
Network Working Group R. Sparks, Ed.
Internet-Draft Estacado Systems
Updates: 3261 (if approved) S. Lawrence
Intended status: Standards Track Pingtel Corp.
Expires: September 8, 2007 A. Hawrylyshen
 Ditech Networks Inc.
 March 7, 2007

Addressing an Amplification Vulnerability in Session Initiation Protocol
 (SIP) Forking Proxies

draft-ietf-sip-fork-loop-fix-05

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 8, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document normatively updates RFC 3261, the Session Initiation
 Protocol (SIP), to address a security vulnerability identified in SIP
 proxy behavior. This vulnerability enables an attack against SIP
 networks where a small number of legitimate, even authorized, SIP

Sparks, et al. Expires September 8, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-ietf-sip-fork-loop-fix-05
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3261

Internet-Draft fork-loop-fix March 2007

 requests can stimulate massive amounts of proxy-to-proxy traffic.

 This document strengthens loop-detection requirements on SIP proxies
 when they fork requests (that is, forward a request to more than one
 destination). It also corrects and clarifies the description of the
 loop-detection algorithm such proxies are required to implement.

Table of Contents

1. Conventions and Definitions 3
2. Introduction . 3
3. Vulnerability: Leveraging Forking to Flood a Network 3
4. Normative changes to RFC 3261 5

 4.1. Strengthening the requirement to perform loop-detection . 5
 4.2. Correcting and clarifying the RFC 3261 loop-detection
 algorithm . 6

4.2.1. Update to section 16.6 6
4.2.2. Update to section 16.3 7
4.2.3. Note to Implementers 7

5. Impact on overall network performance 8
6. IANA Considerations . 8
7. Security Considerations 8
8. Acknowledgments . 10
9. Change Log . 10
9.1. -03 to -04 (addressing WGLC comments) 10
9.2. -02 to -03 . 10
9.3. -01 to -02 . 10

10. References . 11
10.1. Normative References 11
10.2. Informative References 11

 Authors' Addresses . 12
 Intellectual Property and Copyright Statements 13

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 2]

Internet-Draft fork-loop-fix March 2007

1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

2. Introduction

 Interoperability testing uncovered a vulnerability in the behavior of
 forking SIP proxies as defined in [RFC3261]. This vulnerability can
 be leveraged to cause a small number of valid SIP requests to
 generate an extremely large number of proxy-to-proxy messages. A
 version of this attack demonstrates fewer than ten messages
 stimulating potentially 2^70 messages.

 This document specifies normative changes to the SIP protocol to
 address this vulnerability. According to this update, when a SIP
 proxy forks a request to more than one destination, it is required to
 ensure it is not participating in a request loop.

3. Vulnerability: Leveraging Forking to Flood a Network

 This section describes setting up an attack with a simplifying
 assumption, that two accounts on each of two different RFC 3261
 compliant proxy/registrar servers that do not perform loop-detection
 are available to an attacker. This assumption is not necessary for
 the attack, but makes representing the scenario simpler. The same
 attack can be realized with a single account on a single server.

 Consider two proxy/registrar services, P1 and P2, and four Addresses
 of Record, a@P1, b@P1, a@P2, and b@P2. Using normal REGISTER
 requests, establish bindings to these AoRs as follows (non-essential
 details elided):

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 3]

Internet-Draft fork-loop-fix March 2007

 REGISTER sip:P1 SIP/2.0
 To: <sip:a@P1>
 Contact: <sip:a@P2>, <sip:b@P2>

 REGISTER sip:P1 SIP/2.0
 To: <sip:b@P1>
 Contact: <sip:a@P2>, <sip:b@P2>

 REGISTER sip:P2 SIP/2.0
 To: <sip:a@P2>
 Contact: <sip:a@P1>, <sip:b@P1>

 REGISTER sip:P2 SIP/2.0
 To: <sip:b@P2>
 Contact: <sip:a@P1>, <sip:b@P1>

 With these bindings in place, introduce an INVITE to any of the four
 AoRs, say a@P1. This request will fork to two requests handled by
 P2, which will fork to four requests handled by P1, which will fork
 to eight messages handled by P2, and so on. This message flow is
 represented in Figure 2.

 |
 a@P1
 / \
 / \
 / \
 / \
 a@P2 b@P2
 / \ / \
 / \ / \
 / \ / \
 a@P1 b@P1 a@P1 b@P1
 / \ / \ / \ / \
 a@P2 b@P2 a@P2 b@P2 a@P2 b@P2 a@P2 b@P2
 /\ /\ /\ /\ /\ /\ /\ /\
 .
 .
 .

 Figure 2: Attack request propagation

 Requests will continue to propagate down this tree until Max-Forwards
 reaches zero. If the endpoint and two proxies involved follow RFC

3261 recommendations, the tree will be 70 rows deep, representing
 2^70 requests. The actual number of messages may be much larger if
 the time to process the entire tree worth of requests is longer than
 Timer C at either proxy. In this case, a storm of 408s, and/or a

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 4]

Internet-Draft fork-loop-fix March 2007

 storm of CANCELs will also be propagating through the tree along with
 the INVITEs. Remember that there are only two proxies involved in
 this scenario - each having to hold the state for all the
 transactions it sees (at least 2^69 simultaneously active
 transactions near the end of the scenario).

 The attack can be simplified to one account at one server if the
 service can be convinced that contacts with varying attributes
 (parameters, schemes, embedded headers) are sufficiently distinct,
 and these parameters are not used as part of AOR comparisons when
 forwarding a new request. Since RFC 3261 mandates that all URI
 parameters must be removed from a URI before looking it up in a
 location service and that the URIs from the Contact header are
 compared using URI equality, the following registration should be
 sufficient to set this attack up using a single REGISTER request to a
 single account:

 REGISTER sip:P1 SIP/2.0
 To: <sip:a@P1>
 Contact: <sip:a@P1;unknown-param=whack>,<sip:a@P1;unknown-param=thud>

 This attack was realized in practice during one of the SIP
 Interoperability Test (SIPit) sessions. The scenario was extended to
 include more than two proxies, and the participating proxies all
 limited Max-Forwards to be no larger than 20. After a handful of
 messages to construct the attack, the participating proxies began
 bombarding each other. Extrapolating from the several hours the
 experiment was allowed to run, the scenario would have completed in
 just under 10 days. Had the proxies used the RFC 3261 recommended
 Max-Forwards value of 70, and assuming they performed linearly as the
 state they held increases, it would have taken 3 trillion years to
 complete the processing of the single INVITE that initiated the
 attack. It is interesting to note that a few proxies rebooted during
 the scenario, and rejoined in the attack when they restarted (as long
 as they maintained registration state across reboots). This points
 out that if this attack were launched on the Internet at large, it
 might require coordination among all the affected elements to stop
 it.

4. Normative changes to RFC 3261

4.1. Strengthening the requirement to perform loop-detection

 The following requirements mitigate the risk of a proxy falling
 victim to the attack described in this document.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 5]

Internet-Draft fork-loop-fix March 2007

 When a SIP proxy forks a particular request to more than one
 destination, it MUST ensure that request is not looping through this
 proxy. It is RECOMMENDED that proxies meet this requirement by
 performing the Loop-Detection steps defined in this document.

 The requirement to use this document's refinement of the loop-
 detection algorithm in RFC 3261 is set at should-strength to allow
 for future standards track mechanisms that will allow a proxy to
 determine it is not looping. For example, a proxy forking to
 destinations established using the sip-outbound mechanism
 [I-D.ietf-sip-outbound] would know those branches will not loop.

 A SIP proxy forwarding a request to only one location MAY perform
 loop detection but is not required to. When forwarding to only one
 location, the amplification risk being exploited is not present, and
 the Max-Forwards mechanism is sufficient to protect the network. A
 proxy is not required to perform loop detection when forwarding a
 request to a single location even if it happened to have previously
 forked that request (and performed loop detection) in its progression
 through the network.

4.2. Correcting and clarifying the RFC 3261 loop-detection algorithm

4.2.1. Update to section 16.6

 This section replaces all of item 8 in section 16.6 of RFC 3261 (item
 8 begins on page 105 and ends on page 106 of RFC 3261).

 8. Add a Via header field value

 The proxy MUST insert a Via header field value into the copy before
 the existing Via header field values. The construction of this value
 follows the same guidelines of Section 8.1.1.7. This implies that
 the proxy will compute its own branch parameter, which will be
 globally unique for that branch, and will contain the requisite magic
 cookie. Note that following only the guidelines in Section 8.1.1.7
 will result in a branch parameter that will be different for
 different instances of a spiraled or looped request through a proxy.

 Proxies required to perform loop-detection by RFC XXXX (RFC-Editor:
 replace XXXX with the RFC number of this document) have an additional
 constraint on the value they place in the Via header field. Such
 proxies SHOULD create a branch value separable into two parts in any
 implementation dependent way. The first part MUST satisfy the
 constraints of Section 8.1.1.7. The second part is used to perform
 loop detection and distinguish loops from spirals.

 This second part MUST vary with any field used by the location

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261#section-16.6
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 6]

Internet-Draft fork-loop-fix March 2007

 service logic in determining where to retarget or forward this
 request. This is necessary to distinguish looped requests from
 spirals by allowing the proxy to recognize if none of the values
 affecting the processing of the request have changed. Hence, The
 second part MUST depend at least on the received Request-URI and any
 Route header field values used when processing the received request.
 Implementers need to take care to include all fields used by the
 location service logic in that particular implementation.

 This second part MUST NOT vary with the request method. CANCEL and
 non-200 ACK requests MUST have the same branch parameter value as the
 corresponding request they cancel or acknowledge. This branch
 parameter value is used in correlating those requests at the server
 handling them (see Sections 17.2.3 and 9.2).

4.2.2. Update to section 16.3

 This section replaces all of item 4 in section 16.3 of RFC 3261 (item
 4 appears on page 95 RFC 3261).

 4. Loop Detection Check

 Proxies required to perform loop-detection by RFC-XXXX (RFC-Editor:
 replace XXXX with the RFC number of this document) MUST perform the
 following loop-detection test before forwarding a request. Each Via
 header field value in the request whose sent-by value matches a value
 placed into previous requests by this proxy MUST be inspected for the
 "second part" defined in Section 4.2.1 of RFC-XXXX. This second part
 will not be present if the message was not forked when that Via
 header field value was added. If the second field is present, the
 proxy MUST perform the second part calculation described in

Section 4.2.1 of RFC-XXXX on this request and compare the result to
 the value from the Via header field. If these values are equal, the
 request has looped and the proxy MUST reject the request with a 482
 (Loop Detected) response. If the values differ, the request is
 spiraling and processing continues to the next step.

4.2.3. Note to Implementers

 A common way to create the second part of the branch parameter value
 when forking a request is to compute a hash over the concatenation of
 the Request-URI, any Route header field values used during processing
 the request and any other values used by the location service logic
 while processing this request. The hash should be chosen so that
 there is a low probability that two distinct sets of these parameters
 will collide. Because the maximum number of inputs which need to be
 compared is 70 the chance of a collision is low even with a
 relatively small hash value, such as 32 bits. CRC-32c as specified

https://datatracker.ietf.org/doc/html/rfc3261#section-16.3
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 7]

Internet-Draft fork-loop-fix March 2007

 in [RFC3309] is a specific acceptable function, as is MD5 [RFC1321].
 Note that MD5 is being chosen purely for non-cryptographic
 properties. An attacker who can control the inputs in order to
 produce a hash collision can attack the connection in a variety of
 other ways. When forming the second part using a hash,
 implementations SHOULD include at least one field in the input to the
 hash that varies between different transactions attempting to reach
 the same destination to avoid repeated failure should the hash
 collide. The Call-ID and CSeq fields would be good inputs for this
 purpose.

 A common point of failure to interoperate at SIPit events has been
 due to parsers objecting to the contents of other's Via header field
 values when inspecting the Via stack for loops. Implementers need to
 take care to avoid making assumptions about the format of another
 element's Via header field value beyond the basic constraints placed
 on that format by RFC 3261. In particular, parsing a header field
 value with unknown parameter names, parameters with no values,
 parameters values with and without quoted strings must not cause an
 implementation to fail.

5. Impact on overall network performance

 These requirements and the recommendation to use the loop-detection
 mechanisms in this document make the favorable trade of exponential
 message growth for work that is at worst case order n^2 as a message
 crosses n proxies. Specifically, this work is order m*n where m is
 the number of proxies in the path that fork the request to more than
 one location. In practice, m is expected to be small.

 The loop detection algorithm expressed in this document requires a
 proxy to inspect each Via element in a received request. In the
 worst case where a message crosses N proxies, each of which loop
 detect, proxy k does k inspections, and the overall number of
 inspections spread across the proxies handling this request is the
 sum of k from k=1 to k=N which is N(N+1)/2.

6. IANA Considerations

 None.

7. Security Considerations

 This document is entirely about documenting and addressing a
 vulnerability in SIP proxies as defined by RFC 3261 that can lead to

https://datatracker.ietf.org/doc/html/rfc3309
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Sparks, et al. Expires September 8, 2007 [Page 8]

Internet-Draft fork-loop-fix March 2007

 an exponentially growing message exchange attack.

 Alternative solutions that were discussed included

 Doing nothing - rely on suing the offender: While systems that have
 accounts have logs that can be mined to locate abusers, it isn't
 clear that this provides a credible deterrent or defense against
 the attack described in this document. Systems that don't
 recognize the situation and take corrective/preventative action
 are likely to experience failure of a magnitude that precludes
 retrieval of the records documenting the setup of the attack. (In
 one scenario, the registrations can occur in a radically different
 time period than the invite. The invite itself may have come from
 an innocent). It's even possible that the scenario may be set up
 unintentionally. Furthermore, for some existing deployments, the
 cost and audit ability of an account is simply an email address.
 Finding someone to punish may be impossible. Finally, there are
 individuals who will not respond to any threat of legal action,
 and the effect of even a single successful instance of this kind
 of attack would be devastating to a service-provider.

 Putting a smaller cap on Max-Forwards: The effect of the attack is
 exponential with respect to the initial Max-Forwards value.
 Turning this value down limits the effect of the attack. This
 comes at the expense of severely limiting the reach of requests in
 the network, possibly to the point that existing architectures
 will begin to fail.

 Controlling the number of concurrent requests: Bounding the total
 number branches to which the original request can be forwarded
 simultaneously limits the impact of the attack at any given point
 in time. Proposals for limiting mechanisms where considered, but
 no consensus to adopt them currently exists.

 Disallowing registration bindings to arbitrary contacts: The way
 registration binding is currently defined is a key part of the
 success of the kind of attack documented here. The alternative of
 limiting registration bindings to allow only binding to the
 network element performing the registration, perhaps to the
 extreme of ignoring bits provided in the Contact in favor of
 transport artifacts observed in the registration request has been
 discussed (particularly in the context of the mechanisms being
 defined in [I-D.ietf-sip-outbound]. Mechanisms like this may be
 considered again in the future, but are currently insufficiently
 developed to address the present threat.

Sparks, et al. Expires September 8, 2007 [Page 9]

Internet-Draft fork-loop-fix March 2007

 Deprecate forking: This attack does not exist in a system that
 relies entirely on redirection and initiation of new requests by
 the original endpoint. Removing such a large architectural
 component from the system at this time was deemed a too extreme
 solution.

8. Acknowledgments

 Thanks go to the implementors that subjected their code to this
 scenario and helped analyze the results at SIPit 17. Eric Rescorla
 provided guidance and text for the hash recommendation note.

9. Change Log

 RFC Editor - Remove this section before publication

9.1. -03 to -04 (addressing WGLC comments)

 Changed the hash recommendation per list consensus

 Reintroduced Call-ID and CSeq (list discussion rediscovered one
 use for them in avoiding repeated hash collisions)

9.2. -02 to -03

 Closed Open Issue 1 "Why are we including all of the Route headers
 values?". The text has been modified to include only those values
 used in processing the request.

 Closed Open Issues 2 and 3 "Why did 3261 include Call-ID To-tag,
 and From-tag and CSeq?" and "Why did 3261 include Proxy-Require
 and Proxy-Authorization?". The group has not been able to
 identify why these fields would be included in the hash generally,
 and successful interoperability tests have not included them.
 Since they were not included in the text for -02, the text for
 this version was not affected.

 Removed the word "cryptographic" from the hash description in the
 non-normative note to implementers (per list discussion) and added
 characterization of the properties the hash chosen should have.

9.3. -01 to -02

 Integrated several editorial fixes suggested by Jonathan Rosenberg

Sparks, et al. Expires September 8, 2007 [Page 10]

Internet-Draft fork-loop-fix March 2007

 Noted that the reduction of the attack to a single registration
 against a single URI as documented in previous versions, is, in
 fact, going to be effective against implementations conforming to
 the standards before this repair.

 Re-incorporated motivation from the original maxforwards-problem
 draft into the security considerations section based on feedback
 from Cullen Jennings

 Introduced replacement text for the loop detection algorithm
 description in RFC 3261, fixing the bug 648 (the topmost Via value
 must not be included in the second part) and clarifying the
 algorithm. Removed several other fields suggested by 3261 and
 placed open issues around their presence.

 Added a Notes to Implementors section capturing the "common way"
 text and pointing to the interoperability issues that have been
 observed with loop detection at previous SIPits

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

10.2. Informative References

 [I-D.ietf-sip-outbound]
 Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-08 (work in progress), March 2007.

 [RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [RFC3309] Stone, J., Stewart, R., and D. Otis, "Stream Control
 Transmission Protocol (SCTP) Checksum Change", RFC 3309,
 September 2002.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-08
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3309

Sparks, et al. Expires September 8, 2007 [Page 11]

Internet-Draft fork-loop-fix March 2007

Authors' Addresses

 Robert Sparks (editor)
 Estacado Systems
 17210 Campbell Road
 Suite 250
 Dallas, Texas 75254-4203
 USA

 Email: RjS@nostrum.com

 Scott Lawrence
 Pingtel Corp.
 400 West Cummings Park
 Suite 2200
 Woburn, MA 01801
 USA

 Phone: +1 781 938 5306
 Email: slawrence@pingtel.com

 Alan Hawrylyshen
 Ditech Networks Inc.
 1167 Kensington Rd NW
 Suite 200
 Calgary, Alberta T2N 1X7
 Canada

 Phone: +1 403 806 3366
 Email: ahawrylyshen@ditechnetworks.com

Sparks, et al. Expires September 8, 2007 [Page 12]

Internet-Draft fork-loop-fix March 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Sparks, et al. Expires September 8, 2007 [Page 13]

