
Network Working Group C. Jennings, Ed.
Internet-Draft Cisco Systems
Updates: 3261,3327 R. Mahy, Ed.
(if approved) Plantronics
Intended status: Standards Track June 12, 2008
Expires: December 14, 2008

Managing Client Initiated Connections in the Session Initiation Protocol
 (SIP)

draft-ietf-sip-outbound-15

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 14, 2008.

Abstract

 The Session Initiation Protocol (SIP) allows proxy servers to
 initiate TCP connections or to send asynchronous UDP datagrams to
 User Agents in order to deliver requests. However, in a large number
 of real deployments, many practical considerations, such as the
 existence of firewalls and Network Address Translators (NATs) or the
 use of TLS with server-provided certificates, prevent servers from
 connecting to User Agents in this way. This specification defines
 behaviors for User Agents, registrars and proxy servers that allow
 requests to be delivered on existing connections established by the

Jennings & Mahy Expires December 14, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-15
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Client Initiated Connections in SIP June 2008

 User Agent. It also defines keep alive behaviors needed to keep NAT
 bindings open and specifies the usage of multiple connections from
 the User Agent to its Registrar.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
2.1. Definitions . 5

3. Overview . 6
3.1. Summary of Mechanism 6
3.2. Single Registrar and UA 6
3.3. Multiple Connections from a User Agent 8
3.4. Edge Proxies . 10
3.5. Keep alive Technique 11
3.5.1. CRLF Keep alive Technique 12
3.5.2. STUN Keep alive Technique 12

4. User Agent Procedures . 12
4.1. Instance ID Creation 12
4.2. Registrations . 14
4.2.1. Initial Registrations 14
4.2.2. Subsequent REGISTER requests 16
4.2.3. Non Outbound Registrations 16

4.3. Sending Non-REGISTER Requests 16
4.4. Keep-alives and Detecting Flow Failure 17
4.4.1. Keep alive with CRLF 18
4.4.2. Keep alive with STUN 19

4.5. Flow Recovery . 20
5. Edge Proxy Procedures . 21
5.1. Processing Register Requests 21
5.2. Generating Flow Tokens 21
5.3. Forwarding Non-REGISTER Requests 22
5.3.1. Processing Incoming Requests 22
5.3.2. Processing Outgoing Requests 23

5.4. Edge Proxy Keep alive Handling 23
6. Registrar Procedures . 24
7. Authoritative Proxy Procedures: Forwarding Requests 26
8. STUN Keep alive Processing 26
8.1. Use with Sigcomp . 28

9. Example Message Flow . 28
9.1. Subscription to configuration package 28
9.2. Registration . 30
9.3. Incoming call and proxy crash 33
9.4. Re-registration . 36
9.5. Outgoing call . 36

10. Grammar . 38
11. IANA Considerations . 38

Jennings & Mahy Expires December 14, 2008 [Page 2]

Internet-Draft Client Initiated Connections in SIP June 2008

11.1. Flow-Timer Header Field 38
11.2. 'reg-id' Contact Header Field Parameter 38
11.3. SIP/SIPS URI Parameters 39
11.4. SIP Option Tag . 39
11.5. 430 (Flow Failed) Response Code 39
11.6. 439 (First Hop Lacks Outbound Support) Response Code . . . 40
11.7. Media Feature Tag . 40

12. Security Considerations 41
13. Operational Notes on Transports 42
14. Requirements . 43
15. Acknowledgments . 43
16. References . 43
16.1. Normative References 43
16.2. Informational References 45

Appendix A. Default Flow Registration Backoff Times 46
 Authors' Addresses . 46
 Intellectual Property and Copyright Statements 48

Jennings & Mahy Expires December 14, 2008 [Page 3]

Internet-Draft Client Initiated Connections in SIP June 2008

1. Introduction

 There are many environments for SIP [RFC3261] deployments in which
 the User Agent (UA) can form a connection to a Registrar or Proxy but
 in which connections in the reverse direction to the UA are not
 possible. This can happen for several reasons, but the most likely
 is a NAT or a firewall in between the SIP UA and the proxy. Many
 such devices will only allow outgoing connections. This
 specification allows a SIP User Agent behind such a firewall or NAT
 to receive inbound traffic associated with registrations or dialogs
 that it initiates.

 Most IP phones and personal computers get their network
 configurations dynamically via a protocol such as DHCP (Dynamic Host
 Configuration Protocol). These systems typically do not have a
 useful name in the Domain Name System (DNS), and they almost never
 have a long-term, stable DNS name that is appropriate for use in the
 subjectAltName of a certificate, as required by [RFC3261]. However,
 these systems can still act as a Transport Layer Security (TLS)
 [RFC4346] client and form outbound connections to a proxy or
 registrar which authenticates with a server certificate. The server
 can authenticate the UA using a shared secret in a digest challenge
 (as defined in Section 22 of RFC 3261) over that TLS connection.
 This specification allows a SIP User Agent who has to initiate the
 TLS connection to receive inbound traffic associated with
 registrations or dialogs that it initiates.

 The key idea of this specification is that when a UA sends a REGISTER
 request or a dialog-forming request, the proxy can later use this
 same network "flow"--whether this is a bidirectional stream of UDP
 datagrams, a TCP connection, or an analogous concept in another
 transport protocol--to forward any incoming requests that need to go
 to this UA in the context of the registration or dialog.

 For a UA to receive incoming requests, the UA has to connect to a
 server. Since the server can't connect to the UA, the UA has to make
 sure that a flow is always active. This requires the UA to detect
 when a flow fails. Since such detection takes time and leaves a
 window of opportunity for missed incoming requests, this mechanism
 allows the UA to register over multiple flows at the same time. This
 specification also defines two keep alive schemes. The keep alive
 mechanism is used to keep NAT bindings fresh, and to allow the UA to
 detect when a flow has failed.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3261#section-22

Jennings & Mahy Expires December 14, 2008 [Page 4]

Internet-Draft Client Initiated Connections in SIP June 2008

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions

 Authoritative Proxy: A proxy that handles non-REGISTER requests for
 a specific Address-of-Record (AOR), performs the logical Location
 Server lookup described in RFC 3261, and forwards those requests
 to specific Contact URIs. (In RFC 3261, the role which is
 authoritative for REGISTER requests for a specific AOR is a
 Registration Server.)
 Edge Proxy: An Edge Proxy is any proxy that is located topologically
 between the registering User Agent and the Authoritative Proxy.
 The "first" edge proxy refers to the first edge proxy encountered
 when a UA sends a request.
 Flow: A Flow is a network transport layer association between two
 hosts that is represented by the network address and port number
 of both ends and by the protocol. For TCP, a flow is equivalent
 to a TCP connection. For UDP a flow is a bidirectional stream of
 datagrams between a single pair of IP addresses and ports of both
 peers. With TCP, a flow often has a one to one correspondence
 with a single file descriptor in the operating system.
 Flow Token: An identifier which uniquely identifies a flow which can
 be included in a SIP URI (Uniform Resource Identifier).
 reg-id: This refers to the value of a new header field parameter
 value for the Contact header field. When a UA registers multiple
 times, each for a different flow, each concurrent registration
 gets a unique reg-id value.
 instance-id: This specification uses the word instance-id to refer
 to the value of the "sip.instance" media feature tag in the
 Contact header field. This is a Uniform Resource Name (URN) that
 uniquely identifies this specific UA instance.
 ob Parameter: The 'ob' parameter is a SIP URI parameter which has
 different meaning depending on context. In a Path header field
 value it is used by the first edge proxy to indicate that a flow
 token was added to the URI. In a Contact or Route header field
 value it indicates that the UA would like other requests in the
 same dialog routed over the same flow.
 outbound-proxy-set: A set of SIP URIs (Uniform Resource Identifiers)
 that represents each of the outbound proxies (often Edge Proxies)
 with which the UA will attempt to maintain a direct flow. The
 first URI in the set is often referred to as the primary outbound
 proxy and the second as the secondary outbound proxy. There is no
 difference between any of the URIs in this set, nor does the
 primary/secondary terminology imply that one is preferred over the
 other.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Jennings & Mahy Expires December 14, 2008 [Page 5]

Internet-Draft Client Initiated Connections in SIP June 2008

3. Overview

 The mechanisms defined in this document are useful in several
 scenarios discussed below, including the simple co-located registrar
 and proxy, a User Agent desiring multiple connections to a resource
 (for redundancy, for example), and a system that uses Edge Proxies.

 This entire section is non-normative.

3.1. Summary of Mechanism

 Each UA has a unique instance-id that stays the same for this UA even
 if the UA reboots or is power cycled. Each UA can register multiple
 times over different flows for the same SIP Address of Record (AOR)
 to achieve high reliability. Each registration includes the
 instance-id for the UA and a reg-id label that is different for each
 flow. The registrar can use the instance-id to recognize that two
 different registrations both correspond to the same UA. The
 registrar can use the reg-id label to recognize whether a UA is
 creating a new flow or refreshing or replacing an old one, possibly
 after a reboot or a network failure.

 When a proxy goes to route a message to a UA for which it has a
 binding, it can use any one of the flows on which a successful
 registration has been completed. A failure to deliver a request on a
 particular flow can be tried again on an alternate flow. Proxies can
 determine which flows go to the same UA by comparing the instance-id.
 Proxies can tell that a flow replaces a previously abandoned flow by
 looking at the reg-id.

 When sending a dialog-forming request, a UA can also ask its first
 edge proxy to route subsequent requests in that dialog over the same
 flow. This is necessary whether the UA has registered or not.

 UAs use a simple periodic message as a keep alive mechanism to keep
 their flow to the proxy or registrar alive. For connection oriented
 transports such as TCP this is based on carriage-return and line-feed
 sequences (CRLF), while for transports that are not connection
 oriented this is accomplished by using a SIP-specific usage profile
 of STUN (Session Traversal Utilities for NAT)
 [I-D.ietf-behave-rfc3489bis].

3.2. Single Registrar and UA

 In the topology shown below, a single server is acting as both a
 registrar and proxy.

Jennings & Mahy Expires December 14, 2008 [Page 6]

Internet-Draft Client Initiated Connections in SIP June 2008

 +-----------+
 | Registrar |
 | Proxy |
 +-----+-----+
 |
 |
 +----+--+
 | User |
 | Agent |
 +-------+

 User Agents which form only a single flow continue to register
 normally but include the instance-id as described in Section 4.1.
 The UA also includes a reg-id Contact header field which is used to
 allow the registrar to detect and avoid keeping invalid contacts when
 a UA reboots or reconnects after its old connection has failed for
 some reason.

 For clarity, here is an example. Bob's UA creates a new TCP flow to
 the registrar and sends the following REGISTER request.

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/TCP 192.0.2.2;branch=z9hG4bK-bad0ce-11-1036
 Max-Forwards: 70
 From: Bob <sip:bob@example.com>;tag=d879h76
 To: Bob <sip:bob@example.com>
 Call-ID: 8921348ju72je840.204
 CSeq: 1 REGISTER
 Supported: path, outbound
 Contact: <sip:line1@192.0.2.2;transport=tcp>; reg-id=1;
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-000A95A0E128>"
 Content-Length: 0

 The registrar challenges this registration to authenticate Bob. When
 the registrar adds an entry for this contact under the AOR for Bob,
 the registrar also keeps track of the connection over which it
 received this registration.

 The registrar saves the instance-id
 ("urn:uuid:00000000-0000-1000-8000-000A95A0E128") and reg-id ("1")
 along with the rest of the Contact header field. If the instance-id
 and reg-id are the same as a previous registration for the same AOR,
 the registrar replaces the old Contact URI and flow information.
 This allows a UA that has rebooted to replace its previous
 registration for each flow with minimal impact on overall system
 load.

 When Alice sends a request to Bob, his authoritative proxy selects

Jennings & Mahy Expires December 14, 2008 [Page 7]

Internet-Draft Client Initiated Connections in SIP June 2008

 the target set. The proxy forwards the request to elements in the
 target set based on the proxy's policy. The proxy looks at the
 target set and uses the instance-id to understand if two targets both
 end up routing to the same UA. When the proxy goes to forward a
 request to a given target, it looks and finds the flows over which it
 received the registration. The proxy then forwards the request over
 an existing flow, instead of resolving the Contact URI using the
 procedures in [RFC3263] and trying to form a new flow to that
 contact.

 As described in the next section, if the proxy has multiple flows
 that all go to this UA, the proxy can choose any one of the
 registration bindings for this AOR that has the same instance-id as
 the selected UA.

3.3. Multiple Connections from a User Agent

 There are various ways to deploy SIP to build a reliable and scalable
 system. This section discusses one such design that is possible with
 the mechanisms in this specification. Other designs are also
 possible.

 In the example system below, the logical outbound proxy/registrar for
 the domain is running on two hosts that share the appropriate state
 and can both provide registrar and outbound proxy functionality for
 the domain. The UA will form connections to two of the physical
 hosts that can perform the authoritative proxy/registrar function for
 the domain. Reliability is achieved by having the UA form two TCP
 connections to the domain.

 +-------------------+
 | Domain |
 | Logical Proxy/Reg |
 | |
 |+-----+ +-----+|
 ||Host1| |Host2||
 |+-----+ +-----+|
 +---\------------/--+
 \ /
 \ /
 \ /
 \ /
 +------+
 | User |
 | Agent|
 +------+

 The UA is configured with multiple outbound proxy registration URIs.

https://datatracker.ietf.org/doc/html/rfc3263

Jennings & Mahy Expires December 14, 2008 [Page 8]

Internet-Draft Client Initiated Connections in SIP June 2008

 These URIs are configured into the UA through whatever the normal
 mechanism is to configure the proxy address and AOR in the UA. If
 the AOR is alice@example.com, the outbound-proxy-set might look
 something like "sip:primary.example.com" and "sip:
 secondary.example.com". Note that each URI in the outbound-proxy-set
 could resolve to several different physical hosts. The
 administrative domain that created these URIs should ensure that the
 two URIs resolve to separate hosts. These URIs are handled according
 to normal SIP processing rules, so mechanisms like DNS SRV [RFC2782]
 can be used to do load balancing across a proxy farm. The approach
 in this document does not prevent future extensions, such as the SIP
 UA configuration framework [I-D.ietf-sipping-config-framework], from
 adding other ways for a User Agent to discover its outbound-proxy-
 set.

 The domain also needs to ensure that a request for the UA sent to
 host1 or host2 is then sent across the appropriate flow to the UA.
 The domain might choose to use the Path header approach (as described
 in the next section) to store this internal routing information on
 host1 or host2.

 When a single server fails, all the UAs that have a flow through it
 will detect a flow failure and try to reconnect. This can cause
 large loads on the server. When large numbers of hosts reconnect
 nearly simultaneously, this is referred to as the avalanche restart
 problem, and is further discussed in Section 4.5. The multiple flows
 to many servers help reduce the load caused by the avalanche restart.
 If a UA has multiple flows, and one of the servers fails, the UA
 delays a recommended amount of time before trying to form a new
 connection to replace the flow to the server that failed. By
 spreading out the time used for all the UAs to reconnect to a server,
 the load on the server farm is reduced.

 Scalability is achieved by using DNS SRV [RFC2782] to load balance
 the primary connection across a set of machines that can service the
 primary connection, and also using DNS SRV to load balance across a
 separate set of machines that can service the secondary connection.
 The deployment here requires that DNS is configured with one entry
 that resolves to all the primary hosts and another entry that
 resolves to all the secondary hosts. While this introduces
 additional DNS configuration, the approach works and requires no
 additional SIP extensions.

 Another motivation for maintaining multiple flows between the UA and
 its registrar is related to multihomed UAs. Such UAs can benefit
 from multiple connections from different interfaces to protect
 against the failure of an individual access link.

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc2782

Jennings & Mahy Expires December 14, 2008 [Page 9]

Internet-Draft Client Initiated Connections in SIP June 2008

3.4. Edge Proxies

 Some SIP deployments use edge proxies such that the UA sends the
 REGISTER to an Edge Proxy that then forwards the REGISTER to the
 Registrar. There could be a NAT or firewall between the UA and the
 Edge Proxy.

 +---------+
 |Registrar|
 |Proxy |
 +---------+
 / \
 / \
 / \
 +-----+ +-----+
 |Edge1| |Edge2|
 +-----+ +-----+
 \ /
 \ /
 ----------------------------NAT/FW
 \ /
 \ /
 +------+
 |User |
 |Agent |
 +------+

 The Edge Proxy includes a Path header [RFC3327] so that when the
 registrar later forwards a request to this UA, the request is routed
 through the Edge Proxy.

 These systems can use effectively the same mechanism as described in
 the previous sections but need to use the Path header. When the Edge
 Proxy receives a registration, it needs to create an identifier value
 that is unique to this flow (and not a subsequent flow with the same
 addresses) and put this identifier in the Path header URI. This
 identifier has two purposes. First, it allows the Edge Proxy to map
 future requests back to the correct flow. Second, because the
 identifier will only be returned if the user authenticates with the
 registrar successfully, it allows the Edge Proxy to indirectly check
 the user's authentication information via the registrar. The
 identifier is placed in the user portion of a loose route in the Path
 header. If the registration succeeds, the Edge Proxy needs to map
 future requests that are routed to the identifier value from the Path
 header, to the associated flow.

 The term Edge Proxy is often used to refer to deployments where the
 Edge Proxy is in the same administrative domain as the Registrar.

https://datatracker.ietf.org/doc/html/rfc3327

Jennings & Mahy Expires December 14, 2008 [Page 10]

Internet-Draft Client Initiated Connections in SIP June 2008

 However, in this specification we use the term to refer to any proxy
 between the UA and the Registrar. For example the Edge Proxy may be
 inside an enterprise that requires its use and the registrar could be
 from a service provider with no relationship to the enterprise.
 Regardless if they are in the same administrative domain, this
 specification requires that Registrars and Edge proxies support the
 Path header mechanism in [RFC3327].

3.5. Keep alive Technique

 This document describes two keep alive mechanisms: a CRLF keep alive
 and a STUN keep alive. Each of these mechanisms uses a client-to-
 server "ping" keep alive and a corresponding server-to-client "pong"
 message. This ping-pong sequence allows the client, and optionally
 the server, to tell if its flow is still active and useful for SIP
 traffic. The server responds to pings by sending pongs. If the
 client does not receive a pong in response to its ping, it declares
 the flow dead and opens a new flow in its place.

 This document also suggests timer values for these client keep alive
 mechanisms. These timer values were chosen to keep most NAT and
 firewall bindings open, to detect unresponsive servers within 2
 minutes, and to prevent the avalanche restart problem. However, the
 client may choose different timer values to suit its needs, for
 example to optimize battery life. In some environments, the server
 can also keep track of the time since a ping was received over a flow
 to guess the likelihood that the flow is still useful for delivering
 SIP messages.

 When the UA detects that a flow has failed or that the flow
 definition has changed, the UA needs to re-register and will use the
 back-off mechanism described in Section 4.5 to provide congestion
 relief when a large number of agents simultaneously reboot.

 A keep alive mechanism needs to keep NAT bindings refreshed; for
 connections, it also needs to detect failure of a connection; and for
 connectionless transports, it needs to detect flow failures including
 changes to the NAT public mapping. For connection oriented
 transports such as TCP [RFC0793] and SCTP [RFC4960], this
 specification describes a keep alive approach based on sending CRLFs.
 For connectionless transport, such as UDP [RFC0768], this
 specification describes using STUN [I-D.ietf-behave-rfc3489bis] over
 the same flow as the SIP traffic to perform the keep alive.

 UAs and Proxies are also free to use native transport keep alives,
 however the application may not be able to set these timers on a per-
 connection basis, and the server certainly cannot make any assumption
 about what values are used. Use of native transport keep alives is

https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/html/rfc0768

Jennings & Mahy Expires December 14, 2008 [Page 11]

Internet-Draft Client Initiated Connections in SIP June 2008

 outside the scope of this document.

3.5.1. CRLF Keep alive Technique

 This approach can only be used with connection-oriented transports
 such as TCP or SCTP. The client periodically sends a double-CRLF
 (the "ping") then waits to receive a single CRLF (the "pong"). If
 the client does not receive a "pong" within an appropriate amount of
 time, it considers the flow failed.

 Sending a CRLF over a connection-oriented transport is backwards
 compatible (because of requirements in Section 7.5 of RFC 3261),
 but only implementations which support this specification will
 respond to a "ping" with a "pong".

3.5.2. STUN Keep alive Technique

 This approach can only be used for connection-less transports, such
 as UDP.

 For connection-less transports, a flow definition could change
 because a NAT device in the network path reboots and the resulting
 public IP address or port mapping for the UA changes. To detect
 this, STUN requests are sent over the same flow that is being used
 for the SIP traffic. The proxy or registrar acts as a limited
 Session Traversal Utilities for NAT (STUN)
 [I-D.ietf-behave-rfc3489bis] server on the SIP signaling port.

 Note: The STUN mechanism is very robust and allows the detection
 of a changed IP address and port. Many other options were
 considered, but the SIP Working Group selected the STUN-based
 approach. Approaches using SIP requests were abandoned because
 many believed that good performance and full backwards
 compatibility using this method were mutually exclusive.

4. User Agent Procedures

4.1. Instance ID Creation

 Each UA MUST have an Instance Identifier Uniform Resource Name (URN)
 [RFC2141] that uniquely identifies the device. Usage of a URN
 provides a persistent and unique name for the UA instance. It also
 provides an easy way to guarantee uniqueness within the AOR. This
 URN MUST be persistent across power cycles of the device. The
 Instance ID MUST NOT change as the device moves from one network to
 another.

https://datatracker.ietf.org/doc/html/rfc3261#section-7.5
https://datatracker.ietf.org/doc/html/rfc2141

Jennings & Mahy Expires December 14, 2008 [Page 12]

Internet-Draft Client Initiated Connections in SIP June 2008

 A UA SHOULD create a UUID URN [RFC4122] as its instance-id. The UUID
 URN allows for non-centralized computation of a URN based on time,
 unique names (such as a MAC address), or a random number generator.

 A device like a soft-phone, when first installed, can generate a
 UUID [RFC4122] and then save this in persistent storage for all
 future use. For a device such as a hard phone, which will only
 ever have a single SIP UA present, the UUID can include the MAC
 address and be generated at any time because it is guaranteed that
 no other UUID is being generated at the same time on that physical
 device. This means the value of the time component of the UUID
 can be arbitrarily selected to be any time less than the time when
 the device was manufactured. A time of 0 (as shown in the example
 in Section 3.2) is perfectly legal as long as the device knows no
 other UUIDs were generated at this time on this device.

 If a URN scheme other than UUID is used, the UA MUST only use URNs
 for which an IETF RFC defines how the specific URN needs to be
 constructed and used in the sip.instance Contact parameter for
 outbound behavior.

 To convey its instance-id in both requests and responses, the UA
 includes a "sip.instance" media feature tag as a UA characteristic
 [RFC3840]. This media feature tag is encoded in the Contact header
 field as the "+sip.instance" Contact header field parameter. One
 case where a UA could prefer to omit the sip.instance media feature
 tag is when it is making an anonymous request or some other privacy
 concern requires that the UA not reveal its identity.

 [RFC3840] defines equality rules for callee capabilities
 parameters, and according to that specification, the
 "sip.instance" media feature tag will be compared by case-
 sensitive string comparison. This means that the URN will be
 encapsulated by angle brackets ("<" and ">") when it is placed
 within the quoted string value of the +sip.instance Contact header
 field parameter. The case-sensitive matching rules apply only to
 the generic usages defined in the callee capabilities [RFC3841]
 and the caller preferences [RFC3841] specifications. When the
 instance ID is used in this specification, it is "extracted" from
 the value in the "sip.instance" media feature tag. Thus, equality
 comparisons are performed using the rules for URN equality that
 are specific to the scheme in the URN. If the element performing
 the comparisons does not understand the URN scheme, it performs
 the comparisons using the lexical equality rules defined in
 [RFC2141]. Lexical equality could result in two URNs being
 considered unequal when they are actually equal. In this specific
 usage of URNs, the only element which provides the URN is the SIP
 UA instance identified by that URN. As a result, the UA instance

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc2141

Jennings & Mahy Expires December 14, 2008 [Page 13]

Internet-Draft Client Initiated Connections in SIP June 2008

 has to provide lexically equivalent URNs in each registration it
 generates. This is likely to be normal behavior in any case;
 clients are not likely to modify the value of the instance ID so
 that it remains functionally equivalent yet lexicographically
 different from previous registrations.

4.2. Registrations

4.2.1. Initial Registrations

 At configuration time, UAs obtain one or more SIP URIs representing
 the default outbound-proxy-set. This specification assumes the set
 is determined via any of a number of configuration mechanisms, and
 future specifications can define additional mechanisms such as using
 DNS to discover this set. How the UA is configured is outside the
 scope of this specification. However, a UA MUST support sets with at
 least two outbound proxy URIs and SHOULD support sets with up to four
 URIs.

 For each outbound proxy URI in the set, the UAC SHOULD send a
 REGISTER request using this URI as the default outbound proxy.
 (Alternatively, the UA could limit the number of flows formed to
 conserve battery power, for example). If the set has more than one
 URI, the UAC MUST send a REGISTER request to at least two of the
 default outbound proxies from the set. UAs that support this
 specification MUST include the outbound option tag in a Supported
 header field in a REGISTER request. Each of these REGISTER requests
 will use a unique Call-ID. Forming the route set for the request is
 outside the scope of this document, but typically results in sending
 the REGISTER such that the topmost Route header field contains a
 loose route to the outbound proxy URI.

 REGISTER requests, other than those described in Section 4.2.3, MUST
 include an instance-id media feature tag as specified in Section 4.1.

 For registration requests in accordance to this specification, the UA
 MUST include reg-id parameter in the Contact header field that is
 distinct from other reg-id parameters used from the same
 +sip.instance and AOR. Each one of these registrations will form a
 new flow from the UA to the proxy. The sequence of reg-id values
 does not have to be sequential but MUST be exactly the same sequence
 of reg-id values each time the UA instance power cycles or reboots so
 that the reg-id values will collide with the previously used reg-id
 values. This is so the registrar can replace the older
 registrations.

Jennings & Mahy Expires December 14, 2008 [Page 14]

Internet-Draft Client Initiated Connections in SIP June 2008

 The UAC can situationally decide whether to request outbound
 behavior by including or omitting the reg-id Contact header field
 parameter. For example, imagine the outbound-proxy-set contains
 two proxies in different domains, EP1 and EP2. If an outbound-
 style registration succeeded for a flow through EP1, the UA might
 decide to include 'outbound' in its Require header field when
 registering with EP2, in order to insure consistency. Similarly,
 if the registration through EP1 did not support outbound, the UA
 might not register with EP2 at all.

 The UAC MUST supports the Path header [RFC3327] mechanism, and
 indicate its support by including the 'path' option-tag in a
 Supported header field value in its REGISTER requests. Other than
 optionally examining the Path vector in the response, this is all
 that is required of the UAC to support Path.

 The UAC examines successful registration responses for the presence
 of an outbound option-tag in a Require header field value. Presence
 of this option-tag indicates that the registrar is compliant with
 this specification, and that any edge proxies which needed to
 participate are also compliant. If the registrar did not support
 outbound, the UA has potentially registered an un-routable contact.
 It is the responsibility of the UA to remove any inappropriate
 Contacts.

 If outbound registration succeeded, as indicated by the presence of
 the outbound option-tag in the Require header field of a successful
 registration response, the UA begins sending keep alives as described
 in Section 4.4.

 Note that the UA needs to honor 503 (Service Unavailable) responses
 to registrations as described in [RFC3261] and [RFC3263]. In
 particular, implementors should note that when receiving a 503
 (Service Unavailable) response with a Retry-After header field, the
 UA is expected to wait the indicated amount of time and retry the
 registration. A Retry-After header field value of 0 is valid and
 indicates the UA is expected to retry the REGISTER request
 immediately. Implementations need to ensure that when retrying the
 REGISTER request, they revisit the DNS resolution results such that
 the UA can select an alternate host from the one chosen the previous
 time the URI was resolved.

 If the registering UA receives a 439 (First Hop Lacks Outbound
 Support) response to a REGISTER request, it MAY re-attempt
 registration without using the outbound mechanism (subject to local
 policy at the client). If the client has one or more alternate
 outbound proxies available, it MAY re-attempt registration through
 such outbound proxies. See Section 11.6 for more information on the

https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263

Jennings & Mahy Expires December 14, 2008 [Page 15]

Internet-Draft Client Initiated Connections in SIP June 2008

 439 response code.

4.2.2. Subsequent REGISTER requests

 Registrations for refreshing a binding and for removing a binding use
 the same instance-id and reg-id values as the corresponding initial
 registration where the binding was added. Registrations which merely
 refresh an existing binding are sent over the same flow as the
 original registration where the binding was added.

 If a re-registration is rejected with a recoverable error response,
 for example by a 503 (Service Unavailable) containing a Retry-After
 header, the UAC SHOULD NOT tear down the corresponding flow if the
 flow uses a connection-oriented transport such as TCP. As long as
 "pongs" are received in response to "pings", the flow SHOULD be kept
 active until a non-recoverable error response is received. This
 prevents unnecessary closing and opening of connections.

4.2.3. Non Outbound Registrations

 In an initial registration, a User Agent MUST NOT include a reg-id
 header parameter in the Contact header field if the registering UA is
 not the same instance as the UA referred to by the target Contact
 header field. (This practice is occasionally used to install
 forwarding policy into registrars.)

 A UAC also MUST NOT include an instance-id feature taf or reg-id
 Contact header field parameter in a request to un-register all
 Contacts (a single Contact header field value with the value of "*").

4.3. Sending Non-REGISTER Requests

 When a UAC is about to send a request, it first performs normal
 processing to select the next hop URI. The UA can use a variety of
 techniques to compute the route set and accordingly the next hop URI.
 Discussion of these techniques is outside the scope of this document.
 UAs that support this specification SHOULD include the outbound
 option tag in a Supported header field in a request that is not a
 REGISTER request.

 The UAC performs normal DNS resolution on the next hop URI (as
 described in [RFC3263]) to find a protocol, IP address, and port.
 For protocols that don't use TLS, if the UAC has an existing flow to
 this IP address, and port with the correct protocol, then the UAC
 MUST use the existing connection. For TLS protocols, there MUST also
 be a match between the host production in the next hop and one of the
 URIs contained in the subjectAltName in the peer certificate. If the
 UAC cannot use one of the existing flows, then it SHOULD form a new

https://datatracker.ietf.org/doc/html/rfc3263

Jennings & Mahy Expires December 14, 2008 [Page 16]

Internet-Draft Client Initiated Connections in SIP June 2008

 flow by sending a datagram or opening a new connection to the next
 hop, as appropriate for the transport protocol.

 If the UAC is sending a dialog-forming request, and wants all
 subsequent requests in the dialog to arrive over the same flow, the
 UAC adds an 'ob' parameter to its Contact header. Typically this is
 desirable, but it is not necessary for example if the Contact is a
 GRUU [I-D.ietf-sip-gruu]. The flow used for the request is typically
 the same flow the UA registered over, but it could be a new flow, for
 example the initial subcription dialog for the configuration
 framework [I-D.ietf-sipping-config-framework] needs to exist before
 registration.

 Note that if the UAC wants a UDP flow to work through NATs or
 firewalls it still needs to put the 'rport' parameter [RFC3581] in
 its Via header field value, and send from the port it is prepared
 to receive on. More general information about NAT traversal in
 SIP is described in [I-D.ietf-sipping-nat-scenarios].

4.4. Keep-alives and Detecting Flow Failure

 Keep alives are used for refreshing NAT/firewall bindings and
 detecting flow failure. Flows can fail for many reasons including
 NATs rebooting and Edge Proxies crashing.

 As described in Section 4.2, a UA that registers will begin sending
 keep alives after an appropriate registration response. A UA that
 does not register (for example, a PSTN gateway behind a firewall) can
 also send keep alives under certain circumstances.

 Under specific circumstances, a UAC might be allowed to send STUN
 keep alives even if the procedures in Section 4.2 were not completed,
 provided that there is an explicit indication that the target first
 hop SIP node supports STUN keep alives. This applies for example to
 a non-registering UA or to a case where the UA registration
 succeeded, but the response did not include the outbound option-tag
 in the Require header field.

 Note that a UA can "always" send a double CRLF (a "ping") over
 connection-oriented transports as this is already allowed by

Section 7.5/[RFC3261], However a UA that did not register using
 outbound registration cannot expect a CRLF in response (a "pong")
 unless the UA has an explicit indication that CRLF keep alives are
 supported as described in this section. Likewise, a UA that did
 not successfully register with outbound procedures needs explicit
 indication that the target first hop SIP node supports STUN keep
 alives before it can send any STUN messages.

https://datatracker.ietf.org/doc/html/rfc3581
https://datatracker.ietf.org/doc/html/rfc3261

Jennings & Mahy Expires December 14, 2008 [Page 17]

Internet-Draft Client Initiated Connections in SIP June 2008

 A configuration option indicating keep alive support for a specific
 target is considered an explicit indication. If these conditions are
 satisfied, the UA sends its keep alives according to the same
 guidelines described in the rest of this section as UAs which
 register.

 The UA needs to detect when a specific flow fails. The UA actively
 tries to detect failure by periodically sending keep alive messages
 using one of the techniques described in Section 4.4.1 or

Section 4.4.2. If a flow with a registration has failed, the UA
 follows the procedures in Section 4.2 to form a new flow to replace
 the failed one.

 When a successful registration response contains the Flow-Timer
 header field, the value of this header field is the number of seconds
 the server is prepared to wait without seeing keep alives before it
 considers the corresponding flow dead. The UA MUST send keep alives
 at least as often as this number of seconds. If the UA uses the
 server recommended keep alive frequency it SHOULD send its keep
 alives so that the interval between each keep alive is randomly
 distributed between 80% and 100% of the server provided time. For
 example, if the server suggests 120 seconds, the UA would send each
 keep alive with a different frequency between 95 and 120 seconds.

 If no Flow-Timer header field was present in a register response for
 this flow, the UA can send keep alives at its discretion. The
 sections below provide RECOMMENDED default values for these keep
 alives.

 The client needs to perform normal [RFC3263] SIP DNS resolution on
 the URI from the outbound-proxy-set to pick a transport. Once a
 transport is selected, the UA selects the keep alive approach that is
 recommended for that transport.

4.4.1. Keep alive with CRLF

 This approach MUST only be used with connection oriented transports
 such as TCP or SCTP.

 A User Agent that forms flows, checks if the configured URI to which
 the UA is connecting resolves to a connection-oriented transport (ex:
 TCP and TLS over TCP).

 For this mechanism, the client "ping" is a double-CRLF sequence, and
 the server "pong" is a single CRLF, as defined in the ABNF below:

https://datatracker.ietf.org/doc/html/rfc3263

Jennings & Mahy Expires December 14, 2008 [Page 18]

Internet-Draft Client Initiated Connections in SIP June 2008

 CRLF = CR LF
 double-CRLF = CR LF CR LF
 CR = 0x0d
 LF = 0x0a

 The ping and pong need to be sent between SIP messages and cannot be
 sent in the middle of a SIP message. If sending over TLS, the CRLFs
 are sent inside the TLS protected channel. If sending over a SigComp
 [RFC3320] compressed data stream, the CRLF keep alives are sent
 inside the compressed stream. The double CRLF is considered a single
 SigComp message. The specific mechanism for representing these
 characters is an implementation specific matter to be handled by the
 SigComp compressor at the sending end.

 If a pong is not received within 10 seconds then the client MUST
 treat the flow as failed. Clients MUST support this CRLF keep alive.

 The proper selection of keep alive frequency is primarily a trade-off
 between battery usage and availability. The UA MUST select a random
 number between a fixed or configurable upper bound and a lower bound,
 where the lower bound is 20% less then the upper bound. The fixed
 upper bound or the default configurable upper bound SHOULD be 120
 seconds (95 seconds lower bound) where battery power is not a concern
 and 840 seconds (672 seconds lower bound) where battery power is a
 concern. The random number will be different for each keep alive
 ping.

 Note on selection of time values: the 120 seconds upper bound was
 chosen based on the idea that for a good user experience, failures
 normally will be detected in this amount of time and a new
 connection set up. The 14 minute upper-bound for battery-powered
 devices was selected based on NATs with TCP timeouts as low as 15
 minutes. Operators that wish to change the relationship between
 load on servers and the expected time that a user might not
 receive inbound communications will probably adjust this time.
 The 95 seconds lower bound was chosen so that the jitter
 introduced will result in a relatively even load on the servers
 after 30 minutes.

4.4.2. Keep alive with STUN

 This approach MUST only be used with connection-less transports, such
 as UDP.

 A User Agent that forms flows, checks if the configured URI to which
 the UA is connecting resolves to use the UDP transport. The UA can
 periodically perform keep alive checks by sending STUN
 [I-D.ietf-behave-rfc3489bis] Binding Requests over the flow as

https://datatracker.ietf.org/doc/html/rfc3320

Jennings & Mahy Expires December 14, 2008 [Page 19]

Internet-Draft Client Initiated Connections in SIP June 2008

 described in Section 8. Clients MUST support STUN based keep alives.

 The time between each keep alive request SHOULD be a random number
 between 24 and 29 seconds.

 Note on selection of time values: the upper bound of 29 seconds
 was selected, as many NATs have UDP timeouts as low as 30 seconds.
 The 24 second lower bound was selected so that after 10 minutes
 the jitter introduced by different timers will make the keep alive
 requests unsynchronized to evenly spread the load on the servers.

 If a STUN Binding Error Response is received, or if no Binding
 Response is received after 7 retransmissions (16 times the STUN "RTO"
 timer--RTO is an estimate of round-trip time), the UA considers the
 flow failed. If the XOR-MAPPED-ADDRESS in the STUN Binding Response
 changes, the UA MUST treat this event as a failure on the flow.

4.5. Flow Recovery

 When a flow used for registration (through a particular URI in the
 outbound-proxy-set) fails, the UA needs to form a new flow to replace
 the old flow and replace any registrations that were previously sent
 over this flow. Each new registration MUST have the same reg-id
 value as the registration it replaces. This is done in much the same
 way as forming a brand new flow as described in Section 4.2; however,
 if there is a failure in forming this flow, the UA needs to wait a
 certain amount of time before retrying to form a flow to this
 particular next hop.

 The amount of time to wait depends if the previous attempt at
 establishing a flow was successful. For the purposes of this
 section, a flow is considered successful if outbound registration
 succeeded, and if keep alives are in use on this flow, at least one
 subsequent keep alive response was received.

 The number of seconds to wait is computed in the following way. If
 all of the flows to every URI in the outbound proxy set have failed,
 the base-time is set to 30 seconds; otherwise, in the case where at
 least one of the flows has not failed, the base-time is set to 90
 seconds. The upper-bound wait time (W) is computed by taking two
 raised to the power of the number of consecutive registration
 failures for that URI, and multiplying this by the base time, up to a
 maximum of 1800 seconds.

 W = min(max-time, (base-time * (2 ^ consecutive-failures)))

 These times MAY be configurable in the UA. The three times are:

Jennings & Mahy Expires December 14, 2008 [Page 20]

Internet-Draft Client Initiated Connections in SIP June 2008

 o max-time with a default of 1800 seconds
 o base-time (if all failed) with a default of 30 seconds
 o base-time (if all have not failed) with a default of 90 seconds
 For example, if the base time is 30 seconds, and there were three
 failures, then the upper-bound wait time is min(1800,30*(2^3)) or 240
 seconds. The actual amount of time the UA waits before retrying
 registration (the retry delay time) is computed by selecting a
 uniform random time between 50 and 100 percent of the upper-bound
 wait time. The UA MUST wait for the value of the retry delay time
 before trying another registration to form a new flow for that URI.

 To be explicitly clear on the boundary conditions: when the UA boots
 it immediately tries to register. If this fails and no registration
 on other flows succeed, the first retry happens somewhere between 30
 and 60 seconds after the failure of the first registration request.
 If the number of consecutive-failures is large enough that the
 maximum of 1800 seconds is reached, the UA will keep trying
 indefinitely with a random time of 15 to 30 minutes between each
 attempt.

5. Edge Proxy Procedures

5.1. Processing Register Requests

 When an Edge Proxy receives a registration request with a reg-id
 header field parameter in the Contact header field, it needs to
 determine if it (the edge proxy) will have to be visited for any
 subsequent requests sent to the user agent identified in the Contact
 header field, or not. If the edge proxy is the first hop, as
 indicated by the Via header field, it MUST insert its URI in a Path
 header field value as described in [RFC3327]. If it is not the first
 hop, it might still decide to add itself to the Path header based on
 local policy. In addition, if the Edge Proxy is the first SIP node
 after the UAC, the edge proxy either MUST store a "flow token"
 (containing information about the flow from the previous hop) in its
 Path URI or reject the request. The flow token MUST be an identifier
 that is unique to this network flow. The flow token MAY be placed in
 the userpart of the URI. In addition, the first node MUST include an
 'ob' URI parameter in its Path header field value. If the Edge Proxy
 is not the first SIP node after the UAC it MUST NOT place an ob URI
 parameter in a Path header field value. The Edge Proxy can determine
 if it is the first hop by examining the Via header field.

5.2. Generating Flow Tokens

 A trivial but impractical way to satisfy the flow token requirement
 in Section 5.1 involves storing a mapping between an incrementing

https://datatracker.ietf.org/doc/html/rfc3327

Jennings & Mahy Expires December 14, 2008 [Page 21]

Internet-Draft Client Initiated Connections in SIP June 2008

 counter and the connection information; however this would require
 the Edge Proxy to keep an infeasible amount of state. It is unclear
 when this state could be removed and the approach would have problems
 if the proxy crashed and lost the value of the counter. A stateless
 example is provided below. A proxy can use any algorithm it wants as
 long as the flow token is unique to a flow, the flow can be recovered
 from the token, and the token cannot be modified by attackers.

 Example Algorithm: When the proxy boots it selects a 20-octet crypto
 random key called K that only the Edge Proxy knows. A byte array,
 called S, is formed that contains the following information about
 the flow the request was received on: an enumeration indicating
 the protocol, the local IP address and port, the remote IP address
 and port. The HMAC of S is computed using the key K and the HMAC-
 SHA1-80 algorithm, as defined in [RFC2104]. The concatenation of
 the HMAC and S are base64 encoded, as defined in [RFC4648], and
 used as the flow identifier. When using IPv4 addresses, this will
 result in a 32-octet identifier.

5.3. Forwarding Non-REGISTER Requests

 When an Edge Proxy receives a request, it applies normal routing
 procedures with the following additions. If the Edge Proxy receives
 a request where the edge proxy is the host in the topmost Route
 header field value, and the Route header field value contains a flow
 token, the proxy MAY need to do additional processing described in
 the rest of this section. Otherwise the edge proxy skips the
 procedures in this section, removes itself from the Route header
 field, and continues processing the request.

 The proxy decodes the flow token and compares the flow in the flow
 token with the source of the request to determine if this is an
 "incoming" or "outgoing" request.

 If the flow in the flow token identified by the topmost Route header
 field value matches the source IP address and port of the request,
 the request is an "outgoing" request, otherwise, it is an "incoming"
 request.

5.3.1. Processing Incoming Requests

 If the Route header value contains an ob URI parameter, the Route
 header was probably copied from the Path header in a registration.
 If the Route header value contains an ob URI parameter, and the
 request is a new dialog-forming request, the proxy needs to adjust
 the route set to insure that subsequent requests in the dialog can be
 delivered over a valid flow to the UA instance identified by the flow
 token.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4648

Jennings & Mahy Expires December 14, 2008 [Page 22]

Internet-Draft Client Initiated Connections in SIP June 2008

 A simple approach to satisfy this requirement is for the proxy to
 add a Record-Route header field value that contains the flow-
 token, by copying the URI in the Route header minus the 'ob'
 parameter.

 Next, whether the Route header field contained an ob URI parameter or
 not, the proxy removes the Route header field value and forwards the
 request over the 'logical flow' identified by the flow token, that is
 known to deliver data to the specific target UA instance. If the
 flow token has been tampered with, the proxy SHOULD send a 403
 (Forbidden) response. If the flow no longer exists the proxy SHOULD
 send a 430 (Flow Failed) response to the request.

 Proxies which used the example algorithm described in Section 5.2 to
 form a flow token follow the procedures below to determine the
 correct flow. To decode the flow token, take the flow identifier in
 the user portion of the URI and base64 decode it, then verify the
 HMAC is correct by recomputing the HMAC and checking that it matches.
 If the HMAC is not correct, the request has been tampered with.

5.3.2. Processing Outgoing Requests

 For mid-dialog requests to work with outbound UAs, the requests need
 to be forwarded over some valid flow to the appropriate UA instance.
 If the Edge Proxy receives an outgoing dialog-forming request, the
 Edge Proxy can use the presence of the ob URI parameter in the UAC's
 Contact URI (or topmost Route header field) to determine if the Edge
 Proxy needs to assist in mid-dialog request routing.

 Implementation note: Specific procedures at the edge proxy to ensure
 that mid-dialog requests are routed over an existing flow are not
 part of this specification. However, an approach such as having
 the Edge Proxy add a Record-Route header with a flow token is one
 way to ensure that mid-dialog requests are routed over the correct
 flow.

5.4. Edge Proxy Keep alive Handling

 All edge proxies compliant with this specification MUST implement
 support for STUN NAT Keep alives on its SIP UDP ports as described in

Section 8.

 When a server receives a double CRLF sequence between SIP messages on
 a connection oriented transport such as TCP or SCTP, it MUST
 immediately respond with a single CRLF over the same connection.

 The last proxy to forward a successful registration response to a UA
 MAY include a Flow-Timer header field if the response contains the

Jennings & Mahy Expires December 14, 2008 [Page 23]

Internet-Draft Client Initiated Connections in SIP June 2008

 outbound option-tag in a Require header field value in the response.

6. Registrar Procedures

 This specification updates the definition of a binding in [RFC3261]
 Section 10 and [RFC3327] Section 5.3.

 Registrars which implement this specification MUST support the Path
 header mechanism [RFC3327].

 When receiving a REGISTER request, the registrar MUST check from its
 Via header field if the registrar is the first hop or not. If the
 registrar is not the first hop, it MUST examine the Path header of
 the request. If the Path header field is missing or it exists but
 the first URI does not have an ob URI parameter, then outbound
 processing MUST NOT be applied to the registration. In this case,
 the following processing applies: if the REGISTER request contains
 the reg-id and the outbound option tag in a Supported header field,
 then the registrar MUST respond to the REGISTER request with a 439
 (First Hop Lacks Outbound Support) response; otherwise, the registrar
 MUST ignore the reg-id parameter of the Contact header. See

Section 11.6 for more information on the 439 response code.

 A Contact header field value with an instance-id media feature tag
 but no reg-id header field parameter is valid (this combination can
 be used in the GRUU [I-D.ietf-sip-gruu] specification), but one with
 a reg-id but no instance-id is not. If the registrar processes a
 Contact header field value with a reg-id but no instance-id, it
 simply ignores the reg-id parameter.

 A registration containing a reg-id header field parameter and a non-
 zero expiration is used to register a single UA instance over a
 single flow, and can also de-register any Contact header fields with
 zero expiration. Therefore if the Contact header field contains more
 than one header field value with a non-zero expiration and any of
 these header field values contain a reg-id Contact header field
 parameter, the entire registration SHOULD be rejected with a 400 (Bad
 Request) response. The justification for recommending rejection
 versus making it mandatory is that the receiver is allowed by
 [RFC3261] to squelch (not respond to) excessively malformed or
 malicious messages.

 If the Contact header did not contain a reg-id Contact header field
 parameter or if that parameter was ignored (as described above) the
 registrar MUST NOT include the outbound option-tag in the Require
 header field of its response.

https://datatracker.ietf.org/doc/html/rfc3261#section-10
https://datatracker.ietf.org/doc/html/rfc3261#section-10
https://datatracker.ietf.org/doc/html/rfc3327#section-5.3
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3261

Jennings & Mahy Expires December 14, 2008 [Page 24]

Internet-Draft Client Initiated Connections in SIP June 2008

 The registrar MUST be prepared to receive, simultaneously for the
 same AOR, some registrations that use instance-id and reg-id and some
 registrations that do not. The Registrar MAY be configured with
 local policy to reject any registrations that do not include the
 instance-id and reg-id, or with Path header field values that do not
 contain the ob URI parameter. If the Contact header field does not
 contain a '+sip.instance' media feature parameter, the registrar
 processes the request using the Contact binding rules in [RFC3261].

 When a '+sip.instance' media feature parameter and a reg-id Contact
 header field parameter are present in a Contact header field of a
 REGISTER request (after the Contact header validation as described
 above), the corresponding binding is between an AOR and the
 combination of the instance-id (from the +sip.instance media feature
 parameter) and the value of reg-id Contact header field parameter
 parameter. The registrar MUST store in the binding the Contact URI,
 all the Contact header field parameters, and any Path header field
 values. (Even though the Contact URI is not used for binding
 comparisons, it is still needed by the authoritative proxy to form
 the target set.) The Registrar MUST include the outbound option-tag
 (defined in Section 11.4) in a Require header field value in its
 response to the REGISTER request.

 If the UAC has a direct flow with the registrar, the registrar MUST
 store enough information to uniquely identify the network flow over
 which the request arrived. For common operating systems with TCP,
 this would typically just be the handle to the file descriptor where
 the handle would become invalid if the TCP session was closed. For
 common operating systems with UDP this would typically be the file
 descriptor for the local socket that received the request, the local
 interface, and the IP address and port number of the remote side that
 sent the request. The registrar MAY store this information by adding
 itself to the Path header field with an appropriate flow token.

 If the registrar receives a re-registration for a specific
 combination of AOR, instance-id and reg-id values, the registrar MUST
 update any information that uniquely identifies the network flow over
 which the request arrived if that information has changed, and SHOULD
 update the time the binding was last updated.

 To be compliant with this specification, registrars which can receive
 SIP requests directly from a UAC without intervening edge proxies
 MUST implement the same keep alive mechanisms as Edge Proxies
 (Section 5.4). Registrars with a direct flow with a UA MAY include a
 Flow-Timer header in a 2XX class registration response which includes
 the outbound option-tag in the Require header.

https://datatracker.ietf.org/doc/html/rfc3261

Jennings & Mahy Expires December 14, 2008 [Page 25]

Internet-Draft Client Initiated Connections in SIP June 2008

7. Authoritative Proxy Procedures: Forwarding Requests

 When a proxy uses the location service to look up a registration
 binding and then proxies a request to a particular contact, it
 selects a contact to use normally, with a few additional rules:

 o The proxy MUST NOT populate the target set with more than one
 contact with the same AOR and instance-id at a time.
 o If a request for a particular AOR and instance-id fails with a 430
 (Flow Failed) response, the proxy SHOULD replace the failed branch
 with another target (if one is available) with the same AOR and
 instance-id, but a different reg-id.
 o If the proxy receives a final response from a branch other than a
 408 (Request Timeout) or a 430 (Flow Failed) response, the proxy
 MUST NOT forward the same request to another target representing
 the same AOR and instance-id. The targeted instance has already
 provided its response.

 The proxy uses the next-hop target of the message and the value of
 any stored Path header field vector in the registration binding to
 decide how to forward and populate the Route header in the request.
 If the proxy is colocated with the registrar and stored information
 about the flow to the UA that created the binding, then the proxy
 MUST send the request over the same 'logical flow' saved with the
 binding, since that flow is known to deliver data to the specific
 target UA instance's network flow that was saved with the binding.

 Implementation Note: Typically this means that for TCP, the request
 is sent on the same TCP socket that received the REGISTER request.
 For UDP, the request is sent from the same local IP address and
 port over which the registration was received, to the same IP
 address and port from which the REGISTER was received.

 If a proxy or registrar receives information from the network that
 indicates that no future messages will be delivered on a specific
 flow, then the proxy MUST invalidate all the bindings in the target
 set that use that flow (regardless of AOR). Examples of this are a
 TCP socket closing or receiving a destination unreachable ICMP error
 on a UDP flow. Similarly, if a proxy closes a file descriptor, it
 MUST invalidate all the bindings in the target set with flows that
 use that file descriptor.

8. STUN Keep alive Processing

 This section describes changes to the SIP transport layer that allow
 SIP and STUN [I-D.ietf-behave-rfc3489bis] Binding Requests to be
 mixed over the same flow. This constitutes a new STUN usage. The

Jennings & Mahy Expires December 14, 2008 [Page 26]

Internet-Draft Client Initiated Connections in SIP June 2008

 STUN messages are used to verify that connectivity is still available
 over a UDP flow, and to provide periodic keep alives. These STUN
 keep alives are always sent to the next SIP hop. STUN messages are
 not delivered end-to-end.

 The only STUN messages required by this usage are Binding Requests,
 Binding Responses, and Binding Error Responses. The UAC sends
 Binding Requests over the same UDP flow that is used for sending SIP
 messages. These Binding Requests do not require any STUN attributes.
 The corresponding Binding Responses do not require any STUN
 attributes except the XOR-MAPPED-ADDRESS. The UAS, proxy, or
 registrar responds to a valid Binding Request with a Binding Response
 which MUST include the XOR-MAPPED-ADDRESS attribute.

 If a server compliant to this section receives SIP requests on a
 given interface and UDP port, it MUST also provide a limited version
 of a STUN server on the same interface and UDP port.

 It is easy to distinguish STUN and SIP packets sent over UDP,
 because the first octet of a STUN Binding method has a value of 0
 or 1 while the first octet of a SIP message is never a 0 or 1.

 Because sending and receiving binary STUN data on the same ports used
 for SIP is a significant and non-backwards compatible change to RFC

3261, this section requires a number of checks before sending STUN
 messages to a SIP node. If a SIP node sends STUN requests (for
 example due to incorrect configuration) despite these warnings, the
 node could be blacklisted for UDP traffic.

 A SIP node MUST NOT send STUN requests over a flow unless it has an
 explicit indication that the target next hop SIP server claims to
 support this specification. UACs MUST NOT use an ambiguous
 configuration option such as "Work through NATs?" or "Do Keep
 alives?" to imply next hop STUN support. A UAC MAY use the presence
 of an ob URI parameter in the Path header in a registration response
 as an indication that its first edge proxy supports the keep alives
 defined in this document.

 Typically, a SIP node first sends a SIP request and waits to
 receive a 2XX class response over a flow to a new target
 destination, before sending any STUN messages. When scheduled for
 the next NAT refresh, the SIP node sends a STUN request to the
 target.

 Once a flow is established, failure of a STUN request (including its
 retransmissions) is considered a failure of the underlying flow. For
 SIP over UDP flows, if the XOR-MAPPED-ADDRESS returned over the flow
 changes, this indicates that the underlying connectivity has changed,

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Jennings & Mahy Expires December 14, 2008 [Page 27]

Internet-Draft Client Initiated Connections in SIP June 2008

 and is considered a flow failure.

 The SIP keep alive STUN usage requires no backwards compatibility
 with [RFC3489].

8.1. Use with Sigcomp

 When STUN is used together with SigComp [RFC3320] compressed SIP
 messages over the same flow,the STUN messages are simply sent
 uncompressed, "outside" of SigComp. This is supported by
 multiplexing STUN messages with SigComp messages by checking the two
 topmost bits of the message. These bits are always one for SigComp,
 or zero for STUN.

 All SigComp messages contain a prefix (the five most-significant
 bits of the first byte are set to one) that does not occur in
 UTF-8 [RFC3629] encoded text messages, so for applications which
 use this encoding (or ASCII encoding) it is possible to multiplex
 uncompressed application messages and SigComp messages on the same
 UDP port.
 The most significant two bits of every STUN Binding method are
 both zeroes. This, combined with the magic cookie, aids in
 differentiating STUN packets from other protocols when STUN is
 multiplexed with other protocols on the same port.

9. Example Message Flow

 Below is an example message flow illustrating most of the concepts
 discussed in this specification. In many cases, Via, Content-Length
 and Max-Forwards headers are omitted for brevity and readability.

 In these examples, "EP1" and "EP2" are outbound proxies, and "Proxy"
 is the authoritativeProxy.

 The section is subdivided into independent calls flows: however,
 they are structured in sequential order of an hypothetical sequence
 of call flows.

9.1. Subscription to configuration package

 If the outbound proxy set is already configured on Bob's UA, then
 this subsection can be skipped. Otherwise, if the outbound proxy set
 is learned through the configuration package, Bob's UA sends a
 SUBSCRIBE request for the UA profile configuration package
 [I-D.ietf-sipping-config-framework]. This request is a poll (Expires
 is zero). After receiving the NOTIFY request, Bob's UA fetches the
 external configuration using HTTPS (not shown) and obtains a

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3320
https://datatracker.ietf.org/doc/html/rfc3629

Jennings & Mahy Expires December 14, 2008 [Page 28]

Internet-Draft Client Initiated Connections in SIP June 2008

 configuration file which contains the outbound-proxy-set "sip:
 ep1.example.com;lr" and "sip:ep2.example.com;lr.

 [----example.com domain-------------------------]
 Bob EP1 EP2 Proxy Config
 | | | | |
 1)|SUBSCRIBE->| | | |
 2)| |---SUBSCRIBE Event: ua-profile ->|
 3)| |<--200 OK -----------------------|
 4)|<--200 OK--| | | |
 5)| |<--NOTIFY------------------------|
 6)|<--NOTIFY--| | | |
 7)|---200 OK->| | | |
 8)| |---200 OK ---------------------->|
 | | | | |

 Example Message #1:

 SUBSCRIBE sip:00000000-0000-1000-8000-AABBCCDDEEFF@example.com
 SIP/2.0
 Via: SIP/2.0/TCP 192.0.2.2;branch=z9hG4bKnlsdkdj2
 Max-Forwards: 70
 From: <anonymous@example.com>;tag=23324
 To: <sip:00000000-0000-1000-8000-AABBCCDDEEFF@example.com>
 Call-ID: nSz1TWN54x7My0GvpEBj
 CSeq: 1 SUBSCRIBE
 Event: ua-profile ;profile-type=device
 ;vendor="example.com";model="uPhone";version="1.1"
 Expires: 0
 Supported: path, outbound
 Accept: message/external-body, application/x-uPhone-config
 Contact: <sip:192.0.2.2;transport=tcp;ob>
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"
 Content-Length: 0

 In message #2, EP1 adds the following Record-Route header:

 Record-Route:
 <sip:GopIKSsn0oGLPXRdV9BAXpT3coNuiGKV@ep1.example.com;lr>

 In message #5, the configuration server sends a NOTIFY with an
 external URL for Bob to fetch his configuration. The NOTIFY has a
 Subscription-State header that ends the subscription.

Jennings & Mahy Expires December 14, 2008 [Page 29]

Internet-Draft Client Initiated Connections in SIP June 2008

 Message #5

 NOTIFY sip:192.0.2.2;transport=tcp;ob SIP/2.0
 Via: SIP/2.0/TCP 192.0.2.5;branch=z9hG4bKn81dd2
 Max-Forwards: 70
 To: <anonymous@example.com>;tag=23324
 From: <sip:00000000-0000-1000-8000-AABBCCDDEEFF@example.com>;tag=0983
 Call-ID: nSz1TWN54x7My0GvpEBj
 CSeq: 1 NOTIFY
 Route: <sip:GopIKSsn0oGLPXRdV9BAXpT3coNuiGKV@ep1.example.com;lr>
 Subscription-State: terminated;reason=timeout
 Event: ua-profile
 Content-Type: message/external-body; access-type="URL"
 ;expiration="Thu, 01 Jan 2009 09:00:00 UTC"
 ;URL="http://example.com/uPhone.cfg"
 ;size=9999;hash=10AB568E91245681AC1B
 Content-Length: 0

 EP1 receives this NOTIFY request, strips off the Route header,
 extracts the flow-token, calculates the correct flow and forwards the
 request (Message #6) over that flow to Bob.

 Bob's UA fetches the configuration file and learns the outbound proxy
 set.

9.2. Registration

 Now that Bob's UA is configured with the outbound-proxy-set whether
 through configuration or using the configuration framework procedures
 of the previous section, Bob's UA sends REGISTER requests through
 each edge proxy in the set. Once the registrations succeed, Bob's UA
 begins sending CRLF keep alives about every 2 minutes.

Jennings & Mahy Expires December 14, 2008 [Page 30]

Internet-Draft Client Initiated Connections in SIP June 2008

 Bob EP1 EP2 Proxy Alice
 | | | | |
 9)|-REGISTER->| | | |
 10)| |---REGISTER-->| |
 11)| |<----200 OK---| |
 12)|<-200 OK---| | | |
 13)|----REGISTER---->| | |
 14)| | |--REG-->| |
 15)| | |<-200---| |
 16)|<----200 OK------| | |
 | | | | |
 | about 120 seconds later... |
 | | | | |
 17)|--2CRLF--->| | | |
 18)|<--CRLF----| | | |
 19)|------2CRLF----->| | |
 20)|<------CRLF------| | |
 | | | | |

 In message #9, Bob's UA sends its first registration through the
 first edge proxy in the outbound-proxy-set by including a loose
 route. The UA includes an instance-id and reg-id in its Contact
 header field value. Note the option-tags in the Supported header.

 Message #9

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/TCP 192.0.2.2;branch=z9hG4bKnashds7
 Max-Forwards: 70
 From: Bob <sip:bob@example.com>;tag=7F94778B653B
 To: Bob <sip:bob@example.com>
 Call-ID: 16CB75F21C70
 CSeq: 1 REGISTER
 Supported: path, outbound
 Route: <sip:ep1.example.com;lr>
 Contact: <sip:bob@192.0.2.2;transport=tcp>;reg-id=1
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"
 Content-Length: 0

 Message #10 is similar. EP1 removes the Route header field value,
 decrements Max-Forwards, and adds its Via header field value. Since
 EP1 is the first edge proxy, it adds a Path header with a flow token
 and includes the 'ob' parameter.

 Path: <sip:VskztcQ/S8p4WPbOnHbuyh5iJvJIW3ib@ep1.example.com;lr;ob>

 Since the response to the REGISTER (message #11) contains the
 outbound option-tag in the Require header field, Bob's UA will know

Jennings & Mahy Expires December 14, 2008 [Page 31]

Internet-Draft Client Initiated Connections in SIP June 2008

 that the registrar used outbound binding rules. The response also
 contains the currently active Contacts, the Path for the current
 registration.

 Message #11

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP 192.0.2.15;branch=z9hG4bKnuiqisi
 Via: SIP/2.0/TCP 192.0.2.2;branch=z9hG4bKnashds7
 From: Bob <sip:bob@example.com>;tag=7F94778B653B
 To: Bob <sip:bob@example.com>;tag=6AF99445E44A
 Call-ID: 16CB75F21C70
 CSeq: 1 REGISTER
 Supported: path, outbound
 Require: outbound
 Contact: <sip:bob@192.0.2.2;transport=tcp>;reg-id=1;expires=3600
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"
 Path: <sip:VskztcQ/S8p4WPbOnHbuyh5iJvJIW3ib@ep1.example.com;lr;ob>
 Content-Length: 0

 The second registration through EP2 (message #13) is similar other
 than the Call-ID has changed, the reg-id is 2, and the Route header
 goes through EP2.

 Message #13

 REGISTER sip:example.com SIP/2.0
 Via: SIP/2.0/TCP 192.0.2.2;branch=z9hG4bKnqr9bym
 Max-Forwards: 70
 From: Bob <sip:bob@example.com>;tag=755285EABDE2
 To: Bob <sip:bob@example.com>
 Call-ID: E05133BD26DD
 CSeq: 1 REGISTER
 Supported: path, outbound
 Route: <sip:ep2.example.com;lr>
 Contact: <sip:bob@192.0.2.2;transport=tcp>;reg-id=2
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"
 Content-Length: 0

 Likewise in message #14, EP2 adds a Path header with flow token and
 'ob' parameter.

 Path: <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr;ob>

 Message #16 tells Bob's UA that outbound registration was successful,
 and shows both Contacts. Note that only the Path corresponding to
 the current registration is returned.

Jennings & Mahy Expires December 14, 2008 [Page 32]

Internet-Draft Client Initiated Connections in SIP June 2008

 Message #16

 SIP/2.0 200 OK
 Via: SIP/2.0/TCP 192.0.2.2;branch=z9hG4bKnqr9bym
 From: Bob <sip:bob@example.com>;tag=755285EABDE2
 To: Bob <sip:bob@example.com>;tag=49A9AD0B3F6A
 Call-ID: E05133BD26DD
 Supported: path, outbound
 Require: outbound
 CSeq: 1 REGISTER
 Contact: <sip:bob@192.0.2.2;transport=tcp>;reg-id=1;expires=3600
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"
 Contact: <sip:bob@192.0.2.2;transport=tcp>;reg-id=2;expires=3600
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"
 Path: <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr;ob>
 Content-Length: 0

9.3. Incoming call and proxy crash

 In this example, after registration, EP1 crashes and reboots. Before
 Bob's UA notices that its flow to EP1 is no longer responding, Alice
 calls Bob. Bob's authoritative proxy first tries the flow to EP1, but
 EP1 no longer has a flow to Bob so it responds with a 430 Flow Failed
 response. The proxy removes the stale registration and tries the
 next binding for the same instance.

 Bob EP1 EP2 Proxy Alice
 | | | | |
 | CRASH X | | |
 | Reboot | | |
 | | | | |
 21)| | | |<-INVITE-|
 22)| |<---INVITE----| |
 23)| |----430------>| |
 24)| | |<-INVITE| |
 25)|<---INVITE-------| | |
 26)|----200 OK------>| | |
 27)| | |200 OK->| |
 28)| | | |-200 OK->|
 29)| | |<----------ACK----|
 30)|<---ACK----------| | |
 | | | | |
 31)| | |<----------BYE----|
 32)|<---BYE----------| | |
 33)|----200 OK------>| | |
 34)| | |--------200 OK--->|
 | | | | |

Jennings & Mahy Expires December 14, 2008 [Page 33]

Internet-Draft Client Initiated Connections in SIP June 2008

 Message #21

 INVITE sip:bob@example.com SIP/2.0
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 INVITE

 Bob's proxy rewrites the Request-URI to the Contact URI used in Bob's
 registration, and places the path for one of the registrations
 towards Bob's UA instance into a Route header field. This Route goes
 through EP1.

 Message #22

 INVITE sip:bob@192.0.2.2;transport=tcp SIP/2.0
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 INVITE
 Route: <sip:VskztcQ/S8p4WPbOnHbuyh5iJvJIW3ib@ep1.example.com;lr;ob>

 Since EP1 just rebooted, it does not have the flow described in the
 flow token. It returns a 430 Flow Failed response.

 Message #23

 SIP/2.0 430 Flow Failed
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 INVITE

 The proxy deletes the binding for this path and tries to forward the
 INVITE again, this time with the path through EP2.

 Message #24

 INVITE sip:bob@192.0.2.2;transport=tcp SIP/2.0
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 INVITE
 Route: <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr;ob>

 In message #25, EP2 needs to add a Record-Route header field value,
 so that any subsequent in-dialog messages from Alice's UA arrive at
 Bob's UA. EP2 can determine it needs to Record-Route since the

Jennings & Mahy Expires December 14, 2008 [Page 34]

Internet-Draft Client Initiated Connections in SIP June 2008

 request is a dialog-forming request and the Route header contained a
 flow token and an 'ob' parameter. This Record-Route information is
 passed back to Alice's UA in the responses (messages #26, 27, and 28)

 Message #25

 INVITE sip:bob@192.0.2.2;transport=tcp SIP/2.0
 To: Bob <sip:bob@example.com>
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 INVITE
 Record-Route:
 <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr>

 Message #26

 SIP/2.0 200 OK
 To: Bob <sip:bob@example.com>;tag=skduk2
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 INVITE
 Record-Route:
 <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr>

 At this point, both UAs have the correct route-set for the dialog.
 Any subsequent requests in this dialog will route correctly. For
 example, the ACK request in message #29 is sent form Alice's UA
 directly to EP2. The BYE request in message #31 uses the same route-
 set.

 Message #29

 ACK sip:bob@192.0.2.2;transport=tcp SIP/2.0
 To: Bob <sip:bob@example.com>;tag=skduk2
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 1 ACK
 Route: <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr>

 Message #31

 BYE sip:bob@192.0.2.2;transport=tcp SIP/2.0
 To: Bob <sip:bob@example.com>;tag=skduk2
 From: Alice <sip:alice@a.example>;tag=02935
 Call-ID: klmvCxVWGp6MxJp2T2mb
 CSeq: 2 BYE
 Route: <sip:wazHDLdIMtUg6r0I/oRZ15zx3zHE1w1Z@ep2.example.com;lr>

Jennings & Mahy Expires December 14, 2008 [Page 35]

Internet-Draft Client Initiated Connections in SIP June 2008

9.4. Re-registration

 Somewhat later, Bob's UA sends keep alives to both its edge proxies,
 but it discovers that the flow with EP1 failed. Bob's UA re-
 registers through EP1 using the same reg-id and Call-ID it previously
 used.

 Bob EP1 EP2 Proxy Alice
 | | | | |
 35)|------2CRLF----->| | |
 36)|<------CRLF------| | |
 37)|--2CRLF->X | | | |
 | | | | |
 38)|-REGISTER->| | | |
 39)| |---REGISTER-->| |
 40)| |<----200 OK---| |
 41)|<-200 OK---| | | |
 | | | | |

 Message #38

 REGISTER sip:example.com SIP/2.0
 From: Bob <sip:bob@example.com>;tag=7F94778B653B
 To: Bob <sip:bob@example.com>
 Call-ID: 16CB75F21C70
 CSeq: 2 REGISTER
 Supported: path, outbound
 Route: <sip:ep1.example.com;lr>
 Contact: <sip:bob@192.0.2.2;transport=tcp>;reg-id=1
 ;+sip.instance="<urn:uuid:00000000-0000-1000-8000-AABBCCDDEEFF>"

 In message #39, EP1 inserts a Path header with a new flow token:

 Path: <sip:3yJEbr1GYZK9cPYk5Snocez6DzO7w+AX@ep1.example.com;lr;ob>

9.5. Outgoing call

 Finally, Bob makes an outgoing call to Alice. Bob's UA includes an
 'ob' parameter in its Contact URI in message #42. EP1 adds a Record-
 Route with a flow-token in message #43. The route-set is returned to
 Bob in the response (messages #45, 46, and 47) and either Bob or
 Alice can send in-dialog requests.

Jennings & Mahy Expires December 14, 2008 [Page 36]

Internet-Draft Client Initiated Connections in SIP June 2008

 Bob EP1 EP2 Proxy Alice
 | | | | |
 42)|--INVITE-->| | | |
 43)| |---INVITE---->| |
 44)| | | |-INVITE->|
 45)| | | |<--200---|
 46)| |<----200 OK---| |
 47)|<-200 OK---| | | |
 48)|--ACK----->| | | |
 49)| |-----ACK--------------->|
 | | | | |
 50)|-- BYE---->| | | |
 51)| |-----------BYE--------->|
 52)| |<----------200 OK-------|
 53)|<--200 OK--| | | |
 | | | | |

 Message #42

 INVITE sip:alice@a.example SIP/2.0
 From: Bob <sip:bob@example.com>;tag=ldw22z
 To: Alice <sip:alice@a.example>
 Call-ID: 95KGsk2V/Eis9LcpBYy3
 CSeq: 1 INVITE
 Route: <sip:ep1.example.com;lr>
 Contact: <sip:bob@192.0.2.2;transport=tcp;ob>

 In message #43, EP1 adds the following Record-Route header.

 Record-Route:
 <sip:3yJEbr1GYZK9cPYk5Snocez6DzO7w+AX@ep1.example.com;lr>

 When EP1 receives the BYE (message #50) from Bob's UA, it can tell
 that the request is an "outgoing" request (since the source of the
 request matches the flow in the flow token) and simply deletes its
 Route header field value and forwards the request on to Alice's UA.

 Message #50

 BYE sip:alice@a.example SIP/2.0
 From: Bob <sip:bob@example.com>;tag=ldw22z
 To: Alice <sip:alice@a.example>;tag=plqus8
 Call-ID: 95KGsk2V/Eis9LcpBYy3
 CSeq: 2 BYE
 Route: <sip:3yJEbr1GYZK9cPYk5Snocez6DzO7w+AX@ep1.example.com;lr>
 Contact: <sip:bob@192.0.2.2;transport=tcp;ob>

Jennings & Mahy Expires December 14, 2008 [Page 37]

Internet-Draft Client Initiated Connections in SIP June 2008

10. Grammar

 This specification defines a new header field, new Contact header
 field parameters, reg-id and +sip.instance. The grammar includes the
 definitions from RFC 3261 [RFC3261] and includes the definition of
 uric from RFC 3986 [RFC3986].

 Note: The "=/" syntax used in this ABNF indicates an extension of
 the production on the left hand side.

 The ABNF[RFC5234] is:

 message-header =/ Flow-Timer

 Flow-Timer = "Flow-Timer" HCOLON 1*DIGIT

 contact-params =/ c-p-reg / c-p-instance

 c-p-reg = "reg-id" EQUAL 1*DIGIT ; 1 to (2**31 - 1)

 c-p-instance = "+sip.instance" EQUAL
 LDQUOT "<" instance-val ">" RDQUOT

 instance-val = *uric ; defined in RFC 3986

 The value of the reg-id MUST NOT be 0 and MUST be less than 2**31.

11. IANA Considerations

11.1. Flow-Timer Header Field

 This specification defines a new SIP header field "Flow-Timer" whose
 syntax is defined in Section 10.

 Header Name compact Reference
 ----------------- ------- ---------
 Flow-Timer [RFCXXXX]

 [NOTE TO RFC Editor: Please replace XXXX with
 the RFC number of this specification.]

11.2. 'reg-id' Contact Header Field Parameter

 This specification defines a new Contact header field parameter
 called reg-id in the "Header Field Parameters and Parameter Values"
 sub-registry as per the registry created by [RFC3968]. The syntax is
 defined in Section 10. The required information is:

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3968

Jennings & Mahy Expires December 14, 2008 [Page 38]

Internet-Draft Client Initiated Connections in SIP June 2008

 Predefined
 Header Field Parameter Name Values Reference
 ---------------------- --------------------- ---------- ---------
 Contact reg-id No [RFCXXXX]

 [NOTE TO RFC Editor: Please replace XXXX with
 the RFC number of this specification.]

11.3. SIP/SIPS URI Parameters

 This specification augments the "SIP/SIPS URI Parameters" sub-
 registry as per the registry created by [RFC3969]. The required
 information is:

 Parameter Name Predefined Values Reference
 -------------- ----------------- ---------
 ob No [RFCXXXX]

 [NOTE TO RFC Editor: Please replace XXXX with
 the RFC number of this specification.]

11.4. SIP Option Tag

 This specification registers a new SIP option tag, as per the
 guidelines in Section 27.1 of RFC 3261.

 Name: outbound
 Description: This option-tag is used to identify UAs and Registrars
 which support extensions for Client Initiated Connections. A UA
 places this option in a Supported header to communicate its
 support for this extension. A Registrar places this option-tag in
 a Require header to indicate to the registering User Agent that
 the Registrar used registrations using the binding rules defined
 in this extension.

11.5. 430 (Flow Failed) Response Code

 This document registers a new SIP response code (430 Flow Failed), as
 per the guidelines in Section 27.4 of [RFC3261]. This response code
 is used by an Edge Proxy to indicate to the Authoritative Proxy that
 a specific flow to a UA instance has failed. Other flows to the same
 instance could still succeed. The Authoritative Proxy SHOULD attempt
 to forward to another target (flow) with the same instance-id and
 AOR. This response code is defined by the following information,
 which has been added to the method and response-code sub-registry
 under http://www.iana.org/assignments/sip-parameters.

https://datatracker.ietf.org/doc/html/rfc3969
https://datatracker.ietf.org/doc/html/rfc3261#section-27.1
https://datatracker.ietf.org/doc/html/rfc3261#section-27.4
http://www.iana.org/assignments/sip-parameters

Jennings & Mahy Expires December 14, 2008 [Page 39]

Internet-Draft Client Initiated Connections in SIP June 2008

 Response Code Reference
 -- ---------
 Request Failure 4xx
 430 Flow Failed [RFCXXXX]

 [NOTE TO RFC Editor: Please replace XXXX with
 the RFC number of this specification.]

11.6. 439 (First Hop Lacks Outbound Support) Response Code

 This document registers a new SIP response code (439 First Hop Lacks
 Outbound Support), as per the guidelines in Section 27.4 of
 [RFC3261]. This response code is used by a registrar to indicate
 that it supports the 'outbound' feature described in this
 specification, but that the first outbound proxy that the user is
 attempting to register through does not. Note that this response
 code is only appropriate in the case that the registering user agent
 advertises support for outbound processing by including the outbound
 option tag in a Supported header field. Proxies MUST NOT send a 439
 response to any requests that do not contain a reg-id parameter and
 an outbound option tag in a Supported header field. This response
 code is defined by the following information, which has been added to
 the method and response-code sub-registry under

http://www.iana.org/assignments/sip-parameters.

 Response Code Reference
 -- ---------
 Request Failure 4xx
 439 First Hop Lacks Outbound Support [RFCXXXX]

 [NOTE TO RFC Editor: Please replace XXXX with
 the RFC number of this specification.]

11.7. Media Feature Tag

 This section registers a new media feature tag, per the procedures
 defined in [RFC2506]. The tag is placed into the sip tree, which is
 defined in [RFC3840].

 Media feature tag name: sip.instance

 ASN.1 Identifier: New assignment by IANA.

 Summary of the media feature indicated by this tag: This feature tag
 contains a string containing a URN that indicates a unique identifier
 associated with the UA instance registering the Contact.

 Values appropriate for use with this feature tag: String.

https://datatracker.ietf.org/doc/html/rfc3261#section-27.4
https://datatracker.ietf.org/doc/html/rfc3261#section-27.4
http://www.iana.org/assignments/sip-parameters
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc3840

Jennings & Mahy Expires December 14, 2008 [Page 40]

Internet-Draft Client Initiated Connections in SIP June 2008

 The feature tag is intended primarily for use in the following
 applications, protocols, services, or negotiation mechanisms: This
 feature tag is most useful in a communications application, for
 describing the capabilities of a device, such as a phone or PDA.

 Examples of typical use: Routing a call to a specific device.

 Related standards or documents: RFC XXXX

 [Note to IANA: Please replace XXXX with the RFC number of this
 specification.]

 Security Considerations: This media feature tag can be used in ways
 which affect application behaviors. For example, the SIP caller
 preferences extension [RFC3841] allows for call routing decisions to
 be based on the values of these parameters. Therefore, if an
 attacker can modify the values of this tag, they might be able to
 affect the behavior of applications. As a result, applications which
 utilize this media feature tag SHOULD provide a means for ensuring
 its integrity. Similarly, this feature tag should only be trusted as
 valid when it comes from the user or user agent described by the tag.
 As a result, protocols for conveying this feature tag SHOULD provide
 a mechanism for guaranteeing authenticity.

12. Security Considerations

 One of the key security concerns in this work is making sure that an
 attacker cannot hijack the sessions of a valid user and cause all
 calls destined to that user to be sent to the attacker. Note that
 the intent is not to prevent existing active attacks on SIP UDP and
 TCP traffic, but to insure that no new attacks are added by
 introducing the outbound mechanism.

 The simple case is when there are no edge proxies. In this case, the
 only time an entry can be added to the routing for a given AOR is
 when the registration succeeds. SIP already protects against
 attackers being able to successfully register, and this scheme relies
 on that security. Some implementers have considered the idea of just
 saving the instance-id without relating it to the AOR with which it
 registered. This idea will not work because an attacker's UA can
 impersonate a valid user's instance-id and hijack that user's calls.

 The more complex case involves one or more edge proxies. When a UA
 sends a REGISTER request through an Edge Proxy on to the registrar,
 the Edge Proxy inserts a Path header field value. If the
 registration is successfully authenticated, the registrar stores the
 value of the Path header field. Later when the registrar forwards a

https://datatracker.ietf.org/doc/html/rfc3841

Jennings & Mahy Expires December 14, 2008 [Page 41]

Internet-Draft Client Initiated Connections in SIP June 2008

 request destined for the UA, it copies the stored value of the Path
 header field into the Route header field of the request and forwards
 the request to the Edge Proxy.

 The only time an Edge Proxy will route over a particular flow is when
 it has received a Route header that has the flow identifier
 information that it has created. An incoming request would have
 gotten this information from the registrar. The registrar will only
 save this information for a given AOR if the registration for the AOR
 has been successful; and the registration will only be successful if
 the UA can correctly authenticate. Even if an attacker has spoofed
 some bad information in the Path header sent to the registrar, the
 attacker will not be able to get the registrar to accept this
 information for an AOR that does not belong to the attacker. The
 registrar will not hand out this bad information to others, and
 others will not be misled into contacting the attacker.

 The Security Considerations discussed in [RFC3261] and [RFC3327] are
 also relevant to this document. For the security considerations of
 generating flow tokens, please also see Section 5.2. A discussion of
 preventing the avalanche restart problem is in Section 4.5.

 This document does not change the mandatory to implement security
 mechanisms in SIP. User Agents are already required to implement
 Digest authentication while support of TLS is recommended; proxy
 servers are already required to implement Digest and TLS.

13. Operational Notes on Transports

 This entire section is non-normative.

RFC 3261 requires proxies, registrars, and User Agents to implement
 both TCP and UDP but deployments can chose which transport protocols
 they want to use. Deployments need to be careful in choosing what
 transports to use. Many SIP features and extensions, such as large
 presence notification bodies, result in SIP requests that can be too
 large to be reasonably transported over UDP. RFC 3261 states that
 when a request is too large for UDP, the device sending the request
 attempts to switch over to TCP. No known deployments currently use
 this feature but it is important to note that when using outbound,
 this will only work if the UA has formed both UDP and TCP outbound
 flows. This specification allows the UA to do so but in most cases
 it will probably make more sense for the UA to form a TCP outbound
 connection only, rather than forming both UDP and TCP flows. One of
 the key reasons that many deployments choose not to use TCP has to do
 with the difficulty of building proxies that can maintain a very
 large number of active TCP connections. Many deployments today use

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Jennings & Mahy Expires December 14, 2008 [Page 42]

Internet-Draft Client Initiated Connections in SIP June 2008

 SIP in such a way that the messages are small enough that they work
 over UDP but they can not take advantage of all the functionality SIP
 offers. Deployments that use only UDP outbound connections are going
 to fail with sufficiently large SIP messages.

14. Requirements

 This specification was developed to meet the following requirements:

 1. Must be able to detect that a UA supports these mechanisms.
 2. Support UAs behind NATs.
 3. Support TLS to a UA without a stable DNS name or IP address.
 4. Detect failure of a connection and be able to correct for this.
 5. Support many UAs simultaneously rebooting.
 6. Support a NAT rebooting or resetting.
 7. Minimize initial startup load on a proxy.
 8. Support architectures with edge proxies.

15. Acknowledgments

 Francois Audet acted as document shepherd for this draft, tracking
 hundreds of comments and incorporating many grammatical fixes as well
 as prodding the editors to "get on with it". Jonathan Rosenberg,
 Erkki Koivusalo, and Byron Campen provided many comments and useful
 text. Dave Oran came up with the idea of using the most recent
 registration first in the proxy. Alan Hawrylyshen co-authored the
 draft that formed the initial text of this specification.
 Additionally, many of the concepts here originated at a connection
 reuse meeting at IETF 60 that included the authors, Jon Peterson,
 Jonathan Rosenberg, Alan Hawrylyshen, and Paul Kyzivat. The TCP
 design team consisting of Chris Boulton, Scott Lawrence, Rajnish
 Jain, Vijay K. Gurbani, and Ganesh Jayadevan provided input and text.
 Nils Ohlmeier provided many fixes and initial implementation
 experience. In addition, thanks to the following folks for useful
 comments: Francois Audet, Flemming Andreasen, Mike Hammer, Dan Wing,
 Srivatsa Srinivasan, Dale Worely, Juha Heinanen, Eric Rescorla,
 Lyndsay Campbell, Christer Holmberg, Kevin Johns, Jeroen van Bemmel,
 Derek MacDonald and Dean Willis.

16. References

16.1. Normative References

 [I-D.ietf-behave-rfc3489bis]
 Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,

Jennings & Mahy Expires December 14, 2008 [Page 43]

Internet-Draft Client Initiated Connections in SIP June 2008

 "Session Traversal Utilities for (NAT) (STUN)",
draft-ietf-behave-rfc3489bis-15 (work in progress),

 February 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

 [RFC2506] Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
 Registration Procedure", BCP 31, RFC 2506, March 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263,
 June 2002.

 [RFC3327] Willis, D. and B. Hoeneisen, "Session Initiation Protocol
 (SIP) Extension Header Field for Registering Non-Adjacent
 Contacts", RFC 3327, December 2002.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 March 2003.

 [RFC3581] Rosenberg, J. and H. Schulzrinne, "An Extension to the
 Session Initiation Protocol (SIP) for Symmetric Response
 Routing", RFC 3581, August 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3840] Rosenberg, J., Schulzrinne, H., and P. Kyzivat,
 "Indicating User Agent Capabilities in the Session
 Initiation Protocol (SIP)", RFC 3840, August 2004.

 [RFC3841] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [RFC3968] Camarillo, G., "The Internet Assigned Number Authority
 (IANA) Header Field Parameter Registry for the Session
 Initiation Protocol (SIP)", BCP 98, RFC 3968,

https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-15
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2141
https://datatracker.ietf.org/doc/html/bcp31
https://datatracker.ietf.org/doc/html/rfc2506
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3581
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/bcp98
https://datatracker.ietf.org/doc/html/rfc3968

Jennings & Mahy Expires December 14, 2008 [Page 44]

Internet-Draft Client Initiated Connections in SIP June 2008

 December 2004.

 [RFC3969] Camarillo, G., "The Internet Assigned Number Authority
 (IANA) Uniform Resource Identifier (URI) Parameter
 Registry for the Session Initiation Protocol (SIP)",

BCP 99, RFC 3969, December 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

16.2. Informational References

 [I-D.ietf-sip-gruu]
 Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent (UA) URIs (GRUU) in the Session Initiation Protocol
 (SIP)", draft-ietf-sip-gruu-15 (work in progress),
 October 2007.

 [I-D.ietf-sipping-config-framework]
 Channabasappa, S., "A Framework for Session Initiation
 Protocol User Agent Profile Delivery",

draft-ietf-sipping-config-framework-15 (work in progress),
 February 2008.

 [I-D.ietf-sipping-nat-scenarios]
 Boulton, C., Rosenberg, J., and G. Camarillo, "Best
 Current Practices for NAT Traversal for SIP",

draft-ietf-sipping-nat-scenarios-08 (work in progress),
 April 2008.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

https://datatracker.ietf.org/doc/html/bcp99
https://datatracker.ietf.org/doc/html/rfc3969
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-sip-gruu-15
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-config-framework-15
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-nat-scenarios-08
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2104

Jennings & Mahy Expires December 14, 2008 [Page 45]

Internet-Draft Client Initiated Connections in SIP June 2008

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 February 2000.

 [RFC3320] Price, R., Bormann, C., Christoffersson, J., Hannu, H.,
 Liu, Z., and J. Rosenberg, "Signaling Compression
 (SigComp)", RFC 3320, January 2003.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
RFC 4960, September 2007.

Appendix A. Default Flow Registration Backoff Times

 The base-time used for the flow re-registration backoff times
 described in Section 4.5 are configurable. If the base-time-all-fail
 value is set to the default of 30 seconds and the base-time-not-
 failed value is set to the default of 90 seconds, the following table
 shows the resulting amount of time the UA will wait to retry
 registration.

 +-------------------+--------------------+---------------------+
 | # of reg failures | all flows unusable | > 1 non-failed flow |
 +-------------------+--------------------+---------------------+
 | 0 | 0 s | 0 s |
 | 1 | 30-60 s | 90-180 s |
 | 2 | 1-2 min | 3-6 min |
 | 3 | 2-4 min | 6-12 min |
 | 4 | 4-8 min | 12-24 min |
 | 5 | 8-16 min | 15-30 min |
 | 6 or more | 15-30 min | 15-30 min |
 +-------------------+--------------------+---------------------+

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc3320
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4960

Jennings & Mahy Expires December 14, 2008 [Page 46]

Internet-Draft Client Initiated Connections in SIP June 2008

Authors' Addresses

 Cullen Jennings (editor)
 Cisco Systems
 170 West Tasman Drive
 Mailstop SJC-21/2
 San Jose, CA 95134
 USA

 Phone: +1 408 902-3341
 Email: fluffy@cisco.com

 Rohan Mahy (editor)
 Plantronics
 345 Encincal St
 Santa Cruz, CA 95060
 USA

 Email: rohan@ekabal.com

Jennings & Mahy Expires December 14, 2008 [Page 47]

Internet-Draft Client Initiated Connections in SIP June 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Jennings & Mahy Expires December 14, 2008 [Page 48]

