
Internet Engineering Task Force Adam Roach
Internet Draft Ericsson Inc.
Category: Standards Track November 2001
 Expires May 2002
 <draft-ietf-sip-events-01.txt>

 SIP-Specific Event Notification

Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or cite them other than as "work in
 progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This document is an individual submission to the IETF. Comments
 should be directed to the authors.

Abstract

 This document describes an extension to the Session Initiation
 Protocol (SIP). The purpose of this extension is to provide an
 extensible framework by which SIP nodes can request notification
 from remote nodes indicating that certain events have occurred.

 Concrete uses of the mechanism described in this document may be
 standardized in the future.

 Note that the event notification mechanisms defined herein are
 NOT intended to be a general-purpose infrastructure for all
 classes of event subscription and notification.

1. Table of Contents

1. Table of Contents...................................... 1
2. Introduction... 3

https://datatracker.ietf.org/doc/html/draft-ietf-sip-events-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/lid-abstracts.txt
http://www.ietf.org/shadow.html

2.1. Overview of Operation.................................. 4
3. Syntax... 4

Roach [Page 1]

Internet Draft SIP-Specific Event Notification November 2001

3.1. New Methods.. 4
3.1.1. SUBSCRIBE method....................................... 5
3.1.2. NOTIFY method.. 6
3.2. New Headers.. 6
3.2.1. "Event" header... 6
3.2.2. "Allow-Events" Header.................................. 7
3.2.3. "Subscription-Expires" Header.......................... 7
3.3. New Response Codes..................................... 7
3.3.1. "202 Accepted" Response Code........................... 8
3.3.2. "489 Bad Event" Response Code.......................... 8
4. Node Behavior.. 8
4.1. General.. 8
4.1.1. Route Handling... 8
4.1.2. Detecting support for SUBSCRIBE and NOTIFY............. 9
4.1.3. CANCEL requests.. 9
4.1.4. State Agents and Notifier Migration.................... 9
4.2. Description of SUBSCRIBE Behavior...................... 10
4.2.1. Correlation to dialogs, calls, and terminals........... 10
4.2.2. Subscription duration.................................. 11
4.2.3. Identification of Subscribed Events and Event Classes.. 11
4.2.4. Additional SUBSCRIBE Header Values..................... 12
4.2.5. Subscriber SUBSCRIBE Behavior.......................... 12
4.2.6. Proxy SUBSCRIBE Behavior............................... 14
4.2.7. Notifier SUBSCRIBE Behavior............................ 14
4.3. Description of NOTIFY Behavior......................... 17
4.3.1. Correlation.. 17

 4.3.2. Identification of reported events, event classes, and c 18
4.3.3. Notifier NOTIFY Behavior............................... 18
4.3.4. Proxy NOTIFY Behavior.................................. 20
4.3.5. Subscriber NOTIFY Behavior............................. 20
4.4. Polling Resource State................................. 21
4.5. Allow-Events header usage.............................. 21
5. Event Packages... 21
5.1. Appropriateness of Usage............................... 22
5.2. Sub-packages... 22
5.3. Amount of State to be Conveyed......................... 23
5.3.1. Complete State Information............................. 23
5.3.2. State Deltas... 23
5.4. Event Package Responsibilities......................... 24
5.4.1. Event Package Name..................................... 24
5.4.2. Event Package Parameters............................... 24
5.4.3. SUBSCRIBE Bodies....................................... 24
5.4.4. Subscription Duration.................................. 25
5.4.5. NOTIFY Bodies.. 25
5.4.6. Notifier processing of SUBSCRIBE requests.............. 25
5.4.7. Notifier generation of NOTIFY requests................. 25
5.4.8. Subscriber processing of NOTIFY requests............... 25
5.4.9. Handling of forked requests............................ 26

5.4.10. Rate of notifications.................................. 26
5.4.11. State Agents... 26

Roach [Page 2]

Internet Draft SIP-Specific Event Notification November 2001

5.4.12. Examples... 26
6. Security Considerations................................ 27
6.1. Access Control... 27
6.2. Release of Sensitive Policy Information................ 27
6.3. Denial-of-Service attacks.............................. 27
7. IANA Considerations.................................... 27
7.1. Registration Template.................................. 28
8. Open Issues.. 29
8.1. CANCEL Handling.. 29
8.2. Version of SIP to reference............................ 29
8.3. Immediate NOTIFYs...................................... 30
9. Changes.. 30
9.1. Changes from draft-ietf-...-00......................... 30
9.2. Changes from draft-roach-...-03........................ 31
9.3. Changes from draft-roach-...-02........................ 33
9.4. Changes from draft-roach-...-01........................ 35
10. References... 35
11. Acknowledgements....................................... 36
12. Author's Address....................................... 36

2. Introduction

 The ability to request asynchronous notification of events proves
 useful in many types of services for which cooperation between
 end-nodes is required. Examples of such services include
 automatic callback services (based on terminal state events),
 buddy lists (based on user presence events), message waiting
 indications (based on mailbox state change events), and PINT
 status (based on call state events).

 The methods described in this document allow a framework by which
 notification of these events can be ordered.

 The event notification mechanisms defined herein are NOT intended
 to be a general-purpose infrastructure for all classes of event
 subscription and notification. Meeting requirements for the
 general problem set of subscription and notification is far too
 complex for a single protocol. Our goal is to provide a
 SIP-specific framework for event notification which is not so
 complex as to be unusable for simple features, but which is still
 flexible enough to provide powerful services. Note, however, that
 event packages based on this framework may define arbitrarily
 complex rules which govern the subscription and notification for
 the events or classes of events they describe.

 This draft does not describe an extension which may be used
 directly; it must be extended by other drafts (herein referred to

https://datatracker.ietf.org/doc/html/draft-ietf
https://datatracker.ietf.org/doc/html/draft-roach
https://datatracker.ietf.org/doc/html/draft-roach
https://datatracker.ietf.org/doc/html/draft-roach

 as "event packages.") In object-oriented design terminology, it
 may be thought of as an abstract base class which must be derived

Roach [Page 3]

Internet Draft SIP-Specific Event Notification November 2001

 into an instantiatable class by further extensions. Guidelines
 for creating these extensions are described in section 5.

2.1. Overview of Operation

 The general concept is that entities in the network can subscribe
 to resource or call state for various resources or calls in the
 network, and those entities (or entities acting on their behalf)
 can send notifications when those states change.

 A typical flow of messages would be:

 Subscriber Notifier
 |-----SUBSCRIBE---->| Request state subscription
 |<-------200--------| Acknowledge subscription
 |<------NOTIFY----- | Return current state information
 |--------200------->|
 |<------NOTIFY----- | Return current state information
 |--------200------->|

 The subscriber and notifier entities need not necessarily be UAs,
 but often will be.

 Subscriptions are expired and must be refreshed in exactly the
 same manner as registrations (see RFC 2543 [1]).

3. Syntax

 This section describes the syntax extensions required for event
 notification in SIP. Semantics are described in section 4.

3.1. New Methods

 This document describes two new SIP methods: "SUBSCRIBE" and
 "NOTIFY."

 This table expands on tables 4 and 5 in RFC 2543 [1] .

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2543

Roach [Page 4]

Internet Draft SIP-Specific Event Notification November 2001

 Header Where SUB NOT
 ------ ----- --- ---
 Accept R o o
 Accept-Encoding R o o
 Accept-Language R o o
 Allow 200 - -
 Allow 405 o o
 Authorization R o o
 Call-ID gc m m
 Contact R m m
 Contact 1xx o o
 Contact 2xx m o
 Contact 3xx m m
 Contact 485 o o
 Content-Encoding e o o
 Content-Length e o o
 Content-Type e * *
 CSeq gc m m
 Date g o o
 Encryption g o o
 Expires g o -
 From gc m m
 Hide R o o
 Max-Forwards R o o
 Organization g o o
 Priority R o o
 Proxy-Authenticate 407 o o
 Proxy-Authorization R o o
 Proxy-Require R o o
 Require R o o
 Retry-After R - -
 Retry-After 404,480,486 o o
 Retry-After 503 o o
 Retry-After 600,603 o o
 Response-Key R o o
 Record-Route R o o
 Record-Route 2xx o o
 Route R o o
 Server r o o
 Subject R o o
 Timestamp g o o
 To gc(1) m m
 Unsupported 420 o o
 User-Agent g o o
 Via gc(2) m m
 Warning r o o
 WWW-Authenticate 401 o o

3.1.1. SUBSCRIBE method

Roach [Page 5]

Internet Draft SIP-Specific Event Notification November 2001

 "SUBSCRIBE" is added to the definition of the element "Method" in
 the SIP message grammar.

 Like all SIP method names, the SUBSCRIBE method name is case
 sensitive. The SUBSCRIBE method is used to request asynchronous
 notification of an event or set of events at a later time.

3.1.2. NOTIFY method

 "NOTIFY" is added to the definition of the element "Method" in
 the SIP message grammar.

 The NOTIFY method is used to notify a SIP node that an event
 which has been requested by an earlier SUBSCRIBE method has
 occurred. It may also provide further details about the event.

3.2. New Headers

 This table expands on tables 4 and 5 in RFC 2543 [1] , as amended
 by the changes described in section 3.1.

 Header field where proxy ACK BYE CAN INV OPT REG SUB NOT

 Allow-Events g o o o o o o o o
 Allow-Events 489 - - - - - - m m
 Event R - - - - - - m m
 Subscription-Expires R - - - - - - - o

3.2.1. "Event" header

 The following header is defined for the purposes of this
 specification.

 Event = ("Event" | "o") ":" event-type
 *((";" parameter-name
 ["=" (token | quoted-string)])
 event-type = event-package *("." event-subpackage)
 event-package = token-nodot
 event-subpackage = token-nodot
 token-nodot = 1*(alphanum | "-" | "!" | "%" | "*"
 | "_" | "+" | "`" | "'" | "~")

 Event is added to the definition of the element "request-header"
 in the SIP message grammar.

 This document does not define values for event-types. These

https://datatracker.ietf.org/doc/html/rfc2543

 values will be defined by individual event packages, and MUST be

Roach [Page 6]

Internet Draft SIP-Specific Event Notification November 2001

 registered with the IANA.

 There must be exactly one event type listed per event header.
 Multiple events per message are disallowed.

 For the curious, the "o" short form is chosen to represent
 "occurrence."

3.2.2. "Allow-Events" Header

 The following header is defined for the purposes of this
 specification.

 Allow-Events = ("Allow-Events" | "u") ":" 1#event-type

 Allow-Events is added to the definition of the element
 "general-header" in the SIP message grammar.

 For the curious, the "u" short form is chosen to represent
 "understands."

3.2.3. "Subscription-Expires" Header

 The following header is defined for the purposes of this
 specification.

 Subscription-Expires = "Subscription-Expires" ":"
 (SIP-date | delta-seconds)
 *(";" subexp-params)

 subexp-params = "reason" "=" reason-code
 | generic-param

 reason-code = "migration"
 | "maint"
 | "refused"
 | "timeout"
 | reason-extension

 reason-extension = token

 Subscription-Expires is added to the definition of the element
 "request-header" in the SIP message grammar.

3.3. New Response Codes

Roach [Page 7]

Internet Draft SIP-Specific Event Notification November 2001

3.3.1. "202 Accepted" Response Code

 The 202 response is added to the "Success" header field
 definition:

 Success = "200" ; OK
 | "202" ; Accepted

 "202 Accepted" has the same meaning as that defined in HTTP/1.1
 [5] .

3.3.2. "489 Bad Event" Response Code

 The 489 event response is added to the "Client-Error" header
 field definition:

 Client-Error = "400" ; Bad Request
 ...
 | "489" ; Bad Event

 "489 Bad Event" is used to indicate that the server did not
 understand the event package specified in a "Event" header field.

4. Node Behavior

4.1. General

 Unless noted otherwise, SUBSCRIBE and NOTIFY requests follow the
 same protocol rules governing the usage of tags, Route handling,
 Record-Route handling, Via handling, and Contact handling as
 INVITE; retransmission, reliability, CSeq handling and
 provisional responses are the same as those defined for BYE.

 For the purposes of this document, a "dialog" is defined as all
 messages sharing the tuple of "To" (including tag), "From"
 (including tag), and "Call-Id." As in INVITE-initiated dialogs,
 requests containg no "To" tag are also considered to be part of
 the same dialog as messages which contain a "To" tag but
 otherwise match.

4.1.1. Route Handling

 Route and Record-Route handling for SUBSCRIBE and NOTIFY dialogs
 is generally the same as for INVITE and its subsequent responses.
 The exact method for echoing Record-Route headers in responses
 and using them to form Route headers in subsequent requests is

 described in RFC2543 [1] . For the purposes of the following

Roach [Page 8]

https://datatracker.ietf.org/doc/html/rfc2543

Internet Draft SIP-Specific Event Notification November 2001

 discussion, the "Contact" header is considered part of the
 "Record-Route" set.

 From a subscriber perspective, the "Record-Route" headers
 received in a SUBSCRIBE response are stored locally and placed in
 the "Route" headers for SUBSCRIBE refreshes. To support forking
 of SUBSCRIBE requests, "Record-Route" headers received in NOTIFY
 requests MUST be echoed back in the NOTIFY responses; if no route
 for the dialog has been established, these "Record-Route" headers
 MUST be stored locally and MUST be placed in the "Route" headers
 for SUBSCRIBE refreshes.

 From a notifier perspective, SUBSCRIBE request "Record-Route"
 headers are echoed back in the SUBSCRIBE response and stored
 locally. The locally stored copy of the "Record-Route" headers is
 placed in the "Route" headers when generating NOTIFY requests.

 The result of the forgoing rules is that proxies wishing to
 remain on the signalling path for subsequent requests in the
 dialog MUST include themselves in a "Record-Route" for all
 requests, not just the initial SUBSCRIBE.

4.1.2. Detecting support for SUBSCRIBE and NOTIFY

 Neither SUBSCRIBE nor NOTIFY necessitate the use of "Require" or
 "Proxy-Require" headers; similarly, there is no token defined for
 "Supported" headers. If necessary, clients may probe for the
 support of SUBSCRIBE and NOTIFY using the OPTIONS request defined
 in RFC2543 [1] .

 The presence of the "Allow-Events" header in a message is
 sufficient to indicate support for SUBSCRIBE and NOTIFY.

 The "methods" parameter for Contact may also be used to
 specifically announce support for SUBSCRIBE and NOTIFY messages
 when registering. (See reference [8] for details on the "methods"
 parameter).

4.1.3. CANCEL requests

 For the purposes of generality, both SUBSCRIBE and NOTIFY MAY be
 canceled; however, doing so is not recommended. Successfully
 cancelled SUBSCRIBE and NOTIFY requests MUST be completed with a
 "487 Request Cancelled" response; the server acts as if the
 request were never received. In general, since neither SUBSCRIBE
 nor NOTIFY are allowed to have protracted transactions, attempts
 to cancel them are expected to fail.

4.1.4. State Agents and Notifier Migration

https://datatracker.ietf.org/doc/html/rfc2543

Roach [Page 9]

Internet Draft SIP-Specific Event Notification November 2001

 When state agents (see section 5.4.11.) are used, it is often
 useful to allow migration of subscriptions between state agents
 and the nodes for which they are providing state aggregation (or
 even among various state agents). Such migration may be effected
 by sending a "NOTIFY" with an "Subscription-Expires" header of
 "0," and a reason parameter of "migration." This NOTIFY request
 is otherwise normal, and is formed as described in section 4.3.3.

 Upon receipt of this NOTIFY message, the subscriber SHOULD
 attempt to re-subscribe (as described in the following sections).
 The resulting SUBSCRIBE message can then be proxied or redirected
 to the node to which notification responsibility is passing.

4.2. Description of SUBSCRIBE Behavior

 The SUBSCRIBE method is used to request current state and state
 updates from a remote node.

4.2.1. Correlation to dialogs, calls, and terminals

 A subscription is uniquely identified by the combination of the
 To, From, and Call-ID fields in the SUBSCRIBE request. Refreshes
 of subscriptions SHOULD reuse the same Call-ID if possible, since
 subscriptions are uniquely identified at presence servers using
 the Call-ID. Two subscriptions from the same user, for the same
 user, but with different Call-IDs, are considered different
 subscriptions. Note this is exactly the same as usage of Call-ID
 in registrations.

 Initial SUBSCRIBE requests MUST contain a "tag" parameter (as
 defined in RFC 2543 [1]) in the "From" header, and MUST NOT
 contain a "tag" parameter in the "To" header. Responses to
 SUBSCRIBE requests MUST contain a "tag" parameter in the "To"
 header.

 The "tag" in the "To" header allows the subscriber to
 differentiate between NOTIFY requests from different clients in
 the case that the SUBSCRIBE request was forked. SUBSCRIBE
 requests for re-subscription MUST contain "tag" parameters in
 both the "To" and "From" headers (matching those previously
 established for the dialog).

 The relationship between subscriptions and (INVITE-initiated)
 sessions sharing the same dialog correlation information is
 undefined. Re-using dialog correlation information for
 subscriptions is allowed, but sharing of such information does
 not change the semantics of the INVITE session or the SUBSCRIBE
 dialog.

https://datatracker.ietf.org/doc/html/rfc2543

 Similarly, the relationship between a subscription in one

Roach [Page 10]

Internet Draft SIP-Specific Event Notification November 2001

 direction (e.g. from node A to node B) and a subscription in the
 opposite direction (from B to A) with the same dialog correlation
 information is undefined. While re-using such information is
 allowed, the sharing of such information does not change the
 semantics of either SUBSCRIBE dialog.

4.2.2. Subscription duration

 SUBSCRIBE requests SHOULD contain an "Expires" header. This
 expires value indicates the duration of the subscription. The
 formatting of these is described in RFC 2543. In order to keep
 subscriptions effective beyond the duration communicated in the
 "Expires" header, subscribers need to refresh subscriptions on a
 periodic basis. This refreshing is performed in the same way as
 REGISTER refreshes: the To, From, and Call-ID match those in the
 SUBSCRIBE being refreshed, while the CSeq number is incremented.

 If no "Expires" header is present in a SUBSCRIBE request, the
 implied default is defined by the event package being used.

 200-class responses to SUBSCRIBE requests also MUST contain an
 "Expires" header. The period of time in the response MAY be
 shorter or longer than specified in the request. The period of
 time in the response is the one which defines the duration of the
 subscription.

 Similar to REGISTER requests, SUBSCRIBE requests may be renewed
 at any time to prevent them from expiring at the end of the
 "Expires" period. These renewals will contain a the same "To,"
 "From," and "Call-ID" as the original request, and an incremented
 "CSeq" number.

 Also similar to REGISTER requests, a natural consequence of this
 scheme is that a SUBSCRIBE with an "Expires" of 0 constitutes a
 request to unsubscribe from an event.

 Notifiers may also wish to cancel subscriptions to events; this
 is useful, for example, when the resource to which a subscription
 refers is no longer available. Further details on this mechanism
 are discussed in section 4.3.3.

4.2.3. Identification of Subscribed Events and Event Classes

 Identification of events is provided by three pieces of
 information: Request URI, Event Type, and (optionally) message
 body.

 The Request URI of a SUBSCRIBE request, most importantly,
 contains enough information to route the request to the

https://datatracker.ietf.org/doc/html/rfc2543

 appropriate entity. It also contains enough information to

Roach [Page 11]

Internet Draft SIP-Specific Event Notification November 2001

 identify the resource for which event notification is desired,
 but not necessarily enough information to uniquely identify the
 nature of the event (e.g. "sip:adam.roach@ericsson.com" would be
 an appropriate URI to subscribe to for my presence state; it
 would also be an appropriate URI to subscribe to the state of my
 voice mailbox).

 Subscribers MUST include exactly one "Event" header in SUBSCRIBE
 requests, indicating to which event or class of events they are
 subscribing. The "Event" header will contain a token which
 indicates the type of state for which a subscription is being
 requested. This token will be registered with the IANA and will
 correspond to an event package which further describes the
 semantics of the event or event class.

 The "Event" header is considered mandatory for the purposes of
 this document. However, to maintain compatibility with PINT (see
 [3]), servers MAY interpret a SUBSCRIBE request with no "Event"
 header as requesting a subscription to PINT events. If the
 servers do not support PINT, they SHOULD return "489 Bad Event"
 to any SUBSCRIBE messages without an EVENT header.

 If the event package to which the event token corresponds defines
 behavior associated with the body of its SUBSCRIBE requests,
 those semantics apply.

4.2.4. Additional SUBSCRIBE Header Values

 Each SUBSCRIBE request MUST have exactly one "Contact:" header,
 to be used as part of route handling, as described in section

4.1.1.

 SUBSCRIBE requests MAY contain an "Accept" header. This header,
 if present, indicates the body formats allowed in subsequent
 NOTIFY requests. Event packages MUST define the behavior for
 SUBSCRIBE requests without "Accept" headers; usually, this will
 connote a single, default body type.

 Header values not described in this document are to be
 interpreted as described in RFC 2543 [1] .

4.2.5. Subscriber SUBSCRIBE Behavior

4.2.5.1. Requesting a Subscription

 When a subscriber wishes to subscribe to a particular state for a
 resource, it forms a SUBSCRIBE message.

 The dialog correlation information is formed as if for an

https://datatracker.ietf.org/doc/html/rfc2543

 original INVITE: the Call-ID is a new call ID with the syntax

Roach [Page 12]

Internet Draft SIP-Specific Event Notification November 2001

 described in RFC 2543; the To: field indicates the subscribed
 resource's persistent address (which will generally match the
 Request URI used to form the message); and the From: field will
 indicate the subscriber's persistent address (typically
 sip:user@domain).

 This SUBSCRIBE request will be confirmed with a final response.
 200-class responses indicate that the subscription has been
 accepted, and that a NOTIFY will be sent immediately. A 200
 response indicates that the subscription has been accepted and
 that the user is authorized to subscribe to the requested
 resource. A 202 response merely indicates that the subscription
 has been understood, and that authorization may or may not have
 been granted.

 The "Expires" header in a 200-class response to SUBSCRIBE
 indicates the actual duration for which the subscription will
 remain active (unless refreshed).

 Non-200 class final responses indicate that the subscription has
 not been created, and no subsequent NOTIFY message will be sent.
 All non-200 class responses (with the exception of "489,"
 described herein) have the same meanings and handling as
 described in RFC 2543 [1] .

4.2.5.2. Refreshing of Subscriptions

 At any time before a subscription expires, the subscriber may
 refresh the timer on such a subscription by re-sending a
 SUBSCRIBE request. The handling for such a request is the same as
 for the initial creation of a subscription except as described
 below.

 Subscription renewals will contain a "To" field matching the
 "From" field in the first NOTIFY request for the dialog
 containing the subscription to be refreshed. They will contain
 the same "From" and "Call-ID" fields as the original SUBSCRIBE
 request, and an incremented "CSeq" number from the original
 SUBSCRIBE request. Route handling is as discussed in section

4.1.1.

 If a SUBSCRIBE request to refresh a subscription receives a "481"
 response, this indicates that the subscription has been
 terminated and that the subscriber did not receive notification
 of this fact. In this case, the subscriber should consider the
 subscription invalid. If the subscriber wishes to re-subscribe to
 the state, he does so by composing an unrelated initial SUBSCRIBE
 request with a freshly-generated Call-ID and a new, unique "From"

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2543

 tag (see section 4.2.5.1.)

Roach [Page 13]

Internet Draft SIP-Specific Event Notification November 2001

 If a SUBSCRIBE request to refresh a subscription fails, the
 original subscription is still considered valid for the duration
 of the most recently known "Expires" value as negotiated by
 SUBSCRIBE and its response, or as communicated by NOTIFY in
 "Subscription-Expires," except as described above.

4.2.5.3. Unsubscribing

 Unsubscribing is handled in the same way as refreshing of a
 subscription, with the "Expires" header set to "0." Note that a
 successful unsubscription will also trigger a final "NOTIFY".

4.2.5.4. Confirmation of Subscription Creation

 The subscriber can expect to receive a NOTIFY message from each
 node which has registered a successful subscription or
 subscription refresh. Until the first NOTIFY message arrives, the
 subscriber should consider the state of the subscribed resource
 to be in a neutral state. Event packages which define new event
 packages MUST define this "neutral state" in such a way that
 makes sense for their application (see section 5.4.7.).

 Due to the potential for both out-of-order messages and forking,
 the subscriber MUST be prepared to receive NOTIFY messages before
 the SUBSCRIBE transaction has completed.

 Except as noted above, processing of this NOTIFY is the same as
 in section 4.3.5.

4.2.6. Proxy SUBSCRIBE Behavior

 Proxies need no additional behavior beyond that described in RFC
2543 [1] to support SUBSCRIBE. If a proxy wishes to see all of

 the SUBSCRIBE and NOTIFY requests for a given dialog, it MUST
 record-route all SUBSCRIBE and NOTIFY requests.

4.2.7. Notifier SUBSCRIBE Behavior

4.2.7.1. SUBSCRIBE Transaction Processing

 In no case should a SUBSCRIBE transaction extend for any longer
 than the time necessary for automated processing. In particular,
 notifiers MUST NOT wait for a user response before returning a
 final response to a SUBSCRIBE request.

 The notifier SHOULD check that the event package specified in the
 "Event" header is understood. If not, the notifier SHOULD return
 a "489 Bad Event" response to indicate that the specified
 event/event class is not understood.

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2543

Roach [Page 14]

Internet Draft SIP-Specific Event Notification November 2001

 The notifier SHOULD also perform any necessary authentication and
 authorization per its local policy. See section 4.2.7.3.

 If the SUBSCRIBE request contains a tag parameter in the "To"
 field, but the notifier has no record of the indicated dialog,
 the notifier has two options. If the notifier is able and willing
 to reconstruct subscription state, he may accept the subscription
 as an initial subscription. If the notifier cannot or is not
 willing to reconstitute such state, it should respond with a "481
 Subscription does not exist."

 If the notifier is able to immediately determine that it
 understands the event package, that the authenticated subscriber
 is authorized to subscribe, and that there are no other barriers
 to creating the subscription, it creates the subscription and
 returns a "200 OK" response, unless doing so would reveal
 authorization policy in an undesirable fashion (see section 6.2.
).

 If the notifier cannot immediately create the subscription (e.g.
 it needs to wait for user input for authorization, or is acting
 for another node which is not currently reachable), or wishes to
 mask authorization policy, it will return a "202 Accepted"
 response. This response indicates that the request has been
 received and understood, but does not necessarily imply that the
 subscription has been created yet.

 The "Expires" values present in SUBSCRIBE 200-class responses
 behave in the same way as they do in REGISTER responses: the
 server MAY shorten or lengthen the interval.

 200-class responses to SUBSCRIBE requests will not generally
 contain any useful information beyond subscription duration;
 their primary purpose is to serve as a reliability mechanism.
 State information will be communicated via a subsequent NOTIFY
 request from the notifier.

 The other response codes defined in RFC 2543 may be used in
 response to SUBSCRIBE requests, as appropriate.

4.2.7.2. Confirmation of Subscription Creation/Refreshing

 Upon successfully accepting or refreshing of a subscription,
 notifiers MUST send a NOTIFY message immediately to communicate
 the current resource state to the subscriber. If the resource has
 no meaningful state at the time that the SUBSCRIBE message is
 processed, this NOTIFY message MAY contain an empty or neutral
 body. See section 4.3.3. for further details on NOTIFY message
 generation.

https://datatracker.ietf.org/doc/html/rfc2543

Roach [Page 15]

Internet Draft SIP-Specific Event Notification November 2001

 Note that a NOTIFY message is always sent immediately after any
 200-class response to a SUBSCRIBE request, regardless of whether
 the subscription has already been authorized.

4.2.7.3. Authentication/Authorization of SUBSCRIBE requests

 Privacy concerns may require that notifiers either use access
 lists or ask the notifier owner, on a per-subscription basis,
 whether a particular remote node is authorized to subscribe to a
 certain set of events. In general, authorization of users prior
 to authentication is not particularly useful.

 SIP authentication mechanisms are discussed in RFC2543 [1] . Note
 that, even if the notifier node typically acts as a proxy,
 authentication for SUBSCRIBE requests will always be performed
 via a "401" response, not a "407;" notifiers always act as a user
 agents when accepting subscriptions and sending notifications.

 If authorization fails based on an access list or some other
 automated mechanism (i.e. it can be automatically authoritatively
 determined that the subscriber is not authorized to subscribe),
 the notifier SHOULD reply to the request with a "403 Forbidden"
 or "603 Decline" response, unless doing so might reveal
 information that should stay private; see section 6.2.

 If the notifier owner is interactively queried to determine
 whether a subscription is allowed, a "202 Accept" response is
 returned immediately. Note that a NOTIFY message is still formed
 and sent under these circumstances, as described in the previous
 section.

 If subscription authorization was delayed and the notifier wishes
 to convey that such authorization has been declined, it may do so
 by sending a NOTIFY message containting a "Subscription-Expires"
 header with a value of "0" and a reason parameter of "refused."

4.2.7.4. Refreshing of Subscriptions

 When a notifier receives a subscription refresh, assuming that
 the subscriber is still authorized, the notifier updates the
 expiration time for subscription. As with the initial
 subscription, the server MAY shorten or increase the amount of
 time until expiration. The final expiration time is placed in the
 "Expires" header in the response.

 If no refresh for a notification address is received before its
 expiration time, the subscription is removed. When removing a
 subscription, the notifier MAY send a NOTIFY message with a
 "Subscription-Expires" value of "0" to inform it that the

https://datatracker.ietf.org/doc/html/rfc2543

 subscription is being removed. If such a message is sent, the

Roach [Page 16]

Internet Draft SIP-Specific Event Notification November 2001

 "Subscription-Expires" header SHOULD contain a "reason=timeout"
 parameter.

4.3. Description of NOTIFY Behavior

 NOTIFY messages are sent to inform subscribers of changes in
 state to which the subscriber has a subscription. Subscriptions
 are typically put in place using the SUBSCRIBE method; however,
 it is possible that other means have been used.

 If any non-SUBSCRIBE mechanisms are defined to create
 subscriptions, it is the responsibility of the parties defining
 those mechanisms to ensure that correlation of a NOTIFY message
 to the corresponding subscription is possible. Designers of such
 mechanisms are also warned to make a distinction between sending
 a NOTIFY message to a subscriber who is aware of the
 subscription, and sending a NOTIFY message to an unsuspecting
 node. The latter behavior is invalid, and MUST receive a "481
 Subscription does not exist" response (unless some other 400- or
 500-class error code is more applicable), as described in section

4.3.5. In other words, knowlege of a subscription must exist in
 both the subscriber and the notifier to be valid, even if
 installed via a non-SUBSCRIBE mechanism.

 A NOTIFY does not cancel its corresponding subscription; in other
 words, a single SUBSCRIBE request may trigger several NOTIFY
 requests.

4.3.1. Correlation

 NOTIFY requests MUST contain the same Call-ID as the SUBSCRIBE
 request which ordered them; the "To" field MUST match the "From"
 field in the SUBSCRIBE that ordered them, and the "From" field
 MUST match the "To" field that was sent in the 200-class response
 to the SUBSCRIBE. In other words, NOTIFY requests MUST be in the
 same dialog as the SUBSCRIBE that ordered them.

 The From field of a NOTIFY request, like the "To" field of a
 SUBSCRIBE response, MUST contain a tag; this allows for the
 subscriber to differentiate between events from different
 notifiers.

 Successful SUBSCRIBE requests will receive only one 200-class
 response; however, due to forking, the subscription may have been
 accepted by multiple nodes. The subscriber MUST therefore be
 prepared to receive NOTIFY requests with "From:" tags which
 differ from the "To:" tag received in the SUBSCRIBE 200-class
 response.

 If multiple NOTIFY messages are received in response to a single

Roach [Page 17]

Internet Draft SIP-Specific Event Notification November 2001

 SUBSCRIBE message, they represent different destinations to which
 the SUBSCRIBE request was forked. Unless the event package
 specifies otherwise, the subscriber may either accept all such
 notifications as representing different dialogs (which are then
 refreshed separately), or send a 481 response to any NOTIFYs on
 dialogs that it does not want to keep alive.

 As expected, CSeq spaces are unique for each node; in other
 words, the notifier uses a different CSeq space than the
 subscriber and any other notifiers.

4.3.2. Identification of reported events, event classes, and current
state

 Identification of events being reported in a notification is very
 similar to that described for subscription to events (see section

4.2.3.).

 The Request URI of a NOTIFY request contains enough information
 to route the request to the party which is subscribed to receive
 notifications. It is derived from the "Contact" header present in
 the corresponding SUBSCRIBE request.

 If the same events for different resources are being subscribed
 to, implementors are expected to use different dialogs in order
 to be able to differentiate between notifications for them,
 unless the body for the event contains enough information for
 this correlation.

 As in SUBSCRIBE requests, NOTIFY "Event" headers will contain a
 single token which identifies the event or class of events for
 which a notification is being generated.

 If the event package to which the event token corresponds defines
 behavior associated with the body of its NOTIFY requests, those
 semantics apply. This information is expected to provide
 additional details about the nature of the event which has
 occurred and the resultant resource state.

 When present, the body of the NOTIFY request MUST be formatted
 into one of the body formats specified in the "Accept" header of
 the corresponding SUBSCRIBE request.

4.3.3. Notifier NOTIFY Behavior

 When a SUBSCRIBE request is successfully processed or a relevant
 change in the subscribed state occurs, the notifier will
 immediately construct and send a NOTIFY request to the
 subscriber(s), per standard Route/Record-Route handling, as

 described in section 4.1.1.

Roach [Page 18]

Internet Draft SIP-Specific Event Notification November 2001

 If the notifier is able, through any means, to determine that the
 subscriber is no longer available to receive notifications, it
 MAY elect to not send a notification. An example of a method by
 which such information may be known is the "SIP for Presence"
 event set (see [4]).

 A NOTIFY request is considered failed if the response times out,
 or a non-200 class response code is received which has no
 "Retry-After" header and no implied further action which can be
 taken to retry the request (e.g. "401 Authorization Required.")

 If the NOTIFY request fails (as defined above) due to a timeout
 condition, and the subscription was installed using a soft-state
 mechanism (such as SIP signalling), the notifier SHOULD remove
 the subscription.

 If the NOTIFY request fails (as defined above) due to an error
 response, and the subscription was installed using a soft-state
 mechanism, the notifier MUST remove the corresponding
 subscription.

 If a NOTIFY request receives a 481 response, the notifier MUST
 remove the corresponding subscription even if such subscription
 was installed by non-SUBSCRIBE means (such as an administrative
 interface).

 NOTIFY requests SHOULD contain an "Subscription-Expires" header
 which indicates the remaining duration of the subscription (such
 a header is useful in case the SUBSCRIBE request forks, since
 the response to a forked subscribe -- which contains the "Expire"
 header that specifies the agreed-upon expiration time -- may not
 be received by the subscriber). The notifier SHOULD use this
 header to adjust the time remaining on the subscription; however,
 this mechanism MUST not be used to lengthen a subscription, only
 to shorten it. The notifier may inform a subscriber that a
 subscription has been removed by sending a NOTIFY message with an
 "Subscription-Expires" value of "0."

 If the duration of a subscription has been shortened or
 terminated by the "Subscription-Expires" header as compared to
 the most recent 200-class SUBSCRIBE response sent, that header
 SHOULD include a "reason" parameter indicating the reason that
 such action was taken. Currently, four such values are defined:
 "migration" indicates that the node acting as notifier is
 transferring responsibility for maintaing such state information
 to another node; this only makes sense when subscriptions are
 terminated, not when they are shortened. "Maint" indicates that

 the subscription is being truncated or terminated due to server
 maintainance, and "refused" indicates that the subscription has

Roach [Page 19]

Internet Draft SIP-Specific Event Notification November 2001

 been removed or shortened administratively (e.g. by a change in
 ACL policy). Finally, if the notifier elects to send a NOTIFY
 upon timeout of the subscription, they SHOULD include a
 "Subscription-Expires" header with a value of "0" and a reason
 parameter of "timeout."

4.3.4. Proxy NOTIFY Behavior

 Proxies need no additional behavior beyond that described in RFC
2543 [1] to support NOTIFY. If a proxy wishes to see all of the

 SUBSCRIBE and NOTIFY requests for a given dialog, it MUST
 record-route all SUBSCRIBE and NOTIFY requests.

4.3.5. Subscriber NOTIFY Behavior

 Upon receiving a NOTIFY request, the subscriber should check that
 it matches at least one of its outstanding subscriptions; if not,
 it MUST return a "481 Subscription does not exist" response
 unless another 400- or 500-class response is more appropriate.

 If, for some reason, the event package designated in the "Event"
 header of the NOTIFY request is not supported, the subscriber
 will respond with a "489 Bad Event" response.

 To prevent spoofing of events, NOTIFY requests MAY be
 authenticated, using any defined SIP authentication mechanism.

 NOTIFY requests SHOULD contain "Subscription-Expires" headers
 which indicate the time remaining on the subscription. If this
 header is present, the subscriber SHOULD take it as the
 authoritative duration and adjust accordingly. If an expires
 value of "0" is present, the subscriber should consider the
 subscription terminated.

 When the subscription is terminated or shortened using the
 "Subscription-Expires" mechanism, there SHOULD be a reason
 parameter present. If it is present and the subscriber is still
 interested in receiving updates to the state information, the
 subscriber SHOULD attempt re-subscribe upon expiration if it is
 set to "migration," "timeout," is not present, or is set to an
 unknown value. Such a resubscription will be completely
 independant of the original subscription, and will not share a
 dialog with it; it will be generated as described in section

4.2.5.1.

 If the "reason" parameter on a "Subscription-Expires" header is
 set to either "maint" or "refused," the subscriber SHOULD NOT
 attempt re-subscription.

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2543

 Once the notification is deemed acceptable to the subscriber, the

Roach [Page 20]

Internet Draft SIP-Specific Event Notification November 2001

 subscriber SHOULD return a 200 response. In general, it is not
 expected that NOTIFY responses will contain bodies; however, they
 MAY, if the NOTIFY request contained an "Accept" header.

 Other responses defined in RFC 2543 [1] may also be returned, as
 appropriate.

4.4. Polling Resource State

 A natural consequence of the behavior described in the preceding
 sections is that an immediate fetch without a persistent
 subscription may be effected by sending an appropriate SUBSCRIBE
 with an "Expires" of 0.

 Of course, an immediate fetch while a subscription is active may
 be effected by sending an appropriate SUBSCRIBE with an "Expires"
 greater than 0.

 Upon receipt of this SUBSCRIBE request, the notifier (or
 notifiers, if the SUBSCRIBE request was forked) will send a
 NOTIFY request containing resource state to the address in the
 SUBSCRIBE "Contact" field. Note that normal Route and
 Record-Route handle still applies; see section 4.1.1.

4.5. Allow-Events header usage

 The "Allow-Events" header, if present, includes a list of tokens
 which indicates the event packages supported by the client (if
 sent in a request) or server (if sent in a response). In other
 words, a node sending an "Allow-Events" header is advertising
 that it can process SUBSCRIBE requests and generate NOTIFY
 requests for all of the event packages listed in that header.

 Any node implementing one or more event packages SHOULD include
 an appropriate "Allow-Events" header indicating all supported
 events in INVITE requests and responses, OPTIONS responses, and
 REGISTER requests. "Allow-Events" headers MAY be included in any
 other type of request or response.

 This information is very useful, for example, in allowing user
 agents to render particular interface elements appropriately
 according to whether the events required to implement the
 features they represent are supported by the appropriate nodes.

 Note that "Allow-Events" headers MUST NOT be inserted by proxies.

5. Event Packages

 This section covers several issues which should be taken into

https://datatracker.ietf.org/doc/html/rfc2543

 consideration when event packages based on SUBSCRIBE and NOTIFY

Roach [Page 21]

Internet Draft SIP-Specific Event Notification November 2001

 are proposed.

5.1. Appropriateness of Usage

 When designing an event package using the methods described in
 this draft for event notification, it is important to consider:
 is SIP an appropriate mechanism for the problem set? Is SIP being
 selected because of some unique feature provided by the protocol
 (e.g. user mobility), or merely because "it can be done?" If you
 find yourself defining event packages for notifications related
 to, for example, network management or the temperature inside
 your car's engine, you may want to reconsider your selection of
 protocols.

 Those interested in extending the mechanism defined in this
 document are urged to read "Guidelines for Authors of SIP
 Extensions" [2] for further guidance regarding appropriate uses
 of SIP.

 Further, it is expected that this mechanism is not to be used in
 applications where the frequency of reportable events is
 excessively rapid (e.g. more than about once per second). A SIP
 network is generally going to be provisioned for a reasonable
 signalling volume; sending a notification every time a user's GPS
 position changes by one hundreth of a second could easily
 overload such a network.

5.2. Sub-packages

 Normal event packages define a set of state applied to a specific
 type of resource, such as user presence, call state, and
 messaging mailbox state.

 Sub-packages are a special type of package which define a set of
 state applied to other packages, such as statistics, access
 policy, and subscriber lists. Sub-packages may even be applied to
 other sub-packages.

 To extend the object-oriented analogy made earlier, sub-packages
 can be thought of as templatized C++ packages which must be
 applied to other packages to be useful.

 The name of a sub-package as applied to a package is formed by
 appending a period followed by the sub-package name to the end of
 the package. For example, if a subpackage called "watcherinfo"
 were being applied to a package called "presence," the event
 token used in "Event" and "Allow-Events" would be
 "presence.watcherinfo".

 Sub-packages must be defined so that they can be applied to any

Roach [Page 22]

Internet Draft SIP-Specific Event Notification November 2001

 arbitrary package. In other words, sub-packages cannot be
 specifically tied to one or a few "parent" packages in such a way
 that they will not work with other packages.

5.3. Amount of State to be Conveyed

 When designing event packages, it is important to consider the
 type of information which will be conveyed during a notification.

 A natural temptation is to convey merely the event (e.g. "a new
 voice message just arrived") without accompanying state (e.g. "7
 total voice messages"). This complicates implementation of
 subscribing entities (since they have to maintain complete state
 for the entity to which they have subscribed), and also is
 particularly susceptible to synchronization problems.

 There are two possible solutions to this problem that event
 packages may choose to implement.

5.3.1. Complete State Information

 For packages which typically convey state information that is
 reasonably small (on the order of 1 kb or so), it is suggested
 that event packages are designed so as to send complete state
 information when an event occurs.

 In the circumstances that state may not be sufficient for a
 particular class of events, the event packages should include
 complete state information along with the event that occurred.
 For example, "no customer service representatives available" may
 not be as useful "no customer service representatives available;
 representative sip:46@cs.xyz.int just logged off".

5.3.2. State Deltas

 In the case that the state information to be conveyed is large,
 the event package may choose to detail a scheme by which NOTIFY
 messages contain state deltas instead of complete state.

 Such a scheme would work as follows: any NOTIFY sent in immediate
 response to a SUBSCRIBE contains full state information. NOTIFY
 messages sent because of a state change will contain only the
 state information that has changed; the subscriber will then
 merge this information into its current knowledge about the state
 of the resource.

 Any event package that supports delta changes to states MUST use
 a payload which contains a version number that increases by
 exactly one for each NOTIFY message. Note that the state version

 number appears in the body of the message, not in a SIP header.

Roach [Page 23]

Internet Draft SIP-Specific Event Notification November 2001

 If a NOTIFY arrives that has a version number that is incremented
 by more than one, the subscriber knows that a state delta has
 been missed; it ignores the NOTIFY message containing the state
 delta (except for the version number, which it retains to detect
 message loss), and re-sends a SUBSCRIBE to force a NOTIFY
 containing a complete state snapshot.

5.4. Event Package Responsibilities

 Event packages are not required to re-iterate any of the behavior
 described in this document, although they may choose to do so for
 clarity or emphasis. In general, though, such packages are
 expected to describe only the behavior that extends or modifies
 the behavior described in this document.

 Note that any behavior designated with "SHOULD" or "MUST" in this
 document is not allowed to be changed by extension documents;
 however, such documents may elect to strengthen "SHOULD"
 requirements to "MUST" strength if required by their application.

 In addition to the normal sections expected by "Instructions to
 RFC Authors" [6] and "Guidelines for Authors of SIP Extensions"
 [2] , authors of event packages MUST address each of the issues
 detailed in the following subsections, whenever applicable.

5.4.1. Event Package Name

 This mandatory section of an event package defines the token name
 to be used to designate the event package. It MUST include the
 information which appears in the IANA registration of the token.
 For information on registering such types, see section 7.

5.4.2. Event Package Parameters

 If parameters are to be used on the "Event" header to modify the
 behavior of the event package, the syntax and semantics of such
 headers must be clearly defined.

5.4.3. SUBSCRIBE Bodies

 It is expected that most, but not all, event packages will define
 syntax and semantics for SUBSCRIBE method bodies; these bodies
 will typically modify, expand, filter, throttle, and/or set
 thresholds for the class of events being requested. Designers of
 event packages are strongly encouraged to re-use existing MIME
 types for message bodies where practical.

 This mandatory section of an event package defines what type or

 types of event bodies are expected in SUBSCRIBE requests (or

Roach [Page 24]

Internet Draft SIP-Specific Event Notification November 2001

 specify that no event bodies are expected). It should point to
 detailed definitions of syntax and semantics for all referenced
 body types.

5.4.4. Subscription Duration

 It is recommended that event packages give a suggested range of
 times considered reasonable for the duration of a subscription.
 Such packages MUST also define a default "Expires" value to be
 used if none is specified.

5.4.5. NOTIFY Bodies

 The NOTIFY body is used to report state on the resource being
 monitored. Each package must define a what type or types of event
 bodies are expected in NOTIFY requests. Such packages must
 specify or cite detailed specifications for the syntax and
 semantics associated with such event body.

 Event packages also need to define which MIME type is to be
 assumed if none are specified in the "Accept" header of the
 SUBSCRIBE request.

5.4.6. Notifier processing of SUBSCRIBE requests

 This section describes the processing to be performed by the
 notifier upon receipt of a SUBSCRIBE request. Such a section is
 required.

 Information in this section includes details of how to
 authenticate subscribers and authorization issues for the
 package. Such authorization issues may include, for example,
 whether all SUBSCRIBE requests for this package are answered with
 202 responses (see section 6.2.).

5.4.7. Notifier generation of NOTIFY requests

 This section of an event package describes the process by which
 the notifier generates and sends a NOTIFY request. This includes
 detailed information about what events cause a NOTIFY to be sent,
 how to compute the state information in the NOTIFY, how to
 generate "neutral" or "fake" state information to hide
 authorization delays and decisions from users, and whether state
 information is complete or deltas for notifications (see section

5.3.)

 It may optionally describe the behavior used to processes the
 subsequent response. Such a section is required.

5.4.8. Subscriber processing of NOTIFY requests

Roach [Page 25]

Internet Draft SIP-Specific Event Notification November 2001

 This section of an event package describes the process followed
 by the subscriber upon receipt of a NOTIFY request, including any
 logic required to form a coherent resource state (if applicable).

5.4.9. Handling of forked requests

 Each event package should specify whether forked SUBSCRIBE
 requests are allowed to install multiple subscriptions. If such
 behavior is not allowed, any NOTIFY messages not matching the
 200-class response to the initial SUBSCRIBE message are responded
 to with a 481.

 In the case that multiple subscriptions are allowed, the event
 package must specify whether merging of the notifications to form
 a single state is required, and how such merging is to be
 performed. Note that it is possible that some event packages may
 be defined in such a way that each dialog is tied to a mutually
 exclusive state which is unaffected by the other dialogs; this
 must be clearly stated if it is the case.

5.4.10. Rate of notifications

 Each event package is expected to define a requirement
 (RECOMMENDED, SHOULD or MUST strength) which defines an absolute
 maximum on the rate at which notifications are allowed to be
 generated by a single notifier.

 Such packages may further define a throttle mechanism which
 allows subscribers to further limit the rate of notification.

5.4.11. State Agents

 Designers of event packages should consider whether their package
 can benefit from network aggregation points ("State Agents")
 and/or nodes which act on behalf of other nodes. (For example,
 nodes which provide state information about a resource when such
 a resource is unable or unwilling to provide such state
 information itself). An example of such an application is a node
 which tracks the presence and availability of a user in the
 network.

 If state agents are to be used by the package, the package must
 specify how such state agents aggregate information and how they
 provide authentication and authorization.

5.4.12. Examples

 Event packages should include several demonstrative message flow

 diagrams paired with several typical, syntactically correct and

Roach [Page 26]

Internet Draft SIP-Specific Event Notification November 2001

 complete messages.

 It is recommended that documents describing event packages
 clearly indicate that such examples are informative and not
 normative, with instructions that implementors refer to the main
 text of the draft for exact protocol details.

6. Security Considerations

6.1. Access Control

 The ability to accept subscriptions should be under the direct
 control of the user, since many types of events may be considered
 sensitive for the purposes of privacy. Similarly, the notifier
 should have the ability to selectively reject subscriptions based
 on the calling party (based on access control lists), using
 standard SIP authentication mechanisms. The methods for creation
 and distribution of such access control lists is outside the
 scope of this draft.

6.2. Release of Sensitive Policy Information

 The mere act of returning a 200 or certain 4xx and 6xx responses
 to SUBSCRIBE requests may, under certain circumstances, create
 privacy concerns by revealing sensitive policy information. In
 these cases, the notifier should always return a 202 response.
 While the subsequent NOTIFY message may not convey true state, it
 MUST appear to contain a potentially correct piece of data from
 the point of view of the subscriber, indistinguishable from a
 valid response. Information about whether a user is authorized to
 subscribe to the requested state is never conveyed back to the
 original user under these circumstances.

6.3. Denial-of-Service attacks

 The current model (one SUBSCRIBE request triggers a SUBSCRIBE
 response and one or more NOTIFY requests) is a classic setup for
 an amplifier node to be used in a smurf attack.

 Also, the creation of state upon receipt of a SUBSCRIBE request
 can be used by attackers to consume resources on a victim's
 machine, rendering it unusable.

 To reduce the chances of such an attack, implementations of
 notifiers SHOULD require authentication. Authentication issues
 are discussed in RFC2543 [1] .

7. IANA Considerations

https://datatracker.ietf.org/doc/html/rfc2543

 (This section is not applicable until this document is published

Roach [Page 27]

Internet Draft SIP-Specific Event Notification November 2001

 as an RFC.)

 This document defines an event-type namespace which requires a
 central coordinating body. The body chosen for this coordination
 is the Internet Assigned Numbers Authority (IANA).

 There are two different types of event-types: normal event
 packages, and event sub-packages; see section 5.2. To avoid
 confusion, subpackage names and package names share the same
 namespace; in other words, a sub-package MUST NOT share a name
 with a package.

 Following the policies outlined in "Guidelines for Writing an
 IANA Considerations Section in RFCs" [7] , normal event package
 identification tokens are allocated as First Come First Served,
 and event sub-package identification tokens are allocated on a
 IETF Consensus basis.

 Registrations with the IANA MUST include the token being
 registered and whether the token is a package or a subpackage.
 Further, packages MUST include contact information for the party
 responsible for the registration and/or a published document
 which describes the event package. Sub-package token
 registrations MUST include a pointer to the published RFC which
 defines the sub-package.

 Registered tokens to designate packages and sub-packages MUST NOT
 contain the character ".", which is used to separate sub-packages
 from packages.

7.1. Registration Template

 As this document specifies no package or sub-package names, the
 initial IANA registration for event types will be empty. The
 remainder of the text in this section gives an example of the
 type of information to be maintained by the IANA; it also
 demonstrates all five possible permutations of package type,
 contact, and reference.

 The table below lists the event packages and sub-packages defined
 in "SIP-Specific Event Notification" [RFC xxxx]. Each name is
 designated as a package or a subpackage under "Type."

Roach [Page 28]

Internet Draft SIP-Specific Event Notification November 2001

 Package Name Type Contact Reference
 ------------ ---- ------- ---------
 example1 package [Roach]
 example2 package [Roach] [RFC xxxx]
 example3 package [RFC xxxx]
 example4 sub-package [Roach] [RFC xxxx]
 example5 sub-package [RFC xxxx]

 PEOPLE

 [Roach] Adam Roach <adam.roach@ericsson.com>

 REFERENCES

 [RFC xxxx] A. Roach "SIP-Specific Event Notification", RFC XXXX,
 August 2002.

8. Open Issues

 In addition to the three issues listed below, the BNF in this
 document needs to be converted to explicit LWS to match the
 latest bis draft; this change will be reflected in the next
 version.

8.1. CANCEL Handling

 This is actually a protocol-wide open issue which has impacts on
 this specification: there hasn't been a clear consensus about
 cancellation of non-INVITE requests yet. If non-INVITE requests
 cannot be cancelled, we need to remove section 4.1.3.

8.2. Version of SIP to reference

 Much of the handling in this document is rather different than
 what is described in RFC2543; in fact, many of the recent changes
 to this document have been tracking changes in the "bis" versions
 of the SIP specification. We can continue to reference RFC2543
 while pulling in huge chunks of the bis draft for compatibility
 (for example, the Route handling would essentially be copied
 word-for-word from the bis draft), or we can start referencing
 the bis drafts.

 Of course, referencing the bis drafts allows us to pick up
 changes to protocol semantics "for free," while importing chunks
 of it requires constant maintanance and runs the risk of getting
 out of sync.

https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2543

Roach [Page 29]

Internet Draft SIP-Specific Event Notification November 2001

 On the other hand, placing a dependency on the bis draft pushes
 the timeframe for this draft (and the drafts that depend on it)
 out past the time that the next SIP RFC is published.

8.3. Immediate NOTIFYs

 There has been discussion, but no consensus, on the issue of
 whether each SUBSCRIBE must have an immediate NOTIFY message sent
 in response. In attempts to follow the prevailing sentiment, this
 draft had become internally inconsistent.

 This version of this document has eliminated these
 inconsistancies by requiring notifiers always to send a NOTIFY
 immediately upon receiving a SUBSCRIBE. This decision does not
 necessarily represent group consensus, and further discussion may
 be warranted.

9. Changes

9.1. Changes from draft-ietf-...-00

 - Fixed confusing typo in section describing correlation
 of SUBSCRIBE requests

 - Added explanitory text to clarify tag handling when
 generating re-subscriptions

 - Expanded general handling section to include specific
 discussion of Route/Record-Route handling.

 - Included use of "methods" parameter on Contact as
 a means for detecting support for SUBSCRIBE and NOTIFY.

 - Added definition of term "dialog"; changed "leg" to
 "dialog" everwhere.

 - Added syntax for "Subscription-Expires" header.

 - Changed NOTIFY messages to refer to "Subscription-Expires"
 everywhere (instead of "Expires.")

https://datatracker.ietf.org/doc/html/draft-ietf

Roach [Page 30]

Internet Draft SIP-Specific Event Notification November 2001

 - Added information about generation and handling of
 481 responses to SUBSCRIBE requests

 - Changed having Expires header in SUBSCRIBE from
 MUST to SHOULD; this aligns more closely with
 REGISTER behavior

 - Removed experimental/private event package names,
 per list consensus

 - Cleaned up some legacy text left over from very early
 drafts that allowed multiple contacts per subscription

 - Strengthened language requiring the removal of subscriptions
 if a NOTIFY request fails with a 481. Clarified that such
 removal is required for all subscriptions, including
 administrative ones.

 - Removed description of delaying NOTIFY requests until
 authorization is granted. Such behavior was inconsistent
 with other parts of this document.

 - Moved description of event packages to later in document,
 to reduce the number of forward references.

 - Minor editorial and nits changes

 - Added new open issues to open issues section. All
 previous open issues have been resolved.

9.2. Changes from draft-roach-...-03

 - Added DOS attacks section to open issues.

 - Added discussion of forking to open issues

 - Changed response to PINT request for notifiers who don't
 support PINT from 400 to 489.

https://datatracker.ietf.org/doc/html/draft-roach

Roach [Page 31]

Internet Draft SIP-Specific Event Notification November 2001

 - Added sentence to security section to call attention to
 potential privacy issues of delayed NOTIFY responses.

 - Added clarification: access control list handling is out
 of scope.

 - (Hopefully) Final resolution on out-of-band subscriptions:
 mentioned in section

4.3.
 Removed from open issues.

 - Made "Contact" header optional for SUBSCRIBE 1xx responses.

 - Added description clarifying tag handling (section
4.2.1.

)

 - Removed event throttling from open issues.

 - Editorial cleanup to remove term "extension draft" and
 similar; "event package" is now (hopefully) used consistently
 throughout the document.

 - Remove discussion of event agents from open issues.
 This is covered in the event packages section now.

 - Added discussion of forking to open issues.

 - Added discussion of sub-packages

 - Added clarification that, upon receiving a "NOTIFY"
 with an expires of "0", the subscriber can re-subscribe.
 This allows trivial migration of subscriptions between
 nodes.

 - Added preliminary IANA Considerations section

Roach [Page 32]

Internet Draft SIP-Specific Event Notification November 2001

 - Changed syntax for experimental event tokens to avoid
 possibly ambiguity between experimental tokens and
 sub-packages.

 - Slight adjustment to "Event" syntax to accommodate sub-packages.

 - Added section describing the information which is to be
 included in documents describing event packages.

 - Made 481 responses mandatory for unexpected notifications
 (allowing notifiers to remove subscriptions in error cases)

 - Several minor non-semantic editorial changes.

9.3. Changes from draft-roach-...-02

 - Clarification under "Notifier SUBSCRIBE behavior" which
 indicates that the first NOTIFY message (sent immediately
 in response to a SUBSCRIBE) may contain an empty body, if
 resource state doesn't make sense at that point in time.

 - Text on message flow in overview section corrected

 - Removed suggestion that clients attempt to unsubscribe
 whenever they receive a NOTIFY for an unknown event.
 Such behavior opens up DOS attacks, and will lead to
 message loops unless additional precautions are taken.
 The 481 response to the NOTIFY should serve the same
 purpose.

 - Changed processing of non-200 responses to NOTIFY from
 "SHOULD remove contact" to "MUST remove contact" to support
 the above change.

 - Re-added discussion of out-of-band subscription mechanisms
 (including open issue of resource identification).

https://datatracker.ietf.org/doc/html/draft-roach

Roach [Page 33]

Internet Draft SIP-Specific Event Notification November 2001

 - Added text specifying that SUBSCRIBE transactions are not
 to be prolonged. This is based on the consensus that non-INVITE
 transactions should never be prolonged; such consensus within
 the SIP working group was reached at the 49th IETF.

 - Added "202 Accepted" response code to support the above
 change. The behavior of this 202 response code is a
 generalization of that described in the presence draft.

 - Updated to specify that the response to an unauthorized
 SUBSCRIBE request is 603 or 403.

 - Level-4 subheadings added to particularly long sections to
 break them up into logical units. This helps make the
 behavior description seem somewhat less rambling. This also
 caused some re-ordering of these paragraphs (hopefully in a
 way that makes them more readable).

 - Some final mopping up of old text describing "call related"
 and "third party" subscriptions (deprecated concepts).

 - Duplicate explanation of subscription duration removed from
 subscriber SUBSCRIBE behavior section.

 - Other text generally applicable to SUBSCRIBE (instead of just
 subscriber handling of SUBSCRIBE) moved to parent section.

 - Updated header table to reflect mandatory usage of "Expires"
 header in SUBSCRIBE requests and responses

 - Removed "Event" header usage in responses

 - Added sentence suggesting that notifiers may notify
 subscribers when a subscription has timed out.

 - Clarified that a failed attempt to refresh a subscription
 does not imply that the original subscription has been
 cancelled.

Roach [Page 34]

Internet Draft SIP-Specific Event Notification November 2001

 - Clarified that 489 is a valid response to "NOTIFY" requests.

 - Minor editorial changes to clean up awkward and/or unclear
 grammar in several places

9.4. Changes from draft-roach-...-01

 - Multiple contacts per SUBSCRIBE message disallowed.

 - Contact header now required in NOTIFY messages.

 - Distinction between third party/call member events removed.

 - Distinction between call-related/resource-related events removed.

 - Clarified that subscribers must expect NOTIFY messages before
 the SUBSCRIBE transaction completes

 - Added immediate NOTIFY message after successful SUBSCRIBE;
 this solves a myriad of issues, most having to do with forking.

 - Added discussion of "undefined state" (before a NOTIFY arrives).

 - Added mechanism for notifiers to shorten/cancel outstanding
 subscriptions.

 - Removed open issue about appropriateness of new "489" response.

 - Removed all discussion of out-of-band subscriptions.

 - Added brief discussion of event state polling.

10. References

 [1] M. Handley/H. Schulzrinne/E. Schooler/J. Rosenberg, "SIP:
 Session Initiation Protocol", RFC 2543, IETF; March 1999.

https://datatracker.ietf.org/doc/html/draft-roach
https://datatracker.ietf.org/doc/html/rfc2543

Roach [Page 35]

Internet Draft SIP-Specific Event Notification November 2001

 [2] J. Rosenberg, H. Schulzrinne, "Guidelines for Authors of SIP
 Extensions", <draft-ietf-sip-guidelines-02.txt>, IETF; March
 2001. Work in progress.

 [3] S. Petrack, L. Conroy, "The PINT Service Protocol", RFC 2848,
 IETF; June 2000.

 [4] J. Rosenberg et. al., "SIP Extensions for Presence",
 <draft-ietf-simple-presence-03.txt>, IETF; September 2001.
 Work in progress.

 [5] R. Fielding et. al., "Hypertext Transfer Protocol --
 HTTP/1.1", RFC2068, IETF, January 1997.

 [6] J. Postel, J. Reynolds, "Instructions to RFC Authors",
RFC2223, IETF, October 1997.

 [7] T. Narten, H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, IETF, October 1998.

 [8] Schulzrinne/Rosenberg, "SIP Caller Preferences and Callee
 Capabilities", <draft-ietf-sip-callerprefs-04.txt>, IETF;
 June 2001. Work in progress.

11. Acknowledgements

 Thanks to the participants in the Events BOF at the 48th IETF
 meeting in Pittsburgh, as well as those who gave ideas and
 suggestions on the SIP Events mailing list. In particular, I wish
 to thank Henning Schulzrinne of Columbia University for coming up
 with the final three-tiered event identification scheme, Sean
 Olson of Ericsson for miscellaneous guidance, Jonathan Rosenberg
 for a thorough scrubbing of the -00 draft, and the authors of the
 "SIP Extensions for Presence" draft for their input to SUBSCRIBE
 and NOTIFY request semantics.

12. Author's Address

 Adam Roach
 Ericsson Inc.
 Mailstop L-04
 740 E. Campbell Rd.
 Richardson, TX 75081
 USA
 Phone: +1 972 583 7594
 Fax: +1 972 669 0154
 E-Mail: adam.roach@ericsson.com

https://datatracker.ietf.org/doc/html/draft-ietf-sip-guidelines-02.txt
https://datatracker.ietf.org/doc/html/rfc2848
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-03.txt
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/rfc2223
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/draft-ietf-sip-callerprefs-04.txt

Roach [Page 36]

