
SIP J. Rosenberg
Internet-Draft dynamicsoft
Expires: December 31, 2004 July 2, 2004

Obtaining and Using Globally Routable User Agent (UA) URIs (GRUU) in
the Session Initiation Protocol (SIP)

draft-ietf-sip-gruu-02

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 31, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 Several applications of the Session Initiation Protocol (SIP) require
 a user agent (UA) to construct and distribute a URI which can be used
 by anyone on the Internet to route a call to that specific UA
 instance. A URI which routes to a specific UA instance is called a
 Globally Routable UA URI (GRUU). This document describes an
 extension to SIP for obtaining a GRUU from a server, and for
 communicating a GRUU to a peer within a dialog.

https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Rosenberg Expires December 31, 2004 [Page 1]

Internet-Draft GRUU Mechanism July 2004

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Defining a GRUU . 3
4. Use Cases . 3
4.1 REFER . 3
4.2 Conferencing . 4
4.3 Presence . 4

5. Overview of Operation . 5
6. Creation of a GRUU . 6
7. Obtaining a GRUU . 9
7.1 Through Registrations 9
7.1.1 User Agent Behavior 9
7.1.2 Registrar Behavior 11

7.2 Administratively . 12
8. Using the GRUU . 13
8.1 Sending a Message Containing a GRUU 13
8.2 Sending a Message to a GRUU 14
8.3 Receiving a Request Sent to a GRUU 14
8.4 Proxy Behavior . 15

9. 425 (Instance Conflict) Response Code 15
10. Grammar . 16
11. Requirements . 16
12. Example Call Flow . 17
13. Security Considerations 23
14. IANA Considerations . 23
14.1 Header Field Parameter 23
14.2 Response Code . 23
14.3 URI Parameter . 24
14.4 Media Feature Tag . 24
14.5 SIP Option Tag . 25

15. Acknowledgements . 25
16. References . 25
16.1 Normative References . 25
16.2 Informative References 26

 Author's Address . 27
A. Example GRUU Construction Algorithms 27
A.1 Encrypted Instance ID and AOR 27
A.2 Hashed Indices . 28

 Intellectual Property and Copyright Statements 29

Rosenberg Expires December 31, 2004 [Page 2]

Internet-Draft GRUU Mechanism July 2004

1. Introduction

 Several applications of the Session Initiation Protocol (SIP) [1]
 require a user agent (UA) to construct and distribute a URI which can
 be used by anyone on the Internet to route a call to that specific UA
 instance. An example of such an application is call transfer [18],
 based on the REFER method [5]. Another application is the usage of
 endpoint-hosted conferences within the conferencing framework [14].
 We call these URIs Globally Routable UA URIs (GRUU). This
 specification provides a mechanism for obtaining and using GRUUs.

2. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [3] and
 indicate requirement levels for compliant implementations.

3. Defining a GRUU

 A GRUU is a SIP URI which has two characteristics:
 Global: It can be used by any UAC connected to the Internet. In that
 regard, it is like an address-of-record (AOR) for a user. The
 address-of-record for a user, sip:joe@example.com, is meant to be
 used by anyone to reach that user. The same is true for a GRUU.

 Routes to a Single Instance: It routes to a specific UA instance, and
 never forks. In that regard, it is unlike an address-of-record.
 When a request is sent to a normal AOR which represents a user,
 routing logic is applied in proxies to deliver the request to one
 or more UAs. That logic can result in a different routing
 decision based on the time-of-day, or the identity of the caller.
 However, when a request is made to a GRUU, the routing logic is
 dictated by the properties of a GRUU. The request has to be
 delivered to a very specific UA instance. That UA instance has to
 be the same UA instance for all requests sent to that GRUU. This
 does not mean that a GRUU represents a fundamentally different
 type of URI; it only means that the logic a proxy applies to a
 GRUU is going to generally be simpler than that it applies to a
 normal AOR.

4. Use Cases

 We have encountered several use cases for a GRUU.

4.1 REFER

 Consider a blind transfer application [18]. User A is talking to

https://datatracker.ietf.org/doc/html/rfc2119

Rosenberg Expires December 31, 2004 [Page 3]

Internet-Draft GRUU Mechanism July 2004

 user B. User A wants to transfer the call to user C. So, user A
 sends a REFER to user C. That REFER looks like, in part:

 REFER sip:C@example.com SIP/2.0
 From: sip:A@example.com;tag=99asd
 To: sip:C@example.com
 Refer-To: (URI that identifiers B's UA)

 The Refer-To header field needs to contain a URI that can be used by
 user C to place a call to user B. However, this call needs to route
 to the specific UA instance which user B is using to talk to user A.
 If it didn't, the transfer service would not execute properly. This
 URI is provided to user A by user B. Because user B doesn't know who
 user A will transfer the call to, the URI has to be usable by anyone.
 Therefore, it is a GRUU.

4.2 Conferencing

 A similar need arises in conferencing [14]. In that framework, a
 conference is described by a URI which identifies the focus of the
 conference. The focus is a SIP UA that acts as the signaling hub for
 the conference. Each conference participant has a dialog with the
 focus. One case described in the framework is where a user A has
 made a call to user B. User A puts user B on hold, and calls user C.
 Now, user A has two separate dialogs for two separate calls - one to
 user B, and one to user C. User A would like to conference them. To
 do this, user A's user agent morphs itself into a focus. It sends a
 re-INVITE or UPDATE [2] on both dialogs, and provides user B and user
 C with an updated Contact URI that now holds the conference URI. The
 Contact URI also has a callee capabilities [9] parameter which
 indicates that this URI is a conference URI. User A proceeds to mix
 the media streams received from user B and user C. This is called an
 ad-hoc conference.

 At this point, normal conferencing features can be applied. That
 means that user B can send another user, user D, the conference URI,
 perhaps in an email. User D can send an INVITE to that URI, and join
 the conference. For this to work, the conference URI used by user A
 in its re-INVITE or UPDATE has to be usable by anyone, and it has to
 route to the specific UA instance of user A that is acting as the
 focus. If it didn't, basic conferencing features would fail.
 Therefore, this URI is a GRUU.

4.3 Presence

 In a SIP-based presence [19] system, the Presence Agent (PA)
 generates notifications about the state of a user. This state is
 represented with the Presence Information Document Format (PIDF)

Rosenberg Expires December 31, 2004 [Page 4]

Internet-Draft GRUU Mechanism July 2004

 [17]. In a PIDF document, a user is represented by a series of
 tuples, each of which describes the services that the user has. Each
 tuple also has a contact URI, which is a SIP URI representing that
 device. A watcher can make a call to that URI, with the expectation
 that the call is routed to the service whose presence is represented
 in the tuple.

 In some cases, the service represented by a tuple may exist on only a
 single user agent associated with a user. In such a case, the URI in
 the presence document has to route to that specific UA instance.
 Furthermore, since the presence document could be used by anyone who
 subscribes to the user, the URI has to be usable by anyone. As a
 result, it is a GRUU.

 It is interesting to note that the GRUU may need to be constructed by
 a presence agent, depending on how the presence document is computed
 by the server.

5. Overview of Operation

 This section is tutorial in nature, and does not specify any
 normative behavior.

 This extension allows a UA to obtain a GRUU, and to use a GRUU.
 These two mechanisms are separate, in that a UA can obtain a GRUU in
 any way it likes, and use the mechanisms in this specification to use
 them. Similarly, a UA can obtain a GRUU but never use it. This
 specification defines two mechanisms for obtaining a GRUU - through
 registrations, and through administrative operation. Only the former
 requires protocol operations.

 A UA can obtain a GRUU by generating a normal REGISTER request, as
 specified in RFC 3261 [1]. This request contains a Supported header
 field with the value "gruu", indicating to the registrar that the UA
 supports this extension. The UA includes a "sip.instance" media
 feature tag in the Contact header field of each Contact for which a
 GRUU is desired. This media feature tag contains a globally unique
 ID that identifies the UA instance. If the domain that the user is
 registering against also supports GRUU, the REGISTER responses will
 contain the "gruu" parameter in each Contact header field. This
 parameter contains a GRUU which the domain guarantees will route to
 that UA instace. That GRUU is guaranteed to remain valid for the
 duration of the registration. The GRUU is bound to the UA instace.
 Should the client change its Contact URI, but indicate that it
 represents the same instance ID, the server would provide the same
 GRUU. Furthermore, if the registration for the Contact expires, and
 the UA registers the Contact at a later time with the same instance
 identifier, the server would provide the same GRUU.

https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires December 31, 2004 [Page 5]

Internet-Draft GRUU Mechanism July 2004

 Since the GRUU is a URI like any other, it can be handed out by a UA
 by placing it in any header field which can contain a URI. A UA will
 normally place the GRUU into the Contact header field of dialog
 creating requests and responses it generates. However, it is
 important for the UA receiving the message to know whether the
 Contact URI is a GRUU or not. To make this determination, the UA
 looks for the presence of the Supported header field in the request
 or response. If it is present with a value of "gruu", it means that
 the Contact URI is a GRUU.

 When a UA uses a GRUU, it has the option of adding the "grid" URI
 parameter to the GRUU. This parameter is opaque to the proxy server
 handling the domain. However, when the server maps the GRUU to the
 corresponding Contact URI, the server will copy the grid parameter
 into the Contact URI. As a result, when the UA receives the request,
 the Request URI will contain the grid parameter it placed in the
 corresponding GRUU.

6. Creation of a GRUU

 A GRUU is a URI that is created and maintained by a server
 authoritative for the domain in which the GRUU resides.
 Independently of whether the GRUU is created as a result of a
 registration or some other means, a server MUST maintain certain
 information associated with the GRUU. This information, and its
 relationship with the GRUU, are modeled in Figure 2.

 +-------------+
 | |
 | |
 | GRUU |----------------------+
 | | |
 | | |
 +-------------+ |
 | 0..1 |
 | |
 | associated-with |
 | |
 | |
 | 1 |
 +----------------+ |
 | | |
 +--------| instance ID/ |------+ |
 | | AOR Pair | | |
 | | | | |
 | +----------------+ | |
 | | |

Rosenberg Expires December 31, 2004 [Page 6]

Internet-Draft GRUU Mechanism July 2004

 | | |
 | | |translates
 V V |to
 +--------------+ +-----------+ |
 | | | | |
 | instance | | AOR | |
 | ID | | | |
 | | +-----------+ |
 +--------------+ | |
 ^ | |
 | | | | |
 | | |
 | |is-bound-to |
 | +----------------+ | |
 | | | | |
 | | | | |
 +--------| Contact URI |<-----+ |
 | | 0..* |
 | | |
 +----------------+ |
 0..1 ^ |
 | |
 +-----------------------------+

 Figure 2

 The instance ID plays a key role in this specification. It is an
 indentifier, represented by a URI, that uniquely identifies a SIP
 user agent amongst all other user agents with a Contact URI bound to
 an Address of Record (AOR). The instance ID allows a domain to
 create a GRUU that maps to the same UA instance, even if the Contact
 URI of that instance changes. Furthermore, the instance ID allows a
 domain to enforce the restriction that a specific UA instance can
 only be registered once against an AOR. When elements compliant to
 this specification compare two instance IDs for equality, the
 comparison is done using the equality rules for the scheme associated
 with that URI.

 A GRUU is associated, in a one-to-one fashion, with the combination
 of an Address of Record (AOR) and instance ID. The GRUU is said to
 be associated with the combination, and the combination is associated
 with the GRUU. This combination is referred to as an instance ID/AOR
 pair. The instance ID/AOR pair serve to uniquely identify a user
 agent instance servicing a specific AOR. The AOR identifies a
 resource, such as a user or service within a domain, and the instance
 ID identifies a specific UA instance servicing requests for that
 resource.

Rosenberg Expires December 31, 2004 [Page 7]

Internet-Draft GRUU Mechanism July 2004

 It is important to understand that this uniqueness is over the
 instance ID/AOR pair, not just the instance ID. For example, if a
 user registered the Contact
 sip:ua@pc.example.com;+sip.instance="urn:foo:1", representing a
 device with instance ID urn:foo:1, to the AOR sip:user@example.com,
 and also registered the same Contact, representing the same instance
 ID - sip:ua@pc.example.com;+sip.instance="urn:foo:1" to a second AOR,
 say sip:boss@example.com, each of those UA instances would have a
 different GRUU, since they belong to different AORs.

 A GRUU translates to zero or one Contact URIs. The Contact URI is a
 temporary URI that can be used to reach the instance ID/AOR pair.
 This URI can change due to changes in the IP address associated with
 the instance ID/AOR pair. If the instance ID associated with the
 GRUU is the instance ID of a Contact URI currently bound to the AOR
 associated with that GRUU, then the GRUU translates to that Contact
 URI. If, however, the instance ID associated with the GRUU is not an
 instance ID of a Contact URI currently bound to the AOR associated
 with the GRUU (possibly because there are no Contact URIs bound to
 the AOR), the GRUU maps to no Contact URI, and the GRUU is said to be
 invalid.

 This specification does not mandate a particular mechanism for
 construction of the GRUU. Several example approaches are given in

Appendix A. However, the GRUU MUST exhibit the following properties:
 o The domain part of the URI is an IP address present on the public
 Internet, or, if it is a host name, exists in the global DNS and
 corresponds to an IP address present on the public Internet.
 o When a request is sent to this URI, it routes to a proxy server in
 the same domain as that of the registrar.
 o A proxy server in the domain can determine that the URI is a GRUU.
 o When a proxy server in this domain receives a request sent to a
 URI that is a GRUU, that URI MUST be translated to the Contact URI
 currently bound to the AOR associated with that GRUU whose
 instance ID is the one associated with the GRUU.

 Once an association from an instance ID/AOR to a GRUU is created,
 that mapping MUST remain in existence, and valid, as long as there
 exists any Contact bound to that AOR whose instance ID is that
 instance ID. If, through a de-registration or expiration, there is
 no longer any Contact bound to that AOR whose instance ID is that
 instance ID, the registrar MUST remove the mapping, and invalidate
 the GRUU. However, at any time in the future, should a Contact
 become bound to that same AOR, and that Contact is associated with
 the same instance ID, the domain SHOULD create the same GRUU that was
 previously associated with that instance ID/AOR pair. Indeed, this
 requirement would ideally be a MUST if it was achieveable, but even
 with the stateless algorithm described above, key rotation or server

Rosenberg Expires December 31, 2004 [Page 8]

Internet-Draft GRUU Mechanism July 2004

 failures may cause the GRUU associated with an instance ID/AOR pair
 to change. The value of associating the GRUU with an instance ID/AOR
 pair, as opposed to a Contact URI/AOR pair, is that the association
 can transcend changes in IP address. As a result, domains SHOULD
 make every effort possible to maintain the association for as long as
 possible.

7. Obtaining a GRUU

 A GRUU can be obtained in many ways. This document defines two -
 through registrations, and through administrative operation.

7.1 Through Registrations

 When a GRUU is associated with a user agent that comes and goes, and
 therefore registers to the network to bind itself to an AOR, a GRUU
 is provided to the user agent through SIP REGISTER messages.

7.1.1 User Agent Behavior

 When a UA compliant to this specification generates a REGISTER
 request (initial or refresh), it MUST include the Supported header
 field in the request. The value of that header field MUST include
 "gruu" as one of the option tags. This alerts the registrar for the
 domain that the UA supports the GRUU mechanism.

 Furthermore, for each Contact for which the UA desires to obtain a
 GRUU, the UA MUST include a "sip.instance" media feature tag as a UA
 characteristic [9]. As described in [9], this media feature tag will
 be encoded in the Contact header field as the "+sip.instance" Contact
 header field parameter. The value of this parameter MUST be a URI
 [7]. [9] defines equality rules for callee capabilities parameters,
 and according to that specification, the "sip.instance" media feature
 tag will be compared by case sensitive string comparison. Those
 equality rules apply only to the generic usages defined there and in
 the caller preferences specification [16]. When the instance ID is
 used in this specification, it is effectively "extracted" from the
 value in the "sip.instance" media feature tag, and thus equality
 comparisons are performed using the rules for URI equality specific
 to the scheme in the URI.

 It is RECOMMENDED that the URI be a Uniform Resource Name (URN) [8].
 This specification makes no normative recommendation on the specific
 URI or URN that is to be used. However, the URI MUST be selected
 such that the instance can be certain that no other instance
 registering against the same AOR would choose the same URI value.
 Usage of a URN is RECOMMENDED since it provides a persistent and
 unique name for the UA instance, allowing it to obtain the same GRUU

Rosenberg Expires December 31, 2004 [Page 9]

Internet-Draft GRUU Mechanism July 2004

 over time. It also provides an easy way to guarantee uniquess within
 the AOR. However, this specification does not require a long-lived
 and persistent instance identifier to properly function, and in some
 cases, there may be cause to use an identifier with weaker temporal
 persistence.

 One URN that readily meets the requirements of this specification is
 the UUID URN [20], which allows for non-centralized computation of a
 URN based on time, unique names (such as a MAC address) or a random
 number generator. An example of a URN that would not meet the
 requirements of this specification is the national bibliographic
 number [13]. Since there is no clear relationship between an SIP UA
 instance and a URN in this namespace, there is no way a selection of
 a value can be performed that guarantees that another UA instance
 doesn't choose the same value.

 Besides the presence of the "gruu" option tag in the Supported header
 field and the "+sip.instance" Contact header field parameter, the
 REGISTER request is constructed identically to the case where this
 extension was not understood. Specifically, the Contact URI in the
 REGISTER request SHOULD NOT contain the gruu Contact header field
 parameter. Any such parameters are ignored by the registrar, as the
 UA cannot propose a GRUU for usage with the Contact URI.

 If a UA wishes to guarantee that the request is not processed unless
 the domain supports and uses this extension, it MAY include a Require
 header field in the request with a value that contains the "gruu"
 option tag.

 If the response is a 2xx, each Contact header field that contained
 the "+sip.instance" Contact header field parameter may also contain a
 "gruu" parameter. This parameter contains a SIP URI that represents
 a GRUU corresponding to the UA instance that registered the contact.
 Any requests sent to the GRUU URI will be routed by the domain to the
 Contact URI currently bound to that instance ID. The GRUU will not
 normally change in subsequent 2xx responses to REGISTER. Indeed,
 even if the UA lets the contact expire, when it re-registers it at
 any later time, the registrar will normally provide the same GRUU for
 the same address-of-record and instance ID. However, this property
 cannot be completely guaranteed, as network failures may make it
 impossible to provide an identifier that persists for all time. As a
 result, a UA MUST be prepared to receive a different GRUU in a
 subsequent registration response.

 A non-2xx response to the REGISTER request has no impact on any
 existing GRUU previously provided to the UA. Specifically, if a
 previously successful REGISTER request provided the UA with a GRUU, a
 subsequent failed request does not remove, delete, or otherwise

Rosenberg Expires December 31, 2004 [Page 10]

Internet-Draft GRUU Mechanism July 2004

 invalidate the GRUU.

 If the response to the REGISTER request was a 425, it means that one
 of the Contact URI in the REGISTER request contained an instance ID
 that was already associated with a different registered Contact. It
 is up to the client to resolve this conflict. The conflict normally
 arises when a client registers a Contact with its instance ID,
 crashes, and reboots. After reboot, it obtains a new IP address, and
 attempts to register a Contact for that address, containing the same
 instance ID. In such a case, the proper course of action is to
 remove the old registration. To do that, the client can send a
 REGISTER request with no Contacts. The 200 OK contains the list of
 currently registered Contacts, including their instance IDs. The
 client can find the existing contact that matches its instance ID,
 and then send a new REGISTER request. This request would include the
 old Contact, with the instance ID, and an expires value of 0. Then,
 the client can retry its failed registration.

7.1.2 Registrar Behavior

 A registrar MAY create a GRUU for a particular instance ID/AOR pair
 at any time. Of course, if a UA requests a GRUU in a registration,
 and the registrar has not yet created one, it will need to do so in
 order to respond to the registration request. However, the registrar
 can create the GRUU in advance of any request from a UA.

 When a registrar compliant to this specification receives a REGISTER
 request, it checks for the presence of the Require header field in
 the request. If present, and if it contains the "gruu" option tag,
 the registrar MUST follow the procedures in the remainder of this
 section (that is, the procedures which result in the creation of new
 GRUUs for Contacts indicating an instance ID, and the listing of
 GRUUs in the REGISTER response). If not present, but a Supported
 header field was present with the "gruu" option tag, the registrar
 SHOULD follow the procedures in the remainder of this section. If
 the Supported header field was not present, or it if was present but
 did not contain the value "gruu", the registrar SHOULD NOT follow the
 procedures in the remainder of this section.

 As the registrar is processing the Contacts in the REGISTER request
 according to the procedures of step 7 in Section 10.3 of RFC 3261,
 the registrar additionally checks whether each contact contains a
 "+sip.instance" header field parameter. If it does, the registrar
 takes the value of that parameter as an instance ID. The registrar
 checks to see if there is any other contact bound to the same AOR
 with the same instance ID (recall that equality is computed using URI
 equality for the scheme in question). If there is, this is an error
 condition. Only a single Contact URI at a time can be registered for

https://datatracker.ietf.org/doc/html/rfc3261#section-10.3

Rosenberg Expires December 31, 2004 [Page 11]

Internet-Draft GRUU Mechanism July 2004

 each instance ID. As a result, the registrar MUST reject the request
 with a 425 (Instance Conflict) error response. This response code
 informs the client that its registration failed because the instance
 ID provided in the request is already registered to a different
 Contact. It is up to the client to decide how to proceed.

 If there is no other contact bound to the same AOR with the same
 instance ID, the server allocates and/or creates a GRUU for that
 instance ID/AOR pair according to the procedures of Section 6. If
 the contact contained a "gruu" Contact header field parameter, it
 MUST be ignored by the registrar. A UA cannot suggest or otherwise
 provide a GRUU to the registrar. In addition to storing the contact
 URI, the server MUST store the instance ID.

 When generating the 200 (OK) response to the REGISTER request, the
 procedures of step 8 of Section 10.3 of RFC 3261 are followed.
 Furthermore, for each Contact header field value placed in the
 response, if the registrar has stored an instance ID associated with
 that contact URI, the server MUST add a "gruu" Contact header field
 parameter. This parameter contains the instance ID for the user
 agent. The value of the gruu parameter is a quoted string containing
 the URI that is the GRUU for the associated instance ID/AOR pair.

 Note that handling of a REGISTER request containing a Contact header
 field with value "*" and an expiration of 0 still retains the meaning
 defined in RFC 3261 - all Contacts, not just ones with a specific
 instance ID, are deleted.

 Inclusion of a GRUU in the "gruu" Contact header field parameter of a
 REGISTER response is separate from the computation and storage of the
 GRUU. It is possible that the registrar has computed a GRUU for one
 UA, but a different UA that queries for the current set of
 registrations doesn't understand GRUU. In that case, the REGISTER
 response sent to that second UA would not contain the "gruu" Contact
 header field parameter, even though the UA has a GRUU for that
 Contact.

7.2 Administratively

 Administrative creation of GRUUs is useful when a UA instance is a
 network server that is always available, and therefore doesn't
 register to the network. Examples of such servers are voicemail
 servers, application servers, and gateways.

 There are no protocol operations required to administratively create
 a GRUU. The proxy serving the domain is configured with the GRUU,
 and with the Contact URI it should be translated to. It is not
 strictly necessary to also configure the instance ID and AOR, since

https://datatracker.ietf.org/doc/html/rfc3261#section-10.3
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires December 31, 2004 [Page 12]

Internet-Draft GRUU Mechanism July 2004

 the translation can be done directly. However, they serve as a
 useful tool for determining which resource and UA instance the GRUU
 is supposed to map to.

 In addition to configuring the GRUU and its associated Contact URI in
 the proxy serving the domain, the GRUU will also need to be
 configured into the UA instance associated with the GRUU.

8. Using the GRUU

8.1 Sending a Message Containing a GRUU

 A UA first obtains a GRUU using the procedures of Section 7, or by
 other means outside the scope of this specification.

 A UA can use the GRUU in the same way it would use any other SIP URI.
 However, a UA compliant to this specification MUST use a GRUU when
 populating the Contact header field of dialog-creating requests and
 responses. This includes the INVITE request and its 2xx response,
 the SUBSCRIBE [4] request, its 2xx response, the NOTIFY request, and
 the REFER [5] request and its 2xx response. Similarly, in those
 requests and responses where the GRUU is used in the Contact header
 field, the UA MUST include a Supported header field that contains the
 option tag "gruu". However, it is not necessary for a UA to know
 whether or not its peer in the dialog uses a GRUU before inserting
 one into the Contact header field.

 When placing a GRUU into the Contact header field of a request or
 response, a UA MAY add the "grid" URI parameter to the GRUU. This
 parameter MAY take on any value permitted by the grammar for the
 parameter. Note that there are no limitations on the size of this
 parameter. When a UA sends a request to the GRUU, the proxy for the
 domain that owns the GRUU will translate the GRUU in the Request-URI,
 replacing it with the corresponding Contact URI. However, it will
 retain the "grid" parameter when this translation is performed. As a
 result, when the UA receives the request, the Request-URI will
 contain the "grid" created by the UA. This allows the UA to
 effectively manufacture an infinite supply of GRUU, each of which
 differs by the value of the "grid" parameter. When a UA receives a
 request that was sent to the GRUU, it will be able to tell which GRUU
 was invoked by the "grid" parameter.

 An implication of this behavior is that all mid-dialog requests will
 be routed through intermediate proxies. There will never be direct,
 UA to UA signaling. It is anticipated that this limitation will be
 addressed in future specifications.

 Once a UA knows that the Contact URI provided by its peer is a GRUU,

Rosenberg Expires December 31, 2004 [Page 13]

Internet-Draft GRUU Mechanism July 2004

 it can use it in any application or SIP extension which requires a
 globally routable URI to operate. One such example is assisted call
 transfer.

8.2 Sending a Message to a GRUU

 There is no new behavior associated with sending a request to a GRUU.
 A GRUU is a URI like any other. When a UA receives a request or
 response, it will know that the Contact header field contained a GRUU
 if the request or response had a Supported header field that included
 the value "gruu". The UA can take the GRUU, and send a request to
 it, and then be sure that it is delivered to the UA instance which
 sent the request or response.

 Since the instance ID is a callee capabilities parameter, a UA might
 be tempted to send a request to the AOR of a user, and include an
 Accept-Contact header field [16] which indicates a preference for
 routing the request to a UA with a specific instance ID. Although
 this would appear to have the same effect as sending a request to the
 GRUU, it does not. The caller preferences expressed in the
 Accept-Contact header field are just preferences, and do not work
 with the some reliability as GRUU. However, this specification does
 not forbid a client from attempting such a request, as there may be
 cases where the desired operation truly is a preferential routing
 request.

8.3 Receiving a Request Sent to a GRUU

 When a UAS receives a request sent to its GRUU, the incoming request
 URI will be equal to the Contact URI that was registered (through
 REGISTER or some other action) by that UA instance. If the user
 agent had previously handed out its GRUU with a grid parameter, the
 incoming request URI may contain that parameter. This indicates to
 the UAS that the request is being received as a result of a request
 sent by the UAC to that GRUU/grid combination. This specification
 makes no normative statements about when to use a grid parameter, or
 what to do when receiving a request made to a GRUU/grid combination.
 Generally, any differing behaviors are a matter of local policy.

 It is important to note that, when a user agent receives a request,
 and the request URI does not have a grid parameter, the user agent
 cannot tell whether the request was sent to the AOR or to the GRUU.
 As such, the UAS will process such requests identically. If a user
 agent needs to differentiate its behavior based on these cases, it
 will need to use a grid parameter.

Rosenberg Expires December 31, 2004 [Page 14]

Internet-Draft GRUU Mechanism July 2004

8.4 Proxy Behavior

 When a proxy server receives a request, and the proxy owns the domain
 in the Request URI, and the proxy is supposed to access a Location
 Service in order to compute request targets (as specified in Section

16.5 of RFC 3261 [1]), the proxy MUST check if the Request URI is a
 GRUU created by that domain.

 If the URI is a GRUU, the proxy MUST determine if there is still a
 Contact URI bound to AOR associated with the GRUU, whose instance ID
 is the instance ID associated with the GRUU. If that AOR no longer
 has any contacts bound to it, or if it does have contacts bound to
 it, but none of them have an instance ID equal to the instance ID
 associated with the GRUU, the proxy MUST generate a 480 (Temorarily
 Unavailable) response to the request. If, however, the proxy does
 not recognize the GRUU as one it had constructed previously for the
 domain, the proxy MUST generate a 404 (Not Found) response to the
 request.

 Otherwise, the proxy MUST populate the target set with a single URI.
 This URI MUST be equal to the Contact URI that is translated from the
 GRUU. Furthermore, if the GRUU contained a "grid" URI parameter, the
 URI in the target set MUST also contain the same parameter with the
 same value.

 A proxy MAY apply other processing to the request, such as execution
 of called party features. In particular, it is RECOMMENDED that
 non-routing called party features, such as call logging and
 screening, that are associated with the AOR are also applied to
 requests for all GRUUs associated with that AOR.

 In many cases, a proxy will record-route an initial INVITE request,
 and the user agents will insert a GRUU into the Contact header field.
 When this happens, a mid-dialog request will arrive at the proxy with
 a Route header field that was inserted by the proxy, and a
 Request-URI that represents a GRUU. Proxies follow normal processing
 in this case; they will strip the Route header field, and then
 process the Request URI as described above.

 The procedures of RFC 3261 are then followed to proxy the request.
 The request SHOULD NOT be redirected in this case. In many
 instances, a GRUU is used by a UA in order to assist in the traversal
 of NATs and firewalls, and a redirection may prevent such a case from
 working.

9. 425 (Instance Conflict) Response Code

 This specification defines a new response code for SIP. The response

https://datatracker.ietf.org/doc/html/rfc3261#section-16.5
https://datatracker.ietf.org/doc/html/rfc3261#section-16.5
https://datatracker.ietf.org/doc/html/rfc3261

Rosenberg Expires December 31, 2004 [Page 15]

Internet-Draft GRUU Mechanism July 2004

 code is 425, and it has a default reason phrase of "Instance
 Conflict". This response code is valid only for REGISTER responses.
 It informs the UA that its registration failed because the instance
 ID provided in the request is already registered to a different
 Contact.

10. Grammar

 This specification defines two new Contact header field parameters,
 gruu and +sip.instance, and a new URI parameter, grid. The grammar
 for string-value is obtained from [9], and the grammar for uric is
 defined in RFC 2396 [7].

 contact-params = c-p-q / c-p-expires / c-p-gruu / cp-instance
 / contact-extension
 c-p-gruu = "gruu" EQUAL DQUOTE SIP-URI DQUOTE
 cp-instance = "+sip.instance" EQUAL LDQUOT instance-val RDQUOT
 uri-parameter = transport-param / user-param / method-param
 / ttl-param / maddr-param / lr-param / grid-param
 / other-param
 grid-param = "grid=" pvalue ; defined in RFC3261
 instance-val = uric ; defined in RFC 2396

11. Requirements

 This specification was created in order to meet the following
 requirements:
 REQ 1: When a UA invokes a GRUU, it MUST cause the request to be
 routed to the specific UA instance to which the GRUU refers.
 REQ 2: It MUST be possible for a GRUU to be invoked from anywhere on
 the Internet, and still cause the request to be routed
 appropriately. That is, a GRUU MUST NOT be restricted to use
 within a specific addressing realm.
 REQ 3: It MUST be possible for a GRUU to be constructed without
 requiring the network to store additional state.
 REQ 4: It MUST be possible for a UA to obtain a multiplicity of
 GRUUs, each one of which routes to that UA instance. This is
 needed to support ad-hoc conferencing, for example, where a a UA
 instance needs a different URI for each conference it is hosting.
 REQ 5: When a UA receives a request sent to a GRUU, it MUST be
 possible for the UA to know the GRUU which was used to invoke the
 request. This is necessary as a consequence of requirement 4.
 REQ 6: It MUST be possible for a UA to add opaque content to a GRUU,
 which is not interpreted or altered by the network, and used only
 by the UA instance to whom the GRUU refers. This provides a basic
 cookie type of functionality, allowing a UA to build a GRUU with

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2396

Rosenberg Expires December 31, 2004 [Page 16]

Internet-Draft GRUU Mechanism July 2004

 state embedded within it.
 REQ 7: It MUST be possible for a proxy to execute services and
 features on behalf of a UA instace represented by a GRUU. As an
 example, if a user has call blocking features, a proxy may want to
 apply those call blocking features to calls made to the GRUU in
 addition to calls made to the user's AOR.
 REQ 8: It MUST be possible for a UA in a dialog to inform its peer of
 its GRUU, and for the peer to know that the URI represents a GRUU.
 This is needed for the conferencing and dialog reuse applications
 of GRUUs, where the URIs are transferred within a dialog.
 REQ 9: When transferring a GRUU per requirement 8, it MUST be
 possible for the UA receiving the GRUU to be assured of its
 integrity and authenticity.
 REQ 10: It MUST be possible for a server, authoritative for a domain,
 to construct a GRUU which routes to a UA instace bound to an AOR
 in that domain. In other words, the proxy can construct a GRUU
 too. This is needed for the presence application.

12. Example Call Flow

 The following call flow shows a basic registration and call setup,
 followed by a subscription directed to the GRUU. It then shows a
 failure of the callee, followed by a re-registration.

 Caller Proxy Callee
 | |(1) REGISTER |
 | |<--------------------|
 | |(2) 200 OK |
 | |-------------------->|
 |(3) INVITE | |
 |-------------------->| |
 | |(4) INVITE |
 | |-------------------->|
 | |(5) 200 OK |
 | |<--------------------|
 |(6) 200 OK | |
 |<--------------------| |
 |(7) ACK | |
 |-------------------->| |
 | |(8) ACK |
 | |-------------------->|
 |(9) SUBSCRIBE | |
 |-------------------->| |
 | |(10) SUBSCRIBE |
 | |-------------------->|
 | |(11) 200 OK |
 | |<--------------------|

Rosenberg Expires December 31, 2004 [Page 17]

Internet-Draft GRUU Mechanism July 2004

 |(12) 200 OK | |
 |<--------------------| |
 | |(13) NOTIFY |
 | |<--------------------|
 |(14) NOTIFY | |
 |<--------------------| |
 |(15) 200 OK | |
 |-------------------->| |
 | |(16) 200 OK |
 | |-------------------->|
 | | |Crashes, Reboots
 | |(17) REGISTER |
 | |<--------------------|
 | |(18) 425 |
 | |-------------------->|
 | |(19) REGISTER |
 | |<--------------------|
 | |(20) 200 OK |
 | |-------------------->|
 | |(21) REGISTER |
 | |<--------------------|
 | |(22) 200 OK |
 | |-------------------->|
 | |(23) REGISTER |
 | |<--------------------|
 | |(24) 200 OK |
 | |-------------------->|

 The Callee supports the GRUU extension. As such, its REGISTER (1)
 looks like:

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bKnashds7
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: 1j9FpLxk3uxtm8tn@192.0.2.1
 CSeq: 1 REGISTER
 Contact: <sip:callee@192.0.2.1>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 Content-Length: 0

 The REGISTER response would look like:

Rosenberg Expires December 31, 2004 [Page 18]

Internet-Draft GRUU Mechanism July 2004

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 192.0.2.1;branch=z9hG4bKnashds7
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 To: Callee <sip:callee@example.com> ;tag=b88sn
 Call-ID: 1j9FpLxk3uxtm8tn@192.0.2.1
 CSeq: 1 REGISTER
 Contact: <sip:callee@192.0.2.1>
 ;gruu="sip:hha9s8d=-999a@example.com"
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=3600
 Content-Length: 0

 Note how the Contact header field in the REGISTER response contains
 the gruu parameter with the URI sip:hha9s8d=-999a@example.com. This
 represents a GRUU that translates to the Contact URI
 sip:callee@192.0.2.1.

 The INVITE from the caller is a normal SIP INVITE. The 200 OK
 generated by the callee, however, now contains a GRUU in the Contact
 header field. The UA has also chosen to include a grid URI parameter
 into the GRUU.

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKnaa8
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK99a
 From: Caller <sip:caller@example.com>;tag=n88ah
 To: Callee <sip:callee@example.com> ;tag=a0z8
 Call-ID: 1j9FpLxk3uxtma7@host.example.com
 CSeq: 1 INVITE
 Supported: gruu
 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK
 Contact: <sip:hha9s8d=-999a@example.com;grid=99a>
 Content-Length: --
 Content-Type: application/sdp

 [SDP Not shown]

 At some point later in the call, the caller decides to subscribe to
 the dialog event package [15] at that specific UA. To do that, it
 generates a SUBSCRIBE request (message 9), but directs it towards the
 GRUU contained in the Contact header field.

Rosenberg Expires December 31, 2004 [Page 19]

Internet-Draft GRUU Mechanism July 2004

 SUBSCRIBE sip:hha9s8d=-999a@example.com;grid=99a SIP/2.0
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:caller@example.com>;tag=kkaz-
 To: Callee <sip:callee@example.com>
 Call-ID: faif9a@host.example.com
 CSeq: 2 SUBSCRIBE
 Supported: gruu
 Event: dialog
 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK
 Contact: <sip:bad998asd8asd0000a0@example.com>
 Content-Length: 0

 In this example, the caller itself supports the GRUU extension, and
 is using its own GRUU to populate the Contact header field of the
 SUBSCRIBE.

 This request is routed to the proxy, which proceeds to perform a
 location lookup on the request URI. It is translated into the
 Contact URI of that GRUU, and then proxied there (message 10 below).
 Note how the grid parameter is maintained.

 SUBSCRIBE sip:callee@192.0.2.1;grid=99a SIP/2.0
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bK9555
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bK9zz8
 From: Caller <sip:caller@example.com>;tag=kkaz-
 To: Callee <sip:callee@example.com>
 Call-ID: faif9a@host.example.com
 CSeq: 2 SUBSCRIBE
 Supported: gruu
 Event: dialog
 Allow: INVITE, OPTIONS, CANCEL, BYE, ACK
 Contact: <sip:bad998asd8asd0000a0@example.com>
 Content-Length: 0

 At some point after message 16 is received, the callee's machine
 crashes and recovers. It obtains a new IP address, 192.0.2.2.
 Unaware that it had previously had an active registration, it creates
 a new one (message 17 below). Notice how the instance ID remains the
 same, as it persists across reboot cycles:

Rosenberg Expires December 31, 2004 [Page 20]

Internet-Draft GRUU Mechanism July 2004

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbba
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=ha8d777f0
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: hf8asxzff8s7f@192.0.2.2
 CSeq: 1 REGISTER
 Contact: <sip:callee@192.0.2.2>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 Content-Length: 0

 The registrar notices that a different contact, sip:callee@192.0.2.1,
 is already associated with the same instance ID. Thus, it rejects
 the request in message 18, below:

 SIP/2.0 425 Instance Conflict
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbba
 From: Callee <sip:callee@example.com>;tag=ha8d777f0
 To: Callee <sip:callee@example.com>;tag=776554
 Call-ID: hf8asxzff8s7f@192.0.2.2
 CSeq: 1 REGISTER

 Next, the client formulates a new REGISTER request, to query for the
 existing set of registrations (message 19, below):

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbbb
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=ha8d777f1
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: hf8asxzff8s7g@192.0.2.2
 CSeq: 2 REGISTER

 This generates a 200 (OK) response (message 20, below) that includes
 the existing contact:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbbb
 From: Callee <sip:callee@example.com>;tag=ha8d777f1
 To: Callee <sip:callee@example.com>;tag=8asd7d666
 Call-ID: hf8asxzff8s7g@192.0.2.2
 CSeq: 2 REGISTER
 Contact: <sip:callee@192.0.2.1>

Rosenberg Expires December 31, 2004 [Page 21]

Internet-Draft GRUU Mechanism July 2004

 ;gruu="sip:hha9s8d=-999a@example.com"
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=2000

 The client realizes that a different IP address is registered with
 the same instance ID. Since the client knows that its instance ID is
 globally unique, it deletes that registration (message 21, below):

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbbc
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=ha8d777f2
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: hf8asxzff8s7g@192.0.2.2
 CSeq: 3 REGISTER
 Contact: <sip:callee@192.0.2.1>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=0

 This deletes the contact, as indicated by the lack of of the Contact
 header field in the resulting 200 OK (message 22, below):

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbbc
 From: Callee <sip:callee@example.com>;tag=ha8d777f2
 To: Callee <sip:callee@example.com>;tag=7asdnj7d6f
 Call-ID: hf8asxzff8s7g@192.0.2.2
 CSeq: 3 REGISTER

 Finally, the client can retry its original registration (message 23,
 below):

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbbd
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=ha8d777f3
 Supported: gruu
 To: Callee <sip:callee@example.com>
 Call-ID: hf8asxzff8s7g@192.0.2.2
 CSeq: 4 REGISTER
 Contact: <sip:callee@192.0.2.2>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"

 This time, the registration succeeds, and the client is registered.

Rosenberg Expires December 31, 2004 [Page 22]

Internet-Draft GRUU Mechanism July 2004

 The response, message 24, is shown below:

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 192.0.2.2;branch=z9hG4bKnasbbd
 From: Callee <sip:callee@example.com>;tag=ha8d777f3
 To: Callee <sip:callee@example.com>;tag=asd7salll
 Call-ID: hf8asxzff8s7g@192.0.2.2
 CSeq: 4 REGISTER
 Contact: <sip:callee@192.0.2.2>
 ;+sip.instance="<urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6>"
 ;expires=3600

13. Security Considerations

 GRUUs do not provide a complete or reliable solution for privacy. In
 particular, since the GRUU does not change during the lifetime of a
 registration, an attacker could correlate two calls as coming from
 the same source, which in and of itself reveals information about the
 caller. Furthermore, GRUUs do not address other aspects of privacy,
 such as the addresses used for media transport. For a discussion of
 how privacy services are provided in SIP, see RFC 3323 [12].

 It is important for a UA to be assured of the integrity of a GRUU
 when it is given one in a REGISTER response. If the GRUU is tampered
 with by an attacker, the result could be denial of service to the UA.
 As a result, it is RECOMMENDED that a UA use the SIPS URI scheme when
 registering.

14. IANA Considerations

 This specification defines a new Contact header field parameter, a
 new SIP response code, a SIP URI parameter, a media feature tag and a
 SIP option tag.

14.1 Header Field Parameter

 This specification defines a new header field parameter, as per the
 registry created by [10]. The required information is as follows:
 Header field in which the parameter can appear: Contact
 Name of the Parameter gruu
 RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
 RFC number of this specification.]]

14.2 Response Code

 This specification defines the new SIP response code, 425, per the

https://datatracker.ietf.org/doc/html/rfc3323

Rosenberg Expires December 31, 2004 [Page 23]

Internet-Draft GRUU Mechanism July 2004

 guidelines in Section 27.4 of RFC 3261.
 RFC Number: This specification, RFC XXXX [[NOTE to IANA: Please
 replace XXXX with the RFC number for this specification.]].
 Response Code Number: 425
 Default Reason Phrase: Instance Conflict

14.3 URI Parameter

 This specification defines a new SIP URI parameter, as per the
 registry created by [11].
 Name of the Parameter grid
 RFC Reference RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
 RFC number of this specification.]]

14.4 Media Feature Tag

 This section registers a new media feature tag, per the procedures
 defined in RFC 2506 [6]. The tag is placed into the sip tree, which
 is defined in [9].
 Media feature tag name: sip.instance
 ASN.1 Identifier: New assignment by IANA.
 Summary of the media feature indicated by this tag: This feature tag
 contains a string containing a URI, and ideally a URN, that
 indicates a unique identifier associated with the UA instance
 registering the Contact.
 Values appropriate for use with this feature tag: String.
 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation mechanisms: This
 feature tag is most useful in a communications application, for
 describing the capabilities of a device, such as a phone or PDA.
 Examples of typical use: Routing a call to a specific device.
 Related standards or documents: RFC XXXX [[Note to IANA: Please
 replace XXXX with the RFC number of this specification.]]
 Security Considerations: This media feature tag can be used in ways
 which affect application behaviors. For example, the SIP caller
 preferences extension [16] allows for call routing decisions to be
 based on the values of these parameters. Therefore, if an
 attacker can modify the values of this tag, they may be able to
 affect the behavior of applications. As a result of this,
 applications which utilize this media feature tag SHOULD provide a
 means for ensuring its integrity. Similarly, this feature tag
 should only be trusted as valid when it comes from the user or
 user agent described by the tag. As a result, protocols for
 conveying this feature tag SHOULD provide a mechanism for
 guaranteeing authenticity.

https://datatracker.ietf.org/doc/html/rfc3261#section-27.4
https://datatracker.ietf.org/doc/html/rfc2506

Rosenberg Expires December 31, 2004 [Page 24]

Internet-Draft GRUU Mechanism July 2004

14.5 SIP Option Tag

 This specification registers a new SIP option tag, as per the
 guidelines in Section 27.1 of RFC 3261.
 Name: gruu
 Description: This option tag is used to identify the Globally
 Routable User Agent URI (GRUU) extension. When used in a
 Supported header, it indicates that a User Agent understands the
 extension, and has included a GRUU in the Contact header field of
 its dialog initiating requests and responses. When used in a
 Require header field of a REGISTER request, it indicates that the
 registrar should assign a GRUU to the Contact URI.

15. Acknowledgements

 The author would like to thank Rohan Mahy, Paul Kyzivat, Alan
 Johnston, and Cullen Jennings for their contributions to this work.

16. References

16.1 Normative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [2] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
 Method", RFC 3311, October 2002.

 [3] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [5] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [6] Holtman, K., Mutz, A. and T. Hardie, "Media Feature Tag
 Registration Procedure", BCP 31, RFC 2506, March 1999.

 [7] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [8] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [9] Rosenberg, J., "Indicating User Agent Capabilities in the

https://datatracker.ietf.org/doc/html/rfc3261#section-27.1
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc3515
https://datatracker.ietf.org/doc/html/bcp31
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2141

Rosenberg Expires December 31, 2004 [Page 25]

Internet-Draft GRUU Mechanism July 2004

 Session Initiation Protocol (SIP)",
draft-ietf-sip-callee-caps-03 (work in progress), January 2004.

 [10] Camarillo, G., "The Internet Assigned Number Authority (IANA)
 Header Field Parameter Registry for the Session Initiation
 Protocol (SIP)", draft-ietf-sip-parameter-registry-02 (work in
 progress), June 2004.

 [11] Camarillo, G., "The Internet Assigned Number Authority (IANA)
 Universal Resource Identifier (URI) Parameter Registry for the
 Session Initiation Protocol (SIP)",

draft-ietf-sip-uri-parameter-reg-02 (work in progress), June
 2004.

16.2 Informative References

 [12] Peterson, J., "A Privacy Mechanism for the Session Initiation
 Protocol (SIP)", RFC 3323, November 2002.

 [13] Hakala, J., "Using National Bibliography Numbers as Uniform
 Resource Names", RFC 3188, October 2001.

 [14] Rosenberg, J., "A Framework for Conferencing with the Session
 Initiation Protocol",

draft-ietf-sipping-conferencing-framework-01 (work in
 progress), October 2003.

 [15] Rosenberg, J. and H. Schulzrinne, "An INVITE Inititiated Dialog
 Event Package for the Session Initiation Protocol (SIP)",

draft-ietf-sipping-dialog-package-04 (work in progress),
 February 2004.

 [16] Rosenberg, J., Schulzrinne, H. and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

draft-ietf-sip-callerprefs-10 (work in progress), October 2003.

 [17] Sugano, H. and S. Fujimoto, "Presence Information Data Format
 (PIDF)", draft-ietf-impp-cpim-pidf-08 (work in progress), May
 2003.

 [18] Sparks, R. and A. Johnston, "Session Initiation Protocol Call
 Control - Transfer", draft-ietf-sipping-cc-transfer-02 (work in
 progress), February 2004.

 [19] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", draft-ietf-simple-presence-10 (work
 in progress), January 2003.

https://datatracker.ietf.org/doc/html/draft-ietf-sip-callee-caps-03
https://datatracker.ietf.org/doc/html/draft-ietf-sip-parameter-registry-02
https://datatracker.ietf.org/doc/html/draft-ietf-sip-uri-parameter-reg-02
https://datatracker.ietf.org/doc/html/rfc3323
https://datatracker.ietf.org/doc/html/rfc3188
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-conferencing-framework-01
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-dialog-package-04
https://datatracker.ietf.org/doc/html/draft-ietf-sip-callerprefs-10
https://datatracker.ietf.org/doc/html/draft-ietf-impp-cpim-pidf-08
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-cc-transfer-02
https://datatracker.ietf.org/doc/html/draft-ietf-simple-presence-10

Rosenberg Expires December 31, 2004 [Page 26]

Internet-Draft GRUU Mechanism July 2004

 [20] Mealling, M., "A UUID URN Namespace",
draft-mealling-uuid-urn-03 (work in progress), March 2004.

Author's Address

 Jonathan Rosenberg
 dynamicsoft
 600 Lanidex Plaza
 Parsippany, NJ 07054
 US

 Phone: +1 973 952-5000
 EMail: jdrosen@dynamicsoft.com
 URI: http://www.jdrosen.net

Appendix A. Example GRUU Construction Algorithms

 The mechanism for constructing a GRUU is not subject to
 specification. This appendix provides two examples that can be used
 by a registar. Others are, of course, permitted, as long as they
 meet the constraints defined for a GRUU.

A.1 Encrypted Instance ID and AOR

 In many cases, it will be desirable to construct the GRUU in such a
 way that it will not be possible, based on inspection of the URI, to
 determine the Contact URI that the GRUU translates to. It may also
 be desirable to construct it so that it will not be possible to
 determine the instance ID/AOR pair associated with the GRUU. Whether
 or not a GRUU should be constructed with this property is a local
 policy decision.

 With these rules, it is possible to construct a GRUU without
 requiring the maintenance of any additional state. To do that, the
 URI would be constructed in the following fashion:
 user-part = "GRUU" + BASE64(E(K, (salt + " " + AOR + " " +
 instance ID)))

 Where E(K,X) represents a suitable encryption function (such as AES
 with 128 bit keys) with key K applied to data block X, and the "+"
 operator implies concatenation. The single space (" ") between
 components is used as a delimeter, so that the components can easily
 be extracted after decryption. Salt represents a random string that
 prevents a client from obtaining pairs of known plaintext and
 ciphertext. A good choice would be at least 128 bits of randomness
 in the salt.

https://datatracker.ietf.org/doc/html/draft-mealling-uuid-urn-03
http://www.jdrosen.net

Rosenberg Expires December 31, 2004 [Page 27]

Internet-Draft GRUU Mechanism July 2004

 The benefit of this mechanism is that a server need not store
 additional information on mapping a GRUU to its corresponding Contact
 URI. The user part of the GRUU contains the instance ID and AOR.
 Assuming that the domain stores registrations in a database indexed
 by the AOR, the proxy processing the GRUU would look up the AOR,
 extract the currently registered Contacts, and find the one matching
 the instance ID encoded in the request URI. The Contact URI whose
 instance ID is that instance ID is then used as the translated
 version of the URI. Encryption is needed to prevent attacks whereby
 the server is sent requests with faked GRUU, causing the server to
 direct requests to any named URI. Even with encryption, the proxy
 should validate the user part after decryption. In particular, the
 AOR should be one managed by the proxy in that domain. Should a UA
 send a request with a fake GRUU, the proxy would decrypt and then
 discard it because there would be no URI or an invalid URI inside.

 While this approach has many benefits, it has the drawback of
 producing fairly long GRUUs. The approach in the following section
 produces smaller results, at the cost of additional structures in the
 database.

A.2 Hashed Indices

 As an alternative approach, the server can construct the GRUU by
 computing a cryptographic hash of the AOR and instance ID, taking 64
 bits of the result, and placing a string representation of those 64
 bits into the user part of the URI.

 When a GRUU is created through registration or administrative action,
 the server computes this hash and stores the hash in the database.
 This hash acts the primary key, with the columns of the table
 providing the instance ID, AOR and Contact. When the registration is
 deleted, the corresponding row from the table is removed. When a
 request arrives to a proxy, the user part of the URI is looked up in
 the database, and the Contact, AOR and instance ID can be extracted.

 This approach produces GRUUs of relatively short length. However, it
 requires additional structures to be created and stored in a database
 that would be used by the registrar (at least, new structures are
 needed for efficient operation). However, it does not require the
 registrar to store anything for longer than the duration of the
 registration.

Rosenberg Expires December 31, 2004 [Page 28]

Internet-Draft GRUU Mechanism July 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Rosenberg Expires December 31, 2004 [Page 29]

