
SIPCORE Working Group I. Baz Castillo
Internet-Draft J. Millan Villegas
Intended status: Standards Track Versatica
Expires: June 2, 2014 V. Pascual
 Quobis
 November 29, 2013

The WebSocket Protocol as a Transport for the Session Initiation
Protocol (SIP)

draft-ietf-sipcore-sip-websocket-10

Abstract

 The WebSocket protocol enables two-way realtime communication between
 clients and servers in web-based applications. This document
 specifies a WebSocket sub-protocol as a reliable transport mechanism
 between SIP (Session Initiation Protocol) entities to enable usage of
 SIP in web-oriented deployments.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 2, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Baz Castillo, et al. Expires June 2, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WebSocket as a Transport for SIP November 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
2.1. Definitions . 3

3. The WebSocket Protocol . 3
4. The WebSocket SIP Sub-Protocol 4
4.1. Handshake . 4
4.2. SIP Encoding . 5

5. SIP WebSocket Transport 6
5.1. Via Transport Parameter 6
5.2. SIP URI Transport Parameter 6
5.3. Via received Parameter 7
5.4. SIP Transport Implementation Requirements 7
5.5. Locating a SIP Server 8

6. Connection Keep-Alive . 8
7. Authentication . 8
8. Examples . 9
8.1. Registration . 10
8.2. INVITE Dialog through a Proxy 11

9. Security Considerations 15
9.1. Secure WebSocket Connection 15
9.2. Usage of SIPS Scheme 16

10. IANA Considerations . 16
10.1. Registration of the WebSocket SIP Sub-Protocol 16
10.2. Registration of new NAPTR Service Field Values 16
10.3. SIP/SIPS URI Parameters Sub-Registry 17
10.4. Header Fields Sub-Registry 17

 10.5. Header Field Parameters and Parameter Values
 Sub-Registry . 17

10.6. SIP Transport Sub-Registry 17
11. Acknowledgements . 18
12. References . 18
12.1. Normative References 18
12.2. Informative References 19

Appendix A. Authentication Use Cases 20
A.1. Just SIP Authentication 20
A.2. Just Web Authentication 20
A.3. Cookie Based Authentication 21

Appendix B. Implementation Guidelines 22
B.1. SIP WebSocket Client Considerations 23
B.2. SIP WebSocket Server Considerations 23

 Authors' Addresses . 23

Baz Castillo, et al. Expires June 2, 2014 [Page 2]

Internet-Draft WebSocket as a Transport for SIP November 2013

1. Introduction

 The WebSocket [RFC6455] protocol enables message exchange between
 clients and servers on top of a persistent TCP connection (optionally
 secured with TLS [RFC5246]). The initial protocol handshake makes
 use of HTTP [RFC2616] semantics, allowing the WebSocket protocol to
 reuse existing HTTP infrastructure.

 Modern web browsers include a WebSocket client stack complying with
 the WebSocket API [WS-API] as specified by the W3C. It is expected
 that other client applications (those running in personal computers
 and devices such as smartphones) will also make a WebSocket client
 stack available. The specification in this document enables usage of
 SIP in these scenarios.

 This specification defines a WebSocket sub-protocol (as defined in
section 1.9 in [RFC6455]) for transporting SIP messages between a

 WebSocket client and server, a reliable and message-boundary
 preserving transport for SIP, DNS NAPTR [RFC3403] service values and
 procedures for SIP entities implementing the WebSocket transport.
 Media transport is out of the scope of this document.

Section 3 in this specification relaxes the requirement in [RFC3261]
 by which the SIP server transport MUST add a "received" parameter in
 the top Via header in certain circumstances.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions

 SIP WebSocket Client: A SIP entity capable of opening outbound
 connections to WebSocket servers and communicating using the
 WebSocket SIP sub-protocol as defined by this document.

 SIP WebSocket Server: A SIP entity capable of listening for inbound
 connections from WebSocket clients and communicating using the
 WebSocket SIP sub-protocol as defined by this document.

3. The WebSocket Protocol

 The WebSocket protocol [RFC6455] is a transport layer on top of TCP
 (optionally secured with TLS [RFC5246]) in which both client and

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6455#section-1.9
https://datatracker.ietf.org/doc/html/rfc3403
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5246

Baz Castillo, et al. Expires June 2, 2014 [Page 3]

Internet-Draft WebSocket as a Transport for SIP November 2013

 server exchange message units in both directions. The protocol
 defines a connection handshake, WebSocket sub-protocol and extensions
 negotiation, a frame format for sending application and control data,
 a masking mechanism, and status codes for indicating disconnection
 causes.

 The WebSocket connection handshake is based on HTTP [RFC2616] and
 utilizes the HTTP GET method with an "Upgrade" request. This is sent
 by the client and then answered by the server (if the negotiation
 succeeded) with an HTTP 101 status code. Once the handshake is
 completed the connection upgrades from HTTP to the WebSocket
 protocol. This handshake procedure is designed to reuse the existing
 HTTP infrastructure. During the connection handshake, client and
 server agree on the application protocol to use on top of the
 WebSocket transport. Such application protocol (also known as a
 "WebSocket sub-protocol") defines the format and semantics of the
 messages exchanged by the endpoints. This could be a custom protocol
 or a standardized one (as the WebSocket SIP sub-protocol defined in
 this document). Once the HTTP 101 response is processed both client
 and server reuse the underlying TCP connection for sending WebSocket
 messages and control frames to each other. Unlike plain HTTP, this
 connection is persistent and can be used for multiple message
 exchanges.

 WebSocket defines message units to be used by applications for the
 exchange of data, so it provides a message boundary-preserving
 transport layer. These message units can contain either UTF-8 text
 or binary data, and can be split into multiple WebSocket text/binary
 transport frames as needed by the WebSocket stack.

 The WebSocket API [WS-API] for web browsers only defines callbacks
 to be invoked upon receipt of an entire message unit, regardless
 of whether it was received in a single Websocket frame or split
 across multiple frames.

4. The WebSocket SIP Sub-Protocol

 The term WebSocket sub-protocol refers to an application-level
 protocol layered on top of a WebSocket connection. This document
 specifies the WebSocket SIP sub-protocol for carrying SIP requests
 and responses through a WebSocket connection.

4.1. Handshake

 The SIP WebSocket Client and SIP WebSocket Server negotiate usage of
 the WebSocket SIP sub-protocol during the WebSocket handshake
 procedure as defined in section 1.3 of [RFC6455]. The Client MUST

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6455#section-1.3

Baz Castillo, et al. Expires June 2, 2014 [Page 4]

Internet-Draft WebSocket as a Transport for SIP November 2013

 include the value "sip" in the Sec-WebSocket-Protocol header in its
 handshake request. The 101 reply from the Server MUST contain "sip"
 in its corresponding Sec-WebSocket-Protocol header.

 The WebSocket Client initiates a WebSocket connection when
 attempting to send a SIP request (unless there is an already
 established WebSocket connection for sending the SIP request). In
 case there is no HTTP 101 response during the WebSocket handshake
 it is considered a transaction error as per [RFC3261] section

8.1.3.1 "Transaction Layer Errors".

 Below is an example of a WebSocket handshake in which the Client
 requests the WebSocket SIP sub-protocol support from the Server:

 GET / HTTP/1.1
 Host: sip-ws.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://www.example.com
 Sec-WebSocket-Protocol: sip
 Sec-WebSocket-Version: 13

 The handshake response from the Server accepting the WebSocket SIP
 sub-protocol would look as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: sip

 Once the negotiation has been completed, the WebSocket connection is
 established and can be used for the transport of SIP requests and
 responses. Messages other than SIP requests and responses MUST NOT
 be transmitted over this connection.

4.2. SIP Encoding

 WebSocket messages can be transported in either UTF-8 text frames or
 binary frames. SIP [RFC3261] allows both text and binary bodies in
 SIP requests and responses. Therefore SIP WebSocket Clients and SIP
 WebSocket Servers MUST accept both text and binary frames.

 If there is at least one non-UTF-8 symbol in the whole SIP message
 (including headers and body) then the whole message MUST be sent
 within a WebSocket binary message. Given the nature of JavaScript
 and the WebSocket API it is RECOMMENDED to use UTF-8 encoding (or

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires June 2, 2014 [Page 5]

Internet-Draft WebSocket as a Transport for SIP November 2013

 ASCII which is a subset of UTF-8) for SIP messages carried over a
 WebSocket connection.

5. SIP WebSocket Transport

 WebSocket [RFC6455] is a reliable protocol and therefore the SIP
 WebSocket sub-protocol defined by this document is a reliable SIP
 transport. Thus, client and server transactions using WebSocket for
 transport MUST follow the procedures and timer values for reliable
 transports as defined in [RFC3261].

 Each SIP message MUST be carried within a single WebSocket message,
 and a WebSocket message MUST NOT contain more than one SIP message.
 Because the WebSocket transport preserves message boundaries, the use
 of the Content-Length header in SIP messages is not necessary when
 they are transported using the WebSocket sub-protocol.

 This simplifies parsing of SIP messages for both clients and
 servers. There is no need to establish message boundaries using
 Content-Length headers between messages. Other SIP transports,
 such as UDP and SCTP [RFC4168] also provide this benefit.

5.1. Via Transport Parameter

 Via header fields in SIP messages carry a transport protocol
 identifier. This document defines the value "WS" to be used for
 requests over plain WebSocket connections and "WSS" for requests over
 secure WebSocket connections (in which the WebSocket connection is
 established using TLS [RFC5246] with TCP transport).

 The updated augmented BNF (Backus-Naur Form) [RFC5234] for this
 parameter is the following (the original BNF for this parameter can
 be found in [RFC3261], which was then updated by [RFC4168]):

 transport =/ "WS" / "WSS"

5.2. SIP URI Transport Parameter

 This document defines the value "ws" as the transport parameter value
 for a SIP URI [RFC3986] to be contacted using the SIP WebSocket sub-
 protocol as transport.

 The updated augmented BNF (Backus-Naur Form) for this parameter is
 the following (the original BNF for this parameter can be found in
 [RFC3261]):

 transport-param =/ "transport=" "ws"

https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires June 2, 2014 [Page 6]

Internet-Draft WebSocket as a Transport for SIP November 2013

5.3. Via received Parameter

 [RFC3261] section 18.2.1 "Receiving Requests" states the following:

 When the server transport receives a request over any transport,
 it MUST examine the value of the "sent-by" parameter in the top
 Via header field value. If the host portion of the "sent-by"
 field contains a domain name, or if it contains an IP address that
 differs from the packet source address, the server MUST add a
 "received" parameter to that Via header field value. This
 parameter MUST contain the source address from which the packet
 was received.

 The requirement of adding the "received" parameter does not fit well
 into the WebSocket protocol design. The WebSocket connection
 handshake reuses existing HTTP infrastructure in which there could be
 an unknown number of HTTP proxies and/or TCP load balancers between
 the SIP WebSocket Client and Server, so the source address the server
 would write into the Via "received" parameter would be the address of
 the HTTP/TCP intermediary in front of it. This could reveal
 sensitive information about the internal topology of the Server's
 network to the Client.

 Given the fact that SIP responses can only be sent over the existing
 WebSocket connection, the Via "received" parameter is of little use.
 Therefore, in order to allow hiding possible sensitive information
 about the SIP WebSocket Server's network, this document updates

[RFC3261] section 18.2.1 by stating:

 When a SIP WebSocket Server receives a request it MAY decide not
 to add a "received" parameter to the top Via header. Therefore
 SIP WebSocket Clients MUST accept responses without such a
 parameter in the top Via header regardless of whether the Via
 "sent-by" field contains a domain name.

5.4. SIP Transport Implementation Requirements

 [RFC3261] section 18 "Transport" states the following:

 All SIP elements MUST implement UDP and TCP. SIP elements MAY
 implement other protocols.

 The specification of this transport enables SIP to be used as a
 session establishment protocol in scenarios where none of other
 transport protocols defined for SIP can be used. Since some
 environments do not enable SIP elements to use UDP and TCP as SIP
 transport protocols, a SIP element acting as a SIP WebSocket Client
 is not mandated to implement support of UDP and TCP.

https://datatracker.ietf.org/doc/html/rfc3261#section-18.2.1

Baz Castillo, et al. Expires June 2, 2014 [Page 7]

Internet-Draft WebSocket as a Transport for SIP November 2013

5.5. Locating a SIP Server

 [RFC3263] specifies the procedures which should be followed by SIP
 entities for locating SIP servers. This specification defines the
 NAPTR service value "SIP+D2W" for SIP WebSocket Servers that support
 plain WebSocket connections and "SIPS+D2W" for SIP WebSocket Servers
 that support secure WebSocket connections.

 At the time this document was written, DNS NAPTR/SRV queries could
 not be performed by commonly available WebSocket client stacks (in
 JavaScript engines and web browsers).

 In the absence of DNS SRV resource records or an explicit port, the
 default port for a SIP URI using the "sip" scheme and the "ws"
 transport parameter is 80, and the default port for a SIP URI using
 the "sips" scheme and the "ws" transport parameter is 443.

6. Connection Keep-Alive

 SIP WebSocket Clients and Servers may keep their WebSocket
 connections open by sending periodic WebSocket "Ping" frames as
 described in [RFC6455] section 5.5.2.

 The WebSocket API [WS-API] does not provide a mechanism for
 applications running in a web browser to control whether or not
 periodic WebSocket "Ping" frames are sent to the server. The
 implementation of such a keep-alive feature is the decision of
 each web browser manufacturer and may also depend on the
 configuration of the web browser.

 The indication and use of the CRLF NAT keep-alive mechanism defined
 for SIP connection-oriented transports in [RFC5626] section 3.5.1 or
 [RFC6223] are, of course, usable over the transport defined in this
 specification.

7. Authentication

 This section describes how authentication is achieved through the
 requirements in [RFC6455], [RFC6265], [RFC2617] and [RFC3261].

 WebSocket protocol [RFC6455] does not define an authentication
 mechanism, instead it exposes the following text in section 10.5
 "WebSocket Client Authentication":

 This protocol doesn't prescribe any particular way that servers
 can authenticate clients during the WebSocket handshake. The

https://datatracker.ietf.org/doc/html/rfc6455#section-5.5.2
https://datatracker.ietf.org/doc/html/rfc5626#section-3.5.1
https://datatracker.ietf.org/doc/html/rfc6223
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc6455

Baz Castillo, et al. Expires June 2, 2014 [Page 8]

Internet-Draft WebSocket as a Transport for SIP November 2013

 WebSocket server can use any client authentication mechanism
 available to a generic HTTP server, such as cookies, HTTP
 authentication, or TLS authentication.

 The following list exposes mandatory to implement and optional
 mechanisms for SIP WebSocket Clients and Servers in order to get
 interoperability at WebSocket authentication level:

 o A SIP WebSocket Client MUST be ready to add a session Cookie when
 it runs in a web browser (or behaves like a browser navigating a
 website) and has previously retrieved a session Cookie from the
 web server whose URL domain matches the domain in the WebSocket
 URI. This mechanism is defined by [RFC6265].

 o A SIP WebSocket Client MUST be ready to be challenged with HTTP
 401 status code by the SIP WebSocket Server when performing the
 WebSocket handshake as stated in [RFC2617].

 o A SIP WebSocket Client MAY use TLS client authentication (when in
 a secure WebSocket connection) as an optional authentication
 mechanism.

 Note however that TLS client authentication in WebSocket
 protocol is governed by the rules of HTTP protocol rather than
 the rules of SIP protocol.

 o A SIP WebSocket Server MUST be ready to read session Cookies when
 present in the WebSocket handshake request, and use such a Cookie
 value for determining whether the WebSocket connection has been
 initiated by a HTTP client navigating a website in the same domain
 (or subdomain) as the SIP WebSocket Server.

 o A SIP WebSocket Server SHOULD be able to reject a WebSocket
 handshake request with HTTP 401 status code by providing a Basic/
 Digest challenge as defined for HTTP protocol.

 Regardless of whether the SIP WebSocket Server requires
 authentication during the WebSocket handshake or not, authentication
 MAY be requested at SIP protocol level.

 Some authentication use cases are exposed in Appendix A.

8. Examples

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2617

Baz Castillo, et al. Expires June 2, 2014 [Page 9]

Internet-Draft WebSocket as a Transport for SIP November 2013

8.1. Registration

 Alice (SIP WSS) proxy.example.com
 | |
 |HTTP GET (WS handshake) F1 |
 |---------------------------->|
 |101 Switching Protocols F2 |
 |<----------------------------|
 | |
 |REGISTER F3 |
 |---------------------------->|
 |200 OK F4 |
 |<----------------------------|
 | |

 Alice loads a web page using her web browser and retrieves JavaScript
 code implementing the WebSocket SIP sub-protocol defined in this
 document. The JavaScript code (a SIP WebSocket Client) establishes a
 secure WebSocket connection with a SIP proxy/registrar (a SIP
 WebSocket Server) at proxy.example.com. Upon WebSocket connection,
 Alice constructs and sends a SIP REGISTER request including Outbound
 and GRUU support. Since the JavaScript stack in a browser has no way
 to determine the local address from which the WebSocket connection
 was made, this implementation uses a random ".invalid" domain name
 for the Via header sent-by parameter and for the hostport of the URI
 in the Contact header (see Appendix B.1).

 Message details (authentication and SDP bodies are omitted for
 simplicity):

 F1 HTTP GET (WS handshake) Alice -> proxy.example.com (TLS)

 GET / HTTP/1.1
 Host: proxy.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: https://www.example.com
 Sec-WebSocket-Protocol: sip
 Sec-WebSocket-Version: 13

 F2 101 Switching Protocols proxy.example.com -> Alice (TLS)

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket

Baz Castillo, et al. Expires June 2, 2014 [Page 10]

Internet-Draft WebSocket as a Transport for SIP November 2013

 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: sip

 F3 REGISTER Alice -> proxy.example.com (transport WSS)

 REGISTER sip:proxy.example.com SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
 From: sip:alice@example.com;tag=65bnmj.34asd
 To: sip:alice@example.com
 Call-ID: aiuy7k9njasd
 CSeq: 1 REGISTER
 Max-Forwards: 70
 Supported: path, outbound, gruu
 Contact: <sip:alice@df7jal23ls0d.invalid;transport=ws>
 ;reg-id=1
 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"

 F4 200 OK proxy.example.com -> Alice (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
 From: sip:alice@example.com;tag=65bnmj.34asd
 To: sip:alice@example.com;tag=12isjljn8
 Call-ID: aiuy7k9njasd
 CSeq: 1 REGISTER
 Supported: outbound, gruu
 Contact: <sip:alice@df7jal23ls0d.invalid;transport=ws>
 ;reg-id=1
 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"
 ;pub-gruu="sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1"
 ;temp-gruu="sip:87ash54=3dd.98a@example.com;gr"
 ;expires=3600

8.2. INVITE Dialog through a Proxy

Baz Castillo, et al. Expires June 2, 2014 [Page 11]

Internet-Draft WebSocket as a Transport for SIP November 2013

 Alice (SIP WSS) proxy.example.com (SIP UDP) Bob
INVITE F1	
---------------------------->	
100 Trying F2	
<----------------------------	
	INVITE F3
	---------------------------->
	200 OK F4
	<----------------------------
200 OK F5	
<----------------------------	
ACK F6	
---------------------------->	
	ACK F7
	---------------------------->
Bidirectional RTP Media	
<===>	
	BYE F8
	<----------------------------
BYE F9	
<----------------------------	
200 OK F10	
---------------------------->	
	200 OK F11
	---------------------------->

 In the same scenario Alice places a call to Bob's AoR (Address Of
 Record). The SIP WebSocket Server at proxy.example.com acts as a SIP
 proxy, routing the INVITE to Bob's contact address (which happens to
 be using SIP transported over UDP). Bob answers the call and then
 terminates it.

 Message details (authentication and SDP bodies are omitted for
 simplicity):

 F1 INVITE Alice -> proxy.example.com (transport WSS)

 INVITE sip:bob@example.com SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com
 Call-ID: asidkj3ss

Baz Castillo, et al. Expires June 2, 2014 [Page 12]

Internet-Draft WebSocket as a Transport for SIP November 2013

 CSeq: 1 INVITE
 Max-Forwards: 70
 Supported: path, outbound, gruu
 Route: <sip:proxy.example.com:443;transport=ws;lr>
 Contact: <sip:alice@example.com
 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>
 Content-Type: application/sdp

 F2 100 Trying proxy.example.com -> Alice (transport WSS)

 SIP/2.0 100 Trying
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE

 F3 INVITE proxy.example.com -> Bob (transport UDP)

 INVITE sip:bob@203.0.113.22:5060 SIP/2.0
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 69
 Supported: path, outbound, gruu
 Contact: <sip:alice@example.com
 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>
 Content-Type: application/sdp

 F4 200 OK Bob -> proxy.example.com (transport UDP)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c
 ;received=192.0.2.10
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss

Baz Castillo, et al. Expires June 2, 2014 [Page 13]

Internet-Draft WebSocket as a Transport for SIP November 2013

 CSeq: 1 INVITE
 Contact: <sip:bob@203.0.113.22:5060;transport=udp>
 Content-Type: application/sdp

 F5 200 OK proxy.example.com -> Alice (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Contact: <sip:bob@203.0.113.22:5060;transport=udp>
 Content-Type: application/sdp

 F6 ACK Alice -> proxy.example.com (transport WSS)

 ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
 Route: <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>,
 <sip:proxy.example.com;transport=udp;lr>,
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 ACK
 Max-Forwards: 70

 F7 ACK proxy.example.com -> Bob (transport UDP)

 ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhwpoc80zzx
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 ACK
 Max-Forwards: 69

 F8 BYE Bob -> proxy.example.com (transport UDP)

 BYE sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001

Baz Castillo, et al. Expires June 2, 2014 [Page 14]

Internet-Draft WebSocket as a Transport for SIP November 2013

 Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE
 Max-Forwards: 70

 F9 BYE proxy.example.com -> Alice (transport WSS)

 BYE sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
 Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE
 Max-Forwards: 69

 F10 200 OK Alice -> proxy.example.com (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE

 F11 200 OK proxy.example.com -> Bob (transport UDP)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE

9. Security Considerations

9.1. Secure WebSocket Connection

 It is RECOMMENDED that the SIP traffic transported over a WebSocket
 communication be protected by using a secure WebSocket connection

Baz Castillo, et al. Expires June 2, 2014 [Page 15]

Internet-Draft WebSocket as a Transport for SIP November 2013

 (using TLS [RFC5246] over TCP).

 When establishing a connection using SIP over secure WebSocket
 transport, the client MUST authenticate the server using the server's
 certificate according to the WebSocket validation procedure in
 [RFC6455].

 Server operators should note that this authentication procedure is
 different from the procedure for SIP Domain Certificates defined
 in [RFC5922]. Certificates that are appropriate for SIP over TLS
 over TCP will probably not be appropriate for SIP over secure
 WebSocket connections.

9.2. Usage of SIPS Scheme

 The SIPS scheme in a SIP URI dictates that the entire request path to
 the target be secure. If such a path includes a WebSocket connection
 it MUST be a secure WebSocket connection.

10. IANA Considerations

 RFC Editor Note: Please set the RFC number assigned for this document
 in the sub-sections below and remove this note.

10.1. Registration of the WebSocket SIP Sub-Protocol

 This specification requests IANA to register the WebSocket SIP sub-
 protocol under the "WebSocket Subprotocol Name" Registry with the
 following data:

 Subprotocol Identifier: sip

 Subprotocol Common Name: WebSocket Transport for SIP (Session
 Initiation Protocol)

 Subprotocol Definition: TBD: this document

10.2. Registration of new NAPTR Service Field Values

 This document defines two new NAPTR service field values (SIP+D2W and
 SIPS+D2W) and requests IANA to register these values under the
 "Registry for the Session Initiation Protocol (SIP) NAPTR Resource
 Record Services Field". The resulting entries are as follows:

 Services Field Protocol Reference
 -------------- -------- ---------
 SIP+D2W WS TBD: this document

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc5922

Baz Castillo, et al. Expires June 2, 2014 [Page 16]

Internet-Draft WebSocket as a Transport for SIP November 2013

 SIPS+D2W WS TBD: this document

10.3. SIP/SIPS URI Parameters Sub-Registry

 This specification requests IANA to add a reference to this document
 under the "SIP/SIPS URI Parameters" Sub-Registry within the "Session
 Initiation Protocol (SIP) Parameters" Registry:

 Parameter Name Predefined Values Reference
 -------------- ----------------- ---------
 transport Yes [RFC3261][TBD: this document]

10.4. Header Fields Sub-Registry

 This specification requests IANA to add a reference to this document
 under the "Header Fields" Sub-Registry within the "Session Initiation
 Protocol (SIP) Parameters" Registry:

 Header Name compact Reference
 ----------- ------- ---------
 Via v [RFC3261][TBD: this document]

10.5. Header Field Parameters and Parameter Values Sub-Registry

 This specification requests IANA to add a reference to this document
 under the "Header Field Parameters and Parameter Values" Sub-Registry
 within the "Session Initiation Protocol (SIP) Parameters" Registry:

 Predefined
 Header Field Parameter Name Values Reference
 ------------ -------------- ------ ---------
 Via received No [RFC3261][TBD: this document]

10.6. SIP Transport Sub-Registry

 This document adds a new registry, "SIP Transport", to the "Session
 Initiation Protocol (SIP) Parameters" Registry. Its format and
 initial values are as shown in the following table:

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires June 2, 2014 [Page 17]

Internet-Draft WebSocket as a Transport for SIP November 2013

 +------------+------------------------+
 | Transport | Reference |
 +------------+------------------------+
UDP	[RFC 3261]
TCP	[RFC 3261]
TLS	[RFC 3261]
SCTP	[RFC 3261], [RFC 4168]
TLS-SCTP	[RFC 4168]
WS	[TBD: this document]
WSS	[TBD: this document]
 +------------+------------------------+

 The policy for registration of values in this registry is "Standards
 Action", as that term is defined by [RFC5226].

11. Acknowledgements

 Special thanks to the following people who participated in
 discussions on the SIPCORE and RTCWEB WG mailing lists and
 contributed ideas and/or provided detailed reviews (the list is
 likely to be incomplete): Hadriel Kaplan, Paul Kyzivat, Robert
 Sparks, Adam Roach, Ranjit Avasarala, Xavier Marjou, Nataraju A. B.,
 Martin Vopatek, Alexey Melnikov, Alan Johnston, Christer Holmberg,
 Salvatore Loreto, Kevin P. Fleming, Suresh Krishnan, Yaron Sheffer,
 Richard Barnes, Barry Leiba, Stephen Farrell, Ted Lemon, Benoit
 Claise, Pete Resnick, Binod, Saul Ibarra Corretge.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263,

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3263

Baz Castillo, et al. Expires June 2, 2014 [Page 18]

Internet-Draft WebSocket as a Transport for SIP November 2013

 June 2002.

 [RFC3403] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Three: The Domain Name System (DNS) Database",

RFC 3403, October 2002.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, December 2011.

12.2. Informative References

 [RFC2606] Eastlake, D. and A. Panitz, "Reserved Top Level DNS
 Names", BCP 32, RFC 2606, June 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3327] Willis, D. and B. Hoeneisen, "Session Initiation Protocol
 (SIP) Extension Header Field for Registering Non-Adjacent
 Contacts", RFC 3327, December 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4168] Rosenberg, J., Schulzrinne, H., and G. Camarillo, "The
 Stream Control Transmission Protocol (SCTP) as a Transport
 for the Session Initiation Protocol (SIP)", RFC 4168,
 October 2005.

 [RFC5626] Jennings, C., Mahy, R., and F. Audet, "Managing Client-
 Initiated Connections in the Session Initiation Protocol
 (SIP)", RFC 5626, October 2009.

https://datatracker.ietf.org/doc/html/rfc3403
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/bcp32
https://datatracker.ietf.org/doc/html/rfc2606
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4168
https://datatracker.ietf.org/doc/html/rfc5626

Baz Castillo, et al. Expires June 2, 2014 [Page 19]

Internet-Draft WebSocket as a Transport for SIP November 2013

 [RFC5627] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent URIs (GRUUs) in the Session Initiation Protocol
 (SIP)", RFC 5627, October 2009.

 [RFC5922] Gurbani, V., Lawrence, S., and A. Jeffrey, "Domain
 Certificates in the Session Initiation Protocol (SIP)",

RFC 5922, June 2010.

 [RFC6223] Holmberg, C., "Indication of Support for Keep-Alive",
RFC 6223, April 2011.

 [WS-API] W3C and I. Hickson, Ed., "The WebSocket API", April 2013.

Appendix A. Authentication Use Cases

 Sections below briefly describe some SIP over WebSocket scenarios in
 which authentication take place in different ways.

A.1. Just SIP Authentication

 SIP PBX model A implements the SIP WebSocket transport defined by
 this specification. Its implementation is 100% website agnostic as
 it does not share information with the web server providing the HTML
 code to browsers, meaning that the SIP WebSocket Server (here the PBX
 model A) has no knowledge about web login activity within the
 website.

 In this simple scenario, the SIP WebSocket Server does not inspect
 fields in the WebSocket handshake HTTP GET request such as the
 request URL, the Origin header value, the Host header value or the
 Cookie header value (if present). However some of those fields could
 be inspected for a minimal validation (i.e. PBX model A could
 require that the Origin header value contains a specific URL so just
 users navigating such a website would be able to establish a
 WebSocket connection with PBX model A).

 Once the WebSocket connection has been established, SIP
 authentication is requested by PBX model A for each SIP request
 coming over that connection. Therefore SIP WebSocket Clients must be
 provisioned with their corresponding SIP password.

A.2. Just Web Authentication

 A SIP-to-PSTN provider offers telephony service for clients logged
 into its website. The provider does not want to expose SIP passwords
 into the web for security/privacy reasons.

https://datatracker.ietf.org/doc/html/rfc5627
https://datatracker.ietf.org/doc/html/rfc5922
https://datatracker.ietf.org/doc/html/rfc6223

Baz Castillo, et al. Expires June 2, 2014 [Page 20]

Internet-Draft WebSocket as a Transport for SIP November 2013

 Once the user is logged into the web, the web server provides him
 with a SIP identity (SIP URI) and a session temporary token string
 (along with the SIP WebSocket Client JavaScript application and SIP
 settings). The web server stores the SIP identity and session token
 into a database.

 The web application adds the SIP identity and session token as URL
 query parameters in the WebSocket handshake request and attempts the
 connection. The SIP WebSocket Server inspects the handshake request
 and validates that the session token matches the value stored in the
 database for the given SIP identity. In case the value matches, the
 WebSocket connection gets "authenticated" for that SIP identity. The
 SIP WebSocket Client can then register and make calls. The SIP
 WebSocket Server would however verify that the identity in those SIP
 requests (i.e. the From URI value) matches the SIP identity the
 WebSocket connection is associated to (otherwise the SIP request is
 rejected).

 When the user performs logout action in the web, the web server
 removes the SIP identity and session token tuple from the database
 and notifies it to the SIP WebSocket Server which revokes and closes
 the WebSocket connection.

 No SIP authentication takes place in this scenario.

A.3. Cookie Based Authentication

 Apache web server comes with a new module mod_sip_websocket. The web
 server is configured to listen in port 80 for both HTTP common
 requests and WebSocket handshake requests. Therefore both the web
 server and the SIP WebSocket Server are co-located within the same
 host and same domain.

 Once the user is logged into the web, he is provided with the SIP
 WebSocket Client JavaScript application and SIP settings. The HTTP
 200 response after the login procedure also contains a session Cookie
 [RFC6265]. The web application attempts then a WebSocket connection
 against the same URL/domain of the website and thus, the session
 Cookie is automatically added by the browser into the WebSocket
 handshake request (as the WebSocket protocol [RFC6455] states).

 The web server inspects the Cookie value (as it would do for a common
 HTTP request containing a session Cookie, so login procedure is not
 required again). If the Cookie is valid the WebSocket connection is
 authorized and, as in the previous use case, the connection is also
 associated with a specific SIP identity which must be satisfied by
 every SIP request coming over that connection.

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6455

Baz Castillo, et al. Expires June 2, 2014 [Page 21]

Internet-Draft WebSocket as a Transport for SIP November 2013

 No SIP authentication takes place in this scenario but just common
 Cookie usage as widely deployed in the WWW.

Appendix B. Implementation Guidelines

 Let us assume a scenario in which the users access with their web
 browsers (probably behind NAT) an application provided by a server on
 an intranet, login by entering their user identifier and credentials,
 and retrieve a JavaScript application (along with the HTML)
 implementing a SIP WebSocket Client.

 Such a SIP stack connects to a given SIP WebSocket Server (an
 outbound SIP proxy which also implements classic SIP transports such
 as UDP and TCP). The HTTP GET method request sent by the web browser
 for the WebSocket handshake includes a Cookie [RFC6265] header with
 the value previously provided by the server after the successful
 login procedure. The Cookie value is then inspected by the WebSocket
 server to authorize the connection. Once the WebSocket connection is
 established, the SIP WebSocket Client performs a SIP registration to
 a SIP registrar server that is reachable through the proxy. After
 registration, the SIP WebSocket Client and Server exchange SIP
 messages as would normally be expected.

 This scenario is quite similar to ones in which SIP UAs behind NATs
 connect to a proxy and must reuse the same TCP connection for
 incoming requests (because they are not directly reachable by the
 proxy otherwise). In both cases, the SIP UAs are only reachable
 through the proxy they are connected to.

 The SIP Outbound extension [RFC5626] seems an appropriate solution
 for this scenario. Therefore these SIP WebSocket Clients and the SIP
 registrar implement both the Outbound and Path [RFC3327] extensions,
 and the SIP proxy acts as an Outbound Edge Proxy (as defined in

[RFC5626] section 3.4).

 SIP WebSocket Clients in this scenario receive incoming SIP requests
 via the SIP WebSocket Server they are connected to. Therefore, in
 some call transfer cases the usage of GRUU [RFC5627] (which should be
 implemented in both the SIP WebSocket Clients and SIP registrar) is
 valuable.

 If a REFER request is sent to a third SIP user agent including the
 Contact URI of a SIP WebSocket Client as the target in its
 Refer-To header field, such a URI will be reachable by the third
 SIP UA only if it is a globally routable URI. GRUU (Globally
 Routable User Agent URI) is a solution for those scenarios, and
 would cause the incoming request from the third SIP user agent to

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc5626#section-3.4
https://datatracker.ietf.org/doc/html/rfc5627

Baz Castillo, et al. Expires June 2, 2014 [Page 22]

Internet-Draft WebSocket as a Transport for SIP November 2013

 be sent to the SIP registrar, which would route the request to the
 SIP WebSocket Client via the Outbound Edge Proxy.

B.1. SIP WebSocket Client Considerations

 The JavaScript stack in web browsers does not have the ability to
 discover the local transport address used for originating WebSocket
 connections. A SIP WebSocket client running in such an environment
 can construct a domain name consisting of a random token followed by
 the ".invalid" top-level domain name, as stated in [RFC2606], and
 uses it within its Via and Contact headers.

 The Contact URI provided by SIP UAs requesting (and receiving)
 Outbound support is not used for routing requests to those UAs,
 thus it is safe to set a random domain in the Contact URI
 hostport.

 Both the Outbound and GRUU specifications require a SIP UA to include
 a Uniform Resource Name (URN) in a "+sip.instance" parameter of the
 Contact header they include their SIP REGISTER requests. The client
 device is responsible for generating or collecting a suitable value
 for this purpose.

 In web browsers it is difficult to generate or collect a suitable
 value to be used as a URN value from the browser itself. This
 scenario suggests that value is generated according to [RFC5626]
 section 4.1 by the web application running in the browser the
 first time it loads the JavaScript SIP stack code, and then it is
 stored as a Cookie within the browser.

B.2. SIP WebSocket Server Considerations

 The SIP WebSocket Server in this scenario behaves as a SIP Outbound
 Edge Proxy, which involves support for Outbound [RFC5626] and Path
 [RFC3327].

 The proxy performs Loose Routing and remains in the path of dialogs
 as specified in [RFC3261]. If it did not do this, in-dialog requests
 would fail since SIP WebSocket Clients make use of their SIP
 WebSocket Server in order to send and receive SIP messages.

https://datatracker.ietf.org/doc/html/rfc2606
https://datatracker.ietf.org/doc/html/rfc5626#section-4.1
https://datatracker.ietf.org/doc/html/rfc5626#section-4.1
https://datatracker.ietf.org/doc/html/rfc5626
https://datatracker.ietf.org/doc/html/rfc3327
https://datatracker.ietf.org/doc/html/rfc3261

Baz Castillo, et al. Expires June 2, 2014 [Page 23]

Internet-Draft WebSocket as a Transport for SIP November 2013

Authors' Addresses

 Inaki Baz Castillo
 Versatica
 Barakaldo, Basque Country
 Spain

 Email: ibc@aliax.net

 Jose Luis Millan Villegas
 Versatica
 Bilbao, Basque Country
 Spain

 Email: jmillan@aliax.net

 Victor Pascual
 Quobis
 Spain

 Email: victor.pascual@quobis.com

Baz Castillo, et al. Expires June 2, 2014 [Page 24]

