processing
 defined here as well.

 The processing is described through a conversion from the syntax
 described in this specification to RFC 2533 syntax, followed by a
 matching operation and a sorting of resulting contact values. The
 usage of RFC 2533 syntax as an intermediate step is not required, it
 only serves as a useful tool to describe the behavior required of the
 proxy. A proxy can use any steps it likes so long as the results are
 identical to the ones that would be achieved with the processing
 described here.

7.2.1 Extracting Explicit Preferences

 The first step in proxy processing is to extract explicit
 preferences. To do that, it looks for the Accept-Contact, Reject-
 Contact and Require-Contact header fields.

 For each value of those header fields, it SHOULD convert all
 parameters except for the q-value to the syntax of RFC 2533, based on
 the rules in Section 11. If a value of the header field was not a
 "*", it SHOULD take the URI in that value, and add two terms to the
 top level conjunction:

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 14]

Internet Draft SIP Caller Preferences November 4, 2002

 (uri-user=<user part of URI>)

 and

 (uri-domain=<host portion of URI>)

 If the user part of the SIP URI is absent, the uri-user term is not
 added, only the uri-domain one. No URI parameters are used. Note that
 these are not "real" feature tags; they are not registered with IANA
 and cannot appear anywhere in actual form. They are merely added in
 order to perform the matching operation.

 The result will be a set of feature set predicates in conjunctive
 normal form, each of which is associated with one of the three
 preference header fields. If there was a q parameter associated with
 a header field value in the Accept-Contact header field, the feature
 set predicate derived from that header field value is assigned a
 preference equal to that q value.

7.2.2 Extracting Implicit Preferences

 The proxy then applies any "implicit" preferences. These preferences
 are ones not explicitly stated in the three header fields, but
 implied by the presence of other header fields in the request.

7.2.2.1 Priority

 The Priority header field is an indication of a caller preference - a
 desire to be routed to a UA that can handle requests of the desired
 priority. If the request contained a Priority header field, the proxy
 looks for feature tags with the value "priority" in all feature set
 predicates. If that feature tag is not used in any of the predicates,
 the proxy creates a new feature set predicate, and associates it with
 the Accept-Contact header field (note that there is no modification
 of the message implied - only an association for the purposes of
 processing). The new predicate looks like:

 (& (priority>=[numeric value of the Priority header field]))

J. Rosenberg et. al. [Page 15]

Internet Draft SIP Caller Preferences November 4, 2002

 The numeric value of the Priority header field is obtained through
 the procedures described in Section 9.11. For example, if the request
 had a Priority header field with a value of urgent, the proxy would
 create the following predicate:

 (& (priority >= 3))

7.2.2.2 Methods

 Another implicit preference is the method. When a UAC sends a request
 with a specific method, it is an implicit preference to have the
 request routed only to UAs that support that method. To support this
 implicit preference, the proxy looks for feature tags with the value
 "methods" in all feature set predicates. If that feature tag is not
 used in any of the predicates, the proxy examines the predicates
 associated with the Require-Contact header field. If there are no
 predicates associated with that header field, the proxy creates a new
 empty feature set predicate, and associates it with the Require-
 Contact header field (note that there is no modification of the
 message implied - only an association for the purposes of
 processing). In this case, an empty predicate is one with a
 conjunction, but no terms in that conjunction yet.

 For all predicates associated with the Require-Contact header field
 (including the one which may have just been created), the proxy
 SHOULD add a term to the conjunction of the following form:

 (methods=[method of request])

7.2.2.3 Event Packages

 For requests that establish a subscription [7], the Event header
 field is another expression of an implicit preference. It expresses a
 desire for the request to be routed only to a server than supports
 the given event package. To implement that implicit preference, the
 proxy looks for feature tags with the value "events" in all feature
 set predicates. If that feature tag is not used in any of the
 predicates, the proxy examines the predicates associated with the
 Require-Contact header field. If there are no predicates associated
 with that header field, the proxy creates a new empty feature set

J. Rosenberg et. al. [Page 16]

Internet Draft SIP Caller Preferences November 4, 2002

 predicate, and associates it with the Require-Contact header field
 (note that there is no modification of the message implied - only an
 association for the purposes of processing). In this case, an empty
 predicate is one with a conjunction, but no terms yet.

 For all predicates associated with the Require-Contact header field
 (including the one which may have just been created), the proxy
 SHOULD add a term of the following form:

 (events=[value of the Event header field])

7.2.2.4 Media Types

 Another implicit preference is for the sessions that are to be
 established. If a UA generates an INVITE request with a session
 description that includes video, this is an implicit preference to be
 connected to a UA that supports video. To implement this implicit
 preference, the proxy looks for feature tags with the values "audio",
 "video", "application", "message", "text" or "image" in all feature
 set predicates. If none of those feature tags are used in any of the
 predicates, the proxy MAY create a new feature set predicate, and
 associate it with the Accept-Contact header field (note that there is
 no modification of the message implied - only an association for the
 purposes of processing). This predicate has a term for each top-level
 media type listed in the session description, with a value of TRUE.
 For example, if the request is an INVITE request, with a Session
 Description Protocol (SDP) [19] body, where the SDP contains an audio
 and a video media description, the proxy would construct the
 following predicate:

 (& (audio=TRUE)
 (video=TRUE))

 This implicit preference is added with MAY strength, and not SHOULD,
 since it requires the proxy to examine the body of the request. This
 can have performance implications, and won't always be possible. For
 example, if the body is encrypted, the proxy cannot examine it.

7.2.2.5 Languages

J. Rosenberg et. al. [Page 17]

Internet Draft SIP Caller Preferences November 4, 2002

 The languages understood by the caller is another form of implicit
 preference. The Accept-Language header field contains a list of the
 languages that content should be returned in. It is reasonable to
 imply that the caller would like the call to be routed to a user that
 speaks those languages as well. To implement that implicit
 preference, the proxy looks for feature tags with the value
 "language" in all feature set predicates. If that feature tag is not
 used in any of the predicates, the proxy creates a new feature set
 predicate for each value in the Accept-Language header field, and
 associates it with the Accept-Contact header field (note that there
 is no modification of the message implied - only an association for
 the purposes of processing). Each predicate is of the following form:

 (& (language=[value of the Accept-Language header field]))

 Furthermore, if an Accept-Language header field value had a q-value
 associated with it, that q-value is associated with the corresponding
 feature set predicate.

7.3 Constructing Contact Predicates

 The proxy then takes each URI in the target set (the set of URI it is
 going to proxy or redirect to), and obtains its capabilities as an

RFC 2533 formatted feature set predicate. This is called a contact
 predicate. If target URI was obtained through a registration, the
 proxy computes the contact predicate by taking all Contact URI
 parameters except for the q and expires parameters, and converting
 them to RFC 2533 syntax using the rules of Section 8.1.

 If the contact predicate doesn't already contain a "schemes" feature
 tag, the proxy SHOULD add a term containing one, whose value is equal
 to the scheme of the URI.

 The resulting predicate is associated with a q-value. If the contact
 predicate was learned through a REGISTER request, the q-value is
 equal to the q-value in the Contact header field parameter, else
 "1.0" if not specified.

 As an example, if a REGISTER request had the following Contact URI:

 Contact: sip:1.2.3.4;mobility="fixed";q=0.8

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 18]

Internet Draft SIP Caller Preferences November 4, 2002

 The proxy would compute the following contact predicate, associating
 it with a q-value of 0.8:

 (& (mobility=fixed)
 (schemes=sip))

7.4 Matching

 It is important to note that the proxy does not have to know anything
 about the meaning of the feature tags that it is comparing in order
 to perform the matching operation. The rules for performing the
 comparison depend on syntactic hints present in the values of each
 feature tag. For example, a predicate such as:

 foo>=4

 implies that the feature tag foo is a numeric value. The matching
 rules in RFC 2533 only require to know whether the feature tag is a
 numeric, token, quoted string, etc.

 First, the proxy applies the predicates associated with the Reject-
 Contact header field.

 For each contact predicate, each Reject-Contact predicate (that is,
 each predicate associated with the Reject-Contact header field) is
 examined. If that Reject-Contact predicate contains a filter for a
 feature tag, and that feature tag is not present anywhere in the
 contact predicate, that Reject-Contact predicate is discarded for the
 processing of that contact predicate. If the Reject-Contact predicate
 is not discarded, it is matched to the contact predicate using the
 matching operation of RFC 2533 [2]. If the result is a match, the URI
 corresponding to that contact predicate is discarded from the target
 set (and of course, its contact predicate is discarded as well).

 The result is that Reject-Contact will only discard URIs where the UA
 has explicitly indicated support for the features that are not
 wanted.

 Next, the proxy applies the predicates associated with the Require-
 Contact header field.

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 19]

Internet Draft SIP Caller Preferences November 4, 2002

 For each contact predicate that remains, each Require-Contact
 predicate is examined. The Require-Contact predicate is matched to
 the contact predicate using the matching operation of RFC 2533 [2].
 If the result is not a match, the URI corresponding to that contact
 predicate is discarded from the target set, as is the contact
 predicate itself.

 For each contact predicate that remains, each Accept-Contact
 predicate is examined. The Accept-Contact predicate is matched to the
 contact predicate using the matching operation of RFC 2533 [2]. If
 the result is a match, the URI associated with the contact predicate
 is considered a candidate URI. The set of Accept-Contact predicates
 which matched the contact predicate is called its matching set.

 The q-value of URIs from the target set are then modified for this
 transaction only, in order to incorporate the caller's preferences.
 If the URI in the target set is not a candidate URI, its q-value is
 set to zero. If the URI is a candidate URI, its q-value is combined
 with those from the matching set. This document does not prescribe a
 specific algorithm for combining q-values. Among many possibilities,
 a server MAY set the q-value to the average of the original value
 specified in the registration, and the average q-value amongst the
 predicates in the matching set. This gives equal weight to caller and
 callee preferences. The only requirement for the combining process is
 that if a target URI has a q-value of q1, and the q values amongst
 the predicates in the matching set are q2,q3,..qn, the combined q
 value, qm, must satisfy:

 MIN(q1,q2,q3,..qn) <= qm <= MAX(q1,q2,q3,..,qn)

 Note that this preference computation only determines the
 ordering of request attempts, so that the properties of the
 preference computation are of secondary importance. The q-
 value ordering provides only limited flexibility to
 indicate, for example, that a particular parameter is more
 important than another one or that combinations of two
 parameters should be weighed heavily.

 If the server proxies, the target set is then sorted according to the
 updated q-value. Processing from this point depends on the
 configuration and policy of the server. If the server elects to do a
 sequential proxy, it SHOULD try the highest q-value contact entry
 first, trying addresses with decreasing q-values as each attempt

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 20]

Internet Draft SIP Caller Preferences November 4, 2002

 fails. If the server elects to do a parallel proxy, it SHOULD group
 contact entries with "close" q-values together, and try the group
 with the highest q-value first, then the group with the next lowest
 q-values, and so on. The precise method of the grouping is left to
 the implementor. A reasonable choice is to round each q-value to the
 nearest tenth, and group those with the same rounded value.

 If a proxy server is recursing, it SHOULD apply the caller
 preferences to the Contact header fields returned in the redirect
 responses. Any target URI remaining after the application of caller
 preferences SHOULD be added to the list of untried addresses. This
 list is then resorted based on q values. The server uses this list
 for subsequent proxy operations.

 If the server is redirecting, it SHOULD return all entries in the
 target set, including a q-value for each as obtained through the
 combining process. This SHOULD include any URI with a zero q-value.

 If the server is executing any other type of policy, as a general
 guideline, it SHOULD prefer target URI with higher q values than
 those with lower q values.

8 Header Field Definitions

 This specification defines four new header fields - Accept-Contact,
 Reject-Contact, Require-Contact and Request-Disposition.

 Table 1 is an extension of Tables 2 and 3 in [1] for the Accept-
 Contact, Reject-Contact, Require-Contact and Request-Disposition
 header fields. The column "INF" is for the INFO method [8], "PRA" is
 for the PRACK method [9], "UPD" is for the UPDATE method [10], "SUB"
 is for the SUBSCRIBE method [7], and "NOT" is for the NOTIFY method
 [7].

 Header field where proxy ACK BYE CAN INV OPT REG PRA UPD SUB NOT
INF

 Accept-Contact R r o o o o o - o o o o o
 Reject-Contact R r o o o o o - o o o o o
 Require-Contact R r o o o o o - o o o o o
 Request-Disposition R r o o o o o o o o o o o

 Table 1: Accept-Contact, Reject-Contact, Require-Contact and
 Request-Disposition header fields

8.1 Request Disposition

J. Rosenberg et. al. [Page 21]

Internet Draft SIP Caller Preferences November 4, 2002

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular directive. Its syntax is
 specified in Section 10. Note that a compact form, using the letter
 d, has been defined. There can only be one value of a directive per
 header field (i.e., you can't have both "proxy" and "redirect" in the
 same Request-Disposition header field).

 When the caller specifies a directive, the server SHOULD treat it as
 a hint, not as a requirement and MAY ignore the directive.

 The directives have the following semantics:

 proxy-directive: This directive indicates whether the caller
 would like each server to proxy or redirect. If the server
 is incapable of performing the requested directive, it
 SHOULD ignore it.

 cancel-directive: This directive indicates whether the caller
 would like each proxy server to send a CANCEL request
 downstream in response to a 200 OK from the downstream
 server (which is the normal mode of operation, making it
 somewhat redundant), or whether this function should be
 left to the caller. If a proxy receives a request with this
 parameter set to "no-cancel", it SHOULD NOT CANCEL any
 outstanding branches on receipt of a 2xx. However, it would
 still send CANCEL on any outstanding branches on receipt of
 a 6xx.

 fork-directive: This directive indicates whether a proxy should
 fork a request, or proxy to only a single address. If the
 server is requested not to fork, the server SHOULD proxy
 the request to the "best" address (generally the one with
 the highest q value). The directive is ignored if
 "redirect" has been requested.

 recurse-directive: This directive indicates whether a proxy
 server receiving a 3xx response should send requests to the
 addresses listed in the response (i.e., recurse), or
 forward the list of addresses upstream towards the caller.
 The directive is ignored if "redirect" has been requested.

 parallel-directive: For a forking proxy server, this directive
 indicates whether the caller would like the proxy server to
 proxy the request to all known addresses at once, or go
 through them sequentially, contacting the next address only
 after it has received a non-2xx or non-6xx final response
 for the previous one. The directive is ignored if

J. Rosenberg et. al. [Page 22]

Internet Draft SIP Caller Preferences November 4, 2002

 "redirect" has been requested.

 queue-directive: If the called party is temporarily unreachable,
 e.g., because it is in another call, the caller can
 indicate that it wants to have its call queued rather than
 rejected immediately. If the call is queued, the server
 returns "182 Queued". A queued call can be terminated as
 described in [1].

 Example:

 Request-Disposition: proxy, recurse, parallel

 The set of request disposition directives is purposefully not
 extensible. This is to avoid a proliferation of new extensions to SIP
 that are "tunnelled" through this header field.

8.2 Accept-Contact, Reject-Contact, and Require-Contact Header Fields

 The syntax for these header fields is described in Section 10. A
 compact form, with the letter a, has been defined for the Accept-
 Contact header field, and with the letter j for the Reject-Contact
 header field.

 The feature-tag is any valid feature tag, a number of which are
 applicable to SIP, and defined in Section 9. Note that string-value
 uses the qdtext production from RFC 3261. This production allows
 UTF-8 characters. This is in contrast to RFC 2533, which only allows
 ASCII characters in quoted strings. Usage of UTF-8 here is
 permissible since these values are never compared except using case
 sensitive matching rules.

8.3 Contact Header Field

 This specification extends the Contact header field. In particular,
 it allows for the Contact header field parameter to include tag-set,
 whose BNF is described in Section 10. Tag-set is a set of feature
 parameters that describes the feature set of the UA associated with
 the URI in the Contact header field.

 It is important to note that there is no way to differentiate, by
 syntax, Contact parameters that are part of tag-set or just other
 extensions. It turns out that this does not matter. If a proxy should
 mistakenly take a contact parameter used by another extension, and
 assume it is a feature parameter when its not, it will be ignored by

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 23]

Internet Draft SIP Caller Preferences November 4, 2002

 the matching algorithm unless the same parameter appears in the
 Accept-Contact or Reject-Contact header fields. However, it won't
 ever appear in these header fields, since those header fields only
 ever contain feature parameters, and the parameter is not actually a
 feature parameter.

9 Media Feature Tag Definitions

 This specification defines an initial set of media feature tags for
 use with this specification. New media feature tags MAY be registered
 with IANA, based on the process defined for feature tag registrations
 [4]. This section also serves as the IANA registration for these
 feature tags.

 Any registered feature tags MAY be used with this specification.
 However, several existing ones appear to be particularly applicable.
 These include the language feature tag [11], which can be used to
 specify the language of the human or automata represented by the UA,
 and the type feature tag [12], which can be used to specify the MIME
 types of the media formats supported by the UA. However, the usage of
 the audio, video, application, message, text and image feature tags
 (each of which indicate a top level media type supported by the UA)
 are preferred to indicating support for specific media formats. When
 the type feature tag is present, there SHOULD also be a feature tag
 present for the its top-level MIME type with a value of TRUE. In
 other words, if a UA indicates in a registration that it supports the
 video/H263 MIME type, it should also indicate that it supports video
 generally:

 Contact: sip:1.2.3.4;type="video/H263";video="TRUE"

9.1 Attendant

 Media feature tag name: attendant

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device is an automated or human
 attendant that will answer if the actual user of the device
 is not available.

 Values appropriate for use with this feature tag: Boolean.

J. Rosenberg et. al. [Page 24]

Internet Draft SIP Caller Preferences November 4, 2002

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that has an
 auto-attendant feature.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.2 Audio

 Media feature tag name: audio

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports audio as a MIME
 media type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 support audio.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.3 Automata

 Media feature tag name: automata

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The automata
 feature tag is a boolean value that indicates whether the
 UA represents an automata (such as a voicemail server,
 conference server, or recording device) or a human.

 Values appropriate for use with this feature tag: Boolean. TRUE

J. Rosenberg et. al. [Page 25]

Internet Draft SIP Caller Preferences November 4, 2002

 indicates that the UA represents an automata.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a message
 recording device instead of a user.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.4 Class

 Media feature tag name: class

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates the setting, business or personal, in which a
 communications device is used.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 business: The device is used for business communications.

 personal: The device is used for personal communications.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing between a business phone and a
 home phone.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.5 Duplex

 Media feature tag name: duplex

 ASN.1 Identifier: New assignment by IANA.

J. Rosenberg et. al. [Page 26]

Internet Draft SIP Caller Preferences November 4, 2002

 Summary of the media feature indicated by this tag: The duplex
 media feature tag lists whether a communications device can
 simultaneously send and receive media ("full"), alternate
 between sending and receiving ("half"), can only receive
 ("receive-only") or only send ("send-only").

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 full: The device can simultaneously send and receive media.

 half: The device can alternate between sending and
 receiving media.

 receive-only: The device can only receive media.

 send-only: The device can only send media.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a
 broadcast server, as opposed to a regular phone, when
 making a call to hear an announcement.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.6 Image

 Media feature tag name: image

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports image as a MIME
 media type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

J. Rosenberg et. al. [Page 27]

Internet Draft SIP Caller Preferences November 4, 2002

 Examples of typical use: Routing a call to a phone that can
 support image transfer.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.7 Message

 Media feature tag name: message

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports message as a MIME
 media type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 support messaging.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.8 Mobility

 Media feature tag name: mobility

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The mobility
 feature tag indicates whether the device is fixed,
 wireless, or somewhere in-between.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 fixed: The device is wired.

 mobile: The device is wireless.

 The feature tag is intended primarily for use in the following

J. Rosenberg et. al. [Page 28]

Internet Draft SIP Caller Preferences November 4, 2002

 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a wireless
 phone instead of a desktop phone.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.9 Description

 Media feature tag name: description

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The
 description feature tag provides a textual description of
 the device.

 Values appropriate for use with this feature tag: String with an
 equality relationship.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Indicating that a device is of a
 certain make and model.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.10 Event Packages

 Media feature tag name: events

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The event
 packages [7] supported by a SIP UA. The values for this tag
 equal the event package names that are registered by each
 event package.

 Values appropriate for use with this feature tag: Token with an

J. Rosenberg et. al. [Page 29]

Internet Draft SIP Caller Preferences November 4, 2002

 equality relationship. Typical values include:

 presence: SIP event package for for user presence [20].

 winfo: SIP event package for watcher information [21].

 refer: The SIP REFER event package [22].

 dialog: The SIP dialog event package [23].

 conference: The SIP conference event package [24].

 reg: The SIP registration event package [25].

 message-summary: The SIP message summary event package
 [26].

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a server
 that supports the message waiting event package, such as a
 voicemail server [26].

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.11 Priority

 Media feature tag name: priority

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The priority
 feature tag indicates the call priorities the device is
 willing to handle.

 Values appropriate for use with this feature tag: An integer.
 Each integral value corresponds to one of the possible
 values of the Priority header field as specified in SIP
 [1]. The mapping is defined as:

 non-urgent: Integral value of 1. The device supports non-
 urgent calls.

J. Rosenberg et. al. [Page 30]

Internet Draft SIP Caller Preferences November 4, 2002

 normal: Integral value of 2. The device supports normal
 calls.

 urgent: Integral value of 3. The device supports urgent
 calls.

 emergency: Integral value of 4. The device supports
 emergency calls.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a the
 emergency cell phone of a user, instead of their regular
 phone.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.12 Methods

 Media feature tag name: methods

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The methods
 (note the plurality) feature tag indicates the SIP methods
 supported by this UA. In this case, "supported" means that
 the UA can receive requests with this method. In that
 sense, it has the same connotation as the Allow header
 field.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 INVITE: The SIP INVITE method [1].

 ACK: The SIP ACK method [1].

 BYE: The SIP BYE method [1].

 CANCEL: The SIP CANCEL method [1].

 OPTIONS: The SIP OPTIONS method [1].

J. Rosenberg et. al. [Page 31]

Internet Draft SIP Caller Preferences November 4, 2002

 REGISTER: The SIP REGISTER method [1].

 INFO: The SIP INFO method [8].

 UPDATE: The SIP UPDATE method [10].

 SUBSCRIBE: The SIP SUBSCRIBE method [7].

 NOTIFY: The SIP NOTIFY method [7].

 PRACK: The SIP PRACK method [9].

 MESSAGE: The SIP MESSAGE method [17].

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a presence
 application on a PC, instead of a PC phone application.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.13 Schemes

 Media feature tag name: schemes

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The set of
 URI schemes [13] that are supported by a UA.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 sip: The SIP URI scheme [1].

 sips: The SIPS URI scheme [1].

 tel: The tel URI scheme [6].

 http: The HTTP URI scheme [14].

 https: The HTTPS URI scheme [27].

J. Rosenberg et. al. [Page 32]

Internet Draft SIP Caller Preferences November 4, 2002

 cid: The CID URI scheme [15].

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing get redirected to a phone
 number when a called party is busy, rather than a web page.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.14 Text

 Media feature tag name: text

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports text as a MIME media
 type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 support text.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.15 Video

 Media feature tag name: video

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports video as a MIME
 media type.

J. Rosenberg et. al. [Page 33]

Internet Draft SIP Caller Preferences November 4, 2002

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 support video.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.16 Voicemail

 Media feature tag name: voicemail

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device is a voicemail system which
 will record messages for a user.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Requesting that a call not be routed to
 voicemail.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

10 Augmented BNF

 Request-Disposition = ("Request-Disposition" | "d") HCOLON
 directive *(COMMA directive)
 directive = proxy-directive / cancel-directive /
 fork-directive / recurse-directive /
 parallel-directive / queue-directive)
 proxy-directive = "proxy" / "redirect"

J. Rosenberg et. al. [Page 34]

Internet Draft SIP Caller Preferences November 4, 2002

 cancel-directive = "cancel" / "no-cancel"
 fork-directive = "fork" / "no-fork"
 recurse-directive = "recurse" / "no-recurse"
 parallel-directive = "parallel" / "sequential"
 queue-directive = "queue" / "no-queue"

 Accept-Contact = ("Accept-Contact" / "a") HCOLON feature-set
 *(COMMA feature-set)
 Reject-Contact = ("Reject-Contact" / "j") HCOLON feature-set-noq
 *(COMMA feature-set-noq)
 Require-Contact = "Require-Contact"
 HCOLON feature-set-noq *(COMMA feature-set-noq)
 feature-set = (name-addr / addr-spec / "*")
 *(SEMI tag-set) [q-param]
 feature-set-noq = (name-addr / addr-spec / "*")
 *(SEMI tag-set)
 tag-set = feature-tag EQUAL LDQUOT (tag-value-list
 / string-value / boolean / numeric) RDQUOT
 feature-tag = ftag ; From RFC 2533
 tag-value-list = tag-value *("," tag-value)
 tag-value = ["!"] token-nobang
 token-nobang = 1*(alphanum / "-" / "." / "%" / "*"
 / "_" / "+" / "`" / "'" / "~")
 boolean = "TRUE" / "FALSE"
 numeric = "#" (lessthan / greaterthan / equality /
 range)
 lessthan = ">=" number
 greaterthan = "<=" number
 equality = "=" number
 range = "R" number ".." number
 number = integer / rational
 integer = ["+" / "-"] 1*DIGIT
 rational = ["+" / "-"] 1*DIGIT "/" 1*DIGIT
 string-value = LDQUOT "<" qdtext ">" RDQUOT
 q-param = "q" EQUAL qvalue

 contact-params = c-p-q / c-p-expires / tag-set
 = / contact-extension

11 Mapping Feature Parameters and Feature Set Predicates

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 35]

Internet Draft SIP Caller Preferences November 4, 2002

 Mapping between feature parameters and feature set predicates,
 formatted according to the syntax of RFC 2533 [2] is trivial.

 Starting from a set of feature parameters, the procedure is as
 follows. Construct a conjunction. Each term in the conjunction
 derives from one feature parameter. If the feature parameter value is
 a comma separated list, the element of the conjunction is a
 disjunction. There is one term in the disjunction for each value in
 the comma separated list. Call each value a "phrase". If the feature
 parameter value was not a comma separate list, the term in the
 conjunction is obtained from the value. That value is also a
 "phrase".

 Consider now the construction of a filter from the phrase. If the
 phrase starts with a bang (!), the filter is of the form:

 (! (name=remainder))

 where name is the name of the feature parameter, and remainder is the
 remainder of the text in the phrase after the bang.

 If the phrase starts with an octothorpe (#), the filter is a numeric
 comparison. The comparator is either =, >= or <= based on the next
 characters in the phrase. In this case, the filter is of the form:

 (name comparator remainder)

 where name is the name of the feature parameter, comparator is either
 =, >= or <=, and remainder is the remainder of the text in the phrase
 after the equal.

 If the value after the octothorpe is R, the filter is a range. The
 format of the filter is:

 (name=[remainder])

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 36]

Internet Draft SIP Caller Preferences November 4, 2002

 where name is the name of the feature parameter, and remainder is the
 remainder of the text in the phrase after the R. According to the
 BNF, this will be of the form "value..value", which specifies the
 range.

 If the phrase begins with a left angle bracket ("<") and ends with a
 right angle bracket (">"), this implies that the value is a string,
 rather than a token. This is converted to a filter of the form:

 (name="bracketed")

 where name is the name of the feature parameter, and bracketed is the
 text from the phrase between the left and right angle brackets. Note
 the explicit usage of quotes, which indicate that the value is a
 string. In RFC 2533, strings are compared using case sensitive rules,
 and tokens, case insensitive.

 In RFC 2533, when an feature tag value is unquoted, its a
 token, and when quoted, its a string. The comparison rules
 are case insensitive for the latter, and sensitive for the
 former. The presence of quotes, or lack thereof, is the
 means by which an implementation can tell whether to apply
 sensitive or insensitive comparison rules. In the syntax
 described here, we cannot use quoted strings, since there
 is already a quoted string around each contact parameter
 value. So, we use an angle bracket to signify that the
 value is to be interpreted as a case sensitive string. If
 no brackets are present, the proxy would perform matching
 operations in a case insensitive manner, and if they are
 present, case sensitive.

 Otherwise, the filter is of the following form:

 (name=phrase)

 where name is the name of the feature parameter, and phrase is the
 phrase.

 As an example, the Contact header:

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 37]

Internet Draft SIP Caller Preferences November 4, 2002

 Contact:*;mobility="fixed";events="!presence,winfo";language="en,de"
 ;description="<PC>"

 would be converted to the following feature predicate:

 (& (mobility=fixed)
 (| (! (events=presence)) (events=winfo))
 (| (language=en) (language=de))
 (description="PC"))

 As another example, the following Accept-Contact header field:

 Accept-Contact: *;methods="SUBSCRIBE";resolution="#R5..100"

 would be converted to the following feature set predicate:

 (& (methods=SUBSCRIBE)
 (resolution=[5..100]))

 The conversion of an RFC 2533 formatted feature set to a set of
 feature parameters proceeds in the same way, but in reverse. The
 conversion can only be done for feature sets constrained as described
 in Section 6.1.

12 Security Considerations

 The presence of caller preferences in a request has a significant
 effect on the ways in which the request is handled at a server. As a
 result, is is especially important that requests with caller
 preferences be authenticated and integrity-protected. The same holds
 true for registrations with feature parameters in the Contact header
 field.

 Processing of caller preferences requires set operations and searches

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 38]

Internet Draft SIP Caller Preferences November 4, 2002

 which can require some amount of computation. This enables a DOS
 attack whereby a user can send requests with substantial numbers of
 caller preferences, in the hopes of overloading the server. To
 counter this, servers SHOULD reject requests with too many rules. A
 reasonable number is around 20.

 Feature sets contained in REGISTER requests can reveal sensitive
 information about a user or UA (for example, the languages spoken).
 If this information is sensitive, confidentiality SHOULD be provided
 by using S/MIME or the SIPS URI scheme, as described in RFC 3261 [1].

13 IANA Considerations

 There are a number of IANA considerations associated with this
 specification.

13.1 Media Feature Tags

 This specification registers a number of new Media feature tags
 according to the procedures of RFC 2506 [4]. Those registrations are
 contained in Section 9, and are meant to be placed into the IETF tree
 for media feature tags.

13.2 SIP Header Fields

 This specification registers four new SIP header fields, according to
 the process of RFC 3261 [1].

 The following is the registration for the Accept-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Accept-Contact

 Compact Form: a

 The following is the registration for the Reject-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Reject-Contact

 Compact Form: j

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc3261

J. Rosenberg et. al. [Page 39]

Internet Draft SIP Caller Preferences November 4, 2002

 The following is the registration for the Require-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Require-Contact

 Compact Form: none defined

 The following is the registration for the Request-Disposition header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Request-Disposition

 Compact Form: d

13.3 SIP Option Tags

 This specification registers a single SIP option tag, pref. The
 required information for this registration, as specified in RFC 3261,
 is:

 Name: pref

 Description: This option tag is used in a Proxy-Require header
 field by a UAC to ensure that caller preferences are
 honored at each proxy along the path. However, this usage
 is discouraged. It can also be used in the Require header
 field of a registration to ensure that the registrar
 supports the caller preferences extensions.

14 Acknowledgements

 The initial set of media feature tags used by this specification were
 influenced by Scott Petrack's CMA design. Jonathan Lennox, and John
 Hearty provided helpful comments. Graham Klyne provided assistance on
 the usage of RFC 2533. Paul Kyzivat contributed significantly to this
 work, assisting in the generation of use cases, and poking holes in
 past versions of the document.

15 Author's Addresses

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 40]

Internet Draft SIP Caller Preferences November 4, 2002

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

16 Normative References

 [1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
 Peterson, R. Sparks, M. Handley, and E. Schooler, "SIP: session
 initiation protocol," RFC 3261, Internet Engineering Task Force, June
 2002.

 [2] G. Klyne, "A syntax for describing media feature sets," RFC 2533,
 Internet Engineering Task Force, Mar. 1999.

 [3] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels," RFC 2119, Internet Engineering Task Force, Mar. 1997.

 [4] K. Holtman, A. Mutz, and T. Hardie, "Media feature tag
 registration procedure," RFC 2506, Internet Engineering Task Force,
 Mar. 1999.

 [5] G. Klyne, "Corrections to "A syntax for describing media feature
 sets"," RFC 2738, Internet Engineering Task Force, Dec. 1999.

 [6] A. Vaha-Sipila, "URLs for telephone calls," RFC 2806, Internet
 Engineering Task Force, Apr. 2000.

 [7] A. B. Roach, "Session initiation protocol (sip)-specific event
 notification," RFC 3265, Internet Engineering Task Force, June 2002.

 [8] S. Donovan, "The SIP INFO method," RFC 2976, Internet Engineering
 Task Force, Oct. 2000.

 [9] J. Rosenberg and H. Schulzrinne, "Reliability of provisional
 responses in session initiation protocol (SIP)," RFC 3262, Internet
 Engineering Task Force, June 2002.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2738
https://datatracker.ietf.org/doc/html/rfc2806
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc2976
https://datatracker.ietf.org/doc/html/rfc3262

J. Rosenberg et. al. [Page 41]

Internet Draft SIP Caller Preferences November 4, 2002

 [10] J. Rosenberg, "The session initiation protocol (SIP) UPDATE
 method," RFC 3311, Internet Engineering Task Force, Oct. 2002.

 [11] P. Hoffman, "Registration of charset and languages media
 features tags," RFC 2987, Internet Engineering Task Force, Nov. 2000.

 [12] G. Klyne, "MIME content types in media feature expressions," RFC
2913, Internet Engineering Task Force, Sept. 2000.

 [13] T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform resource
 identifiers (URI): generic syntax," RFC 2396, Internet Engineering
 Task Force, Aug. 1998.

 [14] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
 Leach, and T. Berners-Lee, "Hypertext transfer protocol -- HTTP/1.1,"

RFC 2616, Internet Engineering Task Force, June 1999.

 [15] E. Levinson, "Content-id and message-id uniform resource
 locators," RFC 2392, Internet Engineering Task Force, Aug. 1998.

17 Informative References

 [16] J. Lennox and H. Schulzrinne, "Call processing language
 framework and requirements," RFC 2824, Internet Engineering Task
 Force, May 2000.

 [17] B. Campbell and J. Rosenberg, "Session initiation protocol
 extension for instant messaging," Internet Draft, Internet
 Engineering Task Force, Sept. 2002. Work in progress.

 [18] G. Klyne, "Protocol-independent content negotiation framework,"
RFC 2703, Internet Engineering Task Force, Sept. 1999.

 [19] M. Handley and V. Jacobson, "SDP: session description protocol,"
RFC 2327, Internet Engineering Task Force, Apr. 1998.

 [20] J. Rosenberg, "Session initiation protocol (SIP) extensions for
 presence," Internet Draft, Internet Engineering Task Force, May 2002.
 Work in progress.

 [21] J. Rosenberg, "A session initiation protocol (SIP)event
 template-package for watcher information," Internet Draft, Internet
 Engineering Task Force, May 2002. Work in progress.

 [22] R. Sparks, "The SIP refer method," Internet Draft, Internet
 Engineering Task Force, July 2002. Work in progress.

 [23] J. Rosenberg and H. Schulzrinne, "A session initiation protocol

https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/rfc2987
https://datatracker.ietf.org/doc/html/rfc2913
https://datatracker.ietf.org/doc/html/rfc2913
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2392
https://datatracker.ietf.org/doc/html/rfc2824
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2327

J. Rosenberg et. al. [Page 42]

Internet Draft SIP Caller Preferences November 4, 2002

 (SIP) event package for dialog state," Internet Draft, Internet
 Engineering Task Force, June 2002. Work in progress.

 [24] J. Rosenberg and H. Schulzrinne, "A session initiation protocol
 (SIP) event package for conference state," Internet Draft, Internet
 Engineering Task Force, June 2002. Work in progress.

 [25] J. Rosenberg, "A sip event package for registration state,"
 Internet Draft, Internet Engineering Task Force, Oct. 2002. Work in
 progress.

 [26] R. Mahy, "A message summary and message waiting indication event
 package for the session initiation protocol (SIP)," Internet Draft,
 Internet Engineering Task Force, June 2002. Work in progress.

 [27] E. Rescorla, "HTTP over TLS," RFC 2818, Internet Engineering
 Task Force, May 2000.

A Overview of RFC 2533

 This section provides a brief overview of RFC 2533 and related
 specifications that form the content negotiation framework.

 A critical concept in the framework is that of a feature set. A
 feature set is information about an entity (in our case, a UA), which
 describes a set of features it can handle. A feature set can be
 thought of as a region in N-dimensional space. Each dimension in this
 space is a different media feature, identified by a media feature
 tag. For example, one dimension (or axis) might represent languages,
 another might represent methods, and another, MIME types. A feature
 collection represents a single point in this space. It represents a
 particular rendering or instance of an entity (in our case, a UA).
 For example, a "rendering" of a UA would define an instantaneous mode
 of operation that it can support. One such rendering would be
 processing the INVITE method, which carried the application/sdp MIME
 type, sent to a UA for a user that is speaking English.

 A feature set can therefore be defined as a set of feature
 collections. In other words, a feature set is a region of N-
 dimensional feature-space, that region being defined by the union of
 points - feature collections - that make up the space. If a
 particular feature collection is in the space, it means that the
 rendering described by that feature collection is supported by the
 device with that feature set.

 How does one represent a feature set? There are many ways to describe
 an N-dimensional space. One way is to identify mathematical functions
 which identify its contours. Clearly, that is too complex to be

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 43]

Internet Draft SIP Caller Preferences November 4, 2002

 useful. The solution taken in RFC 2533 is to define the space with a
 feature set predicate. A feature set predicate is a boolean function
 over an N-dimensional space. The input to the function is a point in
 that space - a feature collection. If the result of the boolean
 function is TRUE, the feature collection is a member of the space. If
 the result of the boolean function is FALSE, the feature collection
 is not in the space.

RFC 2533 describes a syntax for writing down these N-dimensional
 boolean functions. It uses a prolog-style syntax which is fairly
 self-explanatory. This representation is called a feature set
 predicate. The base unit of the predicate is a filter, which is a
 boolean expression encased in round brackets. A filter can be
 complex, where it contains conjunctions and disjunctions of other
 filters, or it can be simple. A simple filter is one that expresses a
 comparison operation on a single media feature tag.

 For example, consider the feature set predicate:

 (& (foo=A)
 (bar=B)
 (| (baz=C) (& (baz=D) (bif=E))))

 This defines a function over four media features - foo, bar, baz and
 bif. Any point in feature space with foo equal to A, bar equal to B,
 and either baz equal to C, or baz equal to D and bif equal to E, is
 in the feature set defined by this feature set predicate.

 Note that the predicate doesn't say anything about the number of
 dimensions in feature space. The predicate operates on a feature
 space of any number of dimensions, but only those dimensions labeled
 foo, bar, baz and bif matter. The result is that values of other
 media features don't matter. The feature collection
 foo=A,bar=B,baz=C,bop=F is in the feature set described by the
 predicate, even though the media feature tag "bop" isn't mentioned.
 Feature set predicates are therefore inclusive by default. A feature
 collection is present unless the boolean predicate rules it out. This
 was a conscious design choice in RFC 2533.

RFC 2533 also talks about matching a preference with a capability
 set. This is accomplished by representing both with a feature set. A
 preference is a feature set - its a specification of a number of
 feature collections, any one of which would satisfy the requirements
 of the sender. A capability is also a feature set - its a

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 44]

Internet Draft SIP Caller Preferences November 4, 2002

 specification of the feature collections that the recipient supports.
 There is a match when the spaces defined by both feature sets
 overlap. When there is overlap, there exists at least one feature
 collection that exists in both feature sets, and therefore a modality
 or rendering desired by the sender which is supported by the
 recipient.

 This leads directly to the definition of a match. Two feature sets
 match if there exists at least one feature collection present in both
 feature sets.

 Computing a match for two general feature set predicates is not easy.
Section 5 of RFC 2533 presents an algorithm for doing it by expanding

 an arbitrary expression into disjunctive normal form. However, the
 feature set predicates used by this specification are constrained.
 They are always in conjunctive normal form, with each term in the
 conjunction describing values for different media features. This
 makes computation of a match easy. It is computed independently for
 each media feature, and then the feature sets overlap if media
 features specified in both sets overlap. Computing the overlap of a
 single media feature is very straightforward, and is a simple matter
 of computing whether two finite sets overlap.

 Full Copyright Statement

 Copyright (c) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING

https://datatracker.ietf.org/doc/html/rfc2533#section-5

J. Rosenberg et. al. [Page 45]

Internet Draft SIP Caller Preferences November 4, 2002

 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J. Rosenberg et. al. [Page 46]

