Network Working Group Internet-Draft Expires: January 15, 2003 R. Sparks dynamicsoft July 17, 2002

The SIP Refer Method draft-ietf-sip-refer-06

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of <u>Section 10 of RFC2026</u>.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http:// www.ietf.org/ietf/lid-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 15, 2003.

Copyright Notice

Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

This document defines the REFER method. This SIP extension requests that the recipient REFER to a resource provided in the request. It provides a mechanism allowing the party sending the REFER to be notified of the outcome of the referenced request. This can be used to enable many applications, including call transfer.

In addition to the REFER method, this document defines the the refer event package and the Refer-To request header.

Table of Contents

<u>1</u> .	Overview	•	<u>3</u>
<u>2</u> .	The REFER Method	•	<u>3</u>
2.1	The Refer-To Header Field		<u>3</u>
2.2	Header Field Support for the REFER Method	•	<u>4</u>
2.3	Message Body Inclusion		<u>6</u>
2.4	Behavior of SIP User Agents		<u>6</u>
2.4.1	Forming a REFER request		<u>6</u>
2.4.2	Processing a REFER request	•	<u>6</u>
2.4.3	Accessing the Referred-to Resource		7
2.4.4	Using SIP Events to Report the Results of the Reference .	•	7
2.4.5	The Body of the NOTIFY	•	<u>8</u>
2.4.6	Multiple REFER Requests in a Dialog	•	9
2.4.7	Using the Subscription-State Header Field with Event Refer		9
2.5	Behavior of SIP Registrars/Redirect Servers	. <u>1</u>	0
2.6	Behavior of SIP Proxies	. <u>1</u>	0
<u>3</u> .	Package Details: Event refer	. <u>1</u>	0
<u>3.1</u>	Event Package Name	. <u>1</u>	0
<u>3.2</u>	Event Package Parameters		
<u>3.3</u>	SUBSCRIBE Bodies	. <u>1</u>	0
<u>3.4</u>	Subscription Duration	. <u>1</u>	0
<u>3.5</u>	NOTIFY Bodies	. <u>1</u>	1
<u>3.6</u>	Notifier processing of SUBSCRIBE requests	. <u>1</u>	1
<u>3.7</u>	Notifier Generation of NOTIFY Requests	. <u>1</u>	1
<u>3.8</u>	Subscriber Processing of NOTIFY Requests	. <u>1</u>	1
<u>3.9</u>	Handling of Forked Requests	. <u>1</u>	1
<u>3.10</u>	Rate of Notifications	. <u>1</u>	1
<u>3.11</u>	State Agents	. <u>1</u>	2
<u>4</u> .	Examples	. 1	2
<u>4.1</u>	Prototypical REFER callflow	. <u>1</u>	2
<u>4.2</u>	Multiple REFERs in a dialog	. <u>1</u>	4
<u>5</u> .	Security Considerations	. 1	7
<u>5.1</u>	Circumventing Privacy	. <u>1</u>	7
<u>5.2</u>	Circumventing Security	. <u>1</u>	7
<u>5.3</u>	Limiting the Breach	. <u>1</u>	8
<u>6</u> .	Historic Material	. <u>1</u>	8
<u>7</u> .	IANA Considerations	. 1	8
<u>8</u> .	Acknowledgments	. 1	9
	Normative References	. 1	9
	Author's Address		
	Full Copyright Statement	. 2	1

[Page 2]

1. Overview

This document defines the REFER method. This SIP $[\underline{1}]$ extension requests that the recipient REFER to a resource provided in the request. This can be used to enable many applications, including Call Transfer.

2. The REFER Method

REFER is a SIP method as defined by $\frac{\text{RFC3261}}{\text{I}}$. The REFER method indicates that the recipient (identified by the Request-URI) should contact a third party using the contact information provided in the request.

Unless stated otherwise, the protocol for emitting and responding to a REFER request are identical to those for a BYE request in $[\underline{1}]$. The behavior of SIP entities not implementing the REFER (or any other unknown) method is explicitly defined in $[\underline{1}]$.

A REFER request implicitly establishes a subscription to the refer event. Event subscriptions are defined in $[\underline{2}]$.

A REFER request MAY be placed outside the scope of a dialog created with an INVITE. REFER creates a dialog, and MAY be Record-Routed, hence MUST contain a single Contact header field value. REFERs occurring inside an existing dialog MUST follow the Route/Record-Route logic of that dialog.

2.1 The Refer-To Header Field

Refer-To is a request header field (request-header) as defined by $[\underline{1}]$. It only appears in a REFER request. It provides a URL to reference.

Refer-To = ("Refer-To" / "r") HCOLON (name-addr / addr-spec) *
(SEMI generic-param)

The following should be interpreted as if it appeared in Table 3 of RFC 3261.

Header field	where	proxy	ACK	BYE	CAN	INV	0PT	REG
Refer-To	R		-	-	-	-	-	_

The Refer-To header field MAY be encrypted as part of end-to-end encryption.

[Page 3]

The Contact header field is an important part of the Route/Record-Route mechanism and is not available to be used to indicate the target of the reference.

Examples

Refer-To: sip:alice@atlanta.com

- Refer-To: <sip:bob@biloxi.com?Accept-Contact=sip:bobsdesk. biloxi.com&Call-ID%3D55432%40alicepc.atlanta.com>
- Refer-To: <sip:dave@denver.com?Replaces=12345%40192.168.118.3%3B to-tag%3D12345%3Bfrom-tag%3D5FFE-3994>
- Refer-To: <sip:carol@cleveland.com;method=SUBSCRIBE>

Refer-To: http://www.ietf.org

Long headers field values are line-wrapped here for clarity only.

2.2 Header Field Support for the REFER Method

This table adds a column to tables 2 and 3 in [1], describing header field presence in a REFER method. See [1] for a key for the symbols used. A row for the Refer-To request-header should be inferred, mandatory for REFER. Refer-To is not applicable for any other methods. The proxy column in [1] applies to the REFER method unmodified.

Header	Where	REFER
Accept	R	0
Accept	2xx	-
Accept	415	С
Accept-Encoding	R	0
Accept-Encoding	2xx	-
Accept-Encoding	415	С
Accept-Language	R	0
Accept-Language	2xx	-
Accept-Language	415	С
Alert-Info		-
Allow	Rr	0
Allow	405	m
Authentication-Info	2xx	0
Authorization	R	0
Call-ID	С	m
Call-Info		-
Contact	R	m
Contact	1xx	-

[Page 4]

Contact	2xx	m
Contact	3-6xx	0
Content-Disposition	ו	0
Content-Encoding		0
Content-Language		0
Content-Length		0
Content-Type		*
CSeq	С	m
Date		0
Error-Info	3-6xx	0
Expires	R	0
From	С	m
In-Reply-To		-
Max-Forwards	R	m
Min-Expires		-
MIME-Version		0
Organization		0
Priority	R	-
Proxy-Authenticate	401	0
Proxy-Authenticate	407	m
Proxy-Authorization	ו R	0
Proxy-Require	R	0
Record-Route	R	0
Record-Route	2xx,18x	0
Reply-To		-
Require		С
Retry-After	404,413,480,486	0
Retry-After	500,503	0
Retry-After	600,603	0
Route	R	С
Server	r	0
Subject	R	-
Supported	R,2xx	0
Timestamp		0
То	c(1)	m
Unsupported	420	0
User-Agent		0
Via	c(2)	m
Warning	r	0
WWW-Authenticate	401	m
WWW-Authenticate	407	0

Table 1: Header Field Support

[Page 5]

2.3 Message Body Inclusion

A REFER method MAY contain a body. This specification assigns no meaning to such a body. A receiving agent may choose to process the body according to its Content-Type.

2.4 Behavior of SIP User Agents

2.4.1 Forming a REFER request

REFER is a SIP request and is constructed as defined in $[\underline{1}]$. A REFER request MUST contain exactly one Refer-To header field value.

2.4.2 Processing a REFER request

A UA accepting a well-formed REFER request SHOULD request approval from the user to proceed (this request could be satisfied with an interactive query or through accessing configured policy). If approval is granted, the UA MUST contact the resource identified by the URI in the Refer-To header field value as discussed in <u>Section</u> 2.4.3.

If the approval sought above for a well-formed REFER request is immediately denied, the UA MAY decline the request.

An agent responding to a REFER method MUST return a 400 (Bad Request) if the request contained zero or more than one Refer-To header field values.

An agent (including proxies generating local responses) MAY return a 100 (Trying) or any appropriate 4xx-6xx class response as prescribed by [1].

Care should be taken when implementing the logic that determines whether or not to accept the REFER request. A UA not capable of accessing non-SIP URIS SHOULD NOT accept REFER requests to them.

If no final response has been generated according to the rules above, the UA MUST return a 202 Accepted response before the REFER transaction expires.

If a REFER request is accepted (that is, a 2xx class response is returned), the recipient MUST create a subscription and send notifications of the status of the refer as described in <u>Section</u> 2.4.4.

[Page 6]

2.4.3 Accessing the Referred-to Resource

The resource identified by the Refer-To URI is contacted using the normal mechanisms for that URI type. For example, if the URI is a SIP URI indicating INVITE (using a method=INVITE URI parameter for example), the UA would issue a new INVITE using all of the normal rules for sending an INVITE defined in [1].

2.4.4 Using SIP Events to Report the Results of the Reference

The NOTIFY mechanism defined in [2] MUST be used to inform the agent sending the REFER of the status of the reference. The dialog identifiers (To, From, and Call-ID) of each NOTIFY must match those of the REFER as they would if the REFER had been a SUBSCRIBE request.

Each NOTIFY MUST contain an Event header field with a value of refer and possibly an id parameter (see <u>Section 2.4.6</u>).

Each NOTIFY MUST contain a body of type "message/sipfrag" [3].

The creation of a subscription as defined by $[\underline{1}]$ always results in an immediate NOTIFY. Analogous to the case for SUBSCRIBE described in that document, the agent that issued the REFER MUST be prepared to receive a NOTIFY before the REFER transaction completes.

The implicit subscription created by a REFER is the same as a subscription created with a SUBSCRIBE request. The agent issuing the REFER can terminate this subscription prematurely by unsubscribing using the mechanisms described in [2]. Terminating a subscription, either by explicitly unsubscribing or rejecting NOTIFY, is not an indication that the referenced request should be withdrawn or abandoned. In particular, an agent acting on a REFER request SHOULD NOT issue a CANCEL to any referenced SIP requests because the agent sending the REFER terminated its subscription to the refer event before the referenced request completes.

The agent issuing the REFER may extend its subscription using the subscription refresh mechanisms described in $[\underline{2}]$.

REFER is the only mechanism that can create a subscription to event refer. If a SUBSCRIBE request for event refer is received for a subscription that does not already exist, it MUST be rejected with a 403.

Notice that unlike SUBSCRIBE, the REFER transaction does not contain a duration for the subscription in either the request or the response. The lifetime of the state being subscribed to is determined by the progress of the referenced request. The duration

[Page 7]

The SIP Refer Method

of the subscription is chosen by the agent accepting the REFER and is communicated to the agent sending the REFER in the subscription's initial NOTIFY (using the Subscription-State expires header parameter). Note that agents accepting REFER and not wishing to hold subscription state can terminate the subscription with this initial NOTIFY.

2.4.5 The Body of the NOTIFY

Each NOTIFY MUST contain a body of type "message/sipfrag" [3]. The body of a NOTIFY MUST begin with a SIP Response Status-Line as defined in [1]. The response class in this status line indicates the status of the referred action. The body MAY contain other SIP header fields to provide information about the outcome of the referenced action. This body provides a complete statement of the status of the referred action. The refer event package does not support state deltas.

If a NOTIFY is generated when the subscription state is pending, its body should consist only of a status line containing a response code of 100.

A minimal, but complete, implementation can respond with a single NOTIFY containing either the body:

SIP/2.0 100 Trying

if the subscription is pending, the body:

SIP/2.0 200 OK

if the reference was successful, the body:

SIP/2.0 503 Service Unavailable

if the reference failed, or the body:

SIP/2.0 603 Declined

if the REFER request was accepted before approval to follow the

Sparks Expires January 15, 2003 [Page 8]

reference could be obtained and that approval was subsequently denied (see <u>Section 2.4.7</u>).

An implementation MAY include more of a SIP message in that body to convey more information. Warning header field values received in responses to the referred action are good candidates. In fact, if the reference was to a SIP URI, the entire response to the referenced action could be returned (perhaps to assist with debugging). However, doing so could have grave security repercussions (see <u>Section 5</u>). Implementers must carefully consider what they choose to include.

Note that if the reference was to a non-SIP URI, status in any NOTIFYs to the referrer must still be in the form of SIP Response Status-Lines. The minimal implementation discussed above is sufficient to provide a basic indication of success or failure. For example, if a client receives a REFER to a HTTP URL, and is successful in accessing the resource, its NOTIFY to the referrer can contain the message/sipfrag body of "SIP/2.0 200 OK". If the notifier wishes to return additional non-SIP protocol specific information about the status of the request, it may place it in the body of the sipfrag message.

<u>2.4.6</u> Multiple REFER Requests in a Dialog

A REFER creates an implicit subscription sharing the dialog identifers in the REFER request. If more than one REFER is issued in the same dialog (a second attempt at transferring a call for example), the dialog identifiers do not provide enough information to associate the resulting NOTIFYs with the proper REFER.

Thus, for the second and subsequent REFER requests a UA receives in a given dialog, it MUST include an id parameter[2] in the Event header field of each NOTIFY containing the sequence number (the number from the CSeq header field value) of the REFER this NOTIFY is associated with. This id parameter MAY be included in NOTIFYs to the first REFER a UA receives in a given dialog. A SUBSCRIBE sent to refresh or terminate this subscription MUST contain this id parameter.

2.4.7 Using the Subscription-State Header Field with Event Refer

Each NOTIFY must contain a Subscription-State header field as defined in [2]. The final NOTIFY sent in response to a REFER MUST indicate the subscription has been "terminated" with a reason of "noresource". (The resource being subscribed to is the state of the referenced request).

If a NOTIFY indicates a reason that indicates a re-subscribe is

[Page 9]

appropriate according to [2], the agent sending the REFER is NOT obligated to re-subscribe.

In the case where a REFER was accepted with a 202, but approval to follow the reference was subsequently denied, the reason and retryafter elements of the Subscription-State header field can be used to indicate if and when the REFER can be re-attempted (as described for SUBSCRIBE in [2]).

2.5 Behavior of SIP Registrars/Redirect Servers

A registrar that is unaware of the definition of the REFER method will return a 501 response as defined in [1]. A registrar aware of the definition of REFER SHOULD return a 405 response.

This specification places no requirements on redirect server behavior beyond those specified in $[\underline{1}]$. Thus, it is possible for REFER requests to be redirected.

2.6 Behavior of SIP Proxies

SIP proxies do not require modification to support the REFER method. Specifically, as required by [1], a proxy should process a REFER request the same way it processes an OPTIONS request.

3. Package Details: Event refer

This document defines an event package as defined in $[\underline{2}]$.

<u>3.1</u> Event Package Name

The name of this event package is "refer".

<u>3.2</u> Event Package Parameters

This package uses the "id" parameter defined in $[\underline{2}]$. Its use in package is described in <u>Section 2.4.6</u>.

3.3 SUBSCRIBE Bodies

SUBSCRIBE bodies have no special meaning for this event package.

<u>3.4</u> Subscription Duration

The duration of an implicit subscription created by a REFER request is initially determined by the agent accepting the REFER and communicated to the subscribing agent in the Subscription-State header field's expire parameter in the first NOTIFY sent in the

Sparks Expires January 15, 2003 [Page 10]

subscription. Reasonable choices for this initial duration depend on the type of request indicated in the Refer-To URI. The duration SHOULD be chosen to be longer than the time the referenced request will be given to complete. For example, if the Refer-To URI is a SIP INVITE URI, the subscription interval should be longer than the Expire value in the INVITE. Additional time MAY be included to account for time needed to authorize the subscription. The subscribing agent MAY extend the subscription by refreshing it, or terminate it by unsubscribing. As described in <u>Section 2.4.7</u>, the agent accepting the REFER will terminate the subscription when it reports the final result of the reference, indicating that termination in the Subscription-State header field.

3.5 NOTIFY Bodies

The bodies of NOTIFY requests for event refer are discussed in <u>Section 2.4.5</u>.

3.6 Notifier processing of SUBSCRIBE requests

Notifier processing of SUBSCRIBE requests is discussed in <u>Section</u> 2.4.4.

3.7 Notifier Generation of NOTIFY Requests

Notifier generation of NOTIFY requests is discussed in Section 2.4.4.

3.8 Subscriber Processing of NOTIFY Requests

Subscriber processing of NOTIFY requests is discussed in <u>Section</u> 2.4.4.

<u>3.9</u> Handling of Forked Requests

A REFER sent within the scope of an existing dialog will not fork. A REFER sent outside the context of a dialog MAY fork, and if it is accepted by multiple agents, MAY create multiple subscriptions. These subscriptions are created and managed as per "Handling of Forked Requests" in [2] as if the REFER had been a SUBSCRIBE. The agent sending the REFER manages the state associated with each subscription separately. It does NOT merge the state from the separate subscriptions. The state is the status of the referenced request at each of the accepting agents.

3.10 Rate of Notifications

An event refer NOTIFY might be generated each time new knowledge of the status of a referenced requests becomes available. For instance,

Expires January 15, 2003 [Page 11]

if the REFER was to a SIP INVITE, NOTIFYs might be generated with each provisional response and the final response to the INVITE. Alternatively, the subscription might only result in two NOTIFY requests, the immediate NOTIFY and the NOTIFY carrying the final result of the reference. NOTIFYs to event refer SHOULD NOT be sent more frequently than once per second.

3.11 State Agents

Separate state agents are not defined for event refer.

<u>4</u>. Examples

4.1 Prototypical REFER callflow

Agent A		Agent B	
	F1 REFER	 >	
	F2 202 Accept	ed	
	F3 NOTIFY	 	
	< F4 200 OK	 	
		< 	
		 	->
Í		(wha <	tever) -
i			
I	F5 NOTIFY		
	< F6 200 OK		
Í			

Here are examples of what the four messages between Agent A and Agent B might look like if the reference to (whatever) that Agent B makes is successful. The details of this flow indicate this particular REFER occurs outside a session (there is no To tag in the REFER request). If the REFER occurs inside a session, there would be a non-empty To tag in the request.

Message One (F1)

Expires January 15, 2003 [Page 12]

```
REFER sip:b@agentland SIP/2.0
 Via: SIP/2.0/UDP agenta.agentland;branch=z9hG4bK2293940223
 To: <sip:b@agentland>
 From: <sip:a@agentland>;tag=193402342
 Call-ID: 898234234@agenta.agentland
 CSeq: 93809823 REFER
 Max-Forwards: 70
 Refer-To: (whatever URI)
 Contact: sip:a@agentland
 Content-Length: 0
Message Two (F2)
 SIP/2.0 202 Accepted
 Via: SIP/2.0/UDP agenta.agentland;branch=z9hG4bK2293940223
 To: <sip:b@agentland>;tag=4992881234
 From: <sip:a@agentland>;tag=193402342
 Call-ID: 898234234@agenta.agentland
 CSeg: 93809823 REFER
 Contact: sip:b@agentland
 Content-Length: 0
Message Three (F3)
 NOTIFY sip:a@agentland SIP/2.0
 Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK9922ef992-25
 To: <sip:a@agentland>;tag=193402342
 From: <sip:b@agentland>;tag=4992881234
 Call-ID: 898234234@agenta.agentland
 CSeq: 1993402 NOTIFY
 Max-Forwards: 70
 Event: refer
 Subscription-State: active; expires=(depends on Refer-To URI)
 Contact: sip:b@agentland
 Content-Type: message/sipfrag;version=2.0
 Content-Length: 20
 SIP/2.0 100 Trying
```

Message Four (F4)

The SIP Refer Method

```
July 2002
```

```
Internet-Draft
```

```
SIP/2.0 200 OK
Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK9922ef992-25
To: <sip:a@agentland>;tag=193402342
From: <sip:b@agentland>;tag=4992881234
Call-ID: 898234234@agenta.agentland
CSeq: 1993402 NOTIFY
Contact: sip:a@agentland
Content-Length: 0
```

```
Message Five (F5)
```

```
NOTIFY sip:a@agentland SIP/2.0
Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK9323394234
To: <sip:a@agentland>;tag=193402342
From: <sip:b@agentland>;tag=4992881234
Call-ID: 898234234@agenta.agentland
CSeq: 1993403 NOTIFY
Max-Forwards: 70
Event: refer
Subscription-State: terminated;reason=noresource
Contact: sip:b@agentland
Content-Type: message/sipfrag;version=2.0
Content-Length: 16
```

SIP/2.0 200 OK

```
Message Six (F6)
```

```
SIP/2.0 200 OK
Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK9323394234
To: <sip:a@agentland>;tag=193402342
From: <sip:b@agentland>;tag=4992881234
Call-ID: 898234234@agenta.agentland
CSeq: 1993403 NOTIFY
Contact: sip:a@agentland
Content-Length: 0
```

4.2 Multiple REFERs in a dialog

Message One above brings an implicit subscription dialog into existence. Suppose Agent A issued a second REFER inside that dialog:

Expires January 15, 2003 [Page 14]

```
Agent A
                      Agent B
      |
     | F7 REFER
                         |----->|
      | F8 202 Accepted |
      |<----|
      1
            F9 NOTIFY
                          |<----|
      | F10 200 OK
                           |----->|
                          |---->
                          (something different)
                          |<----
      F11 NOTIFY
      |<----|
      F12 200 OK
      |----->|
                          Message Seven (F7)
REFER sip:b@agentland SIP/2.0
Via: SIP/2.0/UDP agenta.agentland;branch=z9hG4bK9390399231
To: <sip:b@agentland>;tag=4992881234
From: <sip:a@agentland>;tag=193402342
Call-ID: 898234234@agenta.agentland
CSeq: 93809824 REFER
Max-Forwards: 70
Refer-To: (some different URI)
Contact: sip:a@agentland
Content-Length: 0
Message Eight (F8)
SIP/2.0 202 Accepted
Via: SIP/2.0/UDP agenta.agentland;branch=z9hG4bK9390399231
To: <sip:b@agentland>;tag=4992881234
From: <sip:a@agentland>;tag=193402342
Call-ID: 898234234@agenta.agentland
CSeq: 93809824 REFER
Contact: sip:b@agentland
Content-Length: 0
Message Nine (F9)
```

NOTIFY sip:a@agentland SIP/2.0 Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK9320394238995 To: <sip:a@agentland>;tag=193402342 From: <sip:b@agentland>;tag=4992881234 Call-ID: 898234234@agenta.agentland CSeq: 1993404 NOTIFY Max-Forwards: 70 Event: refer Subscription-State: active;expires=(depends on Refer-To URI) Contact: sip:b@agentland Content-Type: message/sipfrag;version=2.0 Content-Length: 20 SIP/2.0 100 Trying Message Ten (F10) SIP/2.0 200 OK Via: SIP/2.0/UDP agentb.agentland; branch=z9hG4bK9320394238995 To: <sip:a@agentland>;tag=193402342 From: <sip:b@agentland>;tag=4992881234 Call-ID: 898234234@agenta.agentland CSeq: 1993404 NOTIFY Contact: sip:a@agentland Content-Length: 0 Message Eleven (F11) NOTIFY sip:a@agentland SIP/2.0 Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK2994a93eb-fe To: <sip:a@agentland>;tag=193402342 From: <sip:b@agentland>;tag=4992881234 Call-ID: 898234234@agenta.agentland CSeg: 1993405 NOTIFY Max-Forwards: 70 Event: refer;id=93809824 Subscription-State: terminated; reason=noresource Contact: sip:b@agentland Content-Type: message/sipfrag;version=2.0 Content-Length: 16 SIP/2.0 200 OK Message Twelve (F12)

Internet-Draft

SIP/2.0 200 OK Via: SIP/2.0/UDP agentb.agentland;branch=z9hG4bK2994a93eb-fe To: <sip:a@agentland>;tag=193402342 From: <sip:b@agentland>;tag=4992881234 Call-ID: 898234234@agenta.agentland CSeq: 1993405 NOTIFY Contact: sip:a@agentland Content-Length: 0

5. Security Considerations

The security considerations of [1] apply to the REFER method.

This mechanism relies on providing contact information for the referred-to resource to the party being referred. Care should be taken to provide a suitably restricted URI if the referred to resource should be protected.

Using message/sipfrag bodies to return the progress and results of a REFER request is extremely powerful. Careless use of that capability will compromise security and privacy. Here are a couple of simple, somewhat contrived, examples to demonstrate the potential for harm.

<u>5.1</u> Circumventing Privacy

Suppose Alice has a user agent that accepts REFER requests to SIP INVITE URIS, and NOTIFYS the referrer of the progress of the INVITE by copying each response to the INVITE into the body of a NOTIFY.

Suppose further that Carol has a reason to avoid Mallory and has configured her system at her proxy to only accept calls from a certain set of people she trusts (including Alice), so that Mallory doesn't learn when she's around, or what user agent she's actually using.

Mallory can send a REFER to Alice, with a Refer-To URI indicating Carol. If Alice can reach Carol, the 200 OK Carol sends gets returned to Mallory in a NOTIFY, letting him know not only that Carol is around, but also the IP address of the agent she's using.

5.2 Circumventing Security

Suppose Alice, with the same user agent as above, is working at a company that is working on the greatest SIP device ever invented - the SIP FOO. The company has been working for months building the device and the marketing materials, carefully keeping the idea, even the name of the idea secret (since a FOO is one of those things that

Expires January 15, 2003 [Page 17]

anybody could do if they'd just had the idea first). FOO is up and running, and anyone at the company can use it, but it's not available outside the company firewall.

Mallory has heard rumor that Alice's company is onto something big, and has even managed to get his hands on a URI that he suspects might have something to do with it. He sends a REFER to ALICE with the mysterious URI and as Alice connects to the FOO, Mallory gets NOTIFYs with bodies containing

Server: F00/v0.9.7

5.3 Limiting the Breach

For each of these cases, and in general, returning a carefully selected subset of the information available about the progress of the reference through the NOTIFYs mitigates risk. The minimal implementation described in <u>Section 2.4.5</u> exposes the least information about what the agent operating on the REFER request has done, and is least likely to be a useful tool for malicious users.

<u>6</u>. Historic Material

This method was initially motivated by the call-transfer application. Starting as TRANSFER, and later generalizing to REFER, this method improved on the BYE/Also concept of the expired <u>draft-ietf-sip-cc-01</u> by disassociating transfers from the processing of BYE. These changes facilitate recovery of failed transfers and clarify state management in the participating entities.

Early versions of this work required the agent responding to REFER to wait until the referred action completed before sending a final response to the REFER. That final response reflected the success or failure of the referred action. This was infeasible due to the transaction timeout rules defined for non-INVITE requests in [1]. A REFER must always receive an immediate (within the lifetime of a non-INVITE transaction) final response.

7. IANA Considerations

(Note to RFC Editor: Please fill in all occurences of XXXX in this section with the RFC number of this specification).

This document defines a new SIP method name (REFER), a new SIP header field name with a compact form (Refer-To and r respectively), and an event package (refer).

The following row should be added to the method sub-registry under http://www.iana.org/assignments/sip-parameters.

REFER [RFCXXXX]

The following information should be added to the header sub-registry under http://www.iana.org/assignmemts/sip-parameters.

Header Name: Refer-To

Compact Form: r

Reference: RFC XXXX

This specification registers an event package, based on the registration procedures defined in [2]. The following is the information required for such a registration:

Package Name: refer

Package or Package-Template: This is a package.

Published Specification: RFC XXXX

Person to Contact: Robert Sparks, rsparks@dynamicsoft.com

8. Acknowledgments

This draft is a collaborative product of the SIP working group.

Normative References

- [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP: Session Initiation Protocol", <u>RFC 3261</u>, June 2002.
- [2] Roach, A., "Session Initiation Protocol (SIP)-Specific Event Notification", <u>RFC 3265</u>, June 2002.
- [3] Sparks, R., "Internet Media Type message/sipfrag", Internet-Draft <<u>draft-sparks-sip-mimetypes-03</u>, April 2002.

Sparks Expires January 15, 2003 [Page 19]

Author's Address

Robert J. Sparks dynamicsoft 5100 Tennyson Parkway Suite 1200 Plano, TX 75024

EMail: rsparks@dynamicsoft.com

Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.

Sparks Expires January 15, 2003 [Page 21]