
Internet Engineering Task Force SIP WG
Internet Draft J. Rosenberg
 dynamicsoft
 H. Schulzrinne
 Columbia U.
 P. Kyzivat
 Cisco
draft-ietf-sip-callerprefs-08.txt
March 2, 2003
Expires: September 2003

Caller Preferences and Callee Capabilities for the Session
Initiation Protocol (SIP)

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
http://www.ietf.org/shadow.html.

Abstract

 This document describes a set of extensions to the Session Initiation
 Protocol (SIP) which allow a caller to express preferences about
 request handling in servers. These preferences include the ability to
 select which Uniform Resource Identifiers (URI) a request gets routed
 to, and to specify certain request handling directives in proxies and
 redirect servers. It does so by defining three new request header
 fields, Accept-Contact, Reject-Contact, and Request-Disposition,
 which specify the caller's preferences. The extension also defines
 new parameters for the Contact header field that describe the

J. Rosenberg et. al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-sip-callerprefs-08.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft SIP Caller Preferences March 2, 2003

 capabilities and characteristics of a User Agent (UA).

J. Rosenberg et. al. [Page 2]

Internet Draft SIP Caller Preferences March 2, 2003

 Table of Contents

1 Introduction .. 5
2 Terminology ... 6
3 Definitions ... 6
4 Overview of Operation 8
5 Usage of the Content Negotiation Framework 9
6 UA Behavior ... 11
6.1 Expressing Capabilities in a Registration 11
6.2 Expressing Preferences in a Request 14
6.2.1 Request Handling Preferences 15
6.2.2 Feature Set Preferences 15
6.3 Indicating Feature Sets in Remote Target URIs 16

 6.4 Processing Request Handling and Feature Set
 Preferences .. 17

6.5 OPTIONS Processing 17
7 Proxy Behavior 18
7.1 Request-Disposition Processing 18
7.2 Preference and Capability Matching 18
7.2.1 Extracting Explicit Preferences 18
7.2.2 Extracting Implicit Preferences 19
7.2.2.1 Methods ... 19
7.2.2.2 Event Packages 20
7.3 Constructing Contact Predicates 20
7.4 Matching .. 21
7.4.1 Example ... 27
8 Header Field Definitions 29
8.1 Request Disposition 29
8.2 Accept-Contact and Reject-Contact Header Fields 31
8.3 Contact Header Field 31
9 Media Feature Tag Definitions 32
9.1 Attendant ... 32
9.2 Audio ... 33
9.3 Application ... 33
9.4 Data .. 34
9.5 Control ... 35
9.6 Automata .. 35
9.7 Class ... 36
9.8 Duplex .. 36
9.9 Mobility .. 37
9.10 Description ... 38
9.11 Event Packages 38

9.12 Priority .. 39

J. Rosenberg et. al. [Page 3]

Internet Draft SIP Caller Preferences March 2, 2003

9.13 Methods ... 40
9.14 SIP Extensions 41
9.15 Schemes ... 42
9.16 Video ... 43
9.17 Message Server 43
9.18 Is Focus .. 44
9.19 URI User .. 44
9.20 URI Domain .. 45
10 Augmented BNF 45

 11 Mapping Feature Parameters and Feature Set
 Predicates ... 47

12 Security Considerations 50
13 IANA Considerations 50
13.1 Media Feature Tags 50
13.2 SIP Header Fields 51
13.3 SIP Option Tags 51
14 Acknowledgments 52
15 Author's Addresses 52
16 Normative References 52
17 Informative References 54
A Overview of RFC 2533 55

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 4]

Internet Draft SIP Caller Preferences March 2, 2003

1 Introduction

 When a Session Initiation Protocol (SIP) [1] server receives a
 request, there are a number of decisions it can make regarding
 processing of the request. These include:

 o whether to proxy or redirect the request

 o which URIs to proxy or redirect to

 o whether to fork or not

 o whether to search recursively or not

 o whether to search in parallel or sequentially

 The server can base these decisions on any local policy. This policy
 can be statically configured, or can be based on programmatic
 execution or database access.

 However, the administrator of the server is the not the only entity
 with an interest in request processing. There are at least three
 parties which have an interest: (1) the administrator of the server,
 (2) the user that sent the request, and (3) the user to whom the
 request is directed. The directives of the administrator are embedded
 in the policy of the server. The preferences of the user to whom the
 request is directed (referred to as the callee, even though the
 request may not be INVITE) can be expressed most easily through a
 script written in some type of scripting language, such as the Call
 Processing Language (CPL) [22]. However, no mechanism exists to
 incorporate the preferences of the user that sent the request (also
 referred to as the caller, even though the request may not be
 INVITE). For example, the caller might want to speak to a specific
 user, but want to reach them only at work, because the call is a
 business call. As another example, the caller might want to reach a
 user, but not their voicemail, since it is important that the caller
 talk to the called party. In both of these examples, the caller's
 preference amounts to having a proxy make a particular routing choice
 based on the preferences of the caller.

 This extension allows the caller to have these preferences met. It
 does so by specifying mechanisms by which a caller can provide
 preferences on processing of a request. There are two types of
 preferences. One of them, called request handling preferences, are
 encapsulated in the Request-Disposition header field. They provide
 specific request handling directives for a server. The other, called
 feature preferences, are present in the Accept-Contact and Reject-
 Contact header fields. They allow the caller to provide a feature set

J. Rosenberg et. al. [Page 5]

Internet Draft SIP Caller Preferences March 2, 2003

 [2] that expresses its preferences on the characteristics of the UA
 that is to be reached. These are matched with a feature set carried
 in the Contact header field of a REGISTER request, which describes
 the capabilities of the UA represented by the Contact URI. The
 extension is very general purpose, and not tied to a particular
 service. Rather, it is a tool that can be used in the development of
 many services.

 Indeed, the feature sets uploaded to the server in REGISTER requests
 can be used for a variety of purposes, not just meeting caller
 preferences. Applications can use this information to tailor
 information sent to a user as part of an instant message, for example
 [3].

 One example of the a service enabled by caller preferences is a "one
 number" service. A user can have a single identity (their SIP URI)
 for all of their devices - their cell phone, PDA, work phone, home
 phone, and so on. If the caller wants to reach the user at their
 business phone, they simply select "business phone" from a pull-down
 menu of options when calling that URI. Users would no longer need to
 maintain and distribute separate identities for each device.

2 Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
 indicate requirement levels for compliant SIP implementations.

3 Definitions

 Caller: Within the context of this specification, a caller
 refers to the user on whose behalf a UAC is operating. It
 is not limited to a user who's UAC sends the INVITE method.

 Feature: As defined in RFC 2703 [23], a piece of information
 about the media handling properties of a message passing
 system component or of a data resource. For example, the
 SIP methods supported by a UA represent a feature.

 Feature Tag: As defined in RFC 2703 [23], a feature tag is a
 name that identifies a feature. An example is "methods".

 Media Feature: As defined in RFC 2703, [23], a media feature is
 information that indicates facilities assumed to be
 available for the message content to be properly rendered
 or otherwise presented. Media features are not intended to
 include information that affects message transmission.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2703

J. Rosenberg et. al. [Page 6]

Internet Draft SIP Caller Preferences March 2, 2003

 In the context of this specification, a media feature is
 information that indicates facilities for handling SIP
 requests, rather than specifically for content. In that
 sense, it is used synonymously with feature.

 Feature Collection: As defined in RFC 2533 [2], a feature
 collection is a collection of different media features and
 associated values. This might be viewed as describing a
 specific rendering of a specific instance of a document or
 resource by a specific recipient.

 Feature Set: As defined in RFC 2703 [23], a feature set is
 Information about a sender, recipient or other participant
 in a message transfer which describes the set of features
 that it can handle. Where a 'feature' describes a single
 identified attribute of a resource, a 'feature set'
 describes full set of possible attributes.

 Feature Preferences: Caller preferences that described desired
 properties of a UA that the request is to be routed to.
 Feature preferences can be made explicitly with the
 Accept-Contact and Reject-Contact header fields.

 Request Handling Preferences: Caller preferences that describe
 desired request treatment at a server. These preferences
 are carried in the Request-Disposition header field.

 Feature Parameters: A set of SIP header field parameters that
 can appear in the Contact, Accept-Contact and Reject-
 Contact header fields. The feature parameters represent an
 encoding of a feature set. Each set of feature parameters
 maps to a feature set predicate.

 Capability: As defined in RFC 2703 [23], a capability is an
 attribute of a sender or receiver (often the receiver)
 which indicates an ability to generate or process a
 particular type of message content.

 Target Set: A target set is a set of candidate URI that a proxy
 or redirect server can send or redirect a request to.
 Frequently, target sets are obtained from a registration,
 but they need not be.

 Explicit Preference: A caller preference indicated explicitly in
 the Accept-Contact or Reject-Contact header fields.

 Implicit Preference: A caller preference that is implied through
 the presence of other aspects of a request. For example, if

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2703

J. Rosenberg et. al. [Page 7]

Internet Draft SIP Caller Preferences March 2, 2003

 the request method is INVITE, it represents an implicit
 caller preference to route the request to a UA that
 supports the INVITE method.

 Filter: A single expression in a feature set predicate.

 Simple Filter: An expression in a feature predicate which is a
 comparison (equality or inequality) of a feature tag
 against a feature value.

 Disjunction: A boolean OR operation across some number of terms.

 Conjunction: A boolean AND operation across some number of
 terms.

 Predicate: A boolean expression.

 Feature Set Predicate: From RFC 2533 [2], a feature set
 predicate is a function of an arbitrary feature collection
 value which returns a Boolean result. A TRUE result is
 taken to mean that the corresponding feature collection
 belongs to some set of media feature handling capabilities
 defined by this predicate.

 Contact Predicate: The feature set predicate associated with a
 URI registered in the Contact header field of a REGISTER
 request. The contact predicate is derived from the feature
 parameters in the Contact header field.

4 Overview of Operation

 This extension defines a set of additional parameters to the Contact
 header field, called feature parameters. Each parameter name is an
 encoded feature tag, as defined in RFC 2703 [23], that defines a
 capability for the UA associated with the Contact header field value.
 For example, there is a parameter for the SIP methods supported by
 the UA. Each feature parameter has a value; that value is the set of
 feature values for that feature tag. Put together, all of the feature
 parameters specify a feature set that is supported by the UA
 associated with that Contact header field value.

 When a UA registers, it places these parameters in the Contact header
 field value to provide a feature set for a URI it is registering. The
 feature parameters are also mirrored in the Contact header field in a
 REGISTER response. The proxy can use this feature set to route
 requests based on caller preferences. Furthermore, Contact header
 fields in requests and responses that establish a dialog can contain
 these parameters. That allows a UA in a dialog to indicate its

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2703

J. Rosenberg et. al. [Page 8]

Internet Draft SIP Caller Preferences March 2, 2003

 feature set to its peer. For example, by including the "msgserver"
 feature tag with value "TRUE" in the 200 OK to an INVITE, the UAS can
 indicate to the UAC that it is a voicemail server. This information
 is useful for user interfaces, as well as automated call handling.

 When a caller sends a request, it can optionally include new header
 fields which request certain handling at a server. These preferences
 fall into two categories. The first category, called request handling
 preferences, are carried in the Request-Disposition header field.
 They describe specific behavior that is desired at a server. Request
 handling preferences include whether the caller wishes the server to
 proxy or redirect, and whether sequential or parallel search is
 desired. These preferences can be applied at every proxy or redirect
 server on the call signaling path.

 The second category of preferences, called feature preferences, are
 carried in the Accept-Contact and Reject-Contact header fields. These
 header fields also contain feature sets, represented by the same
 feature parameters that are used in the Contact header field. Here,
 the feature parameters represent the caller's preferences. The
 Accept-Contact header field contains feature sets that describe UAs
 that the caller would like to reach. The Reject-Contact header field
 contains feature sets which, if matched by a UA, imply that the
 request should not be routed to that UA.

 Proxies use the information in the Accept-Contact and Reject-Contact
 header fields to select amongst contacts in their target set. When
 neither of those header fields are present, the proxy computes
 implicit preferences from the request. These are caller preferences
 that are not explicitly placed into the request, but can be inferred
 from the presence of other message components. As an example, if the
 request method is INVITE, this is an implicit preference to route the
 call to a UA that supports the INVITE method.

 Both request handling and feature preferences can appear in any
 request, not just INVITE. However, they are only useful in requests
 where proxies need to determine a request target. If the domain in
 the request URI is not owned by any proxies along the request path,
 those proxies will never access a location service, and therefore,
 never have the opportunity to apply the caller preferences. This
 makes sense; typically, the request URI will identify a UAS for mid-
 dialog requests. In those cases, the routing decisions were already
 made on the initial request, and it makes no sense to redo them for
 subsequent requests in the dialog.

5 Usage of the Content Negotiation Framework

 This specification makes heavy use of the terminology and concepts in

J. Rosenberg et. al. [Page 9]

Internet Draft SIP Caller Preferences March 2, 2003

 the content negotiation work carried out within the IETF, and
 documented in several RFCs. The ones relevant to this specification
 are RFC 2506 [5] which provides a template for registering media
 feature tags, RFC 2533 [2] which presents a syntax and matching
 algorithm for media feature sets, RFC 2738 [6], which provides a
 minor update to RFC 2533, and RFC 2703 [23] which provides a general
 framework for content negotiation.

 In case the reader does not have the time to read those
 specifications, Appendix A provides a brief overview of the concepts
 and terminology in those documents that is critical for understanding
 this specification.

 Since the content negotiation work was primarily meant to apply to
 documents or other resources with a set of possible renderings, it is
 not immediately apparent how it is used to model the SIP entities at
 hand. The goal of this specification is to allow a UA to express its
 feature set, and for a caller to express a feature set that describes
 properties of a desirable (or undesirable) UA. Therefore, we are
 using feature sets to describe SIP user agents.

 A feature set is composed of a set of feature collections, each of
 which represents a specific rendering supported by the entity
 described by the feature set. In the context of a SIP user agent, a
 feature collection represents an instantaneous modality. That is, if
 you look at the run time processing of a SIP UA, and take a snapshot
 in time, the feature collection describes what it is doing at that
 very instant.

 This model is important, since it provides guidance on how to
 determine whether something is a value for a particular feature tag,
 or a feature tag by itself. If two properties can be exhibited by a
 UA simultaneously, so that both are present in an instantaneous
 modality, they need to be represented by separate media feature tags.
 For example, a UA may be able to support some number of media types -
 audio, video, and control. Should each of these be different values
 for a single "media-types" feature tag, or should each of them be a
 separate boolean feature tag? The model provides the answer. Since,
 at any instant of time, a UA could be handling both audio and video,
 they need to be separate media feature tags. However, the SIP methods
 supported by a UA can each be represented as different values for the
 same media feature tag (the "methods" tag), because fundamentally, a
 UA processes a single request at a time. It may be multi-threading,
 so that it appears that this is not so, but at a purely functional
 level, it is true.

 Clearly, there are weaknesses in this model, but it serves as a
 useful guideline for applying the concepts of RFC 2533 to the problem

https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2738
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2703
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 10]

Internet Draft SIP Caller Preferences March 2, 2003

 at hand.

6 UA Behavior

 UA behavior covers five separate cases. The first is registration,
 where a UA can declare its capabilities. The second is expression of
 preferences in a request, where a UA can tell a proxy how it wants
 the request to be processed and routed. The third is expressing of
 capabilities, through a feature set, in the Contact header field of a
 target refresh request or response. The fourth is UAS processing of
 the request handling and feature preferences. The fifth is UAS
 processing of an OPTIONS request.

6.1 Expressing Capabilities in a Registration

 When a UA registers, it can choose to indicate a feature set
 associated with a registered contact. Whether or not a UA does so
 depends on what the registered URI represents. If the registered URI
 represents a UA instance (the common case in registrations), a UA
 compliant to this specification SHOULD indicate a feature set using
 the mechanisms described here. If, however, the registered URI
 represents an address-of-record, or some other resource that is not
 representable by a single feature set, it SHOULD NOT include a
 feature set. As an example, if a user wishes to forward calls from
 sip:user1@example.com to sip:user2@example.org, it could generate a
 registration that looks like, in part:

 REGISTER sip:example.com SIP/2.0
 To: sip:user1@example.com
 Contact: sip:user2@example.org

 In this case, the registered contact is not identifying a UA, but
 rather, another address-of-record. In such a case, the registered
 contact would not indicate a feature set.

 If a UA does not include feature parameters for a contact, that
 contact will be immune from the caller preference processing.
 Therefore, if a registering client does not want caller preferences
 applied to a contact, it omits all feature parameters. Addresses-of-
 record in particular often need to be immune from caller preferences
 processing. If they were not, such a URI might be eliminated from
 consideration, even though a downstream UA satisfies the desired
 constraints.

J. Rosenberg et. al. [Page 11]

Internet Draft SIP Caller Preferences March 2, 2003

 However, in some cases a UA may wish to express feature parameters
 for an address-of-record. One example is an AOR which represents a
 mutliplicity of devices in a home network, and routes to a proxy
 server in the user's home. Since all devices in the home are for
 personal use, the AOR itself can be described with the
 "class=personal" feature parameter. A registration that forwards
 calls to this home AOR could make use of that feature parameter.
 Generally speaking, a feature parameter can only be associated with
 an address-of-record if all devices bound to that address-of-record
 share the exact same set of values for that feature parameter.

 The remainder of this section assumes that a UA would like to
 associate a feature set with a contact that it is registering. To do
 that, it constructs a feature predicate for that contact. In the
 text that follows, this process is described in terms of RFC 2533 [2]
 (and its minor update, [6]) syntax and constructs, followed by a
 conversion to the syntax used in this specification. However, this
 represents a logical flow of processing. There is no requirement that
 an implementation actually use RFC 2533 syntax as an intermediate
 step.

 The feature predicate constructed by a UA MUST be an AND of terms
 (called a conjunction). Each term is either an OR of simple filters
 (called a disjunction), or a single simple filter. In the case of an
 OR of simple filters, each filter MUST indicate feature values for
 the same feature tag (i.e., the disjunction represents a set of
 values for a particular feature tag), and each element of the
 conjunction MUST be for a different feature tag. Each filter can be
 an equality, the negation of an equality, or in the case of numeric
 feature tags, an inequality, range, or negation of an inequality or
 range. This feature predicate is then converted to a list of feature
 parameters using the procedure specified in Section 11. Those feature
 parameters are added to the the Contact header field value containing
 the URI that the parameters apply to.

 A UA MAY use any feature tags that are registered through IANA in the
 IETF or global trees [5]; this document registers several that are
 appropriate for SIP. It is also permissible to use the URI tree [5]
 for expressing vendor-specific feature tags. Feature tags in any
 other trees created through IANA MAY also be used.

 A UA SHOULD include the "uri-user" and "uri-domain" feature tag in
 its feature parameters. The value of those tags SHOULD be equal to
 the user and domain part of the registered URI, respectively. Setting
 them differently is likely to result in odd behavior, and should only
 be done if some unforseen service neccesitates it. Note that the
 "uri-user" feature tag is a quoted string (implying case sensitive
 matching), and the "uri-domain" feature tag is a token, implying case

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 12]

Internet Draft SIP Caller Preferences March 2, 2003

 insensitive matching.

 Note that the "schemes" feature tag is not a peer of the "uri-user"
 and "uri-domain" feature tags. That is, it does not indicate the
 scheme of the registered URI. Rather, it indicates schemes that a UA
 is capable of sending requests to, should such a URI be received in a
 web page or Contact header field of a redirect response.

 It is RECOMMENDED that a UA provide complete information in its
 feature predicate. That is, it SHOULD provide information on as many
 feature tags as possible. The mechanisms in this specification work
 best when user agents register complete feature sets. Furthermore,
 when a UA registers values for a particular feature tag, it MUST list
 all values that it supports. For example, when including the
 "methods" feature tag, a UA MUST list all methods it supports. The
 matching algorithms in this specification assume that omission of a
 value from a list means that the value is not supported.

 When using the "methods" feature tag, a UA MUST NOT include values
 that correspond to methods not standardized in IETF standards track
 RFCs. When using the "events" feature tag, a UA MUST NOT include
 values that correspond to event packages not standardized in IETF
 standards track RFCs. When using the "schemes" feature tag, a UA MUST
 NOT include values that correspond to schemes not standardized in
 IETF standards track RFCs. When using the "sip-extensions" feature
 tag, a UA MUST NOT include values that correspond to option tags not
 standardized in IETF standards track RFCs.

 The REGISTER request MAY contain a Require header field with the
 value "pref" if the client wants to be sure that the registrar
 understands the extensions defined in this specification. In absence
 of the Require header field, a server that does not understand this
 extension will simply ignore the Contact header field parameters.

 As an example, a UA that supports audio and video media types, is a
 voicemail server, and is not mobile would construct a feature
 predicate like this:

 (& (audio=TRUE)
 (video=TRUE)
 (msgserver=TRUE)
 (automata=TRUE)
 (attendant=TRUE)
 (mobility=fixed)
 (| (methods=INVITE) (methods=BYE) (methods=OPTIONS) (methods=ACK)
 (methods=CANCEL))

J. Rosenberg et. al. [Page 13]

Internet Draft SIP Caller Preferences March 2, 2003

 (uri-user="user")
 (uri-domain=host.example.com)

 These would be converted into feature parameters and included in the
 REGISTER request:

 REGISTER sip:example.com SIP/2.0
 From: sip:user@example.com;tag=asd98
 To: sip:user@example.com
 Call-ID: hh89as0d-asd88jkk@host.example.com
 CSeq: 9987 REGISTER
 Max-Forwards: 70
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds8
 Contact: <sip:user@host.example.com>;audio="TRUE";video="TRUE"
 ;msgserver="TRUE";automata;attendant;mobility="fixed"
 ;methods="INVITE,BYE,OPTIONS,ACK,CANCEL"
 ;uri-user="<user>"
 ;uri-domain="host.example.com"
 Content-Length: 0

 Note that a voicemail server is usually an automata and an attendant,
 as defined below.

6.2 Expressing Preferences in a Request

 A caller wishing to express preferences for a request includes
 Accept-Contact, Reject-Contact or Request-Disposition header fields
 in the request, depending on their particular preferences. No
 additional behavior is required after the request is sent.

 The Accept-Contact, Reject-Contact and Request-Disposition header
 fields in an ACK for a non-2xx final response, or in a CANCEL
 request, MUST be equal to the values in the original request being
 acknowledged or cancelled. This is to ensure proper operation through
 stateless proxies.

 If the UAC wants to be sure that servers understand the header fields
 described in this specification, it MAY include a Proxy-Require
 header field with a value of "pref". However, this is NOT
 RECOMMENDED, as it leads to interoperability problems. In any case,
 caller preferences can only be considered preferences - there is no
 guarantee that the requested service is executed. As such, inclusion

J. Rosenberg et. al. [Page 14]

Internet Draft SIP Caller Preferences March 2, 2003

 of a Proxy-Require header field does not mean the preferences will be
 executed, just that the caller preferences extension is understood by
 the proxies.

6.2.1 Request Handling Preferences

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular processing directive.

 The syntax of the header field can be found in Section 10, and the
 semantics of the directives are described in Section 8.1.

6.2.2 Feature Set Preferences

 A UAC can indicate caller preferences for the capabilities of a UA
 that should be reached or not reached as a result of sending a SIP
 request. To do that, it adds one or more Accept-Contact and Reject-
 Contact header field values. Each header field value contains a set
 of feature parameters that define a feature set. In the case of
 Accept-Contact, each value can also have a q-value parameter.

 Each feature set MUST follow the constraints of Section 6.1. The
 feature sets placed into these header fields MAY overlap; that is, a
 UA MAY indicate preferences for feature sets that match according to
 the matching algorithm of RFC 2533 [2]. The UA MAY use any feature
 tag in an IANA registry or in a vendor defined URI tree.

 A UAC can express explicit preferences for the methods and event
 packages supported by a UA. It is RECOMMENDED that a UA include a
 term in an Accept-Contact feature set with the "methods" feature tag,
 whose value includes the method of the request. When a UA sends a
 SUBSCRIBE request, it is RECOMMENDED that a UA include a term in an
 Accept-Contact feature set with the "events" feature tag, whose value
 includes the event package of the request. Whether these terms are
 placed into a new feature set, or whether they are included in each
 feature set, is at the discretion of the implementor. In most cases,
 the right effect is achieved by including a term in each feature set.

 The Reject-Contact header field allows the UAC to specify that a UA
 should not be contacted if it matches any of the values of the header
 field. Each value of the Reject-Contact header field contains a "*",
 purely to align the syntax with guidelines for SIP extensions [24],
 and is parameterized by a set of feature parameters. Any UA whose
 capabilities match the feature set described by the feature
 parameters matches the value. As with registrations, it is not
 necessary for a UAC to construct the feature set in RFC 2533 syntax
 as an intermediate step. The only requirement is that the feature

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 15]

Internet Draft SIP Caller Preferences March 2, 2003

 parameters, if converted back to RFC 2533 format, meet the
 requirements above.

 The Accept-Contact header field allows the UAC to specify that a UA
 should be contacted if it matches some or all of the values of the
 header field. Each value of the Accept-Contact header field contains
 a "*" and is parameterized by a set of feature parameters. Any UA
 whose capabilities match the feature set described by the feature
 parameters matches the value. The q-value parameter provides a
 weighting operation. A q-value parameter with a particular value
 means that the caller's preference for a UA described by the feature
 parameters equals that value. The processing rules at a proxy will
 also favor those UA that are a "better" match to a particular value.
 Here, better means that more of its capabilities explicitly match the
 feature preferences. The value may also contain an "explicit"
 parameter, which indicates that only UA whose capabilities explicitly
 match are considered a match. If one of the values contains the
 "require" parameter, it means that the UA must match that value. As
 with registrations, it is not necessary for a UAC to construct the
 feature set in RFC 2533 syntax as an intermediate step. The only
 requirement is that the feature parameters, if converted back to RFC

2533 format, meet the requirements above.

6.3 Indicating Feature Sets in Remote Target URIs

 Target refresh requests and responses are used to establish and
 modify the remote target URI. The remote target URI is contained in
 the Contact header field. A UAC or UAS MAY add feature parameters to
 the Contact header field value in target refresh requests and
 responses, for the purpose of indicating the capabilities of the UA.
 To do that, it constructs a feature set predicate according to the
 constraints of Section 6.1, and converts it to a set of feature
 parameters using the rules in Section 11. These are then added as
 Contact header field parameters in the request or response.

 The feature parameters can be included in both initial requests and
 mid-dialog requests, and MAY change mid-dialog to signal a change in
 UA capabilities.

 There is overlap in the caller preferences mechanism with the Allow,
 Accept, Accept-Language, and Allow-Events [7] header fields, which
 can also be used in target refresh requests. Specifically, the Allow
 header field and "methods" feature tag indicate the same information.
 The Accept header field and the "type" feature tag indicate the same
 information. The Accept-Language header field and the "language"
 feature tag indicate the same information. The Allow-Events header
 field and the "events" feature tag indicate the same information. It
 is possible that other header fields and feature tags defined in the

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 16]

Internet Draft SIP Caller Preferences March 2, 2003

 future may also overlap. When there exists a feature tag that
 describes a capability that can also be represented with a SIP header
 field, a UA MUST use the header field to describe the capability. A
 UA receiving a message that contains both the header field and the
 feature tag MUST use the header field, and not the feature tag.

6.4 Processing Request Handling and Feature Set Preferences

 When a UAS compliant to this specification receives a request whose
 request-URI corresponds to one of its registered Contacts, it SHOULD
 apply the behavior described in Section 7 as if it were a proxy for
 the domain in the request-URI. The UAS acts as if its location
 database contains a single request target for the request-URI. That
 target is associated with a feature set. The feature set is the same
 as the one placed in the registration of the URI in the request-URI.

 This processing occurs after the client authenticates and authorizes
 the request, but before the remainder of the general UAS processing
 described in Section 8.2.1 of RFC 3261.

 If a UA registers against two separate addresses-of-record, and the
 contacts registered for each have different capabilities, a UA MUST
 use different URIs in each registration. This is so that the UA can
 uniquely determine the feature set that is associated with the
 request URI of an incoming request.

 If, after performing this processing, there are no URI left in the
 target set, the UA SHOULD reject the request with a 480 response. If
 there is a URI remaining (there was only one to begin with), the UA
 proceeeds with request processing as per RFC 3261.

 Having a UAS perform the matching operations as if it were
 a proxy allows certain caller preferences to be honored
 even if the proxy doesn't support the extension.

6.5 OPTIONS Processing

 When a UAS compliant to this specification receives an OPTIONS
 request, it MAY add feature parameters to the Contact header field in
 the OPTIONS response for the purpose of indicating the capabilities
 of the UA. To do that, it constructs a feature set predicate
 according to the constraints of Section 6.1, and converts it to a set
 of feature parameters using the rules in Section 11. These are then
 added as Contact header field parameters in OPTIONS response. Indeed,
 if feature parameters were included in the registration generated by
 that UA, those same parameters SHOULD be used in the OPTIONS
 response.

https://datatracker.ietf.org/doc/html/rfc3261#section-8.2.1
https://datatracker.ietf.org/doc/html/rfc3261

J. Rosenberg et. al. [Page 17]

Internet Draft SIP Caller Preferences March 2, 2003

7 Proxy Behavior

 Proxy behavior consists of two orthogonal sets of rules - one for
 processing the Request-Disposition header field, and one for
 processing the URI and feature set preferences in the Accept-Contact
 and Reject-Contact header fields.

 In addition to processing these headers, a proxy MAY add one if not
 present, or add a value to an existing header field, as if it were a
 UAC. This is useful for a proxy to request processing in downstream
 proxies in the implementation of a feature. However a proxy MUST NOT
 modify or remove an existing header field or header field value. This
 is particularly important when S/MIME is used. The message signature
 could include the caller preferences header fields, allowing the UAS
 to verify that, even though proxies may have added header fields, the
 original caller preferences were still present.

7.1 Request-Disposition Processing

 If the request contains a Request-Disposition header field, the
 server SHOULD execute the directives as described in Section 8.1,
 unless it has local policy configured to direct it otherwise.

7.2 Preference and Capability Matching

 A proxy compliant to this specification MUST NOT apply the
 preferences matching operation described here to a request unless it
 is the owner of the domain in the request URI, and accessing a
 location service that has capabilities associated with request
 targets. However, if it is the owner of the domain, and accessing a
 location service that has capabilities associated with request
 targets, it SHOULD apply the processing described in this section.
 Typically, this is a proxy that is using a registration database to
 determine the request targets. However, if a proxy knows about
 capabilities through some other means, it SHOULD apply the processing
 defined here as well. If it does perform the processing, it MUST do
 so as described below.

 The processing is described through a conversion from the syntax
 described in this specification to RFC 2533 syntax, followed by a
 matching operation and a sorting of resulting contact values. The
 usage of RFC 2533 syntax as an intermediate step is not required, it
 only serves as a useful tool to describe the behavior required of the
 proxy. A proxy can use any steps it likes so long as the results are
 identical to the ones that would be achieved with the processing
 described here.

7.2.1 Extracting Explicit Preferences

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 18]

Internet Draft SIP Caller Preferences March 2, 2003

 The first step in proxy processing is to extract explicit
 preferences. To do that, it looks for the Accept-Contact and Reject-
 Contact header fields.

 For each value of those header fields, it extracts the feature
 parameters. These are the header field parameters whose name is one
 of the base-tags (see Section 10), or whose name begins with a plus
 (+). The proxy converts all of those parameters to the syntax of RFC

2533, based on the rules in Section 11.

 The result will be a set of feature set predicates in conjunctive
 normal form, each of which is associated with one of the two
 preference header fields. If there was a q parameter associated with
 a header field value in the Accept-Contact header field, the feature
 set predicate derived from that header field value is assigned a
 preference equal to that q value. If there was a req-parameter
 associated with a header field value in the Accept-Contact header
 field, the feature set predicate derived from that header field value
 is said to have its require flag set. Similarly, if there was an
 explicit-param associated with a header field value in the Accept-
 Contact header field, the feature set predicate derived from that
 header field value is said to have its explicit flag set.

7.2.2 Extracting Implicit Preferences

 If, and only if, the proxy did not find any explicit preferences in
 the request (because there was no Accept-Contact or Reject-Contact
 header field), the proxy extracts implicit preferences. These
 preferences are ones implied by the presence of other information in
 the request.

 First, the proxy creates a conjunction with no terms. This
 conjunction represents a feature set that will be associated with the
 Accept-Contact header field, as if it were included there. Note that
 there is no modification of the message implied - only an association
 for the purposes of processing. Furthermore, this feature set has its
 require flag set, but not its explicit flag.

 The proxy then adds terms to the conjunction for the two implicit
 preference types below.

7.2.2.1 Methods

 One implicit preference is the method. When a UAC sends a request
 with a specific method, it is an implicit preference to have the
 request routed only to UAs that support that method. To support this
 implicit preference, the proxy adds a term to the conjunction of the
 following form:

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 19]

Internet Draft SIP Caller Preferences March 2, 2003

 (methods=[method of request])

7.2.2.2 Event Packages

 For requests that establish a subscription [7], the Event header
 field is another expression of an implicit preference. It expresses a
 desire for the request to be routed only to a server than supports
 the given event package. To support this implicit preference, the
 proxy adds a term to the conjunction of the following form:

 (events=[value of the Event header field])

7.3 Constructing Contact Predicates

 The proxy then takes each URI in the target set (the set of URI it is
 going to proxy or redirect to), and obtains its capabilities as an

RFC 2533 formatted feature set predicate. This is called a contact
 predicate. If the target URI was obtained through a registration, the
 proxy computes the contact predicate by extracting the feature
 parameters from the Contact header field and the converting them to a
 feature predicate. To extract the feature parameters, the proxy
 follows these steps:

 1. Create an initial, empty list of feature parameters.

 2. If the Contact URI parameters included the "attendant",
 "audio", "automata", "class", "duplex", "data", "control",
 "mobility", "description", "events", "priority", "methods",
 "schemes", "application", "video", "msgserver", "language",
 "isfocus", "uri-user", "uri-domain" or "type" parameters,
 those are copied into the list.

 3. If any Contact URI parameter name begins with a "+", it is
 copied into the list if the list does not already contain
 that name with the plus removed. In other words, if the
 "video" feature parameter is in the list, the "+video"
 parameter would not be placed into the list. This conflict
 should never arise if the client were compliant to this
 specification, since it is illegal to use the + form for
 encoding of a feature tag in the base set.

 If the URI in the target set had no feature parameters, it is said to

https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 20]

Internet Draft SIP Caller Preferences March 2, 2003

 be immune to caller preference processing. This means that the URI is
 removed from the target set temporarily, the caller preferences
 processing described below is executed, and then the URI is added
 back in.

 Assuming the URI has feature parameters, they are converted to RFC
2533 syntax using the rules of Section 11.

 The resulting predicate is associated with a q-value. If the contact
 predicate was learned through a REGISTER request, the q-value is
 equal to the q-value in the Contact header field parameter, else
 "1.0" if not specified.

 As an example, consider the following registered Contact header
 field:

 Contact: <sip:user@example.com>;audio;video;mobility="fixed";
 +message="TRUE";other-param=66372;
 methods="INVITE,OPTIONS,BYE,CANCEL,ACK";schemes="sip,http";
 uri-user="<user>";uri-domain="example.com"

 This would be converted into the following predicate:

 (& (audio=TRUE)
 (video=TRUE)
 (mobility=fixed)
 (message=TRUE)
 (| (methods=INVITE) (methods=OPTIONS) (methods=BYE)
 (methods=CANCEL) (methods=ACK))
 (| (schemes=sip) (schemes=http))
 (uri-user="user")
 (uri-domain="example.com"))

 Note that "other-param" was not considered a featuer parameter, since
 it is neither a base tag nor did it begin with a leading +.

7.4 Matching

 It is important to note that the proxy does not have to know anything

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 21]

Internet Draft SIP Caller Preferences March 2, 2003

 about the meaning of the feature tags that it is comparing in order
 to perform the matching operation. The rules for performing the
 comparison depend on syntactic hints present in the values of each
 feature tag. For example, a predicate such as:

 (foo>=4)

 implies that the feature tag "foo" is a numeric value. The matching
 rules in RFC 2533 only require an implementation to know whether the
 feature tag is a numeric, token, or quoted string (booleans can be
 treated as tokens). Quoted strings are always matched using a case-
 sensitive matching operation. Tokens are matched using case-
 insensitive matching. Numerics are matched using normal mathematical
 comparisons.

 First, the proxy applies the predicates associated with the Reject-
 Contact header field.

 For each contact predicate, each Reject-Contact predicate (that is,
 each predicate associated with the Reject-Contact header field) is
 examined. If that Reject-Contact predicate contains a filter for a
 feature tag, and that feature tag is not present anywhere in the
 contact predicate, that Reject-Contact predicate is discarded for the
 processing of that contact predicate. If the Reject-Contact predicate
 is not discarded, it is matched to the contact predicate using the
 matching operation of RFC 2533 [2]. If the result is a match, the URI
 corresponding to that contact predicate is discarded from the target
 set.

 The result is that Reject-Contact will only discard URIs where the UA
 has explicitly indicated support for the features that are not
 wanted.

 Next, the proxy applies the predicates associated with the Accept-
 Contact header field. For each contact that remains in the target
 set, the proxy constructs a matching set, Ms. Initially, this set
 contains all of the Accept-Contact predicates. Each of those
 predicates is examined. It is matched to the contact predicate using
 the matching operation of RFC 2533 [2]. If the result is not a match,
 and the Accept-Contact predicate had its require flag set, the URI
 corresponding to that contact predicate is discarded from the contact
 set. If the result is not a match, but the Accept-Contact predicate
 did not have its require flag set, that contact URI is not discarded
 from the contact set, however, the Accept-Contact predicate is

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 22]

Internet Draft SIP Caller Preferences March 2, 2003

 removed from the matching set for that contact.

 For each contact that remains in the target set, the proxy computes a
 score for that contact against each predicate the contact's matching
 set. Let the number of terms in the Accept-Contact predicate
 conjunction be equal to N. Each term in that predicate contains a
 single feature tag. If the contact predicate has a term containing
 that same feature tag, the score is incremented by 1/N. If the
 feature tag was not present in the contact predicate, the score
 remains unchanged. Based on these rules, the score can range between
 zero and one.

 The require and explicit tags are then applied, resulting in
 potential modification of the score and the target set. This process
 is summarized in Figure 1. If the score for the contact predicate
 against that Accept-Contact predicate was less than one, and the
 Accept-Contact predicate had an explicit tag, if the predicate also
 had a require tag, the Contact URI corresponding to that contact
 predicate is dropped. If, however, the predicate did not have a
 require tag, the score is set to zero. If there was no explicit tag,
 the score is unchanged.

 The next step is to combine the scores and the q-values associated
 with the predicates in the matching set, to arrive at an overall
 caller preference, Qa. For those URIs in the target set which remain,
 there will be a score which indicates its match against each Accept-
 Contact predicate in the matching set. If there are M Accept-Contact
 predicates in the matching set, there will be M scores S1 through SM,
 for each contact. There will also be a preference associated with
 each Accept-Contact predicate (derived from the q-value parameter, as
 discussed in Section 7.2.1), X1..XM. The caller preference, Qa, is
 computed as shown in Figure 2.

 Note that in the limit as all Si go to zero, Qa equals the arithmetic
 average of Xi.

 This algorithm was chosen carefully so as to exhibit certain
 properties:

 o If Si is 1 for i=j, and zero for all other i, Qa=Xi. In other
 words, if a contact predicate matches one of the Accept-
 Contact predicates with a score of one (referred to as an
 explicit match), and all others match with a score of zero
 (referred to as an implicit match), the caller's preference
 equals the q-value of that predicate.

J. Rosenberg et. al. [Page 23]

Internet Draft SIP Caller Preferences March 2, 2003

 o If Si is the same for all predicates in the matching set, Qa
 is equal to the average of the q-values for the predicates.

 o If the contact predicate matches only one Accept-Contact
 predicate, Qa is equal to the q-value of that predicate,
 independent of the score.

 The final step is to combine the overall caller preference for the
 contact (Qa) with the q-value provided for that contact by the callee
 (which we denote as Qb). The proxy can use any averaging mechanism at
 its disposal, prefentially treating the callers preference and the
 callee's preference as policy dictates. In the absence of policy
 indicating otherwise, the two values are arithmetically averaged.
 This results in an overall q-value for that contact, Qo, equal to:

 Qa + Qb
 Qo = ---------
 2

 At this point, any URI that were removed from the target set because
 they were immune from caller preferences are added back in, and Qo
 for that URI is set to its original q-value, or 1.0 if there was no
 q-value specified.

 If there were no URIs in the target set after the application of the
 processing in this section, and the caller preferences were based on
 implicit preferences (Section 7.2.2), the processing in this section
 is discarded, and the original target set, along with their original
 q-values, is used.

 This handles the case where implicit preferences for the
 method or event packages resulted in the elimination of all
 potential targets. By going back to the original target
 set, those URIs will be tried, and result in the generation
 of a 405 or 489. The UAC can then use this information to
 try again, or report the error to the user. Without
 reverting to the original target set, the UAC would see a
 480 response, and have no knowledge of why their request
 failed. Of course, the target set can also be empty after
 the application of explicit preferences. This will result
 in the generation of a 480 by the proxy. This behavior is
 acceptable, and indeed, desirable in the case of explicit
 preferences. When the caller makes an explicit preference,

J. Rosenberg et. al. [Page 24]

Internet Draft SIP Caller Preferences March 2, 2003

 T
 +----------> DROP Contact
 |
 |
 / \
 / \
 T / \ F
 +---->/require\------> Set score=0
 | \ /
 | \ /
 / \ \ /
 / \ \/
 score<1 / \
 +-------> /explicit----> Score unchanged
 | \ / F
 | \ /
 / \ \ /
 / \ \/
 +--------+ / \
-->|Compute |--> /Score \ --------> Score unchanged
 | Score | \ / score=1
 +--------+ \ /
 \ /
 \/

 Figure 1: Score Computation

J. Rosenberg et. al. [Page 25]

Internet Draft SIP Caller Preferences March 2, 2003

 /
 /
 /
 | 0, if M=0
 |
 |
 |
 | M
 | ------
 | \
 | \
 | / Si*Xi
 | /
 Qa = | ------
 | i=1
 | if M>0
 | ------------------
 |
 | M
 | ------
 | \
 | \
 | / Si
 | /
 | ------
 \ i=1
 \
 \

 Figure 2: Computation of Qa

 it is agreeing that its request might fail because of a
 preference mismatch. One might try to return an error
 indicating the capabilities of the callee, so that the
 caller could perhaps try again. However, doing so results
 in the leaking of potentially sensitive information to the
 caller without authorization from the callee, and therefore
 this specification does not provide a means for it.

 Any proxy processing that takes the q-values as inputs (for example,
 a forking operation as described in Section 16.6 of RFC 3261 [1])
 would use Qo instead of the original q-value associated with the
 contact, for this specific transaction only. To avoid preferring one

https://datatracker.ietf.org/doc/html/rfc3261#section-16.6

J. Rosenberg et. al. [Page 26]

Internet Draft SIP Caller Preferences March 2, 2003

 contact to another because of a relatively small difference in their
 overall q-value, it is RECOMMENDED that the values be rounded to the
 nearest tenth before they are used by the proxy.

 If a proxy server is recursing, it applies the caller preferences to
 the Contact header fields returned in the redirect responses. Any URI
 remaining after the application of caller preferences are added to
 the proxy's target set if it is not already in the target set. This
 list is then resorted based on q values. The server uses this list
 for subsequent proxy operations.

 If the server is redirecting, it returns all entries in the target
 set, including a q-value of Qo for each Contact URI as obtained
 through the process above. This includes any URI with a zero q-value.
 However, it MUST NOT include the feature parameters for the entries
 in the target set. If it did, the upstream proxy server would apply
 the same caller preferences once more, resulting in a double
 application of those preferences. If the redirect server does wish to
 include the feature parameters in the Contact header field, it MUST
 redirect using the original target set and original q-values, before
 the application of caller preferences.

 It is the usage of these modified q-values that allows the caller
 preferences to be taken into account, while at the same time giving
 the proxy flexibility in how it processes the request.

7.4.1 Example

 Consider the following example, which is contrived but illustrative
 of the various components of the matching process. There are five
 registered Contacts for sip:user@example.com. They are:

 Contact: sip:u1@h.example.com;audio;video;methods="INVITE,BYE";q=0.1
 Contact: sip:u2@h.example.com;audio="FALSE";
 methods="INVITE";msgserver;q=0.2
 Contact: sip:u3@h.example.com;audio;msgserver;
 methods="INVITE";video;q=0.3
 Contact: sip:u4@h.example.com;audio;methods="INVITE,OPTIONS";q=0.4
 Contact: sip:u5@h.example.com;q=0.5

 an INVITE sent to sip:user@example.com contained the following caller
 preferences header fields:

J. Rosenberg et. al. [Page 27]

Internet Draft SIP Caller Preferences March 2, 2003

 Reject-Contact: *;msgserver;video
 Accept-Contact: *;audio;require;q=0.5, *;video;explicit;q=0.4,
 *;methods="BYE";class="business";q=1.0

 There are no implicit preferences in this example, because explicit
 preferences are provided.

 The proxy first removes u5 from the target set, since it is immune
 from caller preferences processing.

 Next, the proxy processes the Reject-Contact header field. It is a
 match for all four remaining contacts, but only an explicit match for
 u3. Thats because u3 is the only one that explicitly indicated
 support for video, and explicitly indicated it is a messaging server.
 So, u3 gets discarded, and the others remain.

 Next, each of the remaining three contacts is compared against each
 of the three Accept-Contact predicates. u1 is a match to all three,
 earning a score of 1.0 for the first two predicates, and 0.5 for the
 third (the methods feature tag was present in the contact predicate,
 but the class tag was not). u2 doesn't match the first predicate.
 Because that predicate has a require tag, u2 is discarded. u4 matches
 the first predicate, earning a score of 1.0. u4 does match the second
 predicate, but since the match is not explicit (the score is 0.0, in
 fact), the score is set to zero (it was already zero, so nothing
 changes). u4 does not match the third predicate.

 At this point, u1 and u4 remain. u1 matched all three Accept-Contact
 predicates, so that its matching set contains all three, with scores
 of 1, 1, and 0.5. u4 matches the first two predicates, with scores of
 1.0 and 0.0.

 Qa for u1 is then computed as:

 1.0*0.5 + 1.0*0.4 + 0.5*1.0
 --------------------------- = 0.56
 1.0 + 1.0 + 0.5

 Qa for u4 is then computed as:

J. Rosenberg et. al. [Page 28]

Internet Draft SIP Caller Preferences March 2, 2003

 1.0*0.5 + 0.0*0.4
 ------------------ = 0.5
 1.0 + 0.0

 Qo for u1 is the average of 0.56 and the registered q-value of 0.1,
 which equals 0.33. Qo for u4 is the average of 0.5 and the registered
 q-value of 0.4, which equals 0.45. Rounding these to the nearest
 tenth, Qo for u1 is 0.3 and Qo for u4 is 0.5.

 Now, u5 is added back in. It retains its original q-value of 0.5.
 Since its q-value matches that of u4, both u4 and u5 would be tried
 in parallel. Should both fail, u1 would be tried.

8 Header Field Definitions

 This specification defines three new header fields - Accept-Contact,
 Reject-Contact, and Request-Disposition.

 Tables 1 and 2 are an extension of Tables 2 and 3 in [1] for the
 Accept-Contact, Reject-Contact and Request-Disposition header fields.
 The column "INF" is for the INFO method [8], "PRA" is for the PRACK
 method [9], "UPD" is for the UPDATE method [10], "SUB" is for the
 SUBSCRIBE method [7], "NOT" is for the NOTIFY method [7], and "MSG"
 is for the MESSAGE method [3].

 Header field where proxy ACK BYE CAN INV OPT REG

 Accept-Contact R ar o o o o o -
 Reject-Contact R ar o o o o o -
 Request-Disposition R ar o o o o o o

 Table 1: Accept-Contact, Reject-Contact and Request-Disposition
 header fields

8.1 Request Disposition

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular directive. Its syntax is
 specified in Section 10. Note that a compact form, using the letter
 d, has been defined. The directives are grouped into types. There can
 only be one directive of each type per request (i.e., you can't have
 both "proxy" and "redirect" in the same Request-Disposition header

J. Rosenberg et. al. [Page 29]

Internet Draft SIP Caller Preferences March 2, 2003

 Header field where proxy PRA UPD SUB NOT INF MSG

 Accept-Contact R ar o o o o o o
 Reject-Contact R ar o o o o o o
 Request-Disposition R ar o o o o o o

 Table 2: Accept-Contact, Reject-Contact, and Request-Disposition
 header fields

 field).

 When the caller specifies a directive, the server SHOULD honor that
 directive.

 The following types of directives are defined:

 proxy-directive: This type of directive indicates whether the
 caller would like each server to proxy ("proxy") or
 redirect ("redirect").

 cancel-directive: This type of directive indicates whether the
 caller would like each proxy server to send a CANCEL
 request downstream ("cancel") in response to a 200 OK from
 the downstream server (which is the normal mode of
 operation, making it somewhat redundant), or whether this
 function should be left to the caller ("no-cancel"). If a
 proxy receives a request with this parameter set to "no-
 cancel", it SHOULD NOT CANCEL any outstanding branches on
 receipt of a 2xx. However, it would still send CANCEL on
 any outstanding branches on receipt of a 6xx.

 fork-directive: This type of directive indicates whether a proxy
 should fork a request ("fork"), or proxy to only a single
 address ("no-fork"). If the server is requested not to
 fork, the server SHOULD proxy the request to the "best"
 address (generally the one with the highest q-value). The
 directive is ignored if "redirect" has been requested.

 recurse-directive: This type of directive indicates whether a
 proxy server receiving a 3xx response should send requests
 to the addresses listed in the response ("recurse"), or
 forward the list of addresses upstream towards the caller
 ("no-recurse"). The directive is ignored if "redirect" has
 been requested.

 parallel-directive: For a forking proxy server, this type of
 directive indicates whether the caller would like the proxy

J. Rosenberg et. al. [Page 30]

Internet Draft SIP Caller Preferences March 2, 2003

 server to proxy the request to all known addresses at once
 ("parallel"), or go through them sequentially, contacting
 the next address only after it has received a non-2xx or
 non-6xx final response for the previous one ("sequential").
 The directive is ignored if "redirect" has been requested.

 queue-directive: If the called party is temporarily unreachable,
 e.g., because it is in another call, the caller can
 indicate that it wants to have its call queued ("queue") or
 rejected immediately ("no-queue"). If the call is queued,
 the server returns "182 Queued". A queued call can be
 terminated as described in [1].

 Example:

 Request-Disposition: proxy, recurse, parallel

 The set of request disposition directives is purposefully not
 extensible. This is to avoid a proliferation of new extensions to SIP
 that are "tunneled" through this header field.

8.2 Accept-Contact and Reject-Contact Header Fields

 The syntax for these header fields is described in Section 10. A
 compact form, with the letter a, has been defined for the Accept-
 Contact header field, and with the letter j for the Reject-Contact
 header field.

 The enc-feature-tag is an encoded version of any valid feature tag, a
 number of which are applicable to SIP, and defined in Section 9. Note
 that string-value uses the qdtext production from RFC 3261. This
 production allows UTF-8 characters. This is in contrast to RFC 2533,
 which only allows ASCII characters in quoted strings. Usage of UTF-8
 here is permissible since these values are never compared except
 using case sensitive matching rules.

8.3 Contact Header Field

 This specification extends the Contact header field. In particular,
 it allows for the Contact header field parameters to include
 feature-param, whose BNF is described in Section 10. Feature-param is
 a feature parameter that describes a feature of the UA associated
 with the URI in the Contact header field. Feature parameters are
 identifiable because they either belong to the well known set of base
 feature tags, or they begin with a plus sign.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 31]

Internet Draft SIP Caller Preferences March 2, 2003

9 Media Feature Tag Definitions

 This specification defines an initial set of media feature tags for
 use with this specification. New media feature tags MAY be registered
 with IANA, based on the process defined for feature tag registrations
 [5]. This section also serves as the IANA registration for these
 feature tags.

 Any registered feature tags MAY be used with this specification.
 However, several existing ones appear to be particularly applicable.
 These include the language feature tag [11], which can be used to
 specify the language of the human or automata represented by the UA,
 and the type feature tag [12], which can be used to specify the MIME
 types of the media formats supported by the UA. However, the usage of
 the audio, video, application, data and control feature tags (each of
 which indicate a media type, as defined in RFC 2327 [13] supported by
 the UA) are preferred to indicating support for specific media
 formats. When the type feature tag is present, there SHOULD also be a
 feature tag present for the its top-level MIME type with a value of
 TRUE. In other words, if a UA indicates in a registration that it
 supports the video/H263 MIME type, it should also indicate that it
 supports video generally:

 Contact: sip:192.0.2.1;type="video/H263";video="TRUE"

 If a new SDP media type were to be defined, such as "message", a new
 feature tag registration SHOULD be created for it. The name of the
 feature tag MUST equal that of the media type, unless there is an
 unlikely naming collision between the new media type and an existing
 feature tag registration. As a result of this, implementations can
 safely construct caller preferences and callee capabilities for the
 new media type before it is registered, as long as there is no naming
 conflict.

 If a new media feature tag is registered with the intent of using
 that tag with this specification, the registration is done for the
 unencoded form of the tag (see Section 11). In other words, if a new
 feature tag "foo" is registered, the IANA registration would be for
 the tag "foo" and not "+foo". When that parameter is used within the
 Contact, Accept-Contact and Reject-Contact header fields, it would be
 encoded using its + form.

9.1 Attendant

https://datatracker.ietf.org/doc/html/rfc2327

J. Rosenberg et. al. [Page 32]

Internet Draft SIP Caller Preferences March 2, 2003

 Media feature tag name: attendant

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device is an automated or human
 attendant that will answer if the actual user of the device
 is not available.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that has an
 auto-attendant feature.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.2 Audio

 Media feature tag name: audio

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports audio as a media
 type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 support audio.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.3 Application

J. Rosenberg et. al. [Page 33]

Internet Draft SIP Caller Preferences March 2, 2003

 Media feature tag name: application

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports application as a
 media type. This feature tag exists primarily for
 completeness. Since so many MIME types are underneath
 application, indicating the ability to support applications
 provides little useful information. In most cases, the
 concrete MIME type is a better parameter to use in a
 predicate representing a preference.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 supports gaming application.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.4 Data

 Media feature tag name: data

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports data as a media
 type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 supports a data streaming application.

J. Rosenberg et. al. [Page 34]

Internet Draft SIP Caller Preferences March 2, 2003

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.5 Control

 Media feature tag name: control

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports control as a media
 type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 supports a floor control application.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.6 Automata

 Media feature tag name: automata

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The automata
 feature tag is a boolean value that indicates whether the
 UA represents an automata (such as a voicemail server,
 conference server, or recording device) or a human.

 Values appropriate for use with this feature tag: Boolean. TRUE
 indicates that the UA represents an automata.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a message

J. Rosenberg et. al. [Page 35]

Internet Draft SIP Caller Preferences March 2, 2003

 recording device instead of a user.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.7 Class

 Media feature tag name: class

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates the setting, business or personal, in which a
 communications device is used.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 business: The device is used for business communications.

 personal: The device is used for personal communications.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing between a business phone and a
 home phone.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.8 Duplex

 Media feature tag name: duplex

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The duplex
 media feature tag lists whether a communications device can
 simultaneously send and receive media ("full"), alternate
 between sending and receiving ("half"), can only receive
 ("receive-only") or only send ("send-only").

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

J. Rosenberg et. al. [Page 36]

Internet Draft SIP Caller Preferences March 2, 2003

 full: The device can simultaneously send and receive media.

 half: The device can alternate between sending and
 receiving media.

 receive-only: The device can only receive media.

 send-only: The device can only send media.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a
 broadcast server, as opposed to a regular phone, when
 making a call to hear an announcement.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.9 Mobility

 Media feature tag name: mobility

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The mobility
 feature tag indicates whether the device is fixed,
 wireless, or somewhere in-between.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 fixed: The device is stationary.

 mobile: The device can move around with the user.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a wireless
 phone instead of a desktop phone.

J. Rosenberg et. al. [Page 37]

Internet Draft SIP Caller Preferences March 2, 2003

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.10 Description

 Media feature tag name: description

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The
 description feature tag provides a textual description of
 the device.

 Values appropriate for use with this feature tag: String with an
 equality relationship.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Indicating that a device is of a
 certain make and model.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.11 Event Packages

 Media feature tag name: events

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The event
 packages [7] supported by a SIP UA. The values for this tag
 equal the event package names that are registered by each
 event package.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 presence: SIP event package for for user presence [25].

 winfo: SIP event package for watcher information [26].

 refer: The SIP REFER event package [27].

J. Rosenberg et. al. [Page 38]

Internet Draft SIP Caller Preferences March 2, 2003

 dialog: The SIP dialog event package [28].

 conference: The SIP conference event package [29].

 reg: The SIP registration event package [30].

 message-summary: The SIP message summary event package
 [31].

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a server
 that supports the message waiting event package, such as a
 voicemail server [31].

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.12 Priority

 Media feature tag name: priority

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The priority
 feature tag indicates the call priorities the device is
 willing to handle. A value of X means that the device is
 willing to take requests with priority X and higher.

 Values appropriate for use with this feature tag: An integer.
 Each integral value corresponds to one of the possible
 values of the Priority header field as specified in SIP
 [1]. The mapping is defined as:

 non-urgent: Integral value of 10. The device supports non-
 urgent calls.

 normal: Integral value of 20. The device supports normal
 calls.

 urgent: Integral value of 30. The device supports urgent
 calls.

 emergency: Integral value of 40. The device supports

J. Rosenberg et. al. [Page 39]

Internet Draft SIP Caller Preferences March 2, 2003

 emergency calls.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with the
 emergency cell phone of a user.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.13 Methods

 Media feature tag name: methods

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The methods
 (note the plurality) feature tag indicates the SIP methods
 supported by this UA. In this case, "supported" means that
 the UA can receive requests with this method. In that
 sense, it has the same connotation as the Allow header
 field.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Values include:

 INVITE: The SIP INVITE method [1].

 ACK: The SIP ACK method [1].

 BYE: The SIP BYE method [1].

 CANCEL: The SIP CANCEL method [1].

 OPTIONS: The SIP OPTIONS method [1].

 REGISTER: The SIP REGISTER method [1].

 INFO: The SIP INFO method [8].

 UPDATE: The SIP UPDATE method [10].

 SUBSCRIBE: The SIP SUBSCRIBE method [7].

J. Rosenberg et. al. [Page 40]

Internet Draft SIP Caller Preferences March 2, 2003

 NOTIFY: The SIP NOTIFY method [7].

 PRACK: The SIP PRACK method [9].

 MESSAGE: The SIP MESSAGE method [3].

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a presence
 application on a PC, instead of a PC phone application.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.14 SIP Extensions

 Media feature tag name: sip-extensions

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The sip-
 extensions feature tag is a list of SIP extensions (each of
 which is defined by an option-tag registered with IANA)
 that are understood by the UA. Understood, in this context,
 means that the option tag would be included in a Supported
 header field in a request.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Values include:

 100rel: The UA supports reliability of provisional
 responses [9].

 path: The UA supports the SIP Path header field [14].

 precondition: The UA supports the preconditions mechanism
 described in RFC 3312 [15].

 privacy: The UA supports the privacy extension described in
RFC 3323 [16].

 sec-agree: The UA supports the security agreement extension
 described in RFC 3329 [17].

https://datatracker.ietf.org/doc/html/rfc3312
https://datatracker.ietf.org/doc/html/rfc3323
https://datatracker.ietf.org/doc/html/rfc3329

J. Rosenberg et. al. [Page 41]

Internet Draft SIP Caller Preferences March 2, 2003

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing to communicate with a phone
 that supports quality of service preconditions instead of
 one that does not.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.15 Schemes

 Media feature tag name: schemes

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The set of
 URI schemes [18] that are supported by a UA. Supported
 implies, for example, that the UA would know how to handle
 a URI of that scheme in the Contact header field of a
 redirect response.

 Values appropriate for use with this feature tag: Token with an
 equality relationship. Typical values include:

 sip: The SIP URI scheme [1].

 sips: The SIPS URI scheme [1].

 tel: The tel URI scheme [19].

 http: The HTTP URI scheme [20].

 https: The HTTPS URI scheme [32].

 cid: The CID URI scheme [21].

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Choosing get redirected to a phone
 number when a called party is busy, rather than a web page.

J. Rosenberg et. al. [Page 42]

Internet Draft SIP Caller Preferences March 2, 2003

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.16 Video

 Media feature tag name: video

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device supports video as a media
 type.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a phone that can
 support video.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.17 Message Server

 Media feature tag name: msgserver

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the device is a messaging server which
 will record messages for a user. An example of such a
 device is a voicemail server.

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Requesting that a call not be routed to
 voicemail.

J. Rosenberg et. al. [Page 43]

Internet Draft SIP Caller Preferences March 2, 2003

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.18 Is Focus

 Media feature tag name: isfocus

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature
 tag indicates that the UA is a conference server, also
 known as a focus, and will mix together the media for all
 calls to the same URI [33].

 Values appropriate for use with this feature tag: Boolean.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Indicating to a UA that the server it
 has connected to is a conference server.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.19 URI User

 Media feature tag name: uri-user

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The uri-user
 feature tag provides the user part of the SIP URI that
 represents the device.

 Values appropriate for use with this feature tag: String with an
 equality relationship.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Requesting to route a call to a

J. Rosenberg et. al. [Page 44]

Internet Draft SIP Caller Preferences March 2, 2003

 specific device, identified by a URI.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

9.20 URI Domain

 Media feature tag name: uri-domain

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: The uri-
 domain feature tag indicates the hostname of a device.

 Values appropriate for use with this feature tag: Token with a
 case-insensitive equality relationship.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation
 mechanisms: This feature tag is most useful in a
 communications application, for describing the capabilities
 of a device, such as a phone or PDA.

 Examples of typical use: Requesting to route a call to a
 specific device, identified by a URI.

 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]

10 Augmented BNF

 Request-Disposition = ("Request-Disposition" / "d") HCOLON
 directive *(COMMA directive)
 directive = proxy-directive / cancel-directive /
 fork-directive / recurse-directive /
 parallel-directive / queue-directive)
 proxy-directive = "proxy" / "redirect"
 cancel-directive = "cancel" / "no-cancel"
 fork-directive = "fork" / "no-fork"
 recurse-directive = "recurse" / "no-recurse"
 parallel-directive = "parallel" / "sequential"
 queue-directive = "queue" / "no-queue"

J. Rosenberg et. al. [Page 45]

Internet Draft SIP Caller Preferences March 2, 2003

 Accept-Contact = ("Accept-Contact" / "a") HCOLON ac-value
 *(COMMA ac-value)
 Reject-Contact = ("Reject-Contact" / "j") HCOLON rc-value
 *(COMMA rc-value)
 ac-value = "*" *(SEMI ac-params)
 rc-value = "*" *(SEMI rc-params)
 ac-params = feature-param / c-p-q / req-param
 / explicit-param / generic-param
 rc-params = feature-param / req-param
 / explicit-param / generic-param
 feature-param = enc-feature-tag [EQUAL LDQUOT (tag-value-list
 / string-value) RDQUOT]
 enc-feature-tag = base-tags / other-tags
 base-tags = "attendant" / "audio" / "automata" /
 "class" / "duplex" / "data" /
 "control" / "mobility" / "description" /
 "events" / "priority" / "methods" /
 "schemes" / "application" / "video" /
 "msgserver" / "language" / "type" /
 "isfocus" / "uri-user" / "uri-domain"
 other-tags = "+" ftag-name
 ftag-name = ALPHA *(ALPHA / DIGIT / "!" / ""' /
 "." / "-" / "%")
 tag-value-list = tag-value *("," tag-value)
 tag-value = ["!"] (token-nobang / boolean / numeric)
 token-nobang = 1*(alphanum / "-" / "." / "%" / "*"
 / "_" / "+" / "`" / "'" / "~")
 boolean = "TRUE" / "FALSE"
 numeric = "#" numeric-relation number
 numeric-relation = ">=" / "<=" / "=" / (number ":")
 number = ["+" / "-"] 1*DIGIT ["." 0*DIGIT]
 string-value = "<" qdtext ">"
 req-param = "require"
 explicit-param = "explicit"

 Note that the tag-value-list uses an actual comma instead of the
 COMMA construction. Thats because it appears within a quoted string,
 where line folding cannot take place.

 The productions for c-p-q, name-addr, addr-spec, qdtext and generic-
 param can be found in RFC 3261 [1].

 Despite the BNF, there MUST NOT be more than one c-p-q, req-param or
 explicit-param in an ac-params or rc-params. Furthermore, there can
 only be one instance of any feature tag in feature-param.

 Any numbers present in a feature parameter MUST be representable

https://datatracker.ietf.org/doc/html/rfc3261

J. Rosenberg et. al. [Page 46]

Internet Draft SIP Caller Preferences March 2, 2003

 using an ANSI C double.

 The following production updates the one in RFC 3261 for contact-
 params:

 contact-params = c-p-q / c-p-expires / feature-param
 / contact-extension

11 Mapping Feature Parameters and Feature Set Predicates

 Mapping between feature parameters and a feature set predicate,
 formatted according to the syntax of RFC 2533 [2] is trivial.

 Starting from a set of feature-param, the procedure is as follows.
 Construct a conjunction. Each term in the conjunction derives from
 one feature-param. If the feature-param has no value, it is
 equivalent, in terms of the processing which follows, as if it had a
 value of "TRUE".

 If the feature-param value is a tag-value-list, the element of the
 conjunction is a disjunction. There is one term in the disjunction
 for each tag-value in the tag-value-list.

 Consider now the construction of a filter from a tag-value. If the
 tag-value starts with a bang (!), the filter is of the form:

 (! <filter from remainder>)

 where "filter from remainder" refers to the filter that would be
 constructed from the tag-value if the bang had not been present.

 If the tag-value starts with an octothorpe (#), the filter is a
 numeric comparison. The comparator is either =, >=, <= or a range
 based on the next characters in the phrase. If the next characters
 are =. >= or <=, the filter is of the form:

 (name comparator compare-value)

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 47]

Internet Draft SIP Caller Preferences March 2, 2003

 where name is the name of the feature parameter after it has been
 decoded (see below), and comparator is either =, >= or <= depending
 of the initial characters in the phrase. If the remainder of the text
 in the tag-value after the equal contains a decimal point (implying a
 rational number), the decimal point is shifted right N times until it
 is an integer, I. Compare-value above is then set to "I / 10**N",
 where 10**N is the result of computing the number 10 to the Nth
 power.

RFC 2533 uses a fractional notation to describe rational
 numbers. This specification use a decimal form. The above
 text merely converts between the two representations.
 Practically speaking, this conversion is not needed since
 the numbers are the same in either case. However, it is
 described in case implementations wish to directly plug the
 predicates generated by the rules in this section into an

RFC 2533 implementation.

 If the value after the octothorpe is a number, the filter is a range.
 The format of the filter is:

 (name=[remainder])

 where name is the feature-tag after it has been decoded (see below),
 and remainder is the remainder of the text in the tag-value after the
 #, with any decimal numbers converted to a rational form, and the
 colon replaced by a double dot (..).

 If the tag-value does not begin with an octothorpe (it is a token-
 nobang or boolean), the filter is of the form:

 (name=tag-value)

 where name is the feature-tag after it has been decoded (see below).

 If the feature-param contains a string-value (based on the fact that
 it begins with a left angle bracket ("<") and ends with a right angle
 bracket (">")), the filter is of the form:

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 48]

Internet Draft SIP Caller Preferences March 2, 2003

 (name="qdtext")

 Note the explicit usage of quotes around the qdtext, which indicate
 that the value is a string. In RFC 2533, strings are compared using
 case sensitive rules, and tokens, case insensitive.

 In RFC 2533, when an feature tag value is unquoted, its a
 token, and when quoted, its a string. The comparison rules
 are case insensitive for the former, and sensitive for the
 latter. The presence of quotes, or lack thereof, is the
 means by which an implementation can tell whether to apply
 sensitive or insensitive comparison rules. In the syntax
 described here, we cannot use quoted strings, since there
 is already a quoted string around each contact parameter
 value. So, we use an angle bracket to signify that the
 value is to be interpreted as a case sensitive string. If
 no brackets are present, the proxy would perform matching
 operations in a case insensitive manner, and if they are
 present, case sensitive.

 Feature tags, as specified in RFC 2506, cannot be directly
 represented as header field parameters in the Contact, Accept-Contact
 and Reject-Contact header fields. This is due to an inconsistency in
 the grammars, and in the need to differentiate feature parameters
 from parameters used by other extensions. As such, feature tag values
 are encoded from RFC2506 format to yield an enc-feature-tag, and then
 are decoded into RFC 2506 format. The decoding process is simple. If
 there is a leading plus (+) sign, it is removed. Any exclamation
 point (!) is converted to a colon (:) and any single quote (') is
 converted to a forward slash (/). The encoding process is similarly
 performed. Any forward slashes in the feature tag are converted to a
 single quote, and any colons are converted to an exclamation point.
 If the feature tag name is not amongst the base tags specified in

Section 10, a plus sign is added to the front of the feature tag to
 create the encoded feature tag. The plus sign MUST NOT be added if
 the feature tag name is amongst the base tags.

 As an example, the Accept-Contact header:

 Accept-Contact:*;mobility="fixed";events="!presence,winfo";language="en,de"
 ;description="<PC>";+newparam;+rangeparam="#-4:+5.125"

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2506

J. Rosenberg et. al. [Page 49]

Internet Draft SIP Caller Preferences March 2, 2003

 would be converted to the following feature predicate:

 (& (mobility=fixed)
 (| (! (events=presence)) (events=winfo))
 (| (language=en) (language=de))
 (description="PC")
 (newparam=TRUE)
 (rangeparam=-4..5125/1000))

 The conversion of an RFC 2533 formatted feature set to a set of
 feature parameters proceeds in the same way, but in reverse. The
 conversion can only be done for feature sets constrained as described
 in Section 6.1. The feature tag has to be encoded into a feature
 parameter using the process described above.

12 Security Considerations

 The presence of caller preferences in a request has an effect on the
 ways in which the request is handled at a server. As a result, it is
 especially important that requests with caller preferences be
 integrity-protected. The same holds true for registrations with
 feature parameters in the Contact header field. User agents who are
 concerned with protecting the integrity of their requests SHOULD use
 the SIPS URI scheme.

 Processing of caller preferences requires set operations and searches
 which can require some amount of computation. This enables a DOS
 attack whereby a user can send requests with substantial numbers of
 caller preferences, in the hopes of overloading the server. To
 counter this, servers SHOULD reject requests with too many rules. A
 reasonable number is around 20.

 Feature sets contained in REGISTER requests can reveal sensitive
 information about a user or UA (for example, the languages spoken).
 If this information is sensitive, confidentiality SHOULD be provided
 by using the SIPS URI scheme, as described in RFC 3261 [1].

13 IANA Considerations

 There are a number of IANA considerations associated with this
 specification.

13.1 Media Feature Tags

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc3261

J. Rosenberg et. al. [Page 50]

Internet Draft SIP Caller Preferences March 2, 2003

 This specification registers a number of new Media feature tags
 according to the procedures of RFC 2506 [5]. Those registrations are
 contained in Section 9, and are meant to be placed into the IETF tree
 for media feature tags.

13.2 SIP Header Fields

 This specification registers three new SIP header fields, according
 to the process of RFC 3261 [1].

 The following is the registration for the Accept-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Accept-Contact

 Compact Form: a

 The following is the registration for the Reject-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Reject-Contact

 Compact Form: j

 The following is the registration for the Request-Disposition header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number
 of this specification.]

 Header Field Name: Request-Disposition

 Compact Form: d

13.3 SIP Option Tags

 This specification registers a single SIP option tag, pref. The
 required information for this registration, as specified in RFC 3261,
 is:

 Name: pref

https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

J. Rosenberg et. al. [Page 51]

Internet Draft SIP Caller Preferences March 2, 2003

 Description: This option tag is used in a Proxy-Require header
 field by a UAC to ensure that caller preferences are
 honored at each proxy along the path. However, this usage
 is discouraged. It can also be used in the Require header
 field of a registration to ensure that the registrar
 supports the caller preferences extensions.

14 Acknowledgments

 The initial set of media feature tags used by this specification were
 influenced by Scott Petrack's CMA design. Jonathan Lennox, Rohan
 Mahy and John Hearty provided helpful comments. Graham Klyne provided
 assistance on the usage of RFC 2533.

15 Author's Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

 Paul Kyzivat
 Cisco Systems
 Mail Stop LWL3/12/2
 900 Chelmsford St.
 Lowell, MA 01851
 email: pkzivat@cisco.com

16 Normative References

 [1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. R. Johnston, J.
 Peterson, R. Sparks, M. Handley, and E. Schooler, "SIP: session
 initiation protocol," RFC 3261, Internet Engineering Task Force, June
 2002.

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc3261

J. Rosenberg et. al. [Page 52]

Internet Draft SIP Caller Preferences March 2, 2003

 [2] G. Klyne, "A syntax for describing media feature sets," RFC 2533,
 Internet Engineering Task Force, Mar. 1999.

 [3] "Session initiation protocol (SIP) extension for instant
 messaging," RFC 3428, Internet Engineering Task Force, Dec. 2002.

 [4] S. Bradner, "Key words for use in rfcs to indicate requirement
 levels," RFC 2119, Internet Engineering Task Force, Mar. 1997.

 [5] K. Holtman, A. Mutz, and T. Hardie, "Media feature tag
 registration procedure," RFC 2506, Internet Engineering Task Force,
 Mar. 1999.

 [6] G. Klyne, "Corrections to "A syntax for describing media feature
 sets"," RFC 2738, Internet Engineering Task Force, Dec. 1999.

 [7] A. B. Roach, "Session initiation protocol (sip)-specific event
 notification," RFC 3265, Internet Engineering Task Force, June 2002.

 [8] S. Donovan, "The SIP INFO method," RFC 2976, Internet Engineering
 Task Force, Oct. 2000.

 [9] J. Rosenberg and H. Schulzrinne, "Reliability of provisional
 responses in session initiation protocol (SIP)," RFC 3262, Internet
 Engineering Task Force, June 2002.

 [10] J. Rosenberg, "The session initiation protocol (SIP) UPDATE
 method," RFC 3311, Internet Engineering Task Force, Oct. 2002.

 [11] P. Hoffman, "Registration of charset and languages media
 features tags," RFC 2987, Internet Engineering Task Force, Nov. 2000.

 [12] G. Klyne, "MIME content types in media feature expressions," RFC
2913, Internet Engineering Task Force, Sept. 2000.

 [13] M. Handley and V. Jacobson, "SDP: session description protocol,"
RFC 2327, Internet Engineering Task Force, Apr. 1998.

 [14] D. Willis and B. Hoeneisen, "Session initiation protocol (SIP)
 extension header field for registering non-adjacent contacts," RFC

3327, Internet Engineering Task Force, Dec. 2002.

 [15] "Integration of resource management and session initiation
 protocol (SIP)," RFC 3312, Internet Engineering Task Force, Oct.
 2002.

 [16] J. Peterson, "A privacy mechanism for the session initiation
 protocol (SIP)," RFC 3323, Internet Engineering Task Force, Nov.

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc3428
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2738
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc2976
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/rfc2987
https://datatracker.ietf.org/doc/html/rfc2913
https://datatracker.ietf.org/doc/html/rfc2913
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3312
https://datatracker.ietf.org/doc/html/rfc3323

J. Rosenberg et. al. [Page 53]

Internet Draft SIP Caller Preferences March 2, 2003

 2002.

 [17] J. Arkko, V. Torvinen, G. Camarillo, A. Niemi, and T. Haukka,
 "Security mechanism agreement for the session initiation protocol
 (SIP)," RFC 3329, Internet Engineering Task Force, Jan. 2003.

 [18] T. Berners-Lee, R. Fielding, and L. Masinter, "Uniform resource
 identifiers (URI): generic syntax," RFC 2396, Internet Engineering
 Task Force, Aug. 1998.

 [19] A. Vaha-Sipila, "Urls for telephone calls," RFC 2806, Internet
 Engineering Task Force, Apr. 2000.

 [20] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P.
 J. Leach, and T. Berners-Lee, "Hypertext transfer protocol --
 HTTP/1.1," RFC 2616, Internet Engineering Task Force, June 1999.

 [21] E. Levinson, "Content-id and message-id uniform resource
 locators," RFC 2392, Internet Engineering Task Force, Aug. 1998.

17 Informative References

 [22] J. Lennox and H. Schulzrinne, "Call processing language
 framework and requirements," RFC 2824, Internet Engineering Task
 Force, May 2000.

 [23] G. Klyne, "Protocol-independent content negotiation framework,"
RFC 2703, Internet Engineering Task Force, Sept. 1999.

 [24] J. Rosenberg and H. Schulzrinne, "Guidelines for authors of
 extensions to the session initiation protocol (SIP)," internet draft,
 Internet Engineering Task Force, Nov. 2002. Work in progress.

 [25] J. Rosenberg, "A presence event package for the session
 initiation protocol (SIP)," internet draft, Internet Engineering Task
 Force, Jan. 2003. Work in progress.

 [26] J. Rosenberg, "A watcher information event template-package for
 the session initiation protocol (SIP)," internet draft, Internet
 Engineering Task Force, Jan. 2003. Work in progress.

 [27] R. Sparks, "The SIP refer method," internet draft, Internet
 Engineering Task Force, Dec. 2002. Work in progress.

 [28] J. Rosenberg and H. Schulzrinne, "A session initiation protocol
 (SIP) event package for dialog state," internet draft, Internet
 Engineering Task Force, June 2002. Work in progress.

https://datatracker.ietf.org/doc/html/rfc3329
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2806
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2392
https://datatracker.ietf.org/doc/html/rfc2824
https://datatracker.ietf.org/doc/html/rfc2703

J. Rosenberg et. al. [Page 54]

Internet Draft SIP Caller Preferences March 2, 2003

 [29] J. Rosenberg and H. Schulzrinne, "A session initiation protocol
 (SIP) event package for conference state," internet draft, Internet
 Engineering Task Force, June 2002. Work in progress.

 [30] J. Rosenberg, "A session initiation protocol (SIP) event package
 for registrations," internet draft, Internet Engineering Task Force,
 Oct. 2002. Work in progress.

 [31] R. Mahy, "A message summary and message waiting indication event
 package for the session initiation protocol (SIP)," internet draft,
 Internet Engineering Task Force, Nov. 2002. Work in progress.

 [32] E. Rescorla, "HTTP over TLS," RFC 2818, Internet Engineering
 Task Force, May 2000.

 [33] J. Rosenberg, "A framework for conferencing with the session
 initiation protocol," internet draft, Internet Engineering Task
 Force, Feb. 2003. Work in progress.

 [34] M. Smith and T. Howes, "LDAP: string representation of search
 filters," internet draft, Internet Engineering Task Force, Aug. 2002.
 Work in progress.

A Overview of RFC 2533

 This section provides a brief overview of RFC 2533 and related
 specifications that form the content negotiation framework.

 A critical concept in the framework is that of a feature set. A
 feature set is information about an entity (in our case, a UA), which
 describes a set of features it can handle. A feature set can be
 thought of as a region in N-dimensional space. Each dimension in this
 space is a different media feature, identified by a media feature
 tag. For example, one dimension (or axis) might represent languages,
 another might represent methods, and another, MIME types. A feature
 collection represents a single point in this space. It represents a
 particular rendering or instance of an entity (in our case, a UA).
 For example, a "rendering" of a UA would define an instantaneous mode
 of operation that it can support. One such rendering would be
 processing the INVITE method, which carried the application/sdp MIME
 type, sent to a UA for a user that is speaking English.

 A feature set can therefore be defined as a set of feature
 collections. In other words, a feature set is a region of N-
 dimensional feature-space, that region being defined by the set of
 points - feature collections - that make up the space. If a
 particular feature collection is in the space, it means that the
 rendering described by that feature collection is supported by the

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 55]

Internet Draft SIP Caller Preferences March 2, 2003

 device with that feature set.

 How does one represent a feature set? There are many ways to describe
 an N-dimensional space. One way is to identify mathematical functions
 which identify its contours. Clearly, that is too complex to be
 useful. The solution taken in RFC 2533 is to define the space with a
 feature set predicate. A feature predicate defines a relation over an
 N-dimensional space; its input is any point in that space (i.e. a
 feature collection), and is true for all points that are in the
 region thus defined.

RFC 2533 describes a syntax for writing down these N-dimensional
 boolean functions, borrowed from LDAP [34]. It uses a prolog-style
 syntax which is fairly self-explanatory. This representation is
 called a feature set predicate. The base unit of the predicate is a
 filter, which is a boolean expression encased in round brackets. A
 filter can be complex, where it contains conjunctions and
 disjunctions of other filters, or it can be simple. A simple filter
 is one that expresses a comparison operation on a single media
 feature tag.

 For example, consider the feature set predicate:

 (& (foo=A)
 (bar=B)
 (| (baz=C) (& (baz=D) (bif=E))))

 This defines a function over four media features - foo, bar, baz and
 bif. Any point in feature space with foo equal to A, bar equal to B,
 and either baz equal to C, or baz equal to D and bif equal to E, is
 in the feature set defined by this feature set predicate.

 Note that the predicate doesn't say anything about the number of
 dimensions in feature space. The predicate operates on a feature
 space of any number of dimensions, but only those dimensions labeled
 foo, bar, baz and bif matter. The result is that values of other
 media features don't matter. The feature collection
 foo=A,bar=B,baz=C,bop=F is in the feature set described by the
 predicate, even though the media feature tag "bop" isn't mentioned.
 Feature set predicates are therefore inclusive by default. A feature
 collection is present unless the boolean predicate rules it out. This
 was a conscious design choice in RFC 2533.

RFC 2533 also talks about matching a preference with a capability

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

J. Rosenberg et. al. [Page 56]

Internet Draft SIP Caller Preferences March 2, 2003

 set. This is accomplished by representing both with a feature set. A
 preference is a feature set - its a specification of a number of
 feature collections, any one of which would satisfy the requirements
 of the sender. A capability is also a feature set - its a
 specification of the feature collections that the recipient supports.
 There is a match when the spaces defined by both feature sets
 overlap. When there is overlap, there exists at least one feature
 collection that exists in both feature sets, and therefore a modality
 or rendering desired by the sender which is supported by the
 recipient.

 This leads directly to the definition of a match. Two feature sets
 match if there exists at least one feature collection present in both
 feature sets.

 Computing a match for two general feature set predicates is not easy.
Section 5 of RFC 2533 presents an algorithm for doing it by expanding

 an arbitrary expression into disjunctive normal form. However, the
 feature set predicates used by the caller preferences specification
 are constrained. They are always in conjunctive normal form, with
 each term in the conjunction describing values for different media
 features. This makes computation of a match easy. It is computed
 independently for each media feature, and then the feature sets
 overlap if media features specified in both sets overlap. Computing
 the overlap of a single media feature is very straightforward, and is
 a simple matter of computing whether two finite sets overlap.

 Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive

https://datatracker.ietf.org/doc/html/rfc2533#section-5
https://datatracker.ietf.org/doc/html/bcp11

J. Rosenberg et. al. [Page 57]

Internet Draft SIP Caller Preferences March 2, 2003

 Director.

 Full Copyright Statement

 Copyright (c) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J. Rosenberg et. al. [Page 58]

