
Workgroup: SIP Core

Internet-Draft:

draft-ietf-sipcore-sip-token-authnz-16

Updates: 3261 (if approved)

Published: 5 May 2020

Intended Status: Standards Track

Expires: 6 November 2020

Authors: R. Shekh-Yusef

Avaya

C. Holmberg

Ericsson

V. Pascual

webrtchacks

Third-Party Token-based Authentication and Authorization for Session

Initiation Protocol (SIP)

Abstract

This document defines the "Bearer" authentication scheme for the

Session Initiation Protocol (SIP), and a mechanism by which user

authentication and SIP registration authorization is delegated to a

third party, using the OAuth 2.0 framework and OpenID Connect Core

1.0. This document updates RFC 3261 to provide guidance on how a SIP

User Agent Client (UAC) responds to a SIP 401/407 response that

contains multiple WWW-Authenticate/Proxy-Authenticate header fields.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 November 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc3261
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Applicability

1.3. Token Types and Formats

1.4. Example Flows

1.4.1. Registration

1.4.2. Registration with Preconfigured AS

2. SIP Procedures

2.1. UAC Behavior

2.1.1. Obtaining Tokens and Responding to Challenges

2.1.2. Protecting the Access Token

2.1.3. REGISTER Request

2.1.4. Non-REGISTER Request

2.2. User Agent Server (UAS) and Registrar Behavior

2.3. Proxy Behavior

3. Access Token Claims

4. WWW-Authenticate Response Header Field

5. Security Considerations

6. IANA Considerations

6.1. New Proxy-Authenticate header field parameters

6.2. New WWW-Authenticate header field parameters

7. Acknowledgments

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

8. Normative References

9. Informative References

Authors' Addresses

1. Introduction

The Session Initiation Protocol (SIP) [RFC3261] uses the same

framework as HTTP [RFC7230] to authenticate users: a simple

challenge-response authentication mechanism that allows a SIP User

Agent Server (UAS), proxy or registrar to challenge a SIP User Agent

Client (UAC) request and allows the UAC to provide authentication

information in response to that challenge.

OAuth 2.0 [RFC6749] defines a token-based authorization framework to

allow an OAuth client to access resources on behalf of its user.

The OpenID Connect 1.0 specification [OPENID] defines a simple

identity layer on top of the OAuth 2.0 protocol, which enables

OAuth/OpenID clients to verify the identity of the user based on the

authentication performed by a dedicated authorization server (AS),

referred to as OpenID Provider (OP), as well as to obtain basic

profile information about the user.

This document defines the "Bearer" authentication scheme for the

Session Initiation Protocol (SIP), and a mechanism by which user

authentication and SIP registration authorization is delegated to a

third party, using the OAuth 2.0 framework and OpenID Connect Core

1.0. This kind of user authentication enables single sign-on, which

allows the user to authenticate once and gain access to both SIP and

non-SIP services.

This document also updates [RFC3261], by defining the UAC procedures

when a UAC receives a 401/407 response with multiple WWW-

Authenticate/Proxy-Authenticate header fields, providing challenges

using different authentication schemes for the same realm.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.2. Applicability

This document covers cases where grants that allow the UAC to obtain

an access token from the AS are used. Cases where the UAC is not

able to obtain an access token (e.g., in the case of an

authorization code grant) are not covered.

1.3. Token Types and Formats

The tokens used in third-party authorization depend on the type of

AS.

An OAuth AS provides the following tokens to a successfully

authorized UAC:

Access token: the UAC will use this token to gain access to

services by providing the token to a SIP server.

Refresh token: the UAC will present this token to the AS to

refresh a stale access token.

An OP returns an additional token:

ID Token: this token contains a SIP URI associated with the user

and other user-specific details that will be consumed by the UAC.

Tokens can be represented in two different formats:

Structured Token: a token that consists of a structured object

that contains the claims associated with the token, e.g., JSON

Web Token (JWT) as defined in [RFC7519].

Reference Token: a token that consists of an opaque string that

is used to obtain the details of the token and its associated

claims, as defined in [RFC6749].

Access Tokens are represented in one of the above two formats.

Refresh Tokens usually are represented in a reference format, as

this token is consumed only the AS that issued the token. ID Token

is defined as a structured token in the form of a JWT.

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

¶

*

¶

*

¶

¶

¶

1.4. Example Flows

1.4.1. Registration

Figure 1 below shows an example of a SIP registration, where the

registrar informs the UAC about the AS from which the UAC can obtain

an access token.

Figure 1: Example Registration Flow

In step [1], the UAC starts the registration process by sending a

SIP REGISTER request to the registrar without any credentials.

In step [2], the registrar challenges the UA, by sending a SIP 401

(Unauthorized) response to the REGISTER request. In the response,

the registrar includes information about the AS to contact in order

to obtain a token.

¶

 UAC Registrar AS/OP

 | | |

 | [1] REGISTER | |

 |------------------------------>| |

 | | |

 | [2] 401 Unauthorized | |

 | WWW-Authenticate: Bearer "authz_server"="<authz_server>" |

 |<------------------------------| |

 | | |

 | [3] The UAC interacts with the AS and obtains tokens, using |

 | some out-of-scope mechanism. |

 |<===>|

 | | |

 | [4] REGISTER | |

 | Authorization: Bearer <access_token> |

 |------------------------------>| |

 | | [5] HTTP POST /introspect |

 | | {access_token} |

 | | (OPTIONAL) |

 | |------------------------------>|

 | | |

 | | [6] 200 OK {metadata} |

 | | (OPTIONAL) |

 | |<------------------------------|

 | | |

 | [7] 200 OK | |

 |<------------------------------| |

 | | |

¶

¶

In step [3], the UAC interacts with the AS via an out-of-scope

mechanism, potentially using the OAuth Native App mechanism defined

in [RFC8252]. The AS authenticates the user and provides the UAC

with the tokens needed to access the SIP service.

In step [4], the UAC retries the registration process by sending a

new REGISTER request that includes the access token that the UAC

obtained in the step above.

The registrar validates the access token. If the access token is a

reference token, the registrar MAY perform an introspection

[RFC7662], as in steps [5] and [6], in order to obtain more

information about the access token and its scope, per [RFC7662].

Otherwise, after the registrar validates the token, it inspects its

claims and acts upon it.

In step [7], once the registrar has successfully verified and

accepted the access token, it sends a 200 (OK) response to the

REGISTER request.

1.4.2. Registration with Preconfigured AS

Figure 2 shows an example of a SIP registration where the UAC has

been preconfigured with information about the AS from which to

obtain the access token.

¶

¶

¶

¶

¶

¶

Figure 2: Example Registration Flow - AS Information Preconfigured

In step [1], the UAC interacts with the AS using an out-of-scope

mechanism, potentially using the OAuth Native App mechanism defined

in [RFC8252]. The AS authenticates the user and provides the UAC

with the tokens needed to access the SIP service.

In step [2], the UAC initiates the registration process by sending a

new REGISTER request that includes the access token that the UAC

obtained in the step above.

The registrar validates the access token. If the access token is a

reference token, the registrar MAY perform an introspection

[RFC7662], as in steps [4] and [5], in order to obtain more

information about the access token and its scope, per [RFC7662].

Otherwise, after the registrar validates the token, it inspects its

claims and acts upon it.

In step [5], once the registrar has successfully verified and

accepted the access token, it sends a 200 (OK) response to the

REGISTER request.

 UAC Registrar AS/OP

 | | |

 | [1] The UAC interacts with the AS and obtains tokens, using |

 | some out of scope mechanism. |

 |<===>|

 | | |

 | [2] REGISTER | |

 | Authorization: Bearer <access_token> |

 |------------------------------>| |

 | | [3] HTTP POST /introspect |

 | | {access_token} |

 | | (OPTIONAL) |

 | |------------------------------>|

 | | |

 | | [4] 200 OK {metadata} |

 | | (OPTIONAL) |

 | |<------------------------------|

 | | |

 | [5] 200 OK | |

 |<------------------------------| |

 | | |

¶

¶

¶

¶

¶

2. SIP Procedures

Section 22 of [RFC3261] defines the SIP procedures for the Digest

authentication mechanism. The same procedures apply to the Bearer

authentication mechanism, with the changes described in this

section.

2.1. UAC Behavior

2.1.1. Obtaining Tokens and Responding to Challenges

When a UAC sends a request without credentials (or with invalid

credentials), it could receive either a 401 (Unauthorized) response

with a WWW-Authenticate header field or a 407 (Proxy Authentication

Required) response with a Proxy-Authenticate header field. If the

WWW-Authenticate or Proxy-Authenticate header field indicates

"Bearer" scheme authentication and contains an address to an AS, the

UAC contacts the AS in order to obtain tokens, and includes the

requested scopes, based on a local configuration (Figure 1). The UAC

MUST check the AS URL received in the 401/407 response against a

list of trusted ASs configured on the UAC, in order to prevent

several classes of possible vulnerabilities when a client blindly

attempts to use any provided AS.

The detailed OAuth2 procedure to authenticate the user and obtain

these tokens is out of scope of this document. The address of the AS

might already be known to the UAC via configuration. In such cases,

the UAC can contact the AS for tokens before it sends a SIP request

(Figure 2). Procedures for native applications are defined in

[RFC8252]. When using the mechanism defined in [RFC8252] the user of

the UAC will be directed to interact with the AS using a web

browser, allowing the AS to prompt the user for multi-factor

authentication, to redirect the user to third-party identity

providers, and to enable the use of single sign-on sessions.

The tokens returned to the UAC depend on the type of AS: an OAuth AS

provides an access token and optionally a refresh token [RFC6749].

The refresh token is only used between the UAC and the AS. If the AS

provides a refresh token to the UAC, the UAC uses it to request a

new access token from the AS before the currently used access token

expires ([RFC6749], Section 1.5). If the AS does not provide a

refresh token, the UAC needs to re-authenticate the user, in order

to get a new access token, before the currently used access token

expires. An OP returns an additional ID Token that contains claims

about the authentication of the user by an authorization server. The

ID Token can potentially include other optional claims about the

user, e.g. the SIP URI, that will be consumed by the UAC and later

used to register with the registrar.

¶

¶

¶

¶

If the UAC receives a 401/407 response with multiple WWW-

Authenticate/Proxy-Authenticate header fields, providing challenges

using different authentication schemes for the same realm, the UAC

provides credentials for one of the schemes that it supports, based

on local policy.

NOTE: At the time of writing this document, detailed procedures for

the cases where a UAC receives multiple different authentication

schemes had not been defined. A future specification might define

such procedures.

NOTE: The address of the AS might be known to the UAC e.g., using

means of configuration, in which case the UAC can contact the AS in

order to obtain the access token before it sends SIP request without

credentials.

2.1.2. Protecting the Access Token

[RFC6749] mandates that access tokens are protected with TLS when in

transit. However, SIP makes use of intermediary SIP proxies, and TLS

only guarantees hop-to-hop protection when used to protect SIP

signaling. Therefore the access token MUST be protected in a way so

that only authorized SIP servers will have access to it. SIP

endpoints that support this document MUST use encrypted JSON Web

Tokens (JWT) [RFC7519] for encoding and protecting access tokens

when they are included in SIP requests, unless some other mechanism

is used to guarantee that only authorized SIP endpoints have access

to the access token. TLS can still be used for protecting traffic

between SIP endpoints and the AS, as defined in [RFC6749].

2.1.3. REGISTER Request

The procedures in this section apply when the UAC has received a

challenge that contains a "Bearer" scheme, and the UAC has obtained

a token as specified in Section 2.1.1.

The UAC sends a REGISTER request with an Authorization header field

containing the response to the challenge, including the Bearer

scheme carrying a valid access token in the request, as specified in

[RFC6750].

Note that, if there were multiple challenges with different schemes,

then the UAC may be able to successfully retry the request using

non-Bearer credentials.

Typically, a UAC will obtain a new access token for each new

binding, However, based on local policy, a UAC MAY include an access

¶

¶

¶

¶

¶

¶

¶

¶

token that has been used for another binding associated with the

same Address Of Record (AOR) in the request.

If the access token included in a REGISTER request is not accepted,

and the UAC receives a 401 response or a 407 response, the UAC

follows the procedures in Section 2.1.1.

2.1.4. Non-REGISTER Request

The procedures in this section apply when the UAC has received a

challenge that contains a "Bearer" scheme, and the UAC has obtained

a token as specified in Section 2.1.1.

When the UAC sends a request, it MUST include an Authorization

header field with a Bearer scheme, carrying a valid access token

obtained from the AS indicated in the challenge, in the request, as

specified in [RFC6750]. Based on local policy, the UAC MAY include

an access token that has been used for another dialog, or for

another stand-alone request, if the target of the new request is the

same.

If the access token included in a request is not accepted, and the

UAC receives a 401 response or a 407 response, the UAC follows the

procedures in Section 2.1.1.

2.2. User Agent Server (UAS) and Registrar Behavior

When a UAS or registrar receives a request that fails to contain

authorization credentials acceptable to it, the UAS/registrar SHOULD

challenge the request by sending a 401 (Unauthorized) response. If

the UAS/registrar chooses to challenge the request, and is willing

to accept an access token as a credential, it MUST include a WWW-

Authenticate header field in the response that indicates "Bearer"

scheme and includes an AS address, encoded as an https URI

[RFC7230], from which the UAC can obtain an access token.

When a UAS or registrar receives a SIP request that contains an

Authorization header field with an access token, the UAS/registrar

MUST validate the access token, using the procedures associated with

the type of access token (Structured or Reference) used, e.g.,

[RFC7519]. If the token provided is an expired access token, then

the UAS/registrar MUST reply with a 401 (Unauthorized) response, as

defined in section 3 of [RFC6750]. If the validation is successful,

the UAS/registrar can continue to process the request using normal

SIP procedures. If the validation fails, the UAS/registrar MUST

reply with 401 (Unauthorized) response.

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.3. Proxy Behavior

When a proxy receives a request that fails to contain authorization

credentials acceptable to it, it SHOULD challenge the request by

sending a 407 (Proxy Authentication Required) response. If the proxy

chooses to challenge the request, and is willing to accept an access

token as a credential, it MUST include a Proxy-Authenticate header

field in the response that indicates "Bearer" scheme and includes an

AS address, encoded as an https URI [RFC7230], from which the UAC

can obtain an access token.

When a proxy wishes to authenticate a received request, it MUST

search the request for Proxy-Authorization header fields with

'realm' parameters that match its realm. It then MUST successfully

validate the credentials from at least one Proxy-Authorization

header field for its realm. When the scheme is "Bearer", the proxy

MUST validate the access token, using the procedures associated with

the type of access token (Structured or Reference) used, e.g.,

[RFC7519].

3. Access Token Claims

The type of services to which an access token grants access can be

determined using different methods. The methods used and the access

provided by the token are based on local policy agreed between the

AS and the registrar.

If an access token is encoded as a JWT, it will contain a list of

claims [RFC7519], including both registered and application-specific

claims. The registrar can grant access to services based on such

claims, some other mechanism, or a combination of claims and some

other mechanism. If an access token is a reference token, the

registrar will grant access based on some other mechanism. Examples

of such other mechanisms are introspection [RFC7662] and user

profile lookups.

4. WWW-Authenticate Response Header Field

This section uses ABNF [RFC5234] to describe the syntax of the WWW-

Authenticate header field when used with the "Bearer" scheme to

challenge the UAC for credentials, by extending the 'challenge'

parameter defined by [RFC3261].

¶

¶

¶

¶

¶

¶

¶

¶

challenge =/ ("Bearer" LWS bearer-cln *(COMMA bearer-cln))

bearer-cln = realm / scope-param / authz-server-param / error-param /

 auth-param

realm = <defined in RFC3261>

scope-param = "scope" EQUAL DQUOTE scope DQUTE

scope = <defined in RFC6749>

authz-server-param = "authz_server" EQUAL DQUOTE authz-server DQUOTE

authz-server = https-URI

https-URI = <defined in RFC7230>

error-param = "error" EQUAL DQUOTE error DQUOTE

error = <defined in RFC6749>

auth-param = <defined in RFC3261>

Figure 3: Bearer Scheme Syntax

The authz_server parameter contains the HTTPS URI, as defined in

[RFC7230], of the AS. The UAC can discover metadata about the AS

using a mechanism like the one defined in [RFC8414].

The realm and auth-param parameters are defined in [RFC3261].

Per [RFC3261], the realm string alone defines the protection

domain. [RFC3261] states that the realm string must be globally

unique and recommends that the realm string contain a hostname or

domain name. It also states that the realm string should be a human-

readable identifier that can be rendered to the user.

The scope and error parameters are defined in [RFC6749].

The scope parameter can be used by the registrar/proxy to indicate

to the UAC the minimum scope that must be associated with the access

token to be able to get service. As defined in [RFC6749], the value

of the scope parameter is expressed as a list of space-delimited,

case-sensitive strings. The strings are defined by the AS. The

values of the scope parameter are out of scope of this document. The

UAC will use the scope provided by the registrar to contact the AS

and obtain a proper token with the requested scope.

The error parameter could be used by the registrar/proxy to indicate

to the UAC the reason for the error, with possible values of

"invalid_token" or "invalid_scope".

5. Security Considerations

The security considerations for OAuth are defined in [RFC6749]. The

security considerations for bearer tokens are defined in [RFC6750].

The security considerations for JSON Web Tokens (JWT) are defined in

¶

¶

¶

¶

¶

¶

¶

[RFC7519]. These security considerations also apply to SIP usage of

access token as defined in this document.

[RFC6749] mandates that access tokens are protected with TLS when in

transit. However, SIP makes have use of intermediary SIP proxies,

and TLS only guarantees hop-to-hop protection when used to protect

SIP signaling. Therefore the access token MUST be protected in a way

so that only authorized SIP servers will have access to it. SIP

endpoints that support this document MUST use encrypted JSON Web

Tokens (JWT) [RFC7519] for encoding and protecting access tokens

when they are included in SIP requests, unless some other mechanism

is used to guarantee that only authorized SIP endpoints have access

to the access token. TLS can still be used for protecting traffic

between SIP endpoints and the AS, as defined in [RFC6749].

Single Sign-On (SSO) enables the user to use one set of credentials

to authenticate once and gain access to multiple SIP and non-SIP

services using access token(s). If the SSO login is compromised,

that single point of compromise has a much broader effect than is

the case without SSO. Further, an attacker can often use a

compromised account to set up Single Sign-On for other services that

the victim has not established an account with, and sometimes can

even switch a dedicated account into Single-Sign-On mode, creating a

still broader attack.

Because of that, it is critical to make sure that extra security

measures be taken to safeguard credentials used for Single Sign-On.

Examples of such measures include long passphrase instead of a

password, enabling multi-factor factor authentication, and the use

of the native platform browser when possible, as defined in

[RFC8252].

Although this is out of scope for this document, it is important to

carefully consider the claims provided in the tokens used to access

these services to make sure of the privacy of the user accessing

these services. As mentioned above, this document calls for

encrypting JWT representing the access token.

It is important that both parties participating in SSO provide

mechanisms for users to sever the SSO relationship, so that it is

possible without undue difficulty to mitigate a compromise that has

already happened.

The operator of a Single-Sign-On authentication system has access to

private information about sites and services that their users log

into, and even, to some extent, about their usage patterns. It's

important to call these out in privacy disclosures and policies, and

to make sure that users can be aware of the tradeoffs between

convenience and privacy when they choose to use SSO.

¶

¶

¶

¶

¶

¶

¶

When a registrar chooses to challenge a REGISTER request, if the

registrar can provide access to different levels of services, it is

RECOMMENDED that the registrar includes a scope in the response in

order to indicate the minimum scope needed to register and access

basic services. The access token might include an extended scope

that gives the user access to more advanced features beyond basic

services. In SIP, the AS administrator will typicall decide what

level of access is provided for a given user.

The UAC MUST check the AS URL received in the 401/407 response

against a list of trusted ASs configured on the UAC, in order to

prevent several classes of possible vulnerabilities when a client

blindly attempts to use any provided AS.

6. IANA Considerations

6.1. New Proxy-Authenticate header field parameters

This section defines new SIP header field parameters in the "Header

Field Parameters and Parameter Values" subregistry of the "Session

Initiation Protocol (SIP) Parameters" registry: https://

www.iana.org/assignments/sip-parameters

Figure 4

6.2. New WWW-Authenticate header field parameters

This section defines new SIP header field parameters in the "Header

Field Parameters and Parameter Values" subregistry of the "Session

Initiation Protocol (SIP) Parameters" registry: https://

www.iana.org/assignments/sip-parameters

¶

¶

¶

¶

 Header Field: Proxy-Authenticate

 Parameter Name: authz_server

 Predefined Values: No

 Reference: RFC XXXX

 Parameter Name: error

 Predefined Values: No

 Reference: RFC XXXX

 Parameter Name: scope

 Predefined Values: No

 Reference: RFC XXXX

¶

Figure 5

7. Acknowledgments

The authors would like to specially thank Paul Kyzivat for his

multiple detailed reviews and suggested text that significantly

improved the quality of the document.

The authors would also like to thank the following for their review

and feedback on this document:

Olle Johansson, Roman Shpount, Dale Worley, and Jorgen Axell.

The authors would also like to thank the following for their review

and feedback of the original document that was replaced with this

document:

Andrew Allen, Martin Dolly, Keith Drage, Paul Kyzivat, Jon Peterson,

Michael Procter, Roy Radhika, Matt Ryan, Ivo Sedlacek, Roman

Shpount, Robert Sparks, Asveren Tolga, Dale Worley, and Yehoshua

Gev.

Roman Danyliw, Benjamin Kaduk, Erik Kline, Barry Leiba, Eric Vyncke

and Magnus Westerlund provided feedback and suggestions for

improvements as part of the IESG evaluation of the document. Special

thanks to Benjamin Kaduk for his detailed and comprehinsive reviews

and comments.

The authors would also like to specially thank Jean Mahoney for her

multiple reviews, editorial help, and the coversion of the XML

source file from v2 to v3.

 Header Field: WWW-Authenticate

 Parameter Name: authz_server

 Predefined Values: No

 Reference: RFC XXXX

 Parameter Name: error

 Predefined Values: No

 Reference: RFC XXXX

 Parameter Name: scope

 Predefined Values: No

 Reference: RFC XXXX

¶

¶

¶

¶

¶

¶

¶

¶

¶

[OPENID]

[RFC2119]

[RFC3261]

[RFC5234]

[RFC6749]

[RFC6750]

[RFC7230]

8. Normative References

Sakimura, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0", February

2014.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750

[RFC7519]

[RFC7662]

[RFC8174]

[RFC8252]

[RFC8414]

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC

7662, DOI 10.17487/RFC7662, October 2015, <https://

www.rfc-editor.org/info/rfc7662>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9. Informative References

Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",

BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

<https://www.rfc-editor.org/info/rfc8252>.

Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

Authorization Server Metadata", RFC 8414, DOI 10.17487/

RFC8414, June 2018, <https://www.rfc-editor.org/info/

rfc8414>.

Authors' Addresses

Rifaat Shekh-Yusef

Avaya

425 Legget Drive

Ottawa Ontario

Canada

Phone: +1-613-595-9106

Email: rifaat.ietf@gmail.com

Christer Holmberg

Ericsson

Hirsalantie 11

FI- Jorvas 02420

Finland

Email: christer.holmberg@ericsson.com

Victor Pascual

webrtchacks

Spain

Email: victor.pascual.avila@gmail.com

https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8252
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
tel:+1-613-595-9106
mailto:rifaat.ietf@gmail.com
mailto:christer.holmberg@ericsson.com
mailto:victor.pascual.avila@gmail.com

	Third-Party Token-based Authentication and Authorization for Session Initiation Protocol (SIP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability
	1.3. Token Types and Formats
	1.4. Example Flows
	1.4.1. Registration
	1.4.2. Registration with Preconfigured AS

	2. SIP Procedures
	2.1. UAC Behavior
	2.1.1. Obtaining Tokens and Responding to Challenges
	2.1.2. Protecting the Access Token
	2.1.3. REGISTER Request
	2.1.4. Non-REGISTER Request

	2.2. User Agent Server (UAS) and Registrar Behavior
	2.3. Proxy Behavior

	3. Access Token Claims
	4. WWW-Authenticate Response Header Field
	5. Security Considerations
	6. IANA Considerations
	6.1. New Proxy-Authenticate header field parameters
	6.2. New WWW-Authenticate header field parameters

	7. Acknowledgments
	8. Normative References
	9. Informative References
	Authors' Addresses

