
SIPPING WG R. Mahy
Internet-Draft Plantronics
Intended status: Informational R. Sparks
Expires: May 31, 2008 Estacado Systems
 J. Rosenberg
 Cisco Systems
 D. Petrie
 SIP EZ
 A. Johnston, Ed.
 Avaya
 November 28, 2007

A Call Control and Multi-party usage framework for the Session
Initiation Protocol (SIP)

draft-ietf-sipping-cc-framework-09

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 31, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Mahy, et al. Expires May 31, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SIP Call Control Framework November 2007

Abstract

 This document defines a framework and requirements for multi-party
 usage of SIP. To enable discussion of multi-party features and
 applications we define an abstract call model for describing the
 media relationships required by many of these. The model and actions
 described here are specifically chosen to be independent of the SIP
 signaling and/or mixing approach chosen to actually setup the media
 relationships. In addition to its dialog manipulation aspect, this
 framework includes requirements for communicating related information
 and events such as conference and session state, and session history.
 This framework also describes other goals that embody the spirit of
 SIP applications as used on the Internet.

Table of Contents

1. Motivation and Background 4
2. Key Concepts . 6
2.1. "Conversation Space" Model 6

 2.2. Relationship Between Conversation Space, SIP Dialogs,
 and SIP Sessions . 7

2.3. Signaling Models . 8
2.4. Mixing Models . 9
2.4.1. Tightly Coupled 10
2.4.2. Loosely Coupled 11

2.5. Conveying Information and Events 12
2.6. Componentization and Decomposition 14
2.6.1. Media Intermediaries 14
2.6.2. Mixer . 14
2.6.3. Transcoder . 15
2.6.4. Media Relay . 15
2.6.5. Queue Server . 15
2.6.6. Parking Place . 15
2.6.7. Announcements and Voice Dialogs 15

2.7. Use of URIs . 17
2.7.1. Naming Users in SIP 18
2.7.2. Naming Services with SIP URIs 19

2.8. Invoker Independence 21
2.9. Billing issues . 21

3. Catalog of call control actions and sample features 22
3.1. Remote Call Control Actions on Early Dialogs 22
3.1.1. Remote Answer . 22
3.1.2. Remote Forward or Put 23
3.1.3. Remote Busy or Error Out 23

3.2. Remote Call Control Actions on Single Dialogs 23
3.2.1. Remote Dial . 23
3.2.2. Remote On and Off Hold 23

Mahy, et al. Expires May 31, 2008 [Page 2]

Internet-Draft SIP Call Control Framework November 2007

3.2.3. Remote Hangup . 23
3.3. Call Control Actions on Multiple Dialogs 24
3.3.1. Transfer . 24
3.3.2. Take . 25
3.3.3. Add . 25
3.3.4. Local Join . 26
3.3.5. Insert . 27
3.3.6. Split . 27
3.3.7. Near-fork . 28
3.3.8. Far fork . 28

4. Security Considerations 29
5. IANA Considerations . 30
6. Appendix A: Example Features 30
6.1. Implementation of these features 33
6.1.1. Barge-in . 34
6.1.2. Call Monitoring 34
6.1.3. Call Park . 35
6.1.4. Call Pickup . 35
6.1.5. Click-to-dial . 35
6.1.6. Distinctive ring 36
6.1.7. Intercom . 36
6.1.8. Music on Hold . 36
6.1.9. Pre-paid calling 36
6.1.10. Single Line Extension/Multiple Line Appearance 37
6.1.11. Speakerphone paging 37
6.1.12. Voice message screening 37
6.1.13. Voice Portal . 38

7. Acknowledgements . 38
8. Informative References . 38

 Authors' Addresses . 41
 Intellectual Property and Copyright Statements 42

Mahy, et al. Expires May 31, 2008 [Page 3]

Internet-Draft SIP Call Control Framework November 2007

1. Motivation and Background

 The Session Initiation Protocol [1] (SIP) was defined for the
 initiation, maintenance, and termination of sessions or calls between
 one or more users. However, despite its origins as a large-scale
 multiparty conferencing protocol, SIP is used today primarily for
 point to point calls. This two-party configuration is the focus of
 the SIP specification and most of its extensions.

 This document defines a framework and requirements for multi-party
 usage of SIP. Most multi-party operations manipulate SIP dialogs
 (also known as call legs) or SIP conference media policy to cause
 participants in a conversation to perceive specific media
 relationships. In other protocols that deal with the concept of
 calls, this manipulation is known as call control. In addition to
 its dialog or policy manipulation aspect, "call control" also
 includes communicating information and events related to manipulating
 calls, including information and events dealing with session state
 and history, conference state, user state, and even message state.

 Based on input from the SIP community, the authors compiled the
 following set of goals for SIP call control and multiparty
 applications:
 o Define Primitives, Not Services. Allow for a handful of robust
 yet simple mechanisms that can be combined to deliver features and
 services. Throughout this document we refer to these simple
 mechanisms as "primitives". Primitives should be sufficiently
 robust so that when they are combined with eachother, they can be
 used to build lots of services. However, the goal is not to
 define a provably complete set of primitives. Note that while the
 IETF will NOT standardize behavior or services, it may define
 example services for informational purposes, as in service
 examples [6].
 o Participant oriented. The primitives should be designed to
 provide services that are oriented around the experience of the
 participants. The authors observe that end users of features and
 services usually don't care how a media relationship is setup.
 Their ultimate experience is based only on the resulting media and
 other externally visible characteristics.
 o Signaling Model independent: Support both a central control and a
 peer-to-peer feature invocation model (and combinations of the
 two). Baseline SIP already supports a centralized control model
 described in 3pcc [7], and the SIP community has expressed a great
 deal of interest in peer-to-peer or distributed call control using
 primitives such as those defined in REFER [8], Replaces [9], and
 Join [10].

Mahy, et al. Expires May 31, 2008 [Page 4]

Internet-Draft SIP Call Control Framework November 2007

 o Mixing Model independent: The bulk of interesting multiparty
 applications involve mixing or combining media from multiple
 participants. This mixing can be performed by one or more of the
 participants, or by a centralized mixing resource. The experience
 of the participants should not depend on the mixing model used.
 While most examples in this document refer to audio mixing, the
 framework applies to any media type. In this context a "mixer"
 refers to combining media of the same type in an appropriate,
 media-specific way. This is consistent with model described in
 the SIP conferencing framework.
 o Invoker oriented. Only the user who invokes a feature or a
 service needs to know exactly which service is invoked or why.
 This is good because it allows new services to be created without
 requiring new primitives from all the participants; and it allows
 for much simpler feature authorization policies, for example, when
 participation spans organizational boundaries. As discussed in

section 3.8, this also avoids exponential state explosion when
 combining features. The invoker only has to manage a user
 interface or API to prevent local feature interactions. All the
 other participants simply need to manage the feature interactions
 of a much smaller number of primitives.
 o Primitives make full use of URIs. URIs are a very powerful
 mechanism for describing users and services. They represent a
 plentiful resource that can be extremely expressive and easily
 routed, translated, and manipulated--even across organizational
 boundaries. URIs can contain special parameters and informational
 headers that need only be relevant to the owner of the namespace
 (domain) of the URI. Just as a user who selects an http: URL need
 not understand the significance and organization of the web site
 it references, a user may encounter a SIP URI that translates into
 an email-style group alias, that plays a pre-recorded message, or
 runs some complex call-handling logic. Note that while this may
 seem paradoxical to the previous goal, both goals can be satisfied
 by the same model.
 o Make use of SIP headers and SIP event packages to provide SIP
 entities with information about their environment. These should
 include information about the status / handling of dialogs on
 other user agents, information about the history of other contacts
 attempted prior to the current contact, the status of
 participants, the status of conferences, user presence
 information, and the status of messages.
 o Encourage service decomposition, and design to make use of
 standard components using well-defined, simple interfaces. Sample
 components include a SIP mixer, recording service, announcement
 server, and voice dialog server. (This is not an exhaustive
 list).

Mahy, et al. Expires May 31, 2008 [Page 5]

Internet-Draft SIP Call Control Framework November 2007

 o Include authentication, authorization, policy, logging, and
 accounting mechanisms to allow these primitives to be used safely
 among mutually untrusted participants. Some of these mechanisms
 may be used to assist in billing, but no specific billing system
 will be endorsed.
 o Permit graceful fallback to baseline SIP. Definitions for new SIP
 call control extensions/primitives must describe a graceful way to
 fallback to baseline SIP behavior. Support for one primitive must
 not imply support for another primitive.
 o There is no desire or goal to reinvent traditional models, such as
 the model used the [H.450] family of protocols, [JTAPI], or the
 [CSTA] call model, as these other models do not share the design
 goals presented in this document.

2. Key Concepts

 This section introduces a number of key concepts which will be used
 to describe and explain various call control operations and services
 in the remainder of this document. This includes the conversation
 space model, signaling and mixing models, common components, and the
 use of URIs.

2.1. "Conversation Space" Model

 This document introduces the concept of an abstract "conversation
 space" as a set of participants who believe they are all
 communicating among one another. Each conversation space contains
 one or more participants.

 Participants are SIP User Agents that send original media to or
 terminate and receive media from other members of the conversation
 space. Logically, every participant in the conversation space has
 access to all the media generated in that space (this is strictly
 true if all participants share a common media type). A SIP User
 Agent that does not contribute or consume any media is NOT a
 participant; nor is a user agent that merely forwards, transcoders,
 mixes, or selects media originating elsewhere in the conversation
 space. [Note that a conversation space consists of zero or more SIP
 calls or SIP conferences. A conversation space is similar to the
 definition of a "call" in some other call models.]

 Participants may represent human users or non-human users (referred
 to as robots or automatons in this document). Some participants may
 be hidden within a conversation space. Some examples of hidden
 participants include: robots that generate tones, images, or
 announcements during a conference to announce users arriving and
 departing, a human call center supervisor monitoring a conversation

Mahy, et al. Expires May 31, 2008 [Page 6]

Internet-Draft SIP Call Control Framework November 2007

 between a trainee and a customer, and robots that record media for
 training or archival purposes.

 Participants may also be active or passive. Active participants are
 expected to be intelligent enough to leave a conversation space when
 they no longer desire to participate. (An attentive human
 participant is obviously active.) Some robotic participants (such as
 a voice messaging system, an instant messaging agent, or a voice
 dialog system) may be active participants if they can leave the
 conversation space when there is no human interaction. Other robots
 (for example our tone generating robot from the previous example) are
 passive participants. A human participant "on-hold" is passive.

 An example diagram of a conversation space can be shown as a "bubble"
 or ovals, or as a "set" in curly or square brace notation. Each set,
 oval, or "bubble" represents a conversation space. Hidden
 participants are shown in lowercase letters.

 Note that while the term "conversation" usually applies to oral
 exchange of information, we apply the conversation space model to any
 media exchange between participants.

 { A , B } [A , b, C, D]

 .-. .---.
 / \ / \
 / A \ / A b \
 () ()
 \ B / \ C D /
 \ / \ /
 '-' '---'

2.2. Relationship Between Conversation Space, SIP Dialogs, and SIP
 Sessions

 In SIP, a call is "an informal term that refers to some communication
 between peers, generally set up for the purposes of a multimedia
 conversation." Obviously we cannot discuss normative behavior based
 on such an intentionally vague definition. The concept of a
 conversation space is needed because the SIP definition of call is
 not sufficiently precise for the purpose of describing the user
 experience of multiparty features.

 Do any other definitions convey the correct meaning? SIP, and SDP
 [5] both define a conference as "a multimedia session identified by a
 common session description." A session is defined as "a set of
 multimedia senders and receivers and the data streams flowing from
 senders to receivers." Both of these definitions are heavily

Mahy, et al. Expires May 31, 2008 [Page 7]

Internet-Draft SIP Call Control Framework November 2007

 oriented toward multicast sessions with little differentiation among
 participants. As such, neither is particularly useful for our
 purposes. In fact, the definition of "call" in some call models is
 more similar to our definition of a conversation space.

 Some examples of the relationship between conversation spaces, SIP
 dialogs, and SIP sessions are listed below. In each example, a human
 user will perceive that there is a single call.
 o A simple two-party call is a single conversation space, a single
 session, and a single dialog.
 o A locally mixed three-way call is two sessions and two dialogs.
 It is also a single conversation space.
 o A simple dial-in audio conference is a single conversation space,
 but is represented by as many dialogs and sessions as there are
 human participants.
 o A multicast conference is a single conversation space, a single
 session, and as many dialogs as participants.

2.3. Signaling Models

 Obviously to make changes to a conversation space, you must be able
 to use SIP signaling to cause these changes. Specifically there must
 be a way to manipulate SIP dialogs (call legs) to move participants
 into and out of conversation spaces. Although this is not as
 obvious, there also must be a way to manipulate SIP dialogs to
 include non-participant user agents that are otherwise involved in a
 conversation space (ex: B2BUAs, 3pcc controllers, mixers,
 transcoders, translators, or relays).

 Implementations may setup the media relationships described in the
 conversation space model using a centralized control model. One
 common way to implement this using SIP is known as 3rd Party Call
 Control (3pcc) and is described in 3pcc [7]. The 3pcc approach
 relies on only the following 3 primitive operations:
 o Create a new dialog (INVITE)
 o Modify a dialog (reINVITE)
 o Destroy a dialog (BYE)

 The main advantage of the 3pcc approach is that it only requires very
 basic SIP support from end systems to support call control features.
 As such, third-party call control is a natural way to handle protocol
 conversion and mid-call features. It also has the advantage and
 disadvantage that new features can/must be implemented in one place
 only (the controller), and neither requires enhanced client
 functionality, nor takes advantage of it.

 In addition, a peer-to-peer approach is discussed at length in this
 draft. The primary drawback of the peer-to-peer model is additional

Mahy, et al. Expires May 31, 2008 [Page 8]

Internet-Draft SIP Call Control Framework November 2007

 complexity in the end system and authentication and management
 models. The benefits of the peer-to-peer model include:
 o state remains at the edges
 o call signaling need only go through participants involved (there
 are no additional points of failure)
 o peers can take advantage of end-to-end message integrity or
 encryption
 o setup time is shorter (fewer messages are required to be sent by
 the initiator of the action)

 The peer-to-peer approach relies on additional "primitive"
 operations, some of which are identified here.
 o Replace an existing dialog
 o Join a new dialog with an existing dialog
 o Locally perform media forking (multi-unicast)
 o Ask another UA to send a request on your behalf

 The peer-to-peer approach also only results in a single SIP dialog,
 directly between the two UAs. The 3pcc approach results in two SIP
 dialogs, between each UA and the controller. As a result, the SIP
 features and extensions that will be used during the dialog are
 limited to the those understood by the controller. As a result, in a
 situation where both the UAs support an advanced SIP feature but the
 controller does not, the feature will not be able to be used.

 Many of the features, primitives, and actions described in this
 document also require some type of media mixing, combining, or
 selection as described in the next section.

2.4. Mixing Models

 SIP permits a variety of mixing models, which are discussed here
 briefly. This topic is discussed more thoroughly in the SIP
 conferencing framework [15] and cc-conferencing [19]. SIP supports
 both tightly-coupled and loosely-coupled conferencing, although more
 sophisticated behavior is available in tightly-coupled conferences.
 In a tightly-coupled conference, a single SIP user agent (called the
 focus) has a direct dialog relationship with each participant (and
 may control non participant user agents as well). In a loosely-
 coupled conference there is no coordinated signaling relationships
 among the participants.

 For brevity, only the two most popular conferencing models are
 significantly discussed in this document (local and centralized
 mixing). Applications of the conversation spaces model to loosely-
 coupled multicast and distributed full unicast mesh conferences are
 left as an exercise for the reader. Note that a distributed full
 mesh conference can be used for basic conferences, but does not

Mahy, et al. Expires May 31, 2008 [Page 9]

Internet-Draft SIP Call Control Framework November 2007

 easily allow for more complex conferencing actions like splitting,
 merging, and sidebars.

 Call control features should be designed to allow a mixer (local or
 centralized) to decide when to reduce a conference back to a 2-party
 call, or drop all the participants (for example if only two
 automatons are communicating). The actual heuristics used to release
 calls are beyond the scope of this document, but may depend on
 properties in the conversation space, such as the number of active,
 passive, or hidden participants; and the send-only, receive-only, or
 send-and-receive orientation of various participants.

2.4.1. Tightly Coupled

 Tightly coupled conferences utilize a central point for signaling and
 authentication known as a focus [15]. The actual media can be
 centrally mixed or distributed.

2.4.1.1. (Single) End System Mixing

 The first model we call "end system mixing". In this model, user A
 calls user B, and they have a conversation. At some point later, A
 decides to conference in user C. To do this, A calls C, using a
 completely separate SIP call. This call uses a different Call-ID,
 different tags, etc. There is no call set up directly between B and
 C. No SIP extension or external signaling is needed. A merely
 decides to locally join two dialogs.

 B C
 \ /
 \ /
 A

 A receives media streams from both B and C, and mixes them. A sends
 a stream containing A's and C's streams to B, and a stream containing
 A's and B's streams to C. Basically, user A handles both signaling
 and media mixing.

2.4.1.2. Centralized Mixing

 In a centralized mixing model, all participants have a pairwise SIP
 and media relationship with the mixer. Common applications of
 centralized mixing include ad-hoc conferences and scheduled dial-in
 or dial-out conferences. In the figure below, the mixer M receives
 and sends media to participants A, B, C, D, and E.

Mahy, et al. Expires May 31, 2008 [Page 10]

Internet-Draft SIP Call Control Framework November 2007

 B C
 \ /
 \ /
 M --- A
 / \
 / \
 D E

2.4.1.3. Centralized Signaling, Distributed Media

 In this conferencing model, there is a centralized controller, as in
 the dial-in and dial-out cases. However, the centralized server
 handles signaling only. The media is still sent directly between
 participants, using either multicast or multi-unicast. Participants
 perform their own mixing. Multi-unicast is when a user sends
 multiple packets (one for each recipient, addressed to that
 recipient). This is referred to as a "Decentralized Multipoint
 Conference" in [H.323]. Full mesh media with centralized mixing is
 another approach.

2.4.2. Loosely Coupled

 In these models, there is no point of central control of SIP
 signaling. As in the "Centralized Signaling, Distributed Media" case
 above, all endpoints send media to all other endpoints. Consequently
 every endpoint mixes their own media from all the other sources, and
 sends their own media to every other participant.

2.4.2.1. Large-Scale Multicast Conferences

 Large-scale multicast conferences were the original motivation for
 both the Session Description Protocol SDP [5] and SIP. In a large-
 scale multicast conference, one or more multicast addresses are
 allocated to the conference. Each participant joins those multicast
 groups, and sends their media to those groups. Signaling is not sent
 to the multicast groups. The sole purpose of the signaling is to
 inform participants of which multicast groups to join. Large-scale
 multicast conferences are usually pre-arranged, with specific start
 and stop times. However, multicast conferences do not need to be
 pre-arranged, so long as a mechanism exists to dynamically obtain a
 multicast address.

2.4.2.2. Full Distributed Unicast Conferencing

 In this conferencing model, each participant has both a pairwise
 media relationship and a pairwise signaling relationship with every
 other participant (a full mesh). This model requires a mechanism to

Mahy, et al. Expires May 31, 2008 [Page 11]

Internet-Draft SIP Call Control Framework November 2007

 maintain a consistent view of distributed state across the group.
 This is a classic hard problem in computer science. Also, this model
 does not scale well for large numbers of participants. because for
 <n> participants the number of media and signaling relationships is
 approximately n-squared. As a result, this model is not generally
 available in commercial implementations; to the contrary it is
 primarily the topic of research or experimental implementations.
 Note that this model assumes peer-to-peer signaling.

2.5. Conveying Information and Events

 Participants should have access to information about the other
 participants in a conversation space, so that this information can be
 rendered to a human user or processed by an automaton. Although some
 of this information may be available from the Request-URI or To,
 From, Contact, or other SIP headers, another mechanism of reporting
 this information is necessary.

 Many applications are driven by knowledge about the progress of calls
 and conferences. In general these types of events allow for the
 construction of distributed applications, where the application
 requires information on dialog and conference state, but is not
 necessarily co-resident with an endpoint user agent or conference
 server. For example, a focus involved in a conversation space may
 wish to provide URIs for conference status, and/or conference/floor
 control.

 The SIP Events [4] architecture defines general mechanisms for
 subscription to and notification of events within SIP networks. It
 introduces the notion of a package that is a specific "instantiation"
 of the events mechanism for a well-defined set of events.

 Event packages are needed to provide the status of a user's dialogs,
 provide the status of conferences and its participants, provide user
 presence information, provide the status of registrations, and
 provide the status of user's messages. While this is not an
 exhaustive list, these are sufficient to enable the sample features
 described in this document.

 The conference event package [12] allows users to subscribe to
 information about an entire tightly-coupled SIP conference.
 Notifications convey information about the participants such as: the
 SIP URI identifying each user, their status in the space (active,
 declined, departed), URIs to invoke other features (such as sidebar
 conversations), links to other relevant information (such as floor
 control policies), and if floor control policies are in place, the
 user's floor control status. For conversation spaces created from
 cascaded conferences, conversation state can be gathered from

Mahy, et al. Expires May 31, 2008 [Page 12]

Internet-Draft SIP Call Control Framework November 2007

 relevant foci and merged into a cohesive set of state.

 The dialog package [11] provides information about all the dialogs
 the target user is maintaining, what conversations the user in
 participating in, and how these are correlated. Likewise the
 registration package [13] provides notifications when contacts have
 changed for a specific address-of-record. The combination of these
 allows a user agent to learn about all conversations occurring for
 the entire registered contact set for an address-of-record.

 Note that user presence in SIP [14] has a close relationship with
 these later two event packages. It is fundamental to the presence
 model that the information used to obtain user presence is
 constructed from any number of different input sources. Examples of
 other such sources include calendaring information and uploads of
 presence documents. These two packages can be considered another
 mechanism that allows a presence agent to determine the presence
 state of the user. Specifically, a user presence server can act as a
 subscriber for the dialog and registration packages to obtain
 additional information that can be used to construct a presence
 document.

 The multi-party architecture may also need to provide a mechanism to
 get information about the status /handling of a dialog (for example,
 information about the history of other contacts attempted prior to
 the current contact). Finally, the architecture should provide ample
 opportunities to present informational URIs that relate to calls,
 conversations, or dialogs in some way. For example, consider the SIP
 Call-Info header, or Contact headers returned in a 300-class
 response. Frequently additional information about a call or dialog
 can be fetched via non-SIP URIs. For example, consider a web page
 for package tracking when calling a delivery company, or a web page
 with related documentation when joining a dial-in conference. The
 use of URIs in the multiparty framework is discussed in more detail
 in Section 3.7.

 Finally the interaction of SIP with stimulus-signaling-based
 applications, that allow a user agent to interact with an application
 without knowledge of the semantics of that application, is discussed
 in the SIP application interaction framework [16]. Stimulus
 signaling can occur to a user interface running locally with the
 client, or to a remote user interface, through media streams.
 Stimulus signaling encompasses a wide range of mechanisms, ranging
 from clicking on hyperlinks, to pressing buttons, to traditional Dual
 Tone Multi Frequency (DTMF) input. In all cases, stimulus signaling
 is supported through the use of markup languages, which play a key
 role in that framework.

Mahy, et al. Expires May 31, 2008 [Page 13]

Internet-Draft SIP Call Control Framework November 2007

2.6. Componentization and Decomposition

 This framework proposes a decomposed component architecture with a
 very loose coupling of services and components. This means that a
 service (such as a conferencing server or an auto-attendant) need not
 be implemented as an actual server. Rather, these services can be
 built by combining a few basic components in straightforward or
 arbitrarily complex ways.

 Since the components are easily deployed on separate boxes, by
 separate vendors, or even with separate providers, we achieve a
 separation of function that allows each piece to be developed in
 complete isolation. We can also reuse existing components for new
 applications. This allows rapid service creation, and the ability
 for services to be distributed across organizational domains anywhere
 in the Internet.

 For many of these components it is also desirable to discover their
 capabilities, for example querying the ability of a mixer to host a
 10 dialog conference, or to reserve resources for a specific time.
 These actions could be provided in the form of URIs, provided there
 is an a priori means of understanding their semantics. For example
 if there is a published dictionary of operations, a way to query the
 service for the available operations and the associated URIs, the URI
 can be the interface for providing these service operations. This
 concept is described in more detail in the context of dialog
 operations in Section 3.

2.6.1. Media Intermediaries

 Media Intermediaries are not participants in any conversation space,
 although an entity that is also a media translator may also have a
 co-located participant component (for example a mixer that also
 announces the arrival of a new participant; the announcement portion
 is a participant, but the mixer itself is not). Media intermediaries
 should be as transparent as possible to the end users--offering a
 useful, fundamental service; without getting in the way of new
 features implemented by participants. Some common media
 intermediaries are described below.

2.6.2. Mixer

 A SIP mixer is a component that combines media from all dialogs in
 the same conversation in a media specific way. For example, the
 default combining for an audio conference might be an N-1
 configuration, while a text mixer might interleave text messages on a
 per-line basis. More details about how to manipulate the media
 policy used by mixers is being discussed in the XCON Working Group.

Mahy, et al. Expires May 31, 2008 [Page 14]

Internet-Draft SIP Call Control Framework November 2007

2.6.3. Transcoder

 A transcoder translates media from one encoding or format to another
 (for example, GSM voice to G.711, MPEG2 to H.261, or text/html to
 text/plain), or from one media type to another (for example text to
 speech). A more thorough discussion of transcoding is described in
 SIP transcoding services invocation [17].

2.6.4. Media Relay

 A media relay terminates media and simply forwards it to a new
 destination without changing the content in any way. Sometimes media
 relays are used to provide source IP address anonymity, to facilitate
 middlebox traversal, or to provide a trusted entity where media can
 be forcefully disconnected.

2.6.5. Queue Server

 A queue server is a location where calls can be entered into one of
 several FIFO (first-in, first-out) queues. A queue server would
 subscribe to the presence of groups or individuals who are interested
 in its queues. When detecting that a user is available to service a
 queue, the server redirects or transfers the last call in the
 relevant queue to the available user. On a queue-by-queue basis,
 authorized users could also subscribe to the call state (dialog
 information) of calls within a queue. Authorized users could use
 this information to effectively pluck (take) a call out of the queue
 (for example by sending an INVITE with a Replaces header to one of
 the user agents in the queue).

2.6.6. Parking Place

 A parking place is a location where calls can be terminated
 temporarily and then retrieved later. While a call is "parked", it
 can receive media "on-hold" such as music, announcements, or
 advertisements. Such a service could be further decomposed such that
 announcements or music are handled by a separate component.

2.6.7. Announcements and Voice Dialogs

 An announcement server is a server that can play digitized media
 (frequently audio), such as music or recorded speech. These servers
 are typically accessible via SIP, HTTP, or RTSP. An analogous
 service is a recording service that stores digitized media. A
 convention for specifying announcements in SIP URIs is described in
 [24]. Likewise the same server could easily provide a service that
 records digitized media.

Mahy, et al. Expires May 31, 2008 [Page 15]

Internet-Draft SIP Call Control Framework November 2007

 A "voice dialog" is a model of spoken interactive behavior between a
 human and an automaton that can include synthesized speech, digitized
 audio, recognition of spoken and DTMF key input, recording of spoken
 input, and interaction with call control. Voice dialogs frequently
 consist of forms or menus. Forms present information and gather
 input; menus offer choices of what to do next.

 Spoken dialogs are a basic building block of applications that use
 voice. Consider for example that a voice mail system, the
 conference-id and passcode collection system for a conferencing
 system, and complicated voice portal applications all require a voice
 dialog component.

2.6.7.1. Text-to-Speech and Automatic Speech Recognition

 Text-to-Speech (TTS) is a service that converts text into digitized
 audio. TTS is frequently integrated into other applications, but
 when separated as a component, it provides greater opportunity for
 broad reuse. Automatic Speech Recognition (ASR) is a service that
 attempts to decipher digitized speech based on a proposed grammar.
 Like TTS, ASR services can be embedded, or exposed so that many
 applications can take advantage of such services. A standardized
 (decomposed) interface to access standalone TTS and ASR services is
 currently being developed in the SPEECHSC Working Group.

2.6.7.2. VoiceXML

 [VoiceXML] is a W3C recommendation that was designed to give authors
 control over the spoken dialog between users and applications. The
 application and user take turns speaking: the application prompts the
 user, and the user in turn responds. Its major goal is to bring the
 advantages of web-based development and content delivery to
 interactive voice response applications. We believe that VoiceXML
 represents the ideal partner for SIP in the development of
 distributed IVR servers. VoiceXML is an XML based scripting language
 for describing IVR services at an abstract level. VoiceXML supports
 DTMF recognition, speech recognition, text-to-speech, and playing out
 of recorded media files. The results of the data collected from the
 user are passed to a controlling entity through an HTTP POST
 operation. The controller can then return another script, or
 terminate the interaction with the IVR server.

 A VoiceXML server also need not be implemented as a monolithic
 server. Below is a diagram of a VoiceXML browser that is split into
 media and non-media handling parts. The VoiceXML interpreter handles
 SIP dialog state and state within a VoiceXML document, and sends
 requests to the media component over another protocol.

Mahy, et al. Expires May 31, 2008 [Page 16]

Internet-Draft SIP Call Control Framework November 2007

 +-------------+
 | |
 | VoiceXML |
 | Interpreter |
 | (signaling) |
 +-------------+
 ^ ^
 | |
 SIP | | RTSP
 | |
 | |
 v v
 +-------------+ +-------------+
 | | | |
 | SIP UA | RTP | RTSP Server |
 | |<------>| (media) |
 | | | |
 +-------------+ +-------------+

 Figure : Decomposed VoiceXML Server

2.7. Use of URIs

 All naming in SIP uses URIs. URIs in SIP are used in a plethora of
 contexts: the Request-URI; Contact, To, From, and *-Info headers;
 application/uri bodies; and embedded in email, web pages, instant
 messages, and ENUM records. The request-URI identifies the user or
 service that the call is destined for.

 SIP URIs embedded in informational SIP headers, SIP bodies, and non-
 SIP content can also specify methods, special parameters, headers,
 and even bodies. For example:

 sip:bob@b.example.com;method=REFER?Refer-To=http://example.com/~alice

 Throughout this draft we discuss call control primitive operations.
 One of the biggest problems is defining how these operations may be
 invoked. There are a number of ways to do this. One way is to
 define the primitives in the protocol itself such that SIP methods
 (for example REFER) or SIP headers (for example Replaces) indicate a
 specific call control action. Another way to invoke call control
 primitives is to define a specific Request-URI naming convention.
 Either these conventions must be shared between the client (the
 invoker) and the server, or published by or on behalf of the server.
 The former involves defining URI construction techniques (e.g. URI

Mahy, et al. Expires May 31, 2008 [Page 17]

Internet-Draft SIP Call Control Framework November 2007

 parameters and/or token conventions) as proposed in [24]. The latter
 technique usually involves discovering the URI via a SIP event
 package, a web page, a business card, or an Instant Message. Yet
 another means to acquire the URIs is to define a dictionary of
 primitives with well-defined semantics and provide a means to query
 the named primitives and corresponding URIs that may be invoked on
 the service or dialogs.

2.7.1. Naming Users in SIP

 An address-of-record, or public SIP address, is a SIP (or SIPS) URI
 that points to a domain with a location server that can map the URI
 to set of Contact URIs where the user might be available. Typically
 the Contact URIs are populated via registration.

 Address of Record Contacts

 sip:bob@biloxi.example.com -> sip:bob@babylon.biloxi.example.com:5060
 sip:bbrown@mailbox.provider.example.net
 sip:+1.408.555.6789@mobile.example.net

 Callee Capabilities [20] defines a set of additional parameters to
 the Contact header that define the characteristics of the user agent
 at the specified URI. For example, there is a mobility parameter
 that indicates whether the UA is fixed or mobile. When a user agent
 registers, it places these parameters in the Contact headers to
 characterize the URIs it is registering. This allows a proxy for
 that domain to have information about the contact addresses for that
 user.

 When a caller sends a request, it can optionally request Caller
 Preferences [21], by including the Accept-Contact, Request-
 Disposition, and Reject-Contact headers that request certain handling
 by the proxy in the target domain. These headers contain preferences
 that describe the set of desired URIs to which the caller would like
 their request routed. The proxy in the target domain matches these
 preferences with the Contact characteristics originally registered by
 the target user. The target user can also choose to run arbitrarily
 complex "Find-me" feature logic on a proxy in the target domain.

 There is a strong asymmetry in how preferences for callers and
 callees can be presented to the network. While a caller takes an
 active role by initiating the request, the callee takes a passive
 role in waiting for requests. This motivates the use of callee-
 supplied scripts and caller preferences included in the call request.
 This asymmetry is also reflected in the appropriate relationship
 between caller and callee preferences. A server for a callee should
 respect the wishes of the caller to avoid certain locations, while

Mahy, et al. Expires May 31, 2008 [Page 18]

Internet-Draft SIP Call Control Framework November 2007

 the preferences among locations has to be the callee's choice, as it
 determines where, for example, the phone rings and whether the callee
 incurs mobile telephone charges for incoming calls.

 SIP User Agent implementations are encouraged to make intelligent
 decisions based on the type of participants (active/passive, hidden,
 human/robot) in a conversation space. This information is conveyed
 via the dialog package or in a SIP header parameter communicated
 using an appropriate SIP header. For example, a music on hold
 service may take the sensible approach that if there are two or more
 unhidden participants, it should not provide hold music; or that it
 will not send hold music to robots.

 Multiple participants in the same conversation space may represent
 the same human user. For example, the user may use one participant
 for video, chat, and whiteboard media on a PC and another for audio
 media on a SIP phone. In this case, the address-of-record is the
 same for both user agents, but the Contacts are different. In
 addition, human users may add robot participants that act on their
 behalf (for example a call recording service, or a calendar
 announcement reminder). Call Control features in SIP should continue
 to function as expected in such an environment.

2.7.2. Naming Services with SIP URIs

 A critical piece of defining a session level service that can be
 accessed by SIP is defining the naming of the resources within that
 service. This point cannot be overstated.

 In the context of SIP control of application components, we take
 advantage of the fact that the left-hand-side of a standard SIP URI
 is a user part. Most services may be thought of as user automatons
 that participate in SIP sessions. It naturally follows that the user
 part should be utilized as a service indicator.

 For example, media servers commonly offer multiple services at a
 single host address. Use of the user part as a service indicator
 enables service consumers to direct their requests without ambiguity.
 It has the added benefit of enabling media services to register their
 availability with SIP Registrars just as any "real" SIP user would.
 This maintains consistency and provides enhanced flexibility in the
 deployment of media services in the network.

 There has been much discussion about the potential for confusion if
 media services URIs are not readily distinguishable from other types
 of SIP UAs. The use of a service namespace provides a mechanism to
 unambiguously identify standard interfaces while not constraining the
 development of private or experimental services.

Mahy, et al. Expires May 31, 2008 [Page 19]

Internet-Draft SIP Call Control Framework November 2007

 In SIP, the Request-URI identifies the user or service that the call
 is destined for. The great advantage of using URIs (specifically,
 the SIP Request-URI) as a service identifier comes because of the
 combination of two facts. First, unlike in the PSTN, where the
 namespace (dialable telephone numbers) are limited, URIs come from an
 infinite space. They are plentiful, and they are free. Secondly,
 the primary function of SIP is call routing through manipulations of
 the Request-URI. In the traditional SIP application, this URI
 represents a person. However, the URI can also represent a service,
 as we propose here. This means we can apply the routing services SIP
 provides to routing of calls to services. The result - the problem
 of service invocation and service location becomes a routing problem,
 for which SIP provides a scalable and flexible solution. Since there
 is such a vast namespace of services, we can explicitly name each
 service in a finely granular way. This allows the distribution of
 services across the network. For further discussion about services
 and SIP URIs, see RFC 3087 [22]

 Consider a conferencing service, where we have separated the names of
 ad-hoc conferences from scheduled conferences, we can program proxies
 to route calls for ad-hoc conferences to one set of servers, and
 calls for scheduled ones to another, possibly even in a different
 provider. In fact, since each conference itself is given a URI, we
 can distribute conferences across servers, and easily guarantee that
 calls for the same conference always get routed to the same server.
 This is in stark contrast to conferences in the telephone network,
 where the equivalent of the URI - the phone number - is scarce. An
 entire conferencing provider generally has one or two numbers.
 Conference IDs must be obtained through IVR interactions with the
 caller, or through a human attendant. This makes it difficult to
 distribute conferences across servers all over the network, since the
 PSTN routing only knows about the dialed number.

 For more examples, consider the URI conventions of RFC 4240 [24] for
 media servers and RFC 4458 [25] for voicemail and IVR systems.

 In practical applications, it is important that an invoker does not
 necessarily apply semantic rules to various URIs it did not create.
 Instead, it should allow any arbitrary string to be provisioned, and
 map the string to the desired behavior. The administrator of a
 service may choose to provision specific conventions or mnemonic
 strings, but the application should not require it. In any large
 installation, the system owner is likely to have pre-existing rules
 for mnemonic URIs, and any attempt by an application to define its
 own rules may create a conflict. Implementations should allow an
 arbitrary mix of URIs from these schemes, or any other scheme that
 renders valid SIP URIs to be provisioned, rather than enforce only
 one particular scheme.

https://datatracker.ietf.org/doc/html/rfc3087
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4458

Mahy, et al. Expires May 31, 2008 [Page 20]

Internet-Draft SIP Call Control Framework November 2007

 As we have shown, SIP URIs represent an ideal, flexible mechanism for
 describing and naming service resources, regardless if the resources
 are queues, conferences, voice dialogs, announcements, voicemail
 treatments, or phone features.

2.8. Invoker Independence

 With functional signaling, only the invoker of features in SIP need
 to know exactly which feature they are invoking. One of the primary
 benefits of this approach is that combinations of functional features
 work in SIP call control without requiring complex feature
 interaction matrices. For example, let us examine the combination of
 a "transfer" of a call that is "conferenced".

 Alice calls Bob. Alice silently "conferences in" her robotic
 assistant Albert as a hidden party. Bob transfers Alice to Carol.
 If Bob asks Alice to Replace her leg with a new one to Carol then
 both Alice and Albert should be communicating with Carol
 (transparently).

 Using the peer-to-peer model, this combination of features works fine
 if A is doing local mixing (Alice replaces Bob's dialog with
 Carol's), or if A is using a central mixer (the mixer replaces Bob's
 dialog with Carol's). A clever implementation using the 3pcc model
 can generate similar results.

 New extensions to the SIP Call Control Framework should attempt to
 preserve this property.

2.9. Billing issues

 Billing in the PSTN is typically based on who initiated a call. At
 the moment billing in a SIP network is neither consistent with
 itself, nor with the PSTN. (A billing model for SIP should allow for
 both PSTN-style billing, and non-PSTN billing.) The example below
 demonstrates one such inconsistency.

 Alice places a call to Bob. Alice then blind transfers Bob to Carol
 through a PSTN gateway. In current usage of REFER, Bob may be billed
 for a call he did not initiate (his UA originated the outgoing dialog
 however). This is not necessarily a terrible thing, but it
 demonstrates a security concern (Bob must have appropriate local
 policy to prevent fraud). Also, Alice may wish to pay for Bob's
 session with Carol. There should be a way to signal this in SIP.

 Likewise a Replacement call may maintain the same billing
 relationship as a Replaced call, so if Alice first calls Carol, then
 asks Bob to Replace this call, Alice may continue to receive a bill.

Mahy, et al. Expires May 31, 2008 [Page 21]

Internet-Draft SIP Call Control Framework November 2007

 Further work in SIP billing should define a way to set or discover
 the direction of billing.

3. Catalog of call control actions and sample features

 Call control actions can be categorized by the dialogs upon which
 they operate. The actions may involve a single or multiple dialogs.
 These dialogs can be early or established. Multiple dialogs may be
 related in a conversation space to form a conference or other
 interesting media topologies.

 It should be noted that it is desirable to provide a means by which a
 party can discover the actions that may be performed on a dialog.
 The interested party may be independent or related to the dialogs.
 One means of accomplishing this is through the ability to define and
 obtain URIs for these actions as described in section .

 Below are listed several call control "actions" that establish or
 modify dialogs and relate the participants in a conversation space.
 The names of the actions listed are for descriptive purposes only
 (they are not normative). This list of actions is not meant to be
 exhaustive.

 In the examples, all actions are initiated by the user "Alice"
 represented by UA "A".

3.1. Remote Call Control Actions on Early Dialogs

 The following are a set of actions that may be performed on a single
 early dialog. These actions can be thought of as a set of remote
 control operations. For example an automaton might perform the
 operation on behalf of a user. Alternatively a user might use the
 remote control in the form of an application to perform the action on
 the early dialog of a UA that may be out of reach. All of these
 actions correspond to telling the UA how to respond to a request to
 establish an early dialog. These actions provide useful
 functionality for PDA, PC and server based applications that desire
 the ability to control a UA. A proposed mechanism for this type of
 functionality is described in Remote Call Control [23].

3.1.1. Remote Answer

 A dialog is in some early dialog state such as 180 Ringing. It may
 be desirable to tell the UA to answer the dialog. That is tell it to
 send a 200 Ok response to establish the dialog.

Mahy, et al. Expires May 31, 2008 [Page 22]

Internet-Draft SIP Call Control Framework November 2007

3.1.2. Remote Forward or Put

 It may be desirable to tell the UA to respond with a 3xx class
 response to forward an early dialog to another UA.

3.1.3. Remote Busy or Error Out

 It may be desirable to instruct the UA to send an error response such
 as 486 Busy Here.

3.2. Remote Call Control Actions on Single Dialogs

 There is another useful set of actions that operate on a single
 established dialog. These operations are useful in building
 productivity applications for aiding users to control their phone.
 For example a Customer Relationship Management (CRM) application that
 sets up calls for a user eliminating the need for the user to
 actually enter an address. These operations can also be thought of a
 remote control actions. A proposed mechanism for this type of
 functionality is described in Remote Call Control [23].

3.2.1. Remote Dial

 This action instructs the UA to initiate a dialog. This action can
 be performed using the REFER method.

3.2.2. Remote On and Off Hold

 This action instructs the UA to put an established dialog on hold.
 Though this operation can conceptually be performed with the REFER
 method, there is no semantics defined as to what the referred party
 should do with the SDP. There is no way to distinguish between the
 desire to go on or off hold on a per media stream basis.

3.2.3. Remote Hangup

 This action instructs the UA to terminate an early or established
 dialog. A REFER request with the following Refer-To URI and Target-
 Dialog header field [26] performs this action. Note: this example
 does not show the full set of header fields.

 REFER sip:carol@client.chicago.net SIP/2.0
 Refer-To: sip:bob@babylon.biloxi.example.com;method=BYE
 Target-Dialog: 13413098;local-tag=879738;remote-tag=023214

Mahy, et al. Expires May 31, 2008 [Page 23]

Internet-Draft SIP Call Control Framework November 2007

3.3. Call Control Actions on Multiple Dialogs

 These actions apply to a set of related dialogs.

3.3.1. Transfer

 This section describes how call transfer can be achieved using
 centralized (3pcc) and peer-to-peer (REFER) approaches.

 The conversation space changes as follows:

 before after
 { A , B } --> { C , B }

 A replaces itself with C.

 To make this happen using the peer-to-peer approach, "A" would send
 two SIP requests. A shorthand for those requests is shown below:

 REFER B Refer-To:C
 BYE B

 To make this happen instead using the 3pcc approach, the controller
 sends requests represented by the shorthand below:

 INVITE C (w/SDP of B)
 reINVITE B (w/SDP of C)
 BYE A

 Features enabled by this action:

 - blind transfer
 - transfer to a central mixer (some type of conference or forking)
 - transfer to park server (park)
 - transfer to music on hold or announcement server
 - transfer to a "queue"
 - transfer to a service (such as Voice Dialogs service)
 - transition from local mixer to central mixer

 This action is frequently referred to as "completing an attended
 transfer". It is described in more detail in cc-transfer [18].

 Note that if a transfer requires URI hiding or privacy, then the 3pcc
 approach can more easily implement this. For example, if the URI of
 C needs to be hidden from B, then the use of 3pcc helps accomplish
 this.

Mahy, et al. Expires May 31, 2008 [Page 24]

Internet-Draft SIP Call Control Framework November 2007

3.3.2. Take

 The conversation space changes as follows:

 { B , C } --> { B , A }

 A forcibly replaces C with itself. In most uses of this primitive, A
 is just "un-replacing" itself.

 Using the peer-to-peer approach, "A" sends:

 INVITE B Replaces: <dialog between B and C>

 Using the 3pcc approach (all requests sent from controller)

 INVITE A (w/SDP of B)
 reINVITE B (w/SDP of A)
 BYE C

 Features enabled by this action:

 - transferee completes an attended transfer
 - retrieve from central mixer (not recommended)
 - retrieve from music on hold or park
 - retrieve from queue
 - call center take
 - voice portal resuming ownership of a call it originated
 - answering-machine style screening (pickup)
 - pickup of a ringing call (i.e. early dialog)

 Note: that pick up of a ringing call has perhaps some interesting
 additional requirements. First of all it is an early dialog as
 opposed to an established dialog. Secondly the party which is to
 pickup the call may only wish to do so only while it is an early
 dialog. That is in the race condition where the ringing UA accepts
 just before it receives signaling from the party wishing to take the
 call, the taking party wishes to yield or cancel the take. The goal
 is to avoid yanking an answered call from the called party.

 This action is described in Replaces [9] and in cc-transfer [18].

3.3.3. Add

 Note that the following 4 actions are described in cc-conferencing
 [19].

 This is merely adding a participant to a SIP conference. The
 conversation space changes as follows:

Mahy, et al. Expires May 31, 2008 [Page 25]

Internet-Draft SIP Call Control Framework November 2007

 { A , B } --> { A , B , C }

 A adds C to the conversation.

 Using the peer-to-peer approach, adding a party using local mixing
 requires no signaling. To transition from a 2-party call or a
 locally mixed conference to centrally mixing A could send the
 following requests:

 REFER B Refer-To: conference-URI
 INVITE conference-URI
 BYE B

 To add a party to a conference:

 REFER C Refer-To: conference-URI
 or
 REFER conference-URI Refer-To: C

 Using the 3pcc approach to transition to centrally mixed, the
 controller would send:

 INVITE mixer leg 1 (w/SDP of A)
 INVITE mixer leg 2 (w/SDP of B)
 INVITE C (late SDP)
 reINVITE A (w/SDP of mixer leg 1)
 reINVITE B (w/SDP of mixer leg 2)
 INVITE mixer leg3 (w/SDP of C)

 To add a party to a SIP conference:

 INVITE C (late SDP)
 INVITE conference-URI (w/SDP of C)

 Features enabled:

 - standard conference feature
 - call recording
 - answering-machine style screening (screening)

3.3.4. Local Join

 The conversation space changes like this:

 { A , B } , { A , C } --> { A , B , C }

 or like this

Mahy, et al. Expires May 31, 2008 [Page 26]

Internet-Draft SIP Call Control Framework November 2007

 { A , B } , { C , D } --> { A , B , C , D }

 A takes two conversation spaces and joins them together into a single
 space.

 Using the peer-to-peer approach, A can mix locally, or REFER the
 participants of both conversation spaces to the same central mixer
 (as in 3.3.5).

 For the 3pcc approach, the call flows for inserting participants, and
 joining and splitting conversation spaces are tedious yet
 straightforward, so these are left as an exercise for the reader.

 Features enabled:

 - standard conference feature
 - leaving a sidebar to rejoin a larger conference

3.3.5. Insert

 The conversation space changes like this:

 { B , C } --> { A , B , C }

 A inserts itself into a conversation space.

 A proposed mechanism for signaling this using the peer-to-peer
 approach is to send a new header in an INVITE with "joining" [10]
 semantics. For example:

 INVITE B Join: <dialog id of B and C>

 If B accepted the INVITE, B would accept responsibility to setup the
 dialogs and mixing necessary (for example: to mix locally or to
 transfer the participants to a central mixer)

 Features enabled:

 - barge-in
 - call center monitoring
 - call recording

3.3.6. Split

 { A , B , C , D } --> { A , B } , { C , D }

 If using a central conference with peer-to-peer

Mahy, et al. Expires May 31, 2008 [Page 27]

Internet-Draft SIP Call Control Framework November 2007

 REFER C Refer-To: conference-URI (new URI)
 REFER D Refer-To: conference-URI (new URI)
 BYE C
 BYE D

 Features enabled:

 - sidebar conversations during a larger conference

3.3.7. Near-fork

 A participates in two conversation spaces simultaneously:

 { A, B } --> { B , A } & { A , C }

 A is a participant in two conversation spaces such that A sends the
 same media to both spaces, and renders media from both spaces,
 presumably by mixing or rendering the media from both. We can define
 that A is the "anchor" point for both forks, each of which is a
 separate conversation space.

 This action is purely local implementation (it requires no special
 signaling). Local features such as switching calls between the
 background and foreground are possible using this media relationship.

3.3.8. Far fork

 The conversation space diagram...

 { A, B } --> { A , B } & { B , C }

 A requests B to be the "anchor" of two conversation spaces.

 This is easily setup by creating a conference with two sub-
 conferences and setting the media policy appropriately such that B is
 a participant in both. Media forking can also be setup using 3pcc as
 described in Section 5.1 of RFC3264 [3] (an offer/answer model for
 SDP). The session descriptions for forking are quite complex.
 Controllers should verify that endpoints can handle forked-media, for
 example using prior configuration.

 Features enabled:

 - barge-in
 - voice portal services
 - whisper
 - hotword detection
 - sending DTMF somewhere else

https://datatracker.ietf.org/doc/html/rfc3264#section-5.1

Mahy, et al. Expires May 31, 2008 [Page 28]

Internet-Draft SIP Call Control Framework November 2007

4. Security Considerations

 Call Control primitives provide a powerful set of features that can
 be dangerous in the hands of an attacker. To complicate matters,
 call control primitives are likely to be automatically authorized
 without direct human oversight.

 The class of attacks that are possible using these tools include the
 ability to eavesdrop on calls, disconnect calls, redirect calls,
 render irritating content (including ringing) at a user agent, cause
 an action that has billing consequences, subvert billing (theft-of-
 service), and obtain private information. Call control extensions
 must take extra care to describe how these attacks will be prevented.

 We can also make some general observations about authorization and
 trust with respect to call control. The security model is
 dramatically dependent on the signaling model chosen (see section

3.2)

 Let us first examine the security model used in the 3pcc approach.
 All signaling goes through the controller, which is a trusted entity.
 Traditional SIP authentication and hop-by-hop encryption and message
 integrity work fine in this environment, but end-to-end encryption
 and message integrity may not be possible.

 When using the peer-to-peer approach, call control actions and
 primitives can be legitimately initiated by a) an existing
 participant in the conversation space, b) a former participant in the
 conversation space, or c) an entity trusted by one of the
 participants. For example, a participant always initiates a
 transfer; a retrieve from Park (a take) is initiated on behalf of a
 former participant; and a barge-in (insert or far-fork) is initiated
 by a trusted entity (an operator for example).

 Authenticating requests by an existing participant or a trusted
 entity can be done with baseline SIP mechanisms. In the case of
 features initiated by a former participant, these should be protected
 against replay attacks by using a unique name or identifier per
 invocation. The Replaces header exhibits this behavior as a by-
 product of its operation (once a Replaces operation is successful,
 the dialog being Replaced no longer exists). For other requests, a
 "one-time" Request-URI may be provided to the feature invoker.

 To authorize call control primitives that trigger special behavior
 (such as an INVITE with Replaces or Join semantics), the receiving
 user agent may have trouble finding appropriate credentials with
 which to challenge or authorize the request, as the sender may be
 completely unknown to the receiver, except through the introduction

Mahy, et al. Expires May 31, 2008 [Page 29]

Internet-Draft SIP Call Control Framework November 2007

 of a third party. These credentials need to be passed transitively
 in some way or fetched in an event body, for example.

5. IANA Considerations

 This document required no action by IANA.

6. Appendix A: Example Features

 Primitives are defined in terms of their ability to provide features.
 These example features should require an amply robust set of services
 to demonstrate a useful set of primitives. They are described here
 briefly. Note that the descriptions of these features are non-
 normative. Some of these features are used as examples in section 6
 to demonstrate how some features may require certain media
 relationships. Note also that this document describes a mixture of
 both features originating in the world of telephones, and features
 that are clearly Internet oriented.

 Example Feature Definitions:

 Attended Transfer - The transferring party establishes a session with
 the transfer target before completing the transfer.

 Auto Answer - Calls to a certain address or location answer
 immediately via a speakerphone.

 Automatic Callback: Alice calls Bob, but Bob is busy. Alice would
 like Bob to call her automatically when he is available. When Bob
 hangs up, Alice's phone rings. When Alice answers, Bob's phone
 rings. Bob answers and they talk.

 Barge-in - Carol interrupts Alice who has a call in-progress call
 with Bob. In some variations, Alice forcibly joins a new conversation
 with Carol, in other variations, all three parties are placed in the
 same conversation (basically a 3-way conference).

 Blind Transfer - Alice is in a conversation with Bob. Alice asks Bob
 to contact Carol, but makes no attempt to contact Carol
 independently. In many implementations, Alice does not verify Bob's
 success or failure in contacting Carol.

 Call Forwarding - Before a dialog is accepted it is redirected to
 another location, for example, because the originally intended
 recipient is busy, does not answer, is disconnected from the network,
 configured all requests to go somewhere else.

Mahy, et al. Expires May 31, 2008 [Page 30]

Internet-Draft SIP Call Control Framework November 2007

 Call Monitoring - A call center supervisor joins an in-progress call
 for monitoring purposes.

 Call Park - A call participant parks a call (essentially puts the
 call on hold), and then retrieves it at a later time (typically from
 another location).

 Call Pickup - A party picks up a call that was ringing at another
 location. One variation allows the caller to choose which location,
 another variation just picks up any call in that user's "pickup
 group".

 Call Return - Alice calls Bob. Bob misses the call or is disconnected
 before he is finished talking to Alice. Bob invokes Call return that
 calls Alice, even if Alice did not provide her real identity or
 location to Bob.

 Call Waiting - Alice is in a call, then receives another call. Alice
 can place the first call on hold, and talk with the other caller.
 She can typically switch back and forth between the callers.

 Click-to-dial - Alice looks in her company directory for Bob. When
 she finds Bob, she clicks on a URI to call him. Her phone rings (or
 possibly answers automatically), and when she answers, Bob's phone
 rings.

 Conference Call - Three or more active, visible participants in the
 same conversation space.

 Consultative transfer - the transferring party establishes a session
 with the target and mixes both sessions together so that all three
 parties can participate, then disconnects leaving the transferee and
 transfer target with an active session.

 Distinctive ring - Incoming calls have different ring cadences or
 sample sounds depending on the From party, the To party, or other
 factors.

 Do Not Disturb - Alice selects the Do Not Disturb option. Calls to
 her either ring briefly or not at all and are forwarded elsewhere.
 Some variations allow specially authorized callers to override this
 feature and ring Alice anyway.

 Find-Me - Alice sets up complicated rules for how she can be reached
 (possibly using CPL (Lennox, J., Wu, X., and H. Schulzrinne, "Call
 Processing Language (CPL): A Language for User Control of Internet
 Telephony Services," October 2004.) [27], presence (Rosenberg, J., "A
 Presence Event Package for the Session Initiation Protocol (SIP),"

Mahy, et al. Expires May 31, 2008 [Page 31]

Internet-Draft SIP Call Control Framework November 2007

 August 2004.) [14], or other factors). When Bob calls Alice, his
 call is eventually routed to a temporary Contact where Alice happens
 to be available.

 Hotline - Alice picks up a phone and is immediately connected to the
 technical support hotline, for example.

 IM Conference Alerts: A user receives an notification as an Instant
 Message whenever someone joins a conference they are also in.

 Inbound Call Screening - Alice doesn't want to receive calls from
 Matt. Inbound Screening prevents Matt from disturbing Alice. In
 some variations this works even if Matt hides his identity.

 Intercom - Alice typically presses a button on a phone that
 immediately connects to another user or phone and causes that phone
 to play her voice over its speaker. Some variations immediately
 setup two-way communications, other variations require another button
 to be pressed to enable a two-way conversation.

 Message Waiting - Bob calls Alice when she steps away from her phone,
 when she returns a visible or audible indicator conveys that someone
 has left her a voicemail message. The message waiting indication may
 also convey how many messages are waiting, from whom, what time, and
 other useful pieces of information.

 Music on Hold - When Alice places a call with Bob on hold, it
 replaces its audio with streaming content such as music,
 announcements, or advertisements.

 Outbound Call Screening - Alice is paged and unknowingly calls a PSTN
 pay-service telephone number in the Caribbean, but local policy
 blocks her call, and possibly informs her why.

 Pre-paid calling - Alice pays for a certain currency or unit amount
 of calling value. When she places a call, she provides her account
 number somehow. If her account runs out of calling value during a
 call her call is disconnected or redirected to a service where she
 can purchase more calling value.

 Presence-Enabled Conferencing: Alice wants to set up a conference
 call with Bob and Cathy when they all happen to be available (rather
 than scheduling a predefined time). The server providing the
 application monitors their status, and calls all three when they are
 all "online", not idle, and not in another call.

 Single Line Extension/Multiple Line Appearance -- A group of phones
 are all treated as "extensions" of a single line. A call for one

Mahy, et al. Expires May 31, 2008 [Page 32]

Internet-Draft SIP Call Control Framework November 2007

 rings them all. As soon as one answers, the others stop ringing. If
 any extension is actively in a conversation, another extension can
 "pick up" and immediately join the conversation. This emulates the
 behavior of a home telephone line with multiple phones.

 Speakerphone paging - Alice calls the paging address and speaks. Her
 voice is played on the speaker of every idle phone in a preconfigured
 group of phones.

 Speed dial - Alice dials an abbreviated number, or enters an alias,
 or presses a special speed dial button representing Bob. Her action
 is interpreted as if she specified the full address of Bob.

 Voice message screening - Bob calls Alice. Alice is screening her
 calls, so Bob hears Alice's voicemail greeting. Alice can hear Bob
 leave his message. If she decides to talk to Bob, she can take the
 call back from the voicemail system, otherwise she can let Bob leave
 a message. This emulates the behavior of a home telephone answering
 machine

 Voice Portal - A service that allows users to access a portal site
 using spoken dialog interaction. For example, Alice needs to
 schedule a working dinner with her co-worker Carol. Alice uses a
 voice portal to check Carol's flight schedule, find a restaurant near
 her hotel, make a reservation, get directions there, and page Carol
 with this information.

 Whispered call waiting - Alice is in a conversation with Bob. Carol
 calls Alice. Either Carol can "whisper" to Alice directly ("Can you
 get lunch in 15 minutes?"), or an automaton whispers to Alice
 informing her that Carol is trying to reach her.

6.1. Implementation of these features

 Example Features:

Mahy, et al. Expires May 31, 2008 [Page 33]

Internet-Draft SIP Call Control Framework November 2007

 Attended Transfer [18]
 Auto Answer [28]
 Automatic Callback Two person presence-based conference
 Barge-in Section 6.1.1
 Blind Transfer [18]
 Call Forwarding Proxy or Local implementation
 Call Hold [6]
 Call Monitoring Section 6.1.2
 Call Park Section 6.1.3, [6]
 Call Pickup Section 6.1.4, [6]
 Call Return Proxy feature
 Call Waiting Local Implementation
 Click-to-dial Section 6.1.5, [6]
 Conference Call [19]
 Presence-based
 Conferencing [19], [14]
 Consultative transfer [18]
 Distinctive ring Section 6.1.6, Proxy or Local implementation
 Do Not Disturb [14]
 Find-Me Proxy service based on presence
 Hotline Local Implementation
 IM Conference Alerts Subscribe to conference status
 Inbound Call Screening Proxy or Local implementation
 Intercom Section 6.1.7, [28]
 Message Waiting [29]
 Multiple Appearances Section 6.1.10
 Music on Hold Section 6.1.8, [6]
 Outbound Call Screening Proxy feature
 Pre-Paid Calling Section 6.1.9
 Single Line Extension Section 6.1.10
 Speakerphone paging Section 6.1.11, Speed dial + Auto Answer
 Speed dial Local Implementation
 Voice Message Screening Section 6.1.12
 Voice Portal Section 6.1.13
 Whispered call waiting Local implementation

6.1.1. Barge-in

 Barge-in works the same as call monitoring except that it must
 indicate that the send media stream to be mixed so that all of the
 other parties can hear the stream from UA barging in.

6.1.2. Call Monitoring

 Call monitoring is a Join operation. The monitoring UA sends a Join
 to the dialog it wants to listen to. It is able to discover the
 dialog via the dialog state on the monitored UA. The monitoring UA

Mahy, et al. Expires May 31, 2008 [Page 34]

Internet-Draft SIP Call Control Framework November 2007

 sends SDP in the INVITE that indicates receive only media. As the UA
 is monitoring only it does not matter whether the UA indicates it
 wishes the send stream be mix or point to point.

6.1.3. Call Park

 Call park requires the ability to: put a dialog some place, advertise
 it to users in a pickup group and to uniquely identify it in a means
 that can be communicated (including human voice). The dialog can be
 held locally on the UA parking the dialog or alternatively
 transferred to the park service for the pickup group. The parked
 dialog then needs to be labeled (e.g. orbit 12) in a way that can be
 communicated to the party that is to pick up the call. The UAs in
 the pick up group discovers the parked dialog(s) via the dialog
 package from the park service. If the dialog is parked locally the
 park service merely aggregates the parked call states from the set of
 UAs in the pickup up group.

6.1.4. Call Pickup

 There are two different features that are called call pickup. The
 first is the pickup of a parked dialog. The UA from which the dialog
 is to be picked up subscribes to the dialog state of the park service
 or the UA that has locally parked the dialog. Dialogs that are
 parked should be labeled with an identifier. The labels are used by
 the UA to allow the user to indicate which dialog is to be picked up.
 The UA picking up the call invoked the URI in the call state that is
 labeled as replace-remote.

 The other call pickup feature involves picking up an early dialog
 (typically ringing). This feature uses some of the same primitives
 as the pick up of a parked call. The call state of the UA ringing
 phone is advertised using the dialog package. The UA that is to
 pickup the early dialog subscribes either directly to the ringing UA
 or to a service aggregating the states for UAs in the pickup group.
 The call state identifies early dialogs. The UA uses the call
 state(s) to help the user choose which early dialog that is to be
 picked up. The UA then invokes the URI in the call state labeled as
 replace-remote.

6.1.5. Click-to-dial

 The application or server that hosts the click-to-dial application
 captures the URI to be dialed and can setup the call using 3pcc or
 can send a REFER request to the UA that is to dial the address. As
 users sometimes change their mind or wish to give up listing to a
 ringing or voicemail answered phone, this application illustrates the
 need to also have the ability to remotely hangup a call.

Mahy, et al. Expires May 31, 2008 [Page 35]

Internet-Draft SIP Call Control Framework November 2007

6.1.6. Distinctive ring

 The target UA either makes a local decision based on information in
 an incoming INVITE (To, From, Contact, Request-URI) or trusts an
 Alert-Info header provided by the caller or inserted by a trusted
 proxy. In the latter case, the UA fetches the content described in
 the URI (typically via http) and renders it to the user.

6.1.7. Intercom

 The UA initiates a dialog using INVITE and the Answer-Mode: Auto
 header field as described in [28]. The called UA accepts the INVITE
 with a 200 OK and automatically enables the speakerphone.

 Alternatively this can be a local decision for the UA to answer based
 upon called party identification.

6.1.8. Music on Hold

 Music on hold can be implemented a number of ways. One way is to
 transfer the held call to a holding service. When the UA wishes to
 take the call off hold it basically performs a take on the call from
 the holding service. This involves subscribing to call state on the
 holding service and then invoking the URI in the call state labeled
 as replace-remote.

 Alternatively music on hold can be performed as a local mixing
 operation. The UA holding the call can mix in the music from the
 music service via RTP (i.e. an additional dialog) or RTSP or other
 streaming media source. This approach is simpler (i.e. the held
 dialog does not move so there is less chance of loosing them) from a
 protocol perspective, however it does use more LAN bandwidth and
 resources on the UA.

6.1.9. Pre-paid calling

 For prepaid calling, the user's media always passes through a device
 that is trusted by the pre-paid provider. This may be the other
 endpoint (for example a PSTN gateway). In either case, an
 intermediary proxy or B2BUA can periodically verify the amount of
 time available on the pre-paid account, and use the session-timer
 extension to cause the trusted endpoint (gateway) or intermediary
 (media relay) to send a reINVITE before that time runs out. During
 the reINVITE, the SIP intermediary can re-verify the account and
 insert another session-timer header.

 Note that while most pre-paid systems on the PSTN use an IVR to
 collect the account number and destination, this isn't strictly

Mahy, et al. Expires May 31, 2008 [Page 36]

Internet-Draft SIP Call Control Framework November 2007

 necessary for a SIP-originated prepaid call. SIP requests and SIP
 URIs are sufficiently expressive to convey the final destination, the
 provider of the prepaid service, the location from which the user is
 calling, and the prepaid account they want to use. If a pre-paid IVR
 is used, the mechanism described below (Voice Portals) can be
 combined as well.

6.1.10. Single Line Extension/Multiple Line Appearance

 Incoming calls ring all the extensions through basic parallel
 forking. Each extension subscribes to dialog events from each other
 extension. While one user has an active call, any other UA extension
 can insert itself into that conversation (it already knows the dialog
 information) in the same way as barge-in.

 Standardization work to allow line appearance numbers to be
 coordinated across a group of UAs is currently underway.

6.1.11. Speakerphone paging

 Speakerphone paging can be implemented using either multicast or
 through a simple multipoint mixer. In the multicast solution the
 paging UA sends a multicast INVITE with send only media in the SDP
 (see also RFC3264). The automatic answer and enabling of the
 speakerphone is a locally configured decision on the paged UAs. The
 paging UA sends RTP via the multicast address indicated in the SDP.

 The multipoint solution is accomplished by sending an INVITE to the
 multipoint mixer. The mixer is configured to automatically answer
 the dialog. The paging UA then sends REFER requests for each of the
 UAs that are to become paging speakers (The UA is likely to send out
 a single REFER that is parallel forked by the proxy server). The UAs
 performing as paging speakers are configured to automatically answer
 based upon caller identification (e.g. To field, URI or Referred-To
 headers).

 Finally as a third option, the user agent can send a mass-invitation
 request to a conference server, which would create a conference and
 send INVITEs containing the Answer-Mode: Auto header field to all
 user agents in the paging group.

6.1.12. Voice message screening

 At first, this is the same as call monitoring. In this case the
 voicemail service is one of the UAs. The UA screening the message
 monitors the call on the voicemail service, and also subscribes to
 dialog information. If the user screening their messages decides to
 answer, they perform a Take from the voicemail system (for example,

https://datatracker.ietf.org/doc/html/rfc3264

Mahy, et al. Expires May 31, 2008 [Page 37]

Internet-Draft SIP Call Control Framework November 2007

 send an INVITE with Replaces to the UA leaving the message)

6.1.13. Voice Portal

 A voice portal is essentially a complex collection of voice dialogs
 used to access interesting content. One of the most desirable call
 control features of a Voice Portal is the ability to start a new
 outgoing call from within the context of the Portal (to make a
 restaurant reservation, or return a voicemail message for example).
 Once the new call is over, the user should be able to return to the
 Portal by pressing a special key, using some DTMF sequence (ex: a
 very long pound or hash tone), or by speaking a hotword (ex: "Main
 Menu").

 In order to accomplish this, the Voice Portal starts with the
 following media relationship:

 { User , Voice Portal }

 The user then asks to make an outgoing call. The Voice Portal asks
 the User to perform a Far-Fork. In other words the Voice Portal
 wants the following media relationship:

 { Target , User } & { User , Voice Portal }

 The Voice Portal is now just listening for a hotword or the
 appropriate DTMF. As soon as the user indicates they are done, the
 Voice Portal takes the call from the old Target, and we are back to
 the original media relationship.

 This feature can also be used by the account number and phone number
 collection menu in a pre-paid calling service. A user can press a
 DTMF sequence that presents them with the appropriate menu again.

7. Acknowledgements

 The authors would like to acknowledge Ben Campbell for his
 contributions to the document and thank AC Mahendran, John Elwell,
 and Xavier Marjou for their detailed Working Group review of the
 document.

8. Informative References

 [1] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

https://datatracker.ietf.org/doc/html/rfc3261

Mahy, et al. Expires May 31, 2008 [Page 38]

Internet-Draft SIP Call Control Framework November 2007

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with
 Session Description Protocol (SDP)", RFC 3264, June 2002.

 [4] Roach, A., "Session Initiation Protocol (SIP)-Specific Event
 Notification", RFC 3265, June 2002.

 [5] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
 Description Protocol", RFC 4566, July 2006.

 [6] Johnston, A., "Session Initiation Protocol Service Examples",
draft-ietf-sipping-service-examples-13 (work in progress),

 July 2007.

 [7] Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo,
 "Best Current Practices for Third Party Call Control (3pcc) in
 the Session Initiation Protocol (SIP)", BCP 85, RFC 3725,
 April 2004.

 [8] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, April 2003.

 [9] Mahy, R., Biggs, B., and R. Dean, "The Session Initiation
 Protocol (SIP) "Replaces" Header", RFC 3891, September 2004.

 [10] Mahy, R. and D. Petrie, "The Session Initiation Protocol (SIP)
 "Join" Header", RFC 3911, October 2004.

 [11] Rosenberg, J., Schulzrinne, H., and R. Mahy, "An INVITE-
 Initiated Dialog Event Package for the Session Initiation
 Protocol (SIP)", RFC 4235, November 2005.

 [12] Rosenberg, J., Schulzrinne, H., and O. Levin, "A Session
 Initiation Protocol (SIP) Event Package for Conference State",

RFC 4575, August 2006.

 [13] Rosenberg, J., "A Session Initiation Protocol (SIP) Event
 Package for Registrations", RFC 3680, March 2004.

 [14] Rosenberg, J., "A Presence Event Package for the Session
 Initiation Protocol (SIP)", RFC 3856, August 2004.

 [15] Rosenberg, J., "A Framework for Conferencing with the Session
 Initiation Protocol (SIP)", RFC 4353, February 2006.

 [16] Rosenberg, J., "A Framework for Application Interaction in the

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3264
https://datatracker.ietf.org/doc/html/rfc3265
https://datatracker.ietf.org/doc/html/rfc4566
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-service-examples-13
https://datatracker.ietf.org/doc/html/bcp85
https://datatracker.ietf.org/doc/html/rfc3725
https://datatracker.ietf.org/doc/html/rfc3515
https://datatracker.ietf.org/doc/html/rfc3891
https://datatracker.ietf.org/doc/html/rfc3911
https://datatracker.ietf.org/doc/html/rfc4235
https://datatracker.ietf.org/doc/html/rfc4575
https://datatracker.ietf.org/doc/html/rfc3680
https://datatracker.ietf.org/doc/html/rfc3856
https://datatracker.ietf.org/doc/html/rfc4353

Mahy, et al. Expires May 31, 2008 [Page 39]

Internet-Draft SIP Call Control Framework November 2007

 Session Initiation Protocol (SIP)",
draft-ietf-sipping-app-interaction-framework-05 (work in

 progress), July 2005.

 [17] Camarillo, G., "Framework for Transcoding with the Session
 Initiation Protocol (SIP)",

draft-ietf-sipping-transc-framework-05 (work in progress),
 December 2006.

 [18] Sparks, R., "Session Initiation Protocol Call Control -
 Transfer", draft-ietf-sipping-cc-transfer-08 (work in
 progress), July 2007.

 [19] Johnston, A. and O. Levin, "Session Initiation Protocol (SIP)
 Call Control - Conferencing for User Agents", BCP 119,

RFC 4579, August 2006.

 [20] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating
 User Agent Capabilities in the Session Initiation Protocol
 (SIP)", RFC 3840, August 2004.

 [21] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",

RFC 3841, August 2004.

 [22] Campbell, B. and R. Sparks, "Control of Service Context using
 SIP Request-URI", RFC 3087, April 2001.

 [23] Jennings, C. and R. Mahy, "Remote Call Control in the Session
 Initiation Protocol (SIP) using the REFER method and the
 session-oriented dialog package", draft-mahy-sip-remote-cc-05
 (work in progress), March 2007.

 [24] Burger, E., Van Dyke, J., and A. Spitzer, "Basic Network Media
 Services with SIP", RFC 4240, December 2005.

 [25] Jennings, C., Audet, F., and J. Elwell, "Session Initiation
 Protocol (SIP) URIs for Applications such as Voicemail and
 Interactive Voice Response (IVR)", RFC 4458, April 2006.

 [26] Rosenberg, J., "Request Authorization through Dialog
 Identification in the Session Initiation Protocol (SIP)",

RFC 4538, June 2006.

 [27] Lennox, J., Wu, X., and H. Schulzrinne, "Call Processing
 Language (CPL): A Language for User Control of Internet
 Telephony Services", RFC 3880, October 2004.

https://datatracker.ietf.org/doc/html/draft-ietf-sipping-app-interaction-framework-05
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-transc-framework-05
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-cc-transfer-08
https://datatracker.ietf.org/doc/html/bcp119
https://datatracker.ietf.org/doc/html/rfc4579
https://datatracker.ietf.org/doc/html/rfc3840
https://datatracker.ietf.org/doc/html/rfc3841
https://datatracker.ietf.org/doc/html/rfc3087
https://datatracker.ietf.org/doc/html/draft-mahy-sip-remote-cc-05
https://datatracker.ietf.org/doc/html/rfc4240
https://datatracker.ietf.org/doc/html/rfc4458
https://datatracker.ietf.org/doc/html/rfc4538
https://datatracker.ietf.org/doc/html/rfc3880

Mahy, et al. Expires May 31, 2008 [Page 40]

Internet-Draft SIP Call Control Framework November 2007

 [28] Willis, D. and A. Allen, "Requesting Answering Modes for the
 Session Initiation Protocol (SIP)",

draft-ietf-sip-answermode-06 (work in progress),
 September 2007.

 [29] Mahy, R., "A Message Summary and Message Waiting Indication
 Event Package for the Session Initiation Protocol (SIP)",

RFC 3842, August 2004.

Authors' Addresses

 Rohan Mahy
 Plantronics
 345 Encincal Street
 Santa Cruz, CA
 USA

 Email: rohan@ekabal.com

 Robert Sparks
 Estacado Systems

 Email: rjsparks@nostrum.com

 Jonathan Rosenberg
 Cisco Systems

 Email: jdrosen@cisco.com

 Dan Petrie
 SIP EZ

 Email: dpetrie@sipez.com

 Alan Johnston (editor)
 Avaya

 Email: alan@sipstation.com

https://datatracker.ietf.org/doc/html/draft-ietf-sip-answermode-06
https://datatracker.ietf.org/doc/html/rfc3842

Mahy, et al. Expires May 31, 2008 [Page 41]

Internet-Draft SIP Call Control Framework November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Mahy, et al. Expires May 31, 2008 [Page 42]

