
Network Working Group C. Jennings, Ed.
Internet-Draft Cisco Systems
Updates: 3261,3327 (if approved) R. Mahy, Ed.
Expires: September 6, 2006 Plantronics
 March 5, 2006

Managing Client Initiated Connections in the Session Initiation Protocol
 (SIP)

draft-ietf-sip-outbound-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 6, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Session Initiation Protocol (SIP) allows proxy servers to initiate
 TCP connections and send asynchronous UDP datagrams to User Agents in
 order to deliver requests. However, many practical considerations,
 such as the existence of firewalls and Network Address Translators
 (NATs), prevent servers from connecting to User Agents in this way.
 Even when a proxy server can open a TCP connection to a User Agent,

Jennings & Mahy Expires September 6, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-02
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Client Initiated Connections in SIP March 2006

 most User Agents lack a certificate suitable to act as a TLS
 (Transport Layer Security) server. This specification defines
 behaviors for User Agents, registrars and proxy servers that allow
 requests to be delivered on existing connections established by the
 User Agent. It also defines keep alive behaviors needed to keep NAT
 bindings open and specifies the usage of multiple connections.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
2.1. Definitions . 5

3. Overview . 5
3.1. Summary of Mechanism 5
3.2. Single Registrar and UA 6
3.3. Multiple Connections from a User Agent 7
3.4. Edge Proxies . 9
3.5. Keep Alive Technique 10

4. User Agent Mechanisms . 10
4.1. Instance ID Creation 10
4.2. Initial Registrations 12
4.2.1. Registration by Other Instances 13

4.3. Sending Requests . 13
4.3.1. Selecting the First Hop 13
4.3.2. Forming Flows . 13

4.4. Detecting Flow Failure 14
4.4.1. Keep Alive with STUN 14
4.4.2. Keep Alive with Double CRLF 15

4.5. Flow Recovery . 15
5. Edge Proxy Mechanisms . 16
5.1. Processing Register Requests 16
5.2. Generating Flow Tokens 16
5.3. Forwarding Requests 17

6. Registrar and Location Server Mechanisms 17
6.1. Processing Register Requests 18
6.2. Forwarding Requests 19

7. Mechanisms for All Servers (Proxys, Registars, UAS) 19
7.1. STUN Processing . 19
7.2. Double CRLF Processing 20

8. Example Message Flow . 20
9. Grammar . 23
10. IANA Considerations . 24
10.1. Contact Header Field 24
10.2. SIP/SIPS URI Paramters 24
10.3. SIP Option Tag . 24
10.4. Media Feature Tag . 25

11. Security Considerations 26

Jennings & Mahy Expires September 6, 2006 [Page 2]

Internet-Draft Client Initiated Connections in SIP March 2006

12. Open Issues . 26
13. Requirements . 27
14. Changes . 27
14.1. Changes from 01 Version 27
14.2. Changes from 00 Version 27

15. Acknowledgments . 27
16. References . 28
16.1. Normative References 28
16.2. Informative References 29

 Authors' Addresses . 30
 Intellectual Property and Copyright Statements 31

Jennings & Mahy Expires September 6, 2006 [Page 3]

Internet-Draft Client Initiated Connections in SIP March 2006

1. Introduction

 There are many environments for SIP [5] deployments in which the User
 Agent (UA) can form a connection to a Registrar or Proxy but in which
 the connections in the reverse direction to the UA are not possible.
 This can happen for several reasons. Connection to the UA can be
 blocked by a firewall device between the UA and the proxy or
 registrar, which will only allow new connections in the direction of
 the UA to the Proxy. Similarly there may be a NAT, which are only
 capable of allowing new connections from the private address side to
 the public side. This specification allows SIP registration when the
 UA is behind such a firewall or NAT.

 Most IP phones and personal computers get their network
 configurations dynamically via a protocol such as DHCP (Dynamic Host
 Configuration Protocol). These systems typically do not have a
 useful name in the Domain Name System (DNS), and they definitely do
 not have a long-term, stable DNS name that is appropriate for binding
 to a certificate. It is impractical for them to have a certificate
 that can be used as a client-side TLS certificate for SIP. However,
 these systems can still form TLS connections to a proxy or registrar
 which authenticates with a server certificate. The server can
 authenticate the UA using a shared secret in a digest challenge over
 that TLS connection.

 The key idea of this specification is that when a UA sends a REGISTER
 request, the proxy can later use this same network "flow"--whether
 this is a bidirectional stream of UDP datagrams, a TCP connection, or
 an analogous concept of another transport protocol--to forward any
 requests that need to go to this UA. For a UA to receive incoming
 requests, the UA has to connect to a server. Since the server can't
 connect to the UA, the UA has to make sure that a flow is always
 active. This requires the UA to detect when a flow fails. Since,
 such detection takes time and leaves a window of opportunity for
 missed incoming requests, this mechanism allows the UA to use
 multiple flows to the proxy or registrar. This mechanism also uses a
 keep alive mechanism over each flow so that the UA can detect when a
 flow has failed.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [4].

https://datatracker.ietf.org/doc/html/rfc2119

Jennings & Mahy Expires September 6, 2006 [Page 4]

Internet-Draft Client Initiated Connections in SIP March 2006

2.1. Definitions

 Edge Proxy: An Edge Proxy is any proxy that is located topologically
 between the registering User Agent and the registrar.
 flow: A Flow is a network protocol layer (layer 4) association
 between two hosts that is represented by the network address and
 port number of both ends and by the protocol. For TCP, a flow is
 equivalent to a TCP connection. For UDP a flow is a bidirectional
 stream of datagrams between a single pair of IP addresses and
 ports of both peers. With TCP, a flow often has a one to one
 correspondence with a single file descriptor in the operating
 system.
 reg-id: This refers to the value of a new header field parameter
 value for the Contact header field. When a UA registers multiple
 times, each simultaneous registration gets a unique reg-id value.
 instance-id: This specification uses the word instance-id to refer to
 the value of the "sip.instance" media feature tag in the Contact
 header field. This is a Uniform Resource Name (URN) that uniquely
 identifies this specific UA instance.
 outbound-proxy-set A configured set of SIP URIs (Uniform Resource
 Identifiers) that represents each of the outbound proxies (often
 Edge Proxies) with which the UA will attempt to maintain a direct
 flow.

3. Overview

 Several scenarios in which this technique is useful are discussed
 below, including the simple co-located registrar and proxy, a User
 Agent desiring multiple connections to a resource (for redundancy for
 example), and a system that uses Edge Proxies.

3.1. Summary of Mechanism

 The overall approach is fairly simple. Each UA has a unique
 instance-id that stays the same for this UA even if the UA reboots or
 is power cycled. Each UA can register multiple times over different
 connections for the same SIP Address of Record (AOR) to achieve high
 reliability. Each registration includes the instance-id for the UA
 and a reg-id label that is different for each flow. The registrar
 can use the instance-id to recognize that two different registrations
 both reach the same UA. The registrar can use the reg-id label to
 recognize that a UA is registering after a reboot.

 When a proxy goes to route a message to a UA for which it has a
 binding, it can use any one of the flows on which a successful
 registration has been completed. A failure on a particular flow can
 be tried again on an alternate flow. Proxies can determine which

Jennings & Mahy Expires September 6, 2006 [Page 5]

Internet-Draft Client Initiated Connections in SIP March 2006

 flows go to the same UA by comparing the instance-id. Proxies can
 tell that a flow replaces a previously abandoned flow by looking at
 the reg-id.

 UAs use the STUN (Simple Traversal of UDP through NATs) protocol as
 the keep alive mechanism to keep their flow to the proxy or registrar
 alive.

3.2. Single Registrar and UA

 In this example, a single server is acting as both a registrar and
 proxy.

 +-----------+
 | Registrar |
 | Proxy |
 +-----+-----+
 |
 |
 +----+--+
 | User |
 | Agent |
 +-------+

 User Agents which form only a single flow continue to register
 normally but include the instance-id as described in Section 4.1.
 The UA can also include a reg-id parameter is used to allow the
 registrar to detect and avoid using invalid contacts when a UA
 reboots or reconnects after its old connection has failed for some
 reason.

 For clarity, here is an example. Bob's UA creates a new TCP flow to
 the registrar and sends the following REGISTER request.

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/TCP 192.0.2.1;branch=z9hG4bK-bad0ce-11-1036
 Max-Forwards: 70
 From: Bob <sip:bob@example.com>;tag=d879h76
 To: Bob <sip:bob@example.com>
 Call-ID: 8921348ju72je840.204
 CSeq: 1 REGISTER
 Supported: path
 Contact: <sip:line1@192.168.0.2>; reg-id=1;
 ;+sip.instance="<urn:uuid:00000000-0000-0000-0000-000A95A0E128>"
 Content-Length: 0

 The registrar challenges this registration to authenticate Bob. When
 the registrar adds an entry for this contact under the AOR for Bob,

Jennings & Mahy Expires September 6, 2006 [Page 6]

Internet-Draft Client Initiated Connections in SIP March 2006

 the registrar also keeps track of the connection over which it
 received this registration.

 The registrar saves the instance-id and reg-id along with the rest of
 the Contact header field. If the instance-id and reg-id are the same
 as a previous registration for the same AOR, the proxy uses the most
 recently created registration first. This allows a UA that has
 rebooted to replace its previous registration for each flow with
 minimal impact on overall system load.

 When Alice sends a request to Bob, his proxy selects the target set.
 The proxy forwards the request to elements in the target set based on
 the proxy's policy. The proxy looks at the target set and uses the
 instance-id to understand that two targets both end up routing to the
 same UA. When the proxy goes to forward a request to a given target,
 it looks and finds the flows that received the registration. The
 proxy then forwards the request on that flow instead of trying to
 form a new flow to that contact. This allows the proxy to forward a
 request to a particular contact over the same flow that the UA used
 to register this AOR. If the proxy has multiple flows that all go to
 this UA, it can choose any one of registration bindings for this AOR
 that has the same instance-id as the selected UA. In general, if two
 registrations have the same reg-id and instance-id, the proxy will
 favor the most recently registered flow. This is so that if a UA
 reboots, the proxy will prefer to use the most recent flow that goes
 to this UA instead of trying one of the old flows which would
 presumably fail.

3.3. Multiple Connections from a User Agent

 There are various ways to deploy SIP to build a reliable and scalable
 system. This section discusses one such design that is possible with
 the mechanisms in this specification. Other designs are also
 possible.

 In this example system, the logical proxy/registrar for the domain is
 running on two hosts that share the appropriate state and can both
 provide registrar and proxy functionality for the domain. The UA
 will form connections to two of the physical hosts that can perform
 the proxy/registrar function for the domain. Reliability is achieved
 by having the UA form two TCP connections to the domain. Scalability
 is achieved by using DNS SRV to load balance the primary connection
 across a set of machines that can service the primary connection and
 also using DNS SRV to load balance across a separate set of machines
 that can service the backup connection. The deployment here requires
 that DNS is configured with one entry that resolves to all the
 primary hosts and another entry that resolves to all the backup
 hosts. Designs having only one set were also considered, but in this

Jennings & Mahy Expires September 6, 2006 [Page 7]

Internet-Draft Client Initiated Connections in SIP March 2006

 case there would have to be some way to ensure that the two
 connection did not accidentally resolve to the same host. Various
 approaches for this are possible but all probably require extensions
 to the SIP protocol so they were not included in this specification.
 This approach can work with the disadvantage that slightly more
 configuration of DNS is required.

 +-------------------+
 | Domain |
 | Logical Proxy/Reg |
 | |
 |+-----+ +-----+|
 ||Host1| |Host2||
 |+-----+ +-----+|
 +---\------------/--+
 \ /
 \ /
 \ /
 \ /
 +------+
 | User |
 | Agent|
 +------+

 The UA is configured with a primary and backup registration URI.
 These URIs are configured into the UA through whatever the normal
 mechanism is to configure the proxy or registrar address in the UA.
 If the AOR is Alice@example.com, the outbound-proxy-set might look
 something like "sip:primary.example.com;sip-stun" and "sip:
 backup.example.com;sip-stun". The "sip-stun" tag indicates that a
 SIP server supports STUN and SIP muxed over the same flow, as
 described later in this specification. Note that each URI in the
 outbound-proxy-set could resolve to several different physical hosts.
 The administrative domain that created these URIs should ensure that
 the two URIs resolve to separate hosts. These URIs are handled
 according to normal SIP processing rules, so things like SRV can be
 used to do load balancing across a proxy farm.

 The domain also needs to ensure that a request for the UA sent to
 host1 or host2 is then sent across the appropriate flow to the UA.
 The domain might choose to use the Path header (as described in the
 next section) approach to store this internal routing information on
 host1 or host2.

 When a single server fails, all the UAs that have a flow through it
 will detect a flow failure and try to reconnect. This can cause
 large loads on the server. When large numbers of hosts reconnect
 nearly simultaneously, this is referred to as the avalanche restart

Jennings & Mahy Expires September 6, 2006 [Page 8]

Internet-Draft Client Initiated Connections in SIP March 2006

 problem, and is further discussed in Section 4.5. The multiple flows
 to many servers help reduce the load caused by the avalanche restart.
 If a UA has multiple flows, and one of the servers fails, it can
 delay some significant time before trying to form a new connection to
 replace the flow to the server that failed. By spreading out the
 time used for all the UAs to reconnect to a server, the load on the
 server farm is reduced.

3.4. Edge Proxies

 Some SIP deployments use edge proxies such that the UA sends the
 REGISTER to an Edge Proxy that then forwards the REGISTER to the
 Registrar. The Edge Proxy includes a Path header [12] so that when
 the registrar later forwards a request to this UA, the request is
 routed through the Edge Proxy. There could be a NAT or firewall
 between the UA and the Edge Proxy.
 +---------+
 |Registrar|
 |Proxy |
 +---------+
 / \
 / \
 / \
 +-----+ +-----+
 |Edge1| |Edge2|
 +-----+ +-----+
 \ /
 \ /
 ----------------------------NAT/FW
 \ /
 \ /
 +------+
 |User |
 |Agent |
 +------+

 These systems can use effectively the same mechanism as described in
 the previous sections but need to use the Path header. When the Edge
 Proxy receives a registration, it needs to create an identifier value
 that is unique to this flow (and not a subsequent flow with the same
 addresses) and put this identifier in the Path header URI. This can
 be done by putting the value in the user portion of a loose route in
 the path header. If the registration succeeds, the Edge Proxy needs
 to map future requests that are routed to the identifier value from
 the Path header, to the associated flow.

 The term Edge Proxy is often used to refer to deployments where the
 Edge Proxy is in the same administrative domain as the Registrar.

Jennings & Mahy Expires September 6, 2006 [Page 9]

Internet-Draft Client Initiated Connections in SIP March 2006

 However, in this specification we use the term to refer to any proxy
 between the UA and the Registrar. For example the Edge Proxy may be
 inside an enterprise that requires its use and the registrar could be
 a service provider with no relationship to the enterprise.
 Regardless if they are in the same administrative domain, this
 specification requires that Registrars and Edge proxies support the
 Path header mechanism in RFC 3327 [12].

3.5. Keep Alive Technique

 A keep alive mechanism needs to detect failure of a connection and
 changes to the NAT public mapping, as well as keeping any NAT
 bindings refreshed. This specification uses STUN [7] over the same
 flow as the SIP traffic to perform the keep alive. A flow definition
 could change because a NAT device in the network path reboots and the
 resulting public IP address or port mapping for the UA changes. To
 detect this, requests are sent over the same flow that is being used
 for the SIP traffic. The proxy or registrar acts as a STUN server on
 the SIP signaling port.

 Note: The STUN mechanism is very robust and allows the detection
 of a changed IP address. Many other options were considered. It
 may also be possible to detect a changes flow with OPTIONS
 messages and the rport parameter. Although the OPTIONS approach
 has the advantage of being backwards compatible, it also
 significantly increases the load on the proxy or registrar server.
 The TCP KEEP_ALIVE mechanism was not used because most operating
 systems do not allow the time to be set on a per connection basis.
 Linux, Solaris, OS X, and Windows all allow KEEP_ALIVEs to be
 turned on or off on a single socket using the SO_KEEPALIVE socket
 options but can not change the duration of the timer for an
 individual socket. The length of the timer typically defaults to
 7200 seconds. The length of the timer can be changed to a smaller
 value by setting a kernel parameter but that affects all TCP
 connections on the host and thus is not appropriate to use.

 When the UA detects that a flow has failed or that the flow
 definition has changed, the UA needs to re-register and will use the
 back-off mechanism described in Section 4 to provide congestion
 relief when a large number of agents simultaneously reboot.

4. User Agent Mechanisms

4.1. Instance ID Creation

 Each UA MUST have an Instance Identifer URN that uniquely identifies
 the device. Usage of a URN provides a persistent and unique name for

https://datatracker.ietf.org/doc/html/rfc3327

Jennings & Mahy Expires September 6, 2006 [Page 10]

Internet-Draft Client Initiated Connections in SIP March 2006

 the UA instance. It also provides an easy way to guarantee
 uniqueness within the AOR. This URN MUST be persitant across power
 cylces of the device.

 A UA SHOULD use a UUID URN [9]. The UUID URN allows for non-
 centralized computation of a URN based on time, unique names (such as
 a MAC address), or a random number generator.

 A device like a soft-phone, when first installed, can generate a
 UUID [9] and then save this in persistent storage for all future
 use. For a device such as a hard phone, which will only ever have
 a single SIP UA present, the UUID can include the MAC address and
 be generated at any time because it is guaranteed that no other
 UUID is being generated at the same time on that physical device.
 This means the value of the time component of the UUID can be
 arbitrarily selected to be any time less than the time when the
 device was manufactured. A time of 0 (as shown in the example in

Section 3.2) is perfectly legal as long as the device knows no
 other UUIDs were generated at this time.

 If a URN scheme other than UUID is used, the URN MUST be selected
 such that the instance can be certain that no other instance
 registering against the same AOR would choose the same URN value. An
 example of a URN that would not meet the requirements of this
 specification is the national bibliographic number [15]. Since there
 is no clear relationship between a SIP UA instance and a URN in this
 namespace, there is no way a selection of a value can be performed
 that guarantees that another UA instance doesn't choose the same
 value.

 The UA SHOULD include a "sip.instance" media feature tag as a UA
 characteristic [10] in requests and responses. As described in [10],
 this media feature tag will be encoded in the Contact header field as
 the "+sip.instance" Contact header field parameter. The value of
 this parameter MUST be a URN [3]. One case where a UA may not want
 to include the URN in the sip.instance media feature tag is when it
 is making an anoymous request or some other privacy concern requires
 that the UA not reveal its identity.

RFC 3840 [10] defines equality rules for callee capabilities
 parameters, and according to that specification, the
 "sip.instance" media feature tag will be compared by case-
 sensitive string comparison. This means that the URN will be
 encapsulated by angle brackets ("<" and ">") when it is placed
 within the quoted string value of the +sip.instance Contact header
 field parameter. The case-sensitive matching rules apply only to
 the generic usages defined in RFC 3840 [10] and in the caller
 preferences specification [2]. When the instance ID is used in

https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/rfc3840

Jennings & Mahy Expires September 6, 2006 [Page 11]

Internet-Draft Client Initiated Connections in SIP March 2006

 this specification, it is effectively "extracted" from the value
 in the "sip.instance" media feature tag. Thus, equality
 comparisons are performed using the rules for URN equality that
 are specific to the scheme in the URN. If the element performing
 the comparisons does not understand the URN scheme, it performs
 the comparisons using the lexical equality rules defined in RFC

2141 [3]. Lexical equality may result in two URNs being
 considered unequal when they are actually equal. In this specific
 usage of URNs, the only element which provides the URN is the SIP
 UA instance identified by that URN. As a result, the UA instance
 SHOULD provide lexically equivalent URNs in each registration it
 generates. This is likely to be normal behavior in any case;
 clients are not likely to modify the value of the instance ID so
 that it remains functionally equivalent yet lexigraphically
 different to previous registrations.

4.2. Initial Registrations

 UAs are configured with one or more SIP URIs representing the default
 outbound-proxy-set. The specification assumes the set is determined
 via configuration but future specifications may define other
 mechanisms such as using DNS to discover this set. How the UA is
 configured is outside the scope of this specification. However, a UA
 MUST support sets with at least two outbound proxy URIs (primary and
 backup) and SHOULD support sets with up to four URIs. For each
 outbound proxy URI in the set, the UA MUST send a REGISTER in the
 normal way using this URI as the default outbound proxy. Forming the
 route set for the request is outside the scope of this document, but
 typically results in sending the REGISTER such that the topmost Route
 header field contains a loose route to the outbound proxy URI. Other
 issues related to outbound route construction are discussed in [20].

 Registration requests, other than those described in Section 4.2.1,
 MUST include the instance-id media feature tag as specified in

Section 4.1.

 These ordinary registration requests MUST also add a distinct reg-id
 parameter to the Contact header field. Each one of these
 registrations will form a new flow from the UA to the proxy. The
 reg-id sequence does not have to be sequential but MUST be exactly
 the same reg-id sequence each time the device power cycles or reboots
 so that the reg-id values will collide with the previously used
 reg-id values. This is so the proxy can realize that the older
 registrations are probably not useful.

 The UAC MUST indicate that it supports the Path header [12]
 mechanism, by including the 'path' option-tag in a Supported header
 field value in its REGISTER requests. Other than optionally

https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/rfc2141

Jennings & Mahy Expires September 6, 2006 [Page 12]

Internet-Draft Client Initiated Connections in SIP March 2006

 examining the Path vector in the response, this is all that is
 required of the UAC to support Path.

 The UAC MAY examine successful registrations for the presence of an
 'outbound' option-tag in a Supported header field value. Presence of
 this option-tag indicates that the registrar is compliant with this
 specification.

 Note that the UA needs to honor 503 responses to registrations as
 described in RFC 3261 and RFC 3263 [6]. In particular, implementors
 should note that when receiving a 503 response with a Retry-After
 header field, the UA should wait the indicated amount of time and
 retry the registration. A Retry-After header field value of 0 is
 valid and indicates the UA should retry the REGISTER immediately.
 Implementations need to ensure that when retrying the REGISTER they
 revisit the DNS resolution results such that the UA can select an
 alternate host from the one chosen the previous time the URI was
 resolved.

4.2.1. Registration by Other Instances

 A User Agent MUST NOT include an instance-id or reg-id in the Contact
 header field of a registration if the registering UA is not the same
 instance as the UA referred to by the target Contact header field.
 (This practice is occasionally used to install forwarding policy into
 registrars.)

 Note that a UAC also MUST NOT include an instance-id or reg-id
 parameter in a request to deregister all Contacts (a single Contact
 header field value with the value of "*").

4.3. Sending Requests

 As described in Section 4.1, all requests need to include the
 instance-id media feature tag unless privacy concerns require
 otherwise.

4.3.1. Selecting the First Hop

 When an UA is about to send a request, it first performs normal
 processing to select the next hop URI. The UA can use a variety of
 techniques to compute the route set and accordingly the next hop URI.
 Discussion of these techniques is outside the scope of this document
 but could include mechanisms specified in RFC 3608 [21] (Service
 Route) and [20].

4.3.2. Forming Flows

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3608

Jennings & Mahy Expires September 6, 2006 [Page 13]

Internet-Draft Client Initiated Connections in SIP March 2006

 The UA performs normal DNS resolution on the next hop URI (as
 described in RFC 3263 [6]) to find a protocol, IP address, and port.
 For non TLS protocols, if the UA has an existing flow to this IP
 address, and port with the correct protocol, then the UA MUST use the
 existing connection. For TLS protocols, the existing flow is only
 used if, in addition to matching the IP address, port, and protocol,
 the host production in the next hop URI MUST match one of the URIs
 contained in the subjectAltName in the peer certificate. If the UA
 cannot use one of the existing flows, then it SHOULD form a new flow
 by sending a datagram or opening a new connection to the next hop, as
 appropriate for the transport protocol.

4.4. Detecting Flow Failure

 The UA needs to detect when a specific flow fails. If a flow has
 failed, the UA follows the procedures in Section 4.2 to form a new
 flow to replace the failed one. The UA proactively tries to detect
 failure by periodically sending keep alive messages using one of the
 techniques described in this section.

 The time between keep alive requests when using UDP based transports
 SHOULD be a random number between 24 and 29 seconds while for TCP
 based transports it SHOULD be a random number between 95 and 120
 seconds. These times MAY be configurable.

 o Note on selection of time values: For UDP, the upper bound of 29
 seconds was selected so that multiple STUN packets could be sent
 before 30 seconds based on information that many NATs have UDP
 timeouts as low as 30 seconds. The 24 second lower bound was
 selected so that after 10 minutes the jitter introduced by
 different timers will the keep alive requests unsynchronized to
 evenly spread the load on the servers. For TCP, the 120 seconds
 was chosen based on the idea that for a good user experience,
 failures should be detected in this amount of time and a new
 connection set up. Operators that wish to change the relationship
 between load on servers and the expected time that a user may not
 receive inbound communications will probably adjust this time.
 The 95 seconds lower bound was chosen so that the jitter
 introduced will result in a relatively even load on the servers
 after 30 minutes.

4.4.1. Keep Alive with STUN

 User Agents that form flows MUST check if the configured URI they are
 connecting to has the "sip-stun" URI parameter (defined in

Section 10). If the parameter is present, the UA needs to
 periodically perform keep alive checks by sending a STUN [7] Binding
 Requests over the flow.

https://datatracker.ietf.org/doc/html/rfc3263

Jennings & Mahy Expires September 6, 2006 [Page 14]

Internet-Draft Client Initiated Connections in SIP March 2006

 If the XOR-MAPPED-ADDRESS in the STUN Binding Response changes, the
 UA MUST treat this event as a failure on the flow.

4.4.2. Keep Alive with Double CRLF

 User Agents that form flows MUST check if the configured URI they are
 connecting to has the "crlf-ping" URI parameter (defined in

Section 10). If the parameter is present, the UA needs to send keep
 alive requests by sending a CRLF over the flow.

 If the UA does not receive any data back over the flow within 7
 seconds of sending the CRLF, then it MUST consider the lack of
 response to be a flow failure.

4.5. Flow Recovery

 When a flow to a particular URI in the outbound-proxy-set fails, the
 UA needs to form a new flow to replace the old flow and replace any
 registrations that were previously sent over this flow. Each new
 registration MUST have the same reg-id as the registration it
 replaces. This is done in much the same way as forming a brand new
 flow as described in Section 4.3.2; however, if there is a failure in
 forming this flow, the UA needs to wait a certain amount of time
 before retrying to form a flow to this particular next hop.

 The time to wait is computed in the following way. If all of the
 flows to every URI in the proxy set have failed, the base time is set
 to 30 seconds; otherwise, in the case where at least one of the flows
 has not failed, the base time is set to 90 seconds. The wait time is
 computed by taking two raised to power of the number of consecutive
 registration failures for that URI, and multiplying this by the base
 time, up to a maximum of 1800 seconds.
 wait-time = min(1800, (base-time * (2 ^ consecutive-failures)))

 These three times MAY be configurable in the UA. The three times are
 the max-time with a default of 1800 seconds, the base-time-all-fail
 with a default of 30 seconds, and the base-time-not-failed with a
 default of 60 seconds. For example if the base time was 30 seconds,
 and there had been three failures, then the wait time would be
 min(1800,30*(2^3)) or 240 seconds. The delay time is computed by
 selecting a uniform random time between 50 and 100 percent of the
 wait time. The UA MUST wait for the value of the delay time before
 trying another registration to form a new flow for that URI.

 To be explicitly clear on the boundary conditions: when the UA boots
 it immediately tries to register. If this fails and no registration
 on other flows succeed, the first retry happens somewhere between 30
 and 60 seconds after the failure of the first registration request.

Jennings & Mahy Expires September 6, 2006 [Page 15]

Internet-Draft Client Initiated Connections in SIP March 2006

 If the number of consecutive-failures is large enough that the
 maximum of 1800 seconds is reached, the UA will keep trying forever
 with a random time between 900 and 1800 seconds between the attempts.

5. Edge Proxy Mechanisms

5.1. Processing Register Requests

 When an Edge Proxy receives a registration request with a
 sip.instance media feature tag in the Contact header field, it MUST
 form a flow identifier token that is unique to this network flow.
 The Edge Proxy MUST insert this token into a URI referring to this
 proxy and place this URI into a Path header field as described in RFC

3327 [12]. The token MAY be placed in the userpart of the URI.

5.2. Generating Flow Tokens

 A trivial but impractical way to satisfy the flow token requirement
Section 5.1 involves storing a mapping between an incrementing

 counter and the connection information; however this would require
 the Edge Proxy to keep an impractical amount of state. It is unclear
 when this state could be removed and the approach would have problems
 if the proxy crashed and lost the value of the counter. Two
 stateless examples are provided below. A proxy can use any algorithm
 it wants as long as the flow token is unique to a flow, the flow can
 be recovered from the token, and the token can not be modified by
 attackers.

 Algorithm 1: The proxy generates a flow token for connection-oriented
 transports by concatenating the file descriptor (or equivalent)
 with the NTP time the connection was created, and base64 encoding
 the result. This results in an approximately 16 octet identifier.
 The proxy generates a flow token for UDP by concatenating the file
 descriptor and the remote IP address and port, then base64
 encoding the result. This algorithm MUST NOT be used unless all
 messages between the Edge proxy and Registrar use a SIPS protected
 transport. If the SIPS level of integrity protection is not
 available, an attacker can hijack another user's calls.
 Algorithm 2: When the proxy boots it selects a 20 byte crypto random
 key called K that only the Edge Proxy knows. A byte array, called
 S, is formed that contains the following information about the
 flow the request was received on: an enumeration indicating the
 protocol, the local IP address and port, the remote IP address and
 port. The HMAC of S is computed using the key K and the HMAC-
 SHA1-80 algorithm, as defined in [16]. The concatenation of the
 HMAC and S are base64 encoded, as defined in [18], and used as the
 flow identifier. When using IPv4 addresses, this will result in a

https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3327

Jennings & Mahy Expires September 6, 2006 [Page 16]

Internet-Draft Client Initiated Connections in SIP March 2006

 32 octet identifier.

5.3. Forwarding Requests

 When the Edge Proxy receives a request, it applies normal routing
 procedures with the following addition. If the top-most Route header
 refers to the Edge Proxy and contains a valid flow identifier token
 created by this proxy, the proxy MUST forward the request over the
 flow that received the REGISTER request that caused the flow
 identifier token to be created. For connection-oriented transports,
 if the flow no longer exists the proxy SHOULD send a 410 response to
 the request.

 The advantage to a stateless approach to managing the flow
 information is that there is no state on the edge proxy that
 requires clean up or that has to be synchronized with the
 registrar.

 Proxies which used one of the two algorithms described in this
 document to form a flow token follow the procedures below to
 determine the correct flow.

 Algorithm 1: The proxy base64 decodes the user part of the Route
 header. For TCP, if a connection specified by the file descriptor
 is present and the creation time of the file descriptor matches
 the creation time encoded in the Route header, the proxy forwards
 the request over that connection. For UDP, the proxy forwards the
 request from the encoded file descriptor to the source IP address
 and port.
 Algorithm 2: To decode the flow token take the flow identifier in the
 user portion of the URI, and base64 decode it, then verify the
 HMAC is correct by recomputing the HMAC and checking it matches.
 If the HMAC is not correct, the proxy SHOULD send a 403 response.
 If the HMAC was correct then the proxy should forward the request
 on the flow that was specified by the information in the flow
 identifier. If this flow no longer exists, the proxy SHOULD send
 a 410 response to the request.

 Note that techniques to ensure that mid-dialog requests are routed
 over an existing flow are out of scope and therefore not part of this
 specification. However, an approach such as having the Edge Proxy
 Record-Route with a flow token is one way to ensure that mid-dialog
 requests are routed over the correct flow.

6. Registrar and Location Server Mechanisms

Jennings & Mahy Expires September 6, 2006 [Page 17]

Internet-Draft Client Initiated Connections in SIP March 2006

6.1. Processing Register Requests

 This specification updates the definition of a binding in RFC 3261
 [5] Section 10 and RFC 3327 [12] Section 5.3.

 When no instance-id is present in a Contact header field value in a
 REGISTER request, the corresponding binding is still between an AOR
 and the URI from that Contact header field value. When an
 instance-id is present in a Contact header field value in a REGISTER
 request, the corresponding binding is between an AOR and the
 combination of instance-id and reg-id. For a binding with an
 instance-id, the registrar still stores the Contact header field
 value URI with the binding, but does not consider the Contact URI for
 comparison purposes (the Contact URI is not part of the "key" for the
 binding). The registrar MUST be prepared to receive, simultaneously
 for the same AOR, some registrations that use instance-id and reg-id
 and some that do not.

 Registrars which implement this specification, MUST support the Path
 header mechanism [12].

 In addition to the normal information stored in the binding record,
 some additional information MUST be stored for any registration that
 contains a reg-id header parameter in the Contact header field value.
 The registrar MUST store enough information to uniquely identify the
 network flow over which the request arrived. For common operating
 systems with TCP, this would typically just be the file descriptor.
 For common operating systems with UDP this would typically be the
 file descriptor for the local socket that received the request, the
 local interface, and the IP address and port number of the remote
 side that sent the request.

 The registrar MUST also store all the Contact header field
 information including the reg-id and instance-id parameters and
 SHOULD also store the time at which the binding was last updated. If
 a Path header field is present, RFC 3327 [12] requires the registrar
 to store this information as well. If the registrar receives a re-
 registration, it MUST update the information that uniquely identifies
 the network flow over which the request arrived and SHOULD update the
 time the binding was last updated.

 The Registrar MUST include the 'outbound' option-tag in a Supported
 header field value in its responses to REGISTER requests. The
 Registrar MAY be configured with local policy to reject any
 registrations that do not include the instance-id and reg-id to
 eliminate the amplification attack described in [19]. Note that the
 requirements in this section applies to both REGISTER requests
 received from an Edge Proxy as well as requests received directly

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3327

Jennings & Mahy Expires September 6, 2006 [Page 18]

Internet-Draft Client Initiated Connections in SIP March 2006

 from the UAC.

6.2. Forwarding Requests

 When a proxy uses the location service to look up a registration
 binding and then proxies a request to a particular contact, it
 selects a contact to use normally, with a few additional rules:

 o The proxy MUST NOT populate the target set with more than one
 contact with the same AOR and instance-id at a time. If a request
 for a particular AOR and instance-id fails with a 410 response,
 the proxy SHOULD replace the failed branch with another target (if
 one is available) with the same AOR and instance-id, but a
 different reg-id.
 o If two bindings have the same instance-id and reg-id, the proxy
 SHOULD prefer the contact that was most recently updated.

 The proxy uses normal forwarding rules looking at the Route of the
 message and the value of any stored Path header field vector in the
 registration binding to decide how to forward the request and
 populate the Route header in the request. Additionally, when the
 proxy forwards a request to a binding that contains a reg-id, the
 proxy MUST send the request over the same network flow that was saved
 with the binding. This means that for TCP, the request MUST be sent
 on the same TCP socket that received the REGISTER request. For UDP,
 the request MUST be sent from the same local IP address and port over
 which the registration was received, to the same IP address and port
 from which the REGISTER was received.

 If a proxy or registrar receives information from the network that
 indicates that no future messages will be delivered on a specific
 flow, then the proxy MUST invalidate all the bindings that use that
 flow (regardless of AOR). Examples of this are a TCP socket closing
 or receiving a destination unreachable ICMP error on a UDP flow.
 Similarly, if a proxy closes a file descriptor, it MUST invalidate
 all the bindings with flows that use that file descriptor.

7. Mechanisms for All Servers (Proxys, Registars, UAS)

 A SIP device that receives SIP messages directly from a UA needs to
 behave as specified in this section. Such devices would generally
 include a Registrar and an Edge Proxy, as they both receive register
 requests directly from a UA.

7.1. STUN Processing

 This document defines a new STUN usage for inband connectivity

Jennings & Mahy Expires September 6, 2006 [Page 19]

Internet-Draft Client Initiated Connections in SIP March 2006

 checks. The only STUN messages required by this usage are Binding
 Requests, Binding Responses, and Error Responses. The UAC sends
 Binding Requests over the same UDP flow, TCP connection, or TLS
 channel used for sending SIP messages, once a SIP registration has
 been successfully processed on that flow. These Binding Requests do
 not require any STUN attributes. The UAS responds to a valid Binding
 Request with a Binding Response which MUST include the XOR-MAPPED-
 ADDRESS attribute. After a successful STUN response is received over
 TCP or TLS over TCP, the underlying TCP connection is left in the
 active state.

 If the server receives SIP requests on a given interface and port, it
 MUST also provide a limited version of a STUN server on the same
 interface and port. Specifically it MUST be capable of receiving and
 responding to STUN Binding Requests.

 It is easy to distinguish STUN and SIP packets because the first
 octet of a STUN packet has a value of 0 or 1 while the first octet
 of a SIP message is never a 0 or 1.

 When a URI is created that refers to a SIP device that supports STUN
 as described in this section, the URI parameter "sip-stun", as
 defined in Section 10 MUST be added to the URI. This allows a UA to
 inspect the URI to decide if it should attempt to send STUN requests
 to this location. The sip-stun tag typically would be present in the
 URI in the Route header field value of a REGISTER request and not be
 in the Request URI.

7.2. Double CRLF Processing

 If the SIP server is acting as the TCP client and initiated the TCP
 connection (meaning that this host did the active open), then the SIP
 server MUST NOT perform any of the processing in this section. The
 following only applies when the SIP server is acting as the TCP
 server (meaning that this host did the passive open).

 When the server receives a CRLF before the start line of a message on
 a flow, it MUST send some data back on that same flow within 3
 seconds. If no message is actively being sent, it SHOULD send back a
 CRLF after waiting at least 1 second. The reason for waiting at
 least 1 second is that if the other end has an incorrect
 implementation and incorrectly echoes the CRLF, this will stop the
 flow from going into a live-lock state.

8. Example Message Flow

 The following call flow shows a basic registration and an incoming

Jennings & Mahy Expires September 6, 2006 [Page 20]

Internet-Draft Client Initiated Connections in SIP March 2006

 call. Part way through the call, the flow to the Primary proxy is
 lost. The BYE message for the call is rerouted to the callee via the
 Backup proxy. When connectivity to the primary proxy is established,
 the Callee registers again to replace the lost flow as shown in
 message 15.

 [-----example.com domain -------------------]
 Caller Backup Primary Callee
 | | | (1) REGISTER |
 | | |<-----------------|
 | | |(2) 200 OK |
 | | |----------------->|
 | | | (3) REGISTER |
 | |<------------------------------------|
 | |(4) 200 OK | |
 | |------------------------------------>|
 |(5) INVITE | | |
 |----------------------------------->| |
 | | |(6) INVITE |
 | | |----------------->|
 | | | (7) 200 OK |
 | | |<-----------------|
 | | (8) 200 OK | |
 |<-----------------------------------| |
 |(9) ACK | | |
 |----------------------------------->| |
 | | |(10) ACK |
 | | |----------------->|
 | | CRASH X |
 |(11) BYE | |
 |---------------->| |
 | | (12) BYE |
 | |------------------------------------>|
 | | (13) 200 OK |
 | |<------------------------------------|
 | (14) 200 OK | |
 |<----------------| REBOOT | |
 | | | (15) REGISTER |
 | | |<-----------------|
 | | |(16) 200 OK |
 | | |----------------->|

 This call flow assumes that the Callee has been configured with a
 proxy set that consists of "sip:primary.example.com;lr;sip-stun" and
 "sip:backup.example.com;lr;sip-stun". The Callee REGISTER in message
 (1) looks like:

Jennings & Mahy Expires September 6, 2006 [Page 21]

Internet-Draft Client Initiated Connections in SIP March 2006

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 To: Callee <sip:callee@example.com>
 Call-ID: 1j9FpLxk3uxtm8tn@10.0.1.1
 CSeq: 1 REGISTER
 Supported: path
 Route: <sip:primary.example.com;lr;sip-stun>
 Contact: <sip:callee@10.0.1.1>
 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
 ;reg-id=1
 Content-Length: 0

 In the message, note that the Route is set and the Contact header
 field value contains the instance-id and reg-id. The response to the
 REGISTER in message (2) would look like:

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 To: Callee <sip:callee@example.com> ;tag=b88sn
 Call-ID: 1j9FpLxk3uxtm8tn@10.0.1.1
 CSeq: 1 REGISTER
 Supported: outbound
 Contact: <sip:callee@10.0.1.1>
 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
 ;reg-id=1
 ;expires=3600
 Content-Length: 0

 The second registration in message 3 and 4 are similar other than the
 Call-ID has changed, the reg-id is 2, and the route is set to the
 backup instead of the primary. They look like:

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7
 Max-Forwards: 70
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 To: Callee <sip:callee@example.com>
 Call-ID: 1j9FpLxk3uxtm8tn-2@10.0.1.1
 CSeq: 1 REGISTER
 Supported: path
 Route: <sip:backup.example.com;lr;sip-stun>
 Contact: <sip:callee@10.0.1.1>
 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"

Jennings & Mahy Expires September 6, 2006 [Page 22]

Internet-Draft Client Initiated Connections in SIP March 2006

 ;reg-id=2
 Content-Length: 0

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 10.0.1.1;branch=z9hG4bKnashds7
 From: Callee <sip:callee@example.com>;tag=a73kszlfl
 To: Callee <sip:callee@example.com> ;tag=b88sn
 Call-ID: 1j9FpLxk3uxtm8tn-2@10.0.1.1
 Supported: outbound
 CSeq: 1 REGISTER
 Contact: <sip:callee@10.0.1.1>
 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
 ;reg-id=1
 ;expires=3600
 Contact: <sip:callee@10.0.1.1>
 ;+sip.instance="<urn:uuid:0C67446E-F1A1-11D9-94D3-000A95A0E128>"
 ;reg-id=2
 ;expires=3600
 Content-Length: 0

 The messages in the call flow are very normal. The only interesting
 thing to note is that the INVITE in message 6 contains the following
 Record-Route header field:

 Record-Route: <sip:example.com;lr>

 Message 11 seems seams strange in that it goes to the backup instead
 of the primary. The Caller actually sends the message to the domain
 of the callee to a host (primary or backup) that is currently
 available. How the domain does this is an implementation detail up
 to the domain and not part of this specification.

 The registrations in message 15 and 16 are the same as message 1 and
 2 other than the Call-ID has changed.

9. Grammar

 This specification defines new Contact header field parameters,
 reg-id and +sip.instance. The grammar includes the definitions from

RFC 3261 [5] and includes the definition of uric from RFC 2396 [11].
 The ABNF[8] is:

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2396

Jennings & Mahy Expires September 6, 2006 [Page 23]

Internet-Draft Client Initiated Connections in SIP March 2006

 contact-params = c-p-q / c-p-expires / c-p-flow / c-p-instance
 / contact-extension

 c-p-flow = "reg-id" EQUAL 1*DIGIT ; 1 to 2**31

 c-p-instance = "+sip.instance" EQUAL LDQUOT "<"
 instance-val ">" RDQUOT

 instance-val = *uric ; defined in RFC 2396

 The value of the reg-id MUST NOT be 0 and MUST be less than 2**31.

10. IANA Considerations

10.1. Contact Header Field

 This specification defines a new Contact header field parameter
 called reg-id in the "Header Field Parameters and Parameter Values"
 sub-registry as per the registry created by [13] . The required
 information is:

 Header Field Parameter Name Predefined Reference
 Values
 __
 Contact reg-id Yes [RFC AAAA]

 [NOTE TO RFC Editor: Please replace AAAA with
 the RFC number of this specification.]

10.2. SIP/SIPS URI Paramters

 This specification arguments the "SIP/SIPS URI Parameters" sub-
 registry as per the registry created by [14] . The required
 information is:

 Parameter Name Predefined Values Reference
 __
 sip-stun No [RFC AAAA]
 crlf-ping No [RFC AAAA]

 [NOTE TO RFC Editor: Please replace AAAA with
 the RFC number of this specification.]

10.3. SIP Option Tag

 This specification registers a new SIP option tag, as per the
 guidelines in Section 27.1 of RFC 3261.

https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc3261#section-27.1

Jennings & Mahy Expires September 6, 2006 [Page 24]

Internet-Draft Client Initiated Connections in SIP March 2006

 Name: outbound
 Description: This option-tag is used to identify Registrars which
 support extensions for Client Initiated Connections. A Registrar
 places this option-tag in a Supported header to communicate to the
 registering User Agent the Registrars support for this extension.

10.4. Media Feature Tag

 This section registers a new media feature tag, per the procedures
 defined in RFC 2506 [1]. The tag is placed into the sip tree, which
 is defined in RFC 3840 [10].

 Media feature tag name: sip.instance

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature tag
 contains a string containing a URN that indicates a unique identifier
 associated with the UA instance registering the Contact.

 Values appropriate for use with this feature tag: String.

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation mechanisms: This
 feature tag is most useful in a communications application, for
 describing the capabilities of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a specific device.

 Related standards or documents: RFC XXXX

 [[Note to IANA: Please replace XXXX with the RFC number of this
 specification.]]

 Security Considerations: This media feature tag can be used in ways
 which affect application behaviors. For example, the SIP caller
 preferences extension [23] allows for call routing decisions to be
 based on the values of these parameters. Therefore, if an attacker
 can modify the values of this tag, they may be able to affect the
 behavior of applications. As a result, applications which utilize
 this media feature tag SHOULD provide a means for ensuring its
 integrity. Similarly, this feature tag should only be trusted as
 valid when it comes from the user or user agent described by the tag.
 As a result, protocols for conveying this feature tag SHOULD provide
 a mechanism for guaranteeing authenticity.

https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc3840

Jennings & Mahy Expires September 6, 2006 [Page 25]

Internet-Draft Client Initiated Connections in SIP March 2006

11. Security Considerations

 One of the key security concerns in this work is making sure that an
 attacker cannot hijack the sessions of a valid user and cause all
 calls destined to that user to be sent to the attacker.

 The simple case is when there are no edge proxies. In this case, the
 only time an entry can be added to the routing for a given AOR is
 when the registration succeeds. SIP already protects against
 attackers being able to successfully register, and this scheme relies
 on that security. Some implementers have considered the idea of just
 saving the instance-id without relating it to the AOR with which it
 registered. This idea will not work because an attacker's UA can
 impersonate a valid user's instance-id and hijack that user's calls.

 The more complex case involves one or more edge proxies. When a UA
 sends a REGISTER request through an Edge Proxy on to the registrar,
 the Edge Proxy inserts a Path header field value. If the
 registration is successfully authenticated, the proxy stores the
 value of the Path header field. Later when the registrar forwards a
 request destined for the UA, it copies the stored value of the Path
 header field into the route header field of the request and forwards
 the request to the Edge Proxy.

 The only time an Edge Proxy will route over a particular flow is when
 it has received a route header that has the flow identifier
 information that it has created. An incoming request would have
 gotten this information from the registrar. The registrar will only
 save this information for a given AOR if the registration for the AOR
 has been successful; and the registration will only be successful if
 the UA can correctly authenticate. Even if an attacker has spoofed
 some bad information in the path header sent to the registrar, the
 attacker will not be able to get the registrar to accept this
 information for an AOR that does not belong to the attacker. The
 registrar will not hand out this bad information to others, and
 others will not be misled into contacting the attacker.

12. Open Issues

 Do we want to include the Double CRLF keep alive option?

 Are thre any deployments that could use Algorithm 1 and if not can we
 remove it?

 We should change syntax from "sip-stun" to "keep-alive=sip-stun".

Jennings & Mahy Expires September 6, 2006 [Page 26]

Internet-Draft Client Initiated Connections in SIP March 2006

13. Requirements

 This specification was developed to meet the following requirements:

 1. Must be able to detect that a UA supports these mechanisms.
 2. Support UAs behind NATs.
 3. Support TLS to a UA without a stable DNS name or IP address.
 4. Detect failure of connection and be able to correct for this.
 5. Support many UAs simultaneously rebooting.
 6. Support a NAT rebooting or resetting.
 7. Minimize initial startup load on a proxy.
 8. Support architectures with edge proxies.

14. Changes

 Note to RFC Editor: Please remove this whole section.

14.1. Changes from 01 Version

 Moved definition of instance-id from GRUU[17] draft to this draft.

 Added tentative text about Double CRLF Keep Alive

 Removed pin-route stuff

 Changed the name of "flow-id" to "reg-id"

 Reorganized document flow

 Described the use of STUN as a proper STUN usage

 Added 'outbound' option-tag to detect if registrar supports outbound

14.2. Changes from 00 Version

 Moved TCP keep alive to be STUN.

 Allowed SUBSCRIBE to create flow mappings. Added pin-route option
 tags to support this.

 Added text about updating dialog state on each usage after a
 connection failure.

15. Acknowledgments

 Jonathan Rosenberg provided many comments and useful text. Dave Oran

Jennings & Mahy Expires September 6, 2006 [Page 27]

Internet-Draft Client Initiated Connections in SIP March 2006

 came up with the idea of using the most recent registration first in
 the proxy. Alan Hawrylyshen co-authored the draft that formed the
 initial text of this specification. Additionally, many of the
 concepts here originated at a connection reuse meeting at IETF 60
 that included the authors, Jon Peterson, Jonathan Rosenberg, Alan
 Hawrylyshen, and Paul Kyzivat. The TCP design team consisting of
 Chris Boulton, Scott Lawrence, Rajnish Jain, Vijay K. Gurbani, and
 Ganesh Jayadevan provided input and text. Nils Ohlmeier provided
 many fixes and initial implementation experience. In addition,
 thanks to the following folks for useful comments: Francois Audet,
 Flemming Andreasen, Mike Hammer, Dan Wing, Srivatsa Srinivasan, and
 Lyndsay Campbell.

16. References

16.1. Normative References

 [1] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
 Registration Procedure", BCP 31, RFC 2506, March 1999.

 [2] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [3] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [4] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [5] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [6] Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol
 (SIP): Locating SIP Servers", RFC 3263, June 2002.

 [7] Rosenberg, J., "Simple Traversal of UDP Through Network Address
 Translators (NAT) (STUN)", draft-ietf-behave-rfc3489bis-02
 (work in progress), July 2005.

 [8] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [9] Leach, P., Mealling, M., and R. Salz, "A Universally Unique
 IDentifier (UUID) URN Namespace", RFC 4122, July 2005.

 [10] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating

https://datatracker.ietf.org/doc/html/bcp31
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-02
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc4122

Jennings & Mahy Expires September 6, 2006 [Page 28]

Internet-Draft Client Initiated Connections in SIP March 2006

 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [11] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396,
 August 1998.

 [12] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
 Extension Header Field for Registering Non-Adjacent Contacts",

RFC 3327, December 2002.

 [13] Camarillo, G., "The Internet Assigned Number Authority (IANA)
 Header Field Parameter Registry for the Session Initiation
 Protocol (SIP)", BCP 98, RFC 3968, December 2004.

 [14] Camarillo, G., "The Internet Assigned Number Authority (IANA)
 Uniform Resource Identifier (URI) Parameter Registry for the
 Session Initiation Protocol (SIP)", BCP 99, RFC 3969,
 December 2004.

16.2. Informative References

 [15] Hakala, J., "Using National Bibliography Numbers as Uniform
 Resource Names", RFC 3188, October 2001.

 [16] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing
 for Message Authentication", RFC 2104, February 1997.

 [17] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent (UA) URIs (GRUU) in the Session Initiation Protocol
 (SIP)", draft-ietf-sip-gruu-04 (work in progress), July 2005.

 [18] Josefsson, S., "The Base16, Base32, and Base64 Data Encodings",
RFC 3548, July 2003.

 [19] Lawrence, S., Hawrylyshen, A., and R. Sparks, "Problems with
 Max-Forwards Processing (and Potential Solutions)",
 October 2005.

 [20] Rosenberg, J., "Clarifying Construction of the Route Header
 Field in the Session Initiation Protocol (SIP)",

draft-rosenberg-sip-route-construct-00 (work in progress),
 July 2005.

 [21] Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP)
 Extension Header Field for Service Route Discovery During
 Registration", RFC 3608, October 2003.

https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/bcp98
https://datatracker.ietf.org/doc/html/rfc3968
https://datatracker.ietf.org/doc/html/bcp99
https://datatracker.ietf.org/doc/html/rfc3969
https://datatracker.ietf.org/doc/html/rfc3188
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/draft-ietf-sip-gruu-04
https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/draft-rosenberg-sip-route-construct-00
https://datatracker.ietf.org/doc/html/rfc3608

Jennings & Mahy Expires September 6, 2006 [Page 29]

Internet-Draft Client Initiated Connections in SIP March 2006

Authors' Addresses

 Cullen Jennings (editor)
 Cisco Systems
 170 West Tasman Drive
 Mailstop SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 902-3341
 Email: fluffy@cisco.com

 Rohan Mahy (editor)
 Plantronics
 345 Encincal St
 Santa Cruz, CA 95060
 USA

 Email: rohan@ekabal.com

Jennings & Mahy Expires September 6, 2006 [Page 30]

Internet-Draft Client Initiated Connections in SIP March 2006

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Jennings & Mahy Expires September 6, 2006 [Page 31]

