
SIP J. Rosenberg
Internet-Draft dynamicsoft
Expires: April 21, 2004 H. Schulzrinne
 Columbia University
 P. Kyzivat
 Cisco Systems
 October 22, 2003

Caller Preferences for the Session Initiation Protocol (SIP)
draft-ietf-sip-callerprefs-10

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 21, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes a set of extensions to the Session Initiation
 Protocol (SIP) which allow a caller to express preferences about
 request handling in servers. These preferences include the ability to
 select which Uniform Resource Identifiers (URI) a request gets routed
 to, and to specify certain request handling directives in proxies and
 redirect servers. It does so by defining three new request header
 fields, Accept-Contact, Reject-Contact, and Request-Disposition,
 which specify the caller's preferences.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Rosenberg, et al. Expires April 21, 2004 [Page 1]

Internet-Draft Caller Preferences October 2003

Table of Contents

1. Introduction . 3
2. Terminology . 5
3. Definitions . 6
4. Overview of Operation 7
5. UAC Behavior . 8
5.1 Request Handling Preferences 8
5.2 Feature Set Preferences 8
6. UAS Behavior . 11
7. Proxy Behavior . 12
7.1 Request-Disposition Processing 12
7.2 Preference and Capability Matching 12
7.2.1 Extracting Explicit Preferences 13
7.2.2 Extracting Implicit Preferences 13
7.2.2.1 Methods . 13
7.2.2.2 Event Packages . 14
7.2.3 Constructing Contact Predicates 14
7.2.4 Matching . 15
7.2.5 Example . 19
8. Mapping Feature Parameters to a Predicate 21
9. Header Field Definitions 24
9.1 Request Disposition 24
9.2 Accept-Contact and Reject-Contact Header Fields 26
10. Augmented BNF . 27
11. Security Considerations 28
12. IANA Considerations 29
13. Acknowledgments . 30

 Normative References 31
 Informative References 32
 Authors' Addresses . 32
 Intellectual Property and Copyright Statements 33

Rosenberg, et al. Expires April 21, 2004 [Page 2]

Internet-Draft Caller Preferences October 2003

1. Introduction

 When a Session Initiation Protocol (SIP) [1] server receives a
 request, there are a number of decisions it can make regarding
 processing of the request. These include:

 o whether to proxy or redirect the request

 o which URIs to proxy or redirect to

 o whether to fork or not

 o whether to search recursively or not

 o whether to search in parallel or sequentially

 The server can base these decisions on any local policy. This policy
 can be statically configured, or can be based on programmatic
 execution or database access.

 However, the administrator of the server is the not the only entity
 with an interest in request processing. There are at least three
 parties which have an interest: (1) the administrator of the server,
 (2) the user that sent the request, and (3) the user to whom the
 request is directed. The directives of the administrator are
 embedded in the policy of the server. The preferences of the user to
 whom the request is directed (referred to as the callee, even though
 the request may not be INVITE) can be expressed most easily through a
 script written in some type of scripting language, such as the Call
 Processing Language (CPL) [11]. However, no mechanism exists to
 incorporate the preferences of the user that sent the request (also
 referred to as the caller, even though the request may not be
 INVITE). For example, the caller might want to speak to a specific
 user, but want to reach them only at work, because the call is a
 business call. As another example, the caller might want to reach a
 user, but not their voicemail, since it is important that the caller
 talk to the called party. In both of these examples, the caller's
 preference amounts to having a proxy make a particular routing choice
 based on the preferences of the caller.

 This extension allows the caller to have these preferences met. It
 does so by specifying mechanisms by which a caller can provide
 preferences on processing of a request. There are two types of
 preferences. One of them, called request handling preferences, are
 encapsulated in the Request-Disposition header field. They provide
 specific request handling directives for a server. The other, called
 feature preferences, are present in the Accept-Contact and
 Reject-Contact header fields. They allow the caller to provide a

Rosenberg, et al. Expires April 21, 2004 [Page 3]

Internet-Draft Caller Preferences October 2003

 feature set [2] that expresses its preferences on the characteristics
 of the UA that is to be reached. These are matched with a feature
 sets provided by a UA to its registrar [3]. The extension is very
 general purpose, and not tied to a particular service. Rather, it is
 a tool that can be used in the development of many services.

 One example of the a service enabled by caller preferences is a "one
 number" service. A user can have a single identity (their SIP URI)
 for all of their devices - their cell phone, PDA, work phone, home
 phone, and so on. If the caller wants to reach the user at their
 business phone, they simply select "business phone" from a pull-down
 menu of options when calling that URI. Users would no longer need to
 maintain and distribute separate identities for each device.

Rosenberg, et al. Expires April 21, 2004 [Page 4]

Internet-Draft Caller Preferences October 2003

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [4] and
 indicate requirement levels for compliant implementations.

Rosenberg, et al. Expires April 21, 2004 [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Caller Preferences October 2003

3. Definitions

 Much of the terminology used in this specification is presented in
 [3]. This specification defines the following additional terms:

 Caller: Within the context of this specification, a caller refers to
 the user on whose behalf a UAC is operating. It is not limited to
 a user who's UAC sends the INVITE method.

 Feature Preferences: Caller preferences that describe desired
 properties of a UA that the request is to be routed to. Feature
 preferences can be made explicitly with the Accept-Contact and
 Reject-Contact header fields.

 Request Handling Preferences: Caller preferences that describe
 desired request treatment at a server. These preferences are
 carried in the Request-Disposition header field.

 Target Set: A target set is a set of candidate URIs that a proxy or
 redirect server can send or redirect a request to. Frequently,
 target sets are obtained from a registration, but they need not
 be.

 Explicit Preference: A caller preference indicated explicitly in the
 Accept-Contact or Reject-Contact header fields.

 Implicit Preference: A caller preference that is implied through the
 presence of other aspects of a request. For example, if the
 request method is INVITE, it represents an implicit caller
 preference to route the request to a UA that supports the INVITE
 method.

Rosenberg, et al. Expires April 21, 2004 [Page 6]

Internet-Draft Caller Preferences October 2003

4. Overview of Operation

 When a caller sends a request, it can optionally include new header
 fields which request certain handling at a server. These preferences
 fall into two categories. The first category, called request handling
 preferences, are carried in the Request-Disposition header field.
 They describe specific behavior that is desired at a server. Request
 handling preferences include whether the caller wishes the server to
 proxy or redirect, and whether sequential or parallel search is
 desired. These preferences can be applied at every proxy or redirect
 server on the call signaling path.

 The second category of preferences, called feature preferences, are
 carried in the Accept-Contact and Reject-Contact header fields. These
 header fields contain feature sets, represented by the same feature
 parameters that are used to indicate capabilities [3]. Here, the
 feature parameters represent the caller's preferences. The
 Accept-Contact header field contains feature sets that describe UAs
 that the caller would like to reach. The Reject-Contact header field
 contains feature sets which, if matched by a UA, imply that the
 request should not be routed to that UA.

 Proxies use the information in the Accept-Contact and Reject-Contact
 header fields to select amongst contacts in their target set. When
 neither of those header fields are present, the proxy computes
 implicit preferences from the request. These are caller preferences
 that are not explicitly placed into the request, but can be inferred
 from the presence of other message components. As an example, if the
 request method is INVITE, this is an implicit preference to route the
 call to a UA that supports the INVITE method.

 Both request handling and feature preferences can appear in any
 request, not just INVITE. However, they are only useful in requests
 where proxies need to determine a request target. If the domain in
 the request URI is not owned by any proxies along the request path,
 those proxies will never access a location service, and therefore,
 never have the opportunity to apply the caller preferences. This
 makes sense; typically, the request URI will identify a UAS for
 mid-dialog requests. In those cases, the routing decisions were
 already made on the initial request, and it makes no sense to redo
 them for subsequent requests in the dialog.

Rosenberg, et al. Expires April 21, 2004 [Page 7]

Internet-Draft Caller Preferences October 2003

5. UAC Behavior

 A caller wishing to express preferences for a request includes
 Accept-Contact, Reject-Contact or Request-Disposition header fields
 in the request, depending on their particular preferences. No
 additional behavior is required after the request is sent.

 The Accept-Contact, Reject-Contact and Request-Disposition header
 fields in an ACK for a non-2xx final response, or in a CANCEL
 request, MUST be equal to the values in the original request being
 acknowledged or cancelled. This is to ensure proper operation through
 stateless proxies.

 If the UAC wants to determine whether servers along the path
 understand the header fields described in this specification, it
 includes a Proxy-Require header field with a value of "pref" [3] in
 its request. If the request should fail with a 420, the UAC knows
 that the extension is not supported. In that case, it SHOULD retry,
 and may decide whether or not to use caller preferences. A UA should
 only use Proxy-Require if knowledge about support is essential for
 handling of the request. Note that, in any case, caller preferences
 can only be considered preferences - there is no guarantee that the
 requested service is executed. As such, inclusion of a Proxy-Require
 header field does not mean the preferences will be executed, just
 that the caller preferences extension is understood by the proxies.

5.1 Request Handling Preferences

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular processing directive.

 The syntax of the header field can be found in Section 10, and the
 semantics of the directives are described in Section 9.1.

5.2 Feature Set Preferences

 A UAC can indicate caller preferences for the capabilities of a UA
 that should be reached or not reached as a result of sending a SIP
 request. To do that, it adds one or more Accept-Contact and
 Reject-Contact header field values. Each header field value contains
 a set of feature parameters that define a feature set. The syntax of
 the header field can be found in Section 10, and a discussion of
 their usage in Section 9.2.

 Each feature set is constructed as described in Section 5 of [3]. The
 feature sets placed into these header fields MAY overlap; that is, a
 UA MAY indicate preferences for feature sets that match according to

Rosenberg, et al. Expires April 21, 2004 [Page 8]

Internet-Draft Caller Preferences October 2003

 the matching algorithm of RFC 2533 [2].

 A UAC can express explicit preferences for the methods and event
 packages supported by a UA. It is RECOMMENDED that a UA include a
 term in an Accept-Contact feature set with the "sip.methods" feature
 tag (note, however, that even though the name of this feature tag is
 sip.methods, it would be encoded into the Accept-Contact header field
 as just "methods"), whose value includes the method of the request.
 When a UA sends a SUBSCRIBE request, it is RECOMMENDED that a UA
 include a term in an Accept-Contact feature set with the "sip.events"
 feature tag, whose value includes the event package of the request.
 Whether these terms are placed into a new feature set, or whether
 they are included in each feature set, is at the discretion of the
 implementor. In most cases, the right effect is achieved by including
 a term in each feature set.

 As an example, the following Accept-Contact header field expresses a
 desire to route a call to a mobile device:

 Accept-Contact: *;mobility="mobile";methods="INVITE"

 The Reject-Contact header field allows the UAC to specify that a UA
 should not be contacted if it matches any of the values of the header
 field. Each value of the Reject-Contact header field contains a "*",
 purely to align the syntax with guidelines for SIP extensions [12],
 and is parameterized by a set of feature parameters. Any UA whose
 capabilities match the feature set described by the feature
 parameters matches the value.

 The Accept-Contact header field allows the UAC to specify that a UA
 should be contacted if it matches some or all of the values of the
 header field. Each value of the Accept-Contact header field contains
 a "*" and is parameterized by a set of feature parameters. Any UA
 whose capabilities match the feature set described by the feature
 parameters matches the value. The precise behavior depends heavily on
 whether the "require" and "explicit" feature parameters are present.
 When both of them are present, a proxy will only forward the request
 to contacts which have explicitly indicated that they support the
 desired feature set. Any others are discarded. As such, a UAC should
 only use "require" and "explicit" together when it wishes the call to
 fail unless a contact definitively matches. It's possible that a UA
 supports a desired feature, but did not indicate it in its
 registration. When a UAC uses both "explicit" and "require", such a
 contact would not be reached. As a result, this combination is often
 not the one a UAC will want.

https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 9]

Internet-Draft Caller Preferences October 2003

 When only "require" is present, it means that a contact will not be
 used if it doesn't match. If it does match, or if its not known
 whether its a complete match, the contact is still used. A UAC would
 use "require" alone when a non-matching contact is useless. This is
 common for services where the request simply can't be serviced
 without the neccesary features. An example is support for specific
 methods or event packages. When only "require" is present, the proxy
 will also preferentially route the request to the UA which represents
 the "best" match. Here, "best" means that the UA has explicitly
 indicated it supports more of the desired features than any other.
 Note, however, that this preferential routing will never override an
 ordering providing by the called party. The preferential routing will
 only choose amongst contacts of equal q-value.

 When only "explicit" is present, it means that all contacts provided
 by the callee will be used. However, if the contact isn't an explicit
 match, it is tried last amongst all other contacts with the same
 q-value. The principle difference, therefore, between this
 configuration and the usage of both "require" and "explicit" is the
 fallback behavior for contacts that don't match explicitly. Here,
 they are tried as a last resort. If "require" is also present, they
 are never tried.

 Finally, if neither "require" nor "explicit" are present, it means
 that all contacts provided by the callee will be used. However, if
 the contact doesn't match, it is tried last amongst all other
 contacts with the same q-value. If it does match, the request is
 routed preferentially to the "best" match. This is a common
 configuration for preferences that, if not honored, will still allow
 for a successful call, and the greater the match, the better.

Rosenberg, et al. Expires April 21, 2004 [Page 10]

Internet-Draft Caller Preferences October 2003

6. UAS Behavior

 When a UAS compliant to this specification receives a request whose
 request-URI corresponds to one of its registered Contacts, it SHOULD
 apply the behavior described in Section 7 as if it were a proxy for
 the domain in the request-URI. The UAS acts as if its location
 database contains a single request target for the request-URI. That
 target is associated with a feature set. The feature set is the same
 as the one placed in the registration of the URI in the request-URI.
 If a UA had registered against multiple separate adresses-of-record,
 and the contacts registered for each had different capabilities, it
 will have used a different URI in each registration, so it can
 determine which feature set to use.

 This processing occurs after the client authenticates and authorizes
 the request, but before the remainder of the general UAS processing
 described in Section 8.2.1 of RFC 3261.

 If, after performing this processing, there are no URI left in the
 target set, the UA SHOULD reject the request with a 480 response. If
 there is a URI remaining (there was only one to begin with), the UA
 proceeeds with request processing as per RFC 3261.

 Having a UAS perform the matching operations as if it were a proxy
 allows certain caller preferences to be honored even if the proxy
 doesn't support the extension.

https://datatracker.ietf.org/doc/html/rfc3261#section-8.2.1
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg, et al. Expires April 21, 2004 [Page 11]

Internet-Draft Caller Preferences October 2003

7. Proxy Behavior

 Proxy behavior consists of two orthogonal sets of rules - one for
 processing the Request-Disposition header field, and one for
 processing the URI and feature set preferences in the Accept-Contact
 and Reject-Contact header fields.

 In addition to processing these headers, a proxy MAY add one if not
 present, or add a value to an existing header field, as if it were a
 UAC. This is useful for a proxy to request processing in downstream
 proxies in the implementation of a feature. However a proxy MUST NOT
 modify or remove an existing header field value. This is particularly
 important when S/MIME is used. The message signature could include
 the caller preferences header fields, allowing the UAS to verify
 that, even though proxies may have added header fields, the original
 caller preferences were still present.

7.1 Request-Disposition Processing

 If the request contains a Request-Disposition header field, the
 server SHOULD execute the directives as described in Section 9.1,
 unless it has local policy configured to direct it otherwise.

7.2 Preference and Capability Matching

 A proxy compliant to this specification MUST NOT apply the
 preferences matching operation described here to a request unless it
 is the owner of the domain in the request URI, and accessing a
 location service that has capabilities associated with request
 targets. However, if it is the owner of the domain, and accessing a
 location service that has capabilities associated with request
 targets, it SHOULD apply the processing described in this section.
 Typically, this is a proxy that is using a registration database to
 determine the request targets. However, if a proxy knows about
 capabilities through some other means, it SHOULD apply the processing
 defined here as well. If it does perform the processing, it MUST do
 so as described below.

 The processing is described through a conversion from the syntax
 described in this specification to RFC 2533 [2] syntax, followed by a
 matching operation and a sorting of resulting contact values. The
 usage of RFC 2533 syntax as an intermediate step is not required, it
 only serves as a useful tool to describe the behavior required of the
 proxy. A proxy can use any steps it likes so long as the results are
 identical to the ones that would be achieved with the processing
 described here.

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 12]

Internet-Draft Caller Preferences October 2003

7.2.1 Extracting Explicit Preferences

 The first step in proxy processing is to extract explicit
 preferences. To do that, it looks for the Accept-Contact and
 Reject-Contact header fields.

 For each value of those header fields, it extracts the feature
 parameters. These are the header field parameters whose name is one
 of the base-tags, or whose name begins with a plus (+) [3]. The proxy
 converts all of those parameters to the syntax of RFC 2533, based on
 the rules in Section 8.

 The result will be a set of feature set predicates in conjunctive
 normal form, each of which is associated with one of the two
 preference header fields. If there was a req-parameter associated
 with a header field value in the Accept-Contact header field, the
 feature set predicate derived from that header field value is said to
 have its require flag set. Similarly, if there was an explicit-param
 associated with a header field value in the Accept-Contact header
 field, the feature set predicate derived from that header field value
 is said to have its explicit flag set.

7.2.2 Extracting Implicit Preferences

 If, and only if, the proxy did not find any explicit preferences in
 the request (because there was no Accept-Contact or Reject-Contact
 header field), the proxy extracts implicit preferences. These
 preferences are ones implied by the presence of other information in
 the request.

 First, the proxy creates a conjunction with no terms. This
 conjunction represents a feature set that will be associated with the
 Accept-Contact header field, as if it were included there. Note that
 there is no modification of the message implied - only an association
 for the purposes of processing. Furthermore, this feature set has
 its require flag set, but not its explicit flag.

 The proxy then adds terms to the conjunction for the two implicit
 preference types below.

7.2.2.1 Methods

 One implicit preference is the method. When a UAC sends a request
 with a specific method, it is an implicit preference to have the
 request routed only to UAs that support that method. To support this
 implicit preference, the proxy adds a term to the conjunction of the
 following form:

https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 13]

Internet-Draft Caller Preferences October 2003

 (sip.methods=[method of request])

7.2.2.2 Event Packages

 For requests that establish a subscription [5], the Event header
 field is another expression of an implicit preference. It expresses a
 desire for the request to be routed only to a server than supports
 the given event package. To support this implicit preference, the
 proxy adds a term to the conjunction of the following form:

 (sip.events=[value of the Event header field])

7.2.3 Constructing Contact Predicates

 The proxy then takes each URI in the target set (the set of URI it is
 going to proxy or redirect to), and obtains its capabilities as an

RFC 2533 formatted feature set predicate. This is called a contact
 predicate. If the target URI was obtained through a registration, the
 proxy computes the contact predicate by extracting the feature
 parameters from the Contact header field [3] and the converting them
 to a feature predicate. To extract the feature parameters, the proxy
 follows these steps:

 1. Create an initial, empty list of feature parameters.

 2. If the Contact URI parameters included the "audio", "automata",
 "class", "duplex", "data", "control", "mobility", "description",
 "events", "priority", "methods", "schemes", "application",
 "video", "actor", "language", "isfocus" or "type" parameters,
 those are copied into the list.

 3. If any Contact URI parameter name begins with a "+", it is copied
 into the list if the list does not already contain that name with
 the plus removed. In other words, if the "video" feature
 parameter is in the list, the "+video" parameter would not be
 placed into the list. This conflict should never arise if the
 client were compliant to this specification, since it is illegal
 to use the + form for encoding of a feature tag in the base set.

 If the URI in the target set had no feature parameters, it is said to
 be immune to caller preference processing. This means that the URI is
 removed from the target set temporarily, the caller preferences
 processing described below is executed, and then the URI is added
 back in.

https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 14]

Internet-Draft Caller Preferences October 2003

 Assuming the URI has feature parameters, they are converted to RFC
2533 syntax using the rules of Section 8.

 The resulting predicate is associated with a q-value. If the contact
 predicate was learned through a REGISTER request, the q-value is
 equal to the q-value in the Contact header field parameter, else
 "1.0" if not specified.

 As an example, consider the following registered Contact header
 field:

 Contact: <sip:user@example.com>;audio;video;mobility="fixed";
 +message="TRUE";other-param=66372;
 methods="INVITE,OPTIONS,BYE,CANCEL,ACK";schemes="sip,http"

 This would be converted into the following predicate:

 (& (audio=TRUE)
 (video=TRUE)
 (sip.mobility=fixed)
 (message=TRUE)
 (| (sip.methods=INVITE) (sip.methods=OPTIONS) (sip.methods=BYE)
 (sip.methods=CANCEL) (sip.methods=ACK))
 (| (sip.schemes=sip) (sip.schemes=http)))

 Note that "other-param" was not considered a feature parameter, since
 it is neither a base tag nor did it begin with a leading +.

7.2.4 Matching

 It is important to note that the proxy does not have to know anything
 about the meaning of the feature tags that it is comparing in order
 to perform the matching operation. The rules for performing the
 comparison depend on syntactic hints present in the values of each
 feature tag. For example, a predicate such as:

 (foo>=4)

 implies that the feature tag "foo" is a numeric value. The matching
 rules in RFC 2533 only require an implementation to know whether the
 feature tag is a numeric, token, or quoted string (booleans can be
 treated as tokens). Quoted strings are always matched using a
 case-sensitive matching operation. Tokens are matched using
 case-insensitive matching. Numerics are matched using normal

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 15]

Internet-Draft Caller Preferences October 2003

 mathematical comparisons.

 First, the proxy applies the predicates associated with the
 Reject-Contact header field.

 For each contact predicate, each Reject-Contact predicate (that is,
 each predicate associated with the Reject-Contact header field) is
 examined. If that Reject-Contact predicate contains a filter for a
 feature tag, and that feature tag is not present anywhere in the
 contact predicate, that Reject-Contact predicate is discarded for the
 processing of that contact predicate. If the Reject-Contact predicate
 is not discarded, it is matched to the contact predicate using the
 matching operation of RFC 2533 [2]. If the result is a match, the URI
 corresponding to that contact predicate is discarded from the target
 set.

 The result is that Reject-Contact will only discard URIs where the UA
 has explicitly indicated support for the features that are not
 wanted.

 Next, the proxy applies the predicates associated with the
 Accept-Contact header field. For each contact that remains in the
 target set, the proxy constructs a matching set, Ms. Initially, this
 set contains all of the Accept-Contact predicates. Each of those
 predicates is examined. It is matched to the contact predicate using
 the matching operation of RFC 2533 [2]. If the result is not a match,
 and the Accept-Contact predicate had its require flag set, the URI
 corresponding to that contact predicate is discarded from the target
 set. If the result is not a match, but the Accept-Contact predicate
 did not have its require flag set, that contact URI is not discarded
 from the target set, however, the Accept-Contact predicate is removed
 from the matching set for that contact.

 For each contact that remains in the target set, the proxy computes a
 score for that contact against each predicate in the contact's
 matching set. Let the number of terms in the Accept-Contact predicate
 conjunction be equal to N. Each term in that predicate contains a
 single feature tag. If the contact predicate has a term containing
 that same feature tag, the score is incremented by 1/N. If the
 feature tag was not present in the contact predicate, the score
 remains unchanged. Based on these rules, the score can range between
 zero and one.

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 16]

Internet-Draft Caller Preferences October 2003

 T
 +----------> DROP Contact
 |
 |
 / \
 / \
 T / \ F
 +---->/require\------> Set score=0
 | \ /
 | \ /
 / \ \ /
 / \ \/
 score<1 / \
 +-------> /explicit----> Score unchanged
 | \ / F
 | \ /
 / \ \ /
 / \ \/
 +--------+ / \
 -->|Compute |--> /Score \ --------> Score unchanged
 | Score | \ / score=1
 +--------+ \ /
 \ /
 \/

 Figure 7: Applying the Score

 The require and explicit tags are then applied, resulting in
 potential modification of the score and the target set. This process
 is summarized in Figure 7. If the score for the contact predicate
 against that Accept-Contact predicate was less than one, and the
 Accept-Contact predicate had an explicit tag, if the predicate also
 had a require tag, the Contact URI corresponding to that contact
 predicate is dropped. If, however, the predicate did not have a
 require tag, the score is set to zero. If there was no explicit tag,
 the score is unchanged.

 The next step is to combine the scores and the q-values associated
 with the predicates in the matching set, to arrive at an overall
 caller preference, Qa. For those URIs in the target set which remain,
 there will be a score which indicates its match against each
 Accept-Contact predicate in the matching set. If there are M
 Accept-Contact predicates in the matching set, there will be M scores
 S1 through SM, for each contact. The overall caller preference, Qa,
 is the arithmetic average of S1 through SM.

 At this point, any URIs that were removed from the target set because
 they were immune from caller preferences are added back in, and Qa

Rosenberg, et al. Expires April 21, 2004 [Page 17]

Internet-Draft Caller Preferences October 2003

 for that URI is set to 1.0.

 The purpose of the caller preference Qa is to provide an ordering for
 any contacts remaining in the target set, if the callee has not
 provided an ordering. To do this, the contacts remaining in the
 target set are sorted by the q-value provided by the callee. Once
 sorted, they are grouped into equivalence classes, such that all
 contacts with the same q-value are in the same equivalence class.
 Within each equivalence class, the contacts are then ordered based on
 their values of Qa. The result is an ordered list of contacts that is
 used by the proxy.

 If there were no URIs in the target set after the application of the
 processing in this section, and the caller preferences were based on
 implicit preferences (Section 7.2.2), the processing in this section
 is discarded, and the original target set, ordered by their original
 q-values, is used.

 This handles the case where implicit preferences for the method or
 event packages resulted in the elimination of all potential
 targets. By going back to the original target set, those URIs will
 be tried, and result in the generation of a 405 or 489. The UAC
 can then use this information to try again, or report the error to
 the user. Without reverting to the original target set, the UAC
 would see a 480 response, and have no knowledge of why their
 request failed. Of course, the target set can also be empty after
 the application of explicit preferences. This will result in the
 generation of a 480 by the proxy. This behavior is acceptable, and
 indeed, desirable in the case of explicit preferences. When the
 caller makes an explicit preference, it is agreeing that its
 request might fail because of a preference mismatch. One might try
 to return an error indicating the capabilities of the callee, so
 that the caller could perhaps try again. However, doing so results
 in the leaking of potentially sensitive information to the caller
 without authorization from the callee, and therefore this
 specification does not provide a means for it.

 If a proxy server is recursing, it adds the Contact header fields
 returned in the redirect responses to the target set, and re-applies
 the caller preferences algorithm.

 If the server is redirecting, it returns all entries in the target
 set. It assigns q-values to those entries arbitrarily, so that the
 ordering is identical to the ordering determined by the processing
 above. However, it MUST NOT include the feature parameters for the
 entries in the target set. If it did, the upstream proxy server would
 apply the same caller preferences once more, resulting in a double
 application of those preferences. If the redirect server does wish to

Rosenberg, et al. Expires April 21, 2004 [Page 18]

Internet-Draft Caller Preferences October 2003

 include the feature parameters in the Contact header field, it MUST
 redirect using the original target set and original q-values, before
 the application of caller preferences.

7.2.5 Example

 Consider the following example, which is contrived but illustrative
 of the various components of the matching process. There are five
 registered Contacts for sip:user@example.com. They are:

 Contact: sip:u1@h.example.com;audio;video;methods="INVITE,BYE";q=0.2
 Contact: sip:u2@h.example.com;audio="FALSE";
 methods="INVITE";actor="msg-taker";q=0.2
 Contact: sip:u3@h.example.com;audio;actor="msg-taker";
 methods="INVITE";video;q=0.3
 Contact: sip:u4@h.example.com;audio;methods="INVITE,OPTIONS";q=0.2
 Contact: sip:u5@h.example.com;q=0.5

 An INVITE sent to sip:user@example.com contained the following caller
 preferences header fields:

 Reject-Contact: *;actor="msg-taker";video
 Accept-Contact: *;audio;require
 Accept-Contact: *;video;explicit
 Accept-Contact: *;methods="BYE";class="business";q=1.0

 There are no implicit preferences in this example, because explicit
 preferences are provided.

 The proxy first removes u5 from the target set, since it is immune
 from caller preferences processing.

 Next, the proxy processes the Reject-Contact header field. It is a
 match for all four remaining contacts, but only an explicit match for
 u3. Thats because u3 is the only one that explicitly indicated
 support for video, and explicitly indicated it is a message taker.
 So, u3 gets discarded, and the others remain.

 Next, each of the remaining three contacts is compared against each
 of the three Accept-Contact predicates. u1 is a match to all three,
 earning a score of 1.0 for the first two predicates, and 0.5 for the
 third (the methods feature tag was present in the contact predicate,
 but the class tag was not). u2 doesn't match the first predicate.
 Because that predicate has a require tag, u2 is discarded. u4 matches
 the first predicate, earning a score of 1.0. u4 does match the second
 predicate, but since the match is not explicit (the score is 0.0, in

Rosenberg, et al. Expires April 21, 2004 [Page 19]

Internet-Draft Caller Preferences October 2003

 fact), the score is set to zero (it was already zero, so nothing
 changes). u4 does not match the third predicate.

 At this point, u1 and u4 remain. u1 matched all three Accept-Contact
 predicates, so that its matching set contains all three, with scores
 of 1, 1, and 0.5. u4 matches the first two predicates, with scores of
 1.0 and 0.0. Qa for u1 is 0.83 and Qa for u4 is 0.5. u5 is added back
 in with a Qa of 1.0.

 Next, the remaining contacts in the target set are sorted by q-value.
 u5 has a value of 0.5, u1 has a q-value of 0.2 and so does u4. There
 are two equivalnce classes. The first has a q-value of 0.5, and
 consists of just u5. Since there is only one member of the class,
 sorting within the class has no impact. The second equivalence class
 as a q-value of 0.2. Within that class, the two contacts, u1 and u4,
 are ordered based on their values of Qa. u1 has a Qa of 0.83, and u4,
 a Qa of 0.5. Thus, u1 comes first, followed by u4. The resulting
 overall ordered set of contacts in the target set is u5, u1 and then
 u4.

Rosenberg, et al. Expires April 21, 2004 [Page 20]

Internet-Draft Caller Preferences October 2003

8. Mapping Feature Parameters to a Predicate

 Mapping between feature parameters and a feature set predicate,
 formatted according to the syntax of RFC 2533 [2] is trivial. It is
 just the opposite of the process described in Section 5 of [3].

 Starting from a set of feature-param, the procedure is as follows.
 Construct a conjunction. Each term in the conjunction derives from
 one feature-param. If the feature-param has no value, it is
 equivalent, in terms of the processing which follows, as if it had a
 value of "TRUE".

 If the feature-param value is a tag-value-list, the element of the
 conjunction is a disjunction. There is one term in the disjunction
 for each tag-value in the tag-value-list.

 Consider now the construction of a filter from a tag-value. If the
 tag-value starts with a bang (!), the filter is of the form:

 (! <filter from remainder>)

 where "filter from remainder" refers to the filter that would be
 constructed from the tag-value if the bang had not been present.

 If the tag-value starts with an octothorpe (#), the filter is a
 numeric comparison. The comparator is either =, >=, <= or a range
 based on the next characters in the phrase. If the next characters
 are =. >= or <=, the filter is of the form:

 (name comparator compare-value)

 where name is the name of the feature parameter after it has been
 decoded (see below), and comparator is either =, >= or <= depending
 of the initial characters in the phrase. If the remainder of the text
 in the tag-value after the equal contains a decimal point (implying a
 rational number), the decimal point is shifted right N times until it
 is an integer, I. Compare-value above is then set to "I / 10**N",
 where 10**N is the result of computing the number 10 to the Nth
 power.

 If the value after the octothorpe is a number, the filter is a range.
 The format of the filter is:

 (name=[remainder])

 where name is the feature-tag after it has been decoded (see below),
 and remainder is the remainder of the text in the tag-value after the

https://datatracker.ietf.org/doc/html/rfc2533

Rosenberg, et al. Expires April 21, 2004 [Page 21]

Internet-Draft Caller Preferences October 2003

 #, with any decimal numbers converted to a rational form, and the
 colon replaced by a double dot (..).

 If the tag-value does not begin with an octothorpe (it is a
 token-nobang or boolean), the filter is of the form:

 (name=tag-value)

 where name is the feature-tag after it has been decoded (see below).

 If the feature-param contains a string-value (based on the fact that
 it begins with a left angle bracket ("<") and ends with a right angle
 bracket (">")), the filter is of the form:

 (name="qdtext")

 Note the explicit usage of quotes around the qdtext, which indicate
 that the value is a string. In RFC 2533, strings are compared using
 case sensitive rules, and tokens, case insensitive.

 Feature tags, as specified in RFC 2506, cannot be directly
 represented as header field parameters in the Contact, Accept-Contact
 and Reject-Contact header fields. This is due to an inconsistency in
 the grammars, and in the need to differentiate feature parameters
 from parameters used by other extensions. As such, feature tag values
 are encoded from RFC 2506 format to yield an enc-feature-tag, and
 then are decoded into RFC 2506 format. The decoding process is
 simple. If there is a leading plus (+) sign, it is removed. Any
 exclamation point (!) is converted to a colon (:) and any single
 quote (') is converted to a forward slash (/). If there was no
 leading plus sign, and the remainder of the encoded name was
 "automata", "class", "duplex", "mobility", "description", "events",
 "priority", "methods", "schemes", "isfocus" or "actor", the prefix
 "sip." is added to remainder of the encoded name to compute the
 feature tag name.

 As an example, the Accept-Contact header:

 Accept-Contact:*;mobility="fixed";events="!presence,winfo";language="en,de"
 ;description="<PC>";+sip.newparam;+rangeparam="#-4:+5.125"

 would be converted to the following feature predicate:

https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2506

Rosenberg, et al. Expires April 21, 2004 [Page 22]

Internet-Draft Caller Preferences October 2003

 (& (sip.mobility=fixed)
 (| (! (sip.events=presence)) (sip.events=winfo))
 (| (language=en) (language=de))
 (sip.description="PC")
 (sip.newparam=TRUE)
 (rangeparam=-4..5125/1000))

Rosenberg, et al. Expires April 21, 2004 [Page 23]

Internet-Draft Caller Preferences October 2003

9. Header Field Definitions

 This specification defines three new header fields - Accept-Contact,
 Reject-Contact, and Request-Disposition.

 Figure 17 and Figure 18 are an extension of Tables 2 and 3 in RFC
3261 [1] for the Accept-Contact, Reject-Contact and

 Request-Disposition header fields. The column "INF" is for the INFO
 method [6], "PRA" is for the PRACK method [7], "UPD" is for the
 UPDATE method [8], "SUB" is for the SUBSCRIBE method [5], "NOT" is
 for the NOTIFY method [5], "MSG" is for the MESSAGE method [9], and
 "REF" is for the REFER method [10].

 Header field where proxy ACK BYE CAN INV OPT REG

 Accept-Contact R ar o o o o o -
 Reject-Contact R ar o o o o o -
 Request-Disposition R ar o o o o o o

 Figure 17: Accept-Contact, Reject-Contact and Request-Disposition
 header fields

 Header field where proxy PRA UPD SUB NOT INF MSG REF

 Accept-Contact R ar o o o o o o o
 Reject-Contact R ar o o o o o o o
 Request-Disposition R ar o o o o o o o

 Figure 18: Accept-Contact, Reject-Contact and Request-Disposition
 header fields

9.1 Request Disposition

 The Request-Disposition header field specifies caller preferences for
 how a server should process a request. Its value is a list of tokens,
 each of which specifies a particular directive. Its syntax is
 specified in Section 10. Note that a compact form, using the letter
 d, has been defined. The directives are grouped into types. There can
 only be one directive of each type per request (i.e., you can't have
 both "proxy" and "redirect" in the same Request-Disposition header
 field).

 When the caller specifies a directive, the server SHOULD honor that
 directive.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg, et al. Expires April 21, 2004 [Page 24]

Internet-Draft Caller Preferences October 2003

 The following types of directives are defined:

 proxy-directive: This type of directive indicates whether the caller
 would like each server to proxy ("proxy") or redirect
 ("redirect").

 cancel-directive: This type of directive indicates whether the caller
 would like each proxy server to send a CANCEL request downstream
 ("cancel") in response to a 200 OK from the downstream server
 (which is the normal mode of operation, making it somewhat
 redundant), or whether this function should be left to the caller
 ("no-cancel"). If a proxy receives a request with this parameter
 set to "no-cancel", it SHOULD NOT CANCEL any outstanding branches
 on receipt of a 2xx. However, it would still send CANCEL on any
 outstanding branches on receipt of a 6xx.

 fork-directive: This type of directive indicates whether a proxy
 should fork a request ("fork"), or proxy to only a single address
 ("no-fork"). If the server is requested not to fork, the server
 SHOULD proxy the request to the "best" address (generally the one
 with the highest q-value). The directive is ignored if "redirect"
 has been requested.

 recurse-directive: This type of directive indicates whether a proxy
 server receiving a 3xx response should send requests to the
 addresses listed in the response ("recurse"), or forward the list
 of addresses upstream towards the caller ("no-recurse"). The
 directive is ignored if "redirect" has been requested.

 parallel-directive: For a forking proxy server, this type of
 directive indicates whether the caller would like the proxy server
 to proxy the request to all known addresses at once ("parallel"),
 or go through them sequentially, contacting the next address only
 after it has received a non-2xx or non-6xx final response for the
 previous one ("sequential"). The directive is ignored if
 "redirect" has been requested.

 queue-directive: If the called party is temporarily unreachable,
 e.g., because it is in another call, the caller can indicate that
 it wants to have its call queued ("queue") or rejected immediately
 ("no-queue"). If the call is queued, the server returns "182
 Queued". A queued call can be terminated as described in [1].

 Example:

 Request-Disposition: proxy, recurse, parallel

Rosenberg, et al. Expires April 21, 2004 [Page 25]

Internet-Draft Caller Preferences October 2003

 The set of request disposition directives is purposefully not
 extensible. This is to avoid a proliferation of new extensions to SIP
 that are "tunneled" through this header field.

9.2 Accept-Contact and Reject-Contact Header Fields

 The syntax for these header fields is described in Section 10. A
 compact form, with the letter a, has been defined for the
 Accept-Contact header field, and with the letter j for the
 Reject-Contact header field.

Rosenberg, et al. Expires April 21, 2004 [Page 26]

Internet-Draft Caller Preferences October 2003

10. Augmented BNF

 The BNF for the Request-Disposition header field is:

 Request-Disposition = ("Request-Disposition" / "d") HCOLON
 directive *(COMMA directive)
 directive = proxy-directive / cancel-directive /
 fork-directive / recurse-directive /
 parallel-directive / queue-directive)
 proxy-directive = "proxy" / "redirect"
 cancel-directive = "cancel" / "no-cancel"
 fork-directive = "fork" / "no-fork"
 recurse-directive = "recurse" / "no-recurse"
 parallel-directive = "parallel" / "sequential"
 queue-directive = "queue" / "no-queue"

 The BNF for the Accept-Contact and Reject-Contact header fields is:

 Accept-Contact = ("Accept-Contact" / "a") HCOLON ac-value
 *(COMMA ac-value)
 Reject-Contact = ("Reject-Contact" / "j") HCOLON rc-value
 *(COMMA rc-value)
 ac-value = "*" *(SEMI ac-params)
 rc-value = "*" *(SEMI rc-params)
 ac-params = feature-param / req-param
 / explicit-param / generic-param
 ;;feature param from RFC XXXX
 ;;generic-param from RFC 3261
 rc-params = feature-param / generic-param
 req-param = "require"
 explicit-param = "explicit"

 Despite the BNF, there MUST NOT be more than one req-param or
 explicit-param in an acrc-params. Furthermore, there can only be one
 instance of any feature tag in feature-param.

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg, et al. Expires April 21, 2004 [Page 27]

Internet-Draft Caller Preferences October 2003

11. Security Considerations

 The presence of caller preferences in a request has an effect on the
 ways in which the request is handled at a server. As a result, it is
 especially important that requests with caller preferences be
 integrity-protected.

 Processing of caller preferences requires set operations and searches
 which can require some amount of computation. This enables a DOS
 attack whereby a user can send requests with substantial numbers of
 caller preferences, in the hopes of overloading the server. To
 counter this, servers SHOULD reject requests with too many rules. A
 reasonable number is around 20.

Rosenberg, et al. Expires April 21, 2004 [Page 28]

Internet-Draft Caller Preferences October 2003

12. IANA Considerations

 This specification registers three new SIP header fields, according
 to the process of RFC 3261 [1].

 The following is the registration for the Accept-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of
 this specification.]

 Header Field Name: Accept-Contact

 Compact Form: a

 The following is the registration for the Reject-Contact header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of
 this specification.]

 Header Field Name: Reject-Contact

 Compact Form: j

 The following is the registration for the Request-Disposition header
 field:

 RFC Number: RFC XXXX [Note to IANA: Fill in with the RFC number of
 this specification.]

 Header Field Name: Request-Disposition

 Compact Form: d

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg, et al. Expires April 21, 2004 [Page 29]

Internet-Draft Caller Preferences October 2003

13. Acknowledgments

 The initial set of media feature tags used by this specification were
 influenced by Scott Petrack's CMA design. Jonathan Lennox, Bob
 Penfield, Ben Campbell, Mary Barnes, Rohan Mahy and John Hearty
 provided helpful comments. Graham Klyne provided assistance on the
 usage of RFC 2533.

Rosenberg, et al. Expires April 21, 2004 [Page 30]

https://datatracker.ietf.org/doc/html/rfc2533

Internet-Draft Caller Preferences October 2003

Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Klyne, G., "A Syntax for Describing Media Feature Sets", RFC
2533, March 1999.

 [3] Rosenberg, J., "Indicating User Agent Capabilities in the
 Session Initiation Protocol (SIP)",

draft-ietf-sip-callee-caps-00 (work in progress), June 2003.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [6] Donovan, S., "The SIP INFO Method", RFC 2976, October 2000.

 [7] jdrosen@dynamicsoft.com and schulzrinne@cs.columbia.edu,
 "Reliability of Provisional Responses in Session Initiation
 Protocol (SIP)", RFC 3262, June 2002.

 [8] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
 Method", RFC 3311, October 2002.

 [9] Campbell, B., Rosenberg, J., Schulzrinne, H., Huitema, C. and
 D. Gurle, "Session Initiation Protocol (SIP) Extension for
 Instant Messaging", RFC 3428, December 2002.

 [10] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/rfc2533
https://datatracker.ietf.org/doc/html/draft-ietf-sip-callee-caps-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc2976
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/rfc3428
https://datatracker.ietf.org/doc/html/rfc3515

Rosenberg, et al. Expires April 21, 2004 [Page 31]

Internet-Draft Caller Preferences October 2003

Informative References

 [11] Lennox, J. and H. Schulzrinne, "Call Processing Language
 Framework and Requirements", RFC 2824, May 2000.

 [12] Rosenberg, J., "Guidelines for Authors of Extensions to the
 Session Initiation Protocol (SIP)",

draft-ietf-sip-guidelines-06 (work in progress), November 2002.

Authors' Addresses

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027
 US

 EMail: schulzrinne@cs.columbia.edu
 URI: http://www.cs.columbia.edu/~hgs

 Paul Kyzivat
 Cisco Systems
 1414 Massachusetts Avenue
 BXB500 C2-2
 Boxboro, MA 01719
 US

 EMail: pkzivat@cisco.com

https://datatracker.ietf.org/doc/html/rfc2824
https://datatracker.ietf.org/doc/html/draft-ietf-sip-guidelines-06
http://www.jdrosen.net
http://www.cs.columbia.edu/~hgs

Rosenberg, et al. Expires April 21, 2004 [Page 32]

Internet-Draft Caller Preferences October 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Rosenberg, et al. Expires April 21, 2004 [Page 33]

Internet-Draft Caller Preferences October 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Rosenberg, et al. Expires April 21, 2004 [Page 34]

