
Internet Engineering Task Force SIPPING WG
Internet Draft J. Rosenberg
 dynamicsoft
 H. Schulzrinne
 Columbia U.
draft-ietf-sipping-dialog-package-00.txt
June 24, 2002
Expires: December 2002

 A Session Initiation Protocol (SIP) Event Package for Dialog State

STATUS OF THIS MEMO

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 To view the list Internet-Draft Shadow Directories, see
 http://www.ietf.org/shadow.html.

Abstract

 This document defines a dialog event package for the SIP Events
 architecture, along with a data format used in notifications for this
 package. The dialog package allows users to subscribe to another
 user, an receive notifications about the changes in state of INVITE
 initiated dialogs that the user is involved in.

https://datatracker.ietf.org/doc/pdf/draft-ietf-sipping-dialog-package-00.txt
https://datatracker.ietf.org/doc/pdf/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

J. Rosenberg et. al. [Page 1]

Internet Draft Dialog Package June 24, 2002

 Table of Contents

 1 Introduction .. 4
 2 Dialog Event Package 5
 2.1 Event Package Name 5
 2.2 Event Package Parameters 5
 2.3 SUBSCRIBE Bodies 5
 2.4 Subscription Duration 5
 2.5 NOTIFY Bodies 6
 2.6 Notifier Processing of SUBSCRIBE Requests 6
 2.7 Notifier Generation of NOTIFY Requests 7
 2.7.1 The Dialog State Machine 7
 2.7.2 Applying the state machine 9
 2.8 Subscriber Processing of NOTIFY Requests 10
 2.9 Handling of Forked Requests 11
 2.10 Rate of Notifications 11
 2.11 State Agents .. 11
 3 Dialog Information Format 11
 3.1 Structure of Dialog Information 12
 3.1.1 Dialog Element 12
 3.1.2 State ... 13
 3.1.3 Local URI ... 13
 3.1.4 Remote URI .. 13
 3.1.5 Local Session Description 13
 3.1.6 Remote Session Description 13
 3.1.7 Remote Target 13
 3.1.8 Local CSeq .. 14
 3.1.9 Remote CSeq ... 14
 3.1.10 Duration .. 14
 3.2 Constructing Coherent State 14
 3.3 Schema .. 15
 3.4 Example ... 18
 4 Security Considerations 20
 5 IANA Considerations 20
 5.1 application/dialog-info+xml MIME Registration 20
 5.2 URN Sub-Namespace Registration for
 urn:ietf:params:xml:ns:dialog-info 21

 6 Acknowledgements 22
 7 Authors Addresses 22
 8 Normative References 22
 9 Informative References 23

J. Rosenberg et. al. [Page 2]

Internet Draft Dialog Package June 24, 2002

1 Introduction

 The SIP Events framework [1] defines general mechanisms for
 subscription to, and notification of, events within SIP networks. It
 introduces the notion of a package, which is a specific
 "instantiation" of the events mechanism for a well-defined set of
 events. Packages have been defined for user presence [8], watcher
 information [9], and message waiting indicators [10], amongst others.
 Here, we define an event package for INVITE initiated dialogs.
 Dialogs refer to the SIP relationship established between two SIP
 peers [2].

 There are a variety of applications enabled through the knowledge of
 dialog state. Some examples include:

 Automatic Callback: In this basic PSTN application, user A calls
 user B. User B is busy. User A would like to get a callback
 when user B hangs up. When B hangs up, user A's phone
 rings. When A picks it up, they here ringing, and are being
 connected to B. In VoIP, this requires A to receive a
 notification when the dialogs at A are complete.

 Presence-Enabled Conferencing: In this application, a user A
 wishes to set up a conference call with users B and C.
 Rather than scheduling it, it is to be created
 automatically when A, B and C are all available. To do
 this, the server providing the application would like to
 know whether A, B and C are "online", not idle, and not in
 a phone call. Determining whether or not A, B and C are in
 calls can be done in two ways. In the first, the server
 acts as a call stateful proxy for users A, B and C, and
 therefore knows their call state. This won't always be
 possible, however, and it introduces scalability,
 reliability, and operational complexities. Rather, the
 server would subscriber to the dialog state of those users,

 and receive notifications as it changes. This enables the
 application to be provided in a distributed way; the server
 need not reside in the same domain as the users.

 IM Conference Alerts: In this application, a user can get an IM
 sent to their phone whenever someone joins a conference
 that the phone is involved in. The IM alerts are generated
 by an application separate from the conference server.

 In general, the dialog package allows for construction of distributed
 applications, where the application requires information on dialog
 state, but is not co-resident with the end user on which that state
 resides.

J. Rosenberg et. al. [Page 4]

Internet Draft Dialog Package June 24, 2002

2 Dialog Event Package

 This section provides the details for defining a SIP Events package,
 as specified by [1].

2.1 Event Package Name

 The name of this event package is "dialog". This package name is
 carried in the Event and Allow-Events header, as defined in [1].

2.2 Event Package Parameters

 This package does not define any event package parameters.

2.3 SUBSCRIBE Bodies

 A SUBSCRIBE for a dialog package MAY contain a body. This body
 defines a filter to apply to the subscription.

 A SUBSCRIBE for a dialog package MAY be sent without a body. This
 implies the default subscription filtering policy. The default policy
 is:

 o Notifications are generated every time there is any change in
 the state of any dialogs for the user identified in the
 request URI of the SUBSCRIBE.

 o Notifications do not normally contain full state; rather, they

 only indicate the state of the dialog whose state has changed.
 The exception is a NOTIFY sent in response to a SUBSCRIBE.
 These NOTIFYs contain the complete view of dialog state.

 o The notifications contain the identities of the participants
 in the dialog, and the dialog identifiers. Additional
 information, such as the route set, remote target URI, CSeq
 numbers, SDP information, and so on, are not included normally
 unless explicitly requested and/or explicitly authorized.

 OPEN ISSUE: It might be useful to define a filter within
 this document that would allow a subscriber to ask about a
 specific dialog.

2.4 Subscription Duration

 Dialog state changes fairly quickly; once established, a typical
 phone call lasts a few minutes (this is different for other session
 types, of course). However, the interval between new calls is

J. Rosenberg et. al. [Page 5]

Internet Draft Dialog Package June 24, 2002

 typically infrequent. As such, we arbitrarily choose a default
 duration of one hour, and RECOMMEND that clients specify an explicit
 duration.

 There are two distinct use cases for dialog state. The first is when
 a subscriber is interested in the state of a specific dialog (and
 they are authorized to find out about just the state of that dialog).
 In that case, when the dialog terminates, so too does the
 subscription. In these cases, the value of the subscription duration
 is largely irrelevant, and SHOULD be longer than the typical duration
 of a dialog, about two hours would cover most dialogs.

 In another case, a subscriber is interested in the state of all call
 legs for a specific user. In these cases, a shorter interval makes
 more sense. The default is one hour for these subscriptions.

2.5 NOTIFY Bodies

 The body of the notification contains a dialog information document.
 The format of this document is described in Section 3. Its MIME type
 is "application/dialog-info+xml". All subscribers MUST support this

 format, and MUST list its type in any Accept header in the SUBSCRIBE.
 When no Accept header is present in the SUBSCRIBE, its default value
 is "application/dialog-info+xml".

 Other dialog information formats might be defined in the future. In
 that case, the subscriptions MAY indicate support for other formats.
 However, they MUST always support and list "application/dialog-
 info+xml" as an allowed format.

 Of course, the notifications generated by the server MUST be in one
 of the formats specified in the Accept header in the SUBSCRIBE
 request.

2.6 Notifier Processing of SUBSCRIBE Requests

 The dialog information for a user contains very sensitive
 information. Therefore, all subscriptions SHOULD be authenticated and
 then authorized before approval. Authorization policy is at the
 discretion of the administrator, as always. However, a few
 recommendations can be made.

 It is RECOMMENDED that if the policy of a user is that A is allowed
 to call them, dialog subscriptions from user A be allowed. However,
 the information provided in the notifications does not contain any
 dialog identification information; merely an indication of whether
 the user is in one or more calls, or not. Specifically, they should
 not be able to find out any more information than if they sent an

J. Rosenberg et. al. [Page 6]

Internet Draft Dialog Package June 24, 2002

 INVITE.

 It is RECOMMENDED that if a user agent registers with the address-
 of-record X, that this user agent authorize subscriptions that come
 from any entity that can authenticate itself as X. Complete
 information on the dialog state SHOULD be sent in this case. This
 authorization behavior allows a group of devices representing a
 single user to all become aware of each other's state. This is useful
 for applications such as single-line-extension.

2.7 Notifier Generation of NOTIFY Requests

 Notifications are generated for the dialog package when a new dialog
 comes into existence at a UA, or when the state or characteristics of

 an existing dialog changes. Therefore, a model of dialog state is
 needed in order to determine precisely when to send notifications,
 and what their content should be. The SIP specification has a
 reasonably well defined lifecycle for dialogs. However, it is not
 explicitly modelled. This specification provides an explicit model of
 dialog state through a finite state machine.

 It is RECOMMENDED that NOTIFY requests only contain information on
 the dialogs whose state has changed. However, if a notifier receives
 a SUBSCRIBE request, the triggered NOTIFY SHOULD contain the state of
 all dialogs that the subscriber is authorized to see.

2.7.1 The Dialog State Machine

 Modelling of dialog state is complicated by two factors. The first is
 forking, which can cause a single INVITE to generate many dialogs at
 a UAC. The second is the differing views of state at the UAC and UAS.
 We have chosen to handle the first issue by extending the dialog FSM
 to include the states between transmission of the INVITE and the
 creation of actual dialogs through receipt of 1xx and 2xx responses.
 We have also chosen to use a single FSM for both UAC and UAS.

 The FSM for dialog state is shown in Figure 1. The FSM is best
 understood by considering the UAC and UAS cases separately.

 The FSM is created in the "trying" state when the UAC sends an INVITE
 request. Upon receipt of a 1xx without a tag (the "1xx-notag" event),
 the FSM transitions to the "proceeding" state. Note that there is no
 actual dialog yet, as defined by the SIP specification. However,
 there is a "half-dialog", in the sense that two of the three
 components of the dialog ID are known (the call identifier and local
 tag). If a 1xx with a tag is received, the FSM transitions to the
 early state. The full dialog identifier is now defined. Had a 2xx

J. Rosenberg et. al. [Page 7]

Internet Draft Dialog Package June 24, 2002

 +----------+ +----------+
 | | 1xx-notag | |
 | |----------->| |
 | Trying | |Proceeding|-----+
 | |---+ +-----| | |
 | | | | | | |
 +----------+ | | +----------+ |
 | | | | | |
 | | | | | |
 +<--C-----C--+ |1xx-tag |
 | | | | |
 cancelled| | | V |
 rejected| | |1xx-tag +----------+ |
 | | +------->| | |2xx
 | | | | |
 +<--C--------------| Early | |
 | | | | |
 | | | | |
 | | +----------+ |
 | | 2xx | |
 | +----------------+ | |
 | | |2xx |
 | | | |
 V V V |
 +----------+ +----------+ |
 | | | | |
 | | | | |
 |Terminated|<-----------| Confirmed|<----+
 | | hungup | |
 | | error | |
 +----------+ timeout +----------+

 Figure 1: Dialog finite state machine

 been received, the FSM would have transitioned to the "confirmed"
 state.

J. Rosenberg et. al. [Page 8]

Internet Draft Dialog Package June 24, 2002

 If, after transitioning to the "early" or "confirmed" states, the UAC
 receives another 1xx or 2xx with a different tag, another instance of
 the FSM is created, initialized into the "early" or "confirmed" state
 depending on the response code. The benefit of this approach is that
 there will be a single FSM representing the entire state of the
 invitation and resulting dialog when dealing with the common case of
 no forking.

 If the UAC should send a CANCEL, and then subsequently receive a 487
 to its INVITE transaction, all FSMs spawned from that INVITE
 transition to the "terminated" state with the event "canceled". If
 the INVITE transaction terminates with a non-2xx response for any
 other reason, all FSMs spawned from that INVITE transition to the
 terminated state with the event "rejected".

 Once in the confirmed state, the call is active. It can transition to
 the terminated state if the UAC sends a BYE or receives a BYE
 (corresponding to the "hungup" event), if a mid-dialog request
 generates a 481 or 408 response (corresponding to the "error" event),
 or a mid-dialog request generates no response (corresponding to the
 "timeout" event).

 From the perspective of the UAS, when an INVITE is received, the FSM
 is created in the "trying" state. If it sends a 1xx without a tag,
 the FSM transitions to the "proceeding" state. If a 1xx is sent with
 a tag, the FSM transitions to the "early" state, and if a 2xx is
 sent, it transitions to the "confirmed" state. If the UAS should
 receive a CANCEL request and then generate a 487 response to the
 INVITE (which can occur in the proceeding and early states), the FSM
 transitions to the terminated state with the event "cancelled". If
 the UAS should generate any other non-2xx final response to the
 INVITE request, the FSM transitions to the terminated state with the
 event "rejected". Once in the "confirmed" state, the transitions to
 the "terminated" state occur for the same reasons they do in the case
 of UAC.

 There should never be a transition from the "trying" state
 to the "terminated" state with the event "cancelled", since
 the SIP specification prohibits transmission of CANCEL
 until a provisional response is received. However, this
 transition is defined in the FSM just to unify the
 transitions from trying, proceeding, and early to the
 terminated state.

2.7.2 Applying the state machine

 The notifier MAY generate a NOTIFY request on any event transition of

J. Rosenberg et. al. [Page 9]

Internet Draft Dialog Package June 24, 2002

 the FSM. Whether it does or not is policy dependent. However, some
 general guidelines are provided.

 When the subscriber is unauthenticated, or is authenticated, but
 represents a third party with no specific authorization policies, it
 is RECOMMENDED that actual dialog states across all dialogs not be
 reported. Rather, a single "virtual" dialog FSM be used, and event
 transitions on that FSM be reported. If there is any dialog at the UA
 whose state is "confirmed", the virtual FSM is in the "confirmed"
 state. If there are no dialogs at the UA in the confirmed state, but
 there is at least one in the "early" state, the virtual FSM is in the
 "early" state. If there are no dialogs in the confirmed or early
 states, but there is at least one in the "proceeding" state, the
 virtual FSM is in the "proceeding" state. If there are no dialogs in
 the confirmed, early, or proceeding states, but there is at least one
 in the "trying" state, the virtual FSM is in the "trying" state.
 Furthermore, it is RECOMMENDED that the notifications of changes in
 the virtual FSM machine not convey any information except the state
 of the FSM and its event transitions - no dialog identifiers (which
 are ill-defined in this model in any case). The use of this virtual
 FSM allows for minimal information to be conveyed. A subscriber
 cannot know how many calls are in progress, or with whom, just that
 there exists a call.

 When the subscriber is authenticated, and has authenticated itself
 with the same address-of-record that the UA itself uses, if no
 explicit authorization policy is defined, it is RECOMMENDED that all
 state transitions on all dialogs be reported, along with complete
 dialog IDs.

 The notifier MAY generate a NOTIFY request on any change in the
 characteristics associated with the dialog. Since these include CSeq
 numbers and SDP, receipt of re-INVITEs and UPDATE requests [11] which
 modify this information MAY trigger notifications.

2.8 Subscriber Processing of NOTIFY Requests

 The SIP Events framework expects packages to specify how a subscriber
 processes NOTIFY requests in any package specific ways, and in
 particular, how it uses the NOTIFY requests to contruct a coherent
 view of the state of the subscribed resource.

 Typically, the NOTIFY for the dialog package will only contain

 information about those dialogs whose state has changed. To construct
 a coherent view of the total state of all dialogs, a subscriber to
 the dialog package will need to combine NOTIFYs received over time.

 Notifications within this package can convey partial information;

J. Rosenberg et. al. [Page 10]

Internet Draft Dialog Package June 24, 2002

 that is, they can indicate information about a subset of the state
 associated with the subscription. This means that an explicit
 algorithm needs to be defined in order to construct coherent and
 consistent state. The details of this mechanism are specific to the
 particular document type. See Section 3.2 for information on
 constructing coherent information from an application/dialog-info+xml
 document.

2.9 Handling of Forked Requests

 Since dialog state is distributed across the UA for a particular
 user, it is reasonable and useful for a SUBSCRIBE request for dialog
 state to fork, and reach multiple UA.

 As a result, a forked SUBSCRIBE request for dialog state can install
 multiple subscriptions. Subscribers to this package MUST be prepared
 to install subscription state for each NOTIFY generated as a result
 of a single SUBSCRIBE.

2.10 Rate of Notifications

 For reasons of congestion control, it is important that the rate of
 notifications not become excessive. As a result, it is RECOMMENDED
 that the server not generate notifications for a single subscriber at
 a rate faster than once every 5 seconds.

2.11 State Agents

 Dialog state is ideally maintained in the user agents in which the
 dialog resides. Therefore, the elements that maintain the dialog are
 the ones best suited to handle subscriptions to it. Therefore, the
 usage of state agents is NOT RECOMMENDED for this package.

3 Dialog Information Format

 Dialog information is an XML document [3] that MUST be well-formed

 and SHOULD be valid. Dialog information documents MUST be based on
 XML 1.0 and MUST be encoded using UTF-8. This specification makes use
 of XML namespaces for identifying dialog information documents and
 document fragments. The namespace URI for elements defined by this
 specification is a URN [4], using the namespace identifier 'ietf'
 defined by [5] and extended by [6]. This URN is:

 urn:ietf:params:xml:ns:dialog-info

J. Rosenberg et. al. [Page 11]

Internet Draft Dialog Package June 24, 2002

 A dialog information document begins with the root element tag
 "dialog-info".

3.1 Structure of Dialog Information

 A dialog information document starts with a dialog-info element. This
 element has three mandatory attributes:

 version: This attribute allows the recipient of dialog
 information documents to properly order them. Versions
 start at 0, and increment by one for each new document sent
 to a subscriber. Versions are scoped within a subscription.
 Versions MUST be representable using a 32 bit integer.

 state: This attribute indicates whether the document contains
 the full dialog information, or whether it contains only
 information on those dialogs which have changed since the
 previous document (partial).

 entity: This attribute contains a URI that identifies the user
 whose dialog information is reported in the remainder of
 the document.

 The dialog-info element has a series of dialog sub-elements. Each of
 those represents a specific dialog.

3.1.1 Dialog Element

 The dialog element reports information on a specific dialog. It has a

 single mandatory attribute, id. The id attribute provides a single
 string that can be used as an identifier for this dialog. This is a
 different identifier than the formal dialog ID defined in SIP [2].
 This identifier exists before the dialog exists, and remains
 unchanged when the actual dialog is established.

 There are a number of optional attributes which provide
 identification information about the dialog:

 call-id: This attribute is a string which represents the call-id
 component of the dialog identifier.

 local-tag: This attribute is a string which represents the
 local-tag component of the dialog identifier.

 remote-tag: This attribute is a string which represents the
 remote-tag component of the dialog identifier. The remote
 tag attribute won't be present if there is only a "half-
 dialog", resulting from generation of a request that can

J. Rosenberg et. al. [Page 12]

Internet Draft Dialog Package June 24, 2002

 create a dialog.

 direction: This attribute is either initiator or recipient, and
 indicates whether the notifier was the initiator of the
 dialog, or the recipient of the INVITE that created it.

 The sub-elements of the dialog element provide additional information
 about the dialog. The only mandatory one is status.

3.1.2 State

 The state element indicates the state of the dialog. Its value is an
 enumerated type describing one of the states in the FSM above. It has
 an optional event attribute that can be used to indicate the event
 which caused the transition into the current state, and an optional
 code attribute that indicates the response code associated with the
 transition, assuming the event was 1xx-tag, 1xx-notag, or 2xx.

3.1.3 Local URI

 The local-uri element indicates the local URI, as defined in [2]. It
 has an optional attribute, display-name, that contains the display

 name from the local URI.

3.1.4 Remote URI

 The remote-uri element indicates the remote URI, as defined in [2].
 It has an optional attribute, display-name, that contains the display
 name from the remote URI.

3.1.5 Local Session Description

 The local-session-description element contains the session
 description used by the notifier for its end of the dialog. This
 element should generally NOT be included in the notifications, unless
 explicitly requested by the subscriber. It has a single attribute,
 type, which indicates the MIME media type of the session description.

3.1.6 Remote Session Description

 The remote-session-description element contains the session
 description used by the peer of the notifier for its end of the
 dialog. This element should generally NOT be included in the
 notifications, unless explicitly requested by the subscriber. It has
 a single attribute, type, which indicates the MIME media type of the
 session description.

3.1.7 Remote Target

J. Rosenberg et. al. [Page 13]

Internet Draft Dialog Package June 24, 2002

 The remote-target contains the remote-target URI as constructed by
 the user agent for this dialog, as defined in RFC BBBB [2]. This
 element should generally not be included in notifications, unless
 explicitly requested by the subscriber.

3.1.8 Local CSeq

 The local-cseq element contains the most recent value of the CSeq
 header used by the UA in an outgoing request on the dialog. This
 element should generally NOT be included in the notifications, unless
 explicitly requested by the subscriber. If no CSeq has yet been
 defined, the value of the element is -1.

3.1.9 Remote CSeq

 The remote-cseq element contains the most recent value of the CSeq
 header seen by the UA in an incoming request on the dialog. This
 element should generally NOT be included in the notifications, unless
 explicitly requested by the subscriber. If no CSeq has yet been
 defined, the value of the element is -1.

3.1.10 Duration

 The duration element contains the amount of time, in seconds, since
 the FSM was created.

3.2 Constructing Coherent State

 The dialog information subscriber maintains a table for the list of
 dialogs. The table contains a row for each dialog. Each row is
 indexed by an ID, present in the "id" attribute of the "dialog"
 element. The contents of each row contain the state of that dialog as
 conveyed in the document. The table is also associated with a version
 number. The version number MUST be initialized with the value of the
 "version" attribute from the "dialog-info" element in the first
 document received. Each time a new document is received, the value of
 the local version number, and the "version" attribute in the new
 document, are compared. If the value in the new document is one
 higher than the local version number, the local version number is
 increased by one, and the document is processed. If the value in the
 document is more than one higher than the local version number, the
 local version number is set to the value in the new document, the
 document is processed, and the subscriber SHOULD generate a refresh
 request to trigger a full state notification. If the value in the
 document is less than the local version, the document is discarded
 without processing.

 The processing of the dialog information document depends on whether

J. Rosenberg et. al. [Page 14]

Internet Draft Dialog Package June 24, 2002

 it contains full or partial state. If it contains full state,
 indicated by the value of the "state" attribute in the "dialog-info"
 element, the contents of the table are flushed. They are repopulated
 from the document. A new row in the table is created for each
 "dialog" element. If the document contains partial state, as
 indicated by the value of the "state" attribute in the "dialog-info"
 element, the document is used to update the table. For each "dialog"
 element in the document, the subscriber checks to see whether a row

 exists for that dialog. This check is done by comparing the ID in the
 "id" attribute of the "dialog" element with the ID associated with
 the row. If the dialog doesn't exist in the table, a row is added,
 and its state is set to the information from that "dialog" element.
 If the dialog does exist, its state is updated to be the information
 from that "dialog" element. If a row is updated or created, such that
 its state is now terminated, that entry MAY be removed from the table
 at any time.

3.3 Schema

 The following is the schema for the application/dialog-info+xml type:

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:dialog-info"
 xmlns:tns="urn:ietf:params:xml:ns:dialog-info"
 elementFormDefault="qualified" attributeFormDefault="unqualified" >
 <!-- This import brings in the XML language attribute xml:lang-->
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/03/xml.xsd" />
 <xs:element name="dialog-info">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:dialog" minOccurs="0" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:nonNegativeInteger"
 use="required"/>
 <xs:attribute name="state" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="full"/>
 <xs:enumeration value="partial"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>

J. Rosenberg et. al. [Page 15]

Internet Draft Dialog Package June 24, 2002

 <xs:attribute name="entity" type="xs:anyURI" use="required"/>

 </xs:complexType>
 </xs:element>
 <xs:element name="dialog">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:state" minOccurs="1" maxOccurs="1"/>
 <xs:element name="duration" type="xs:nonNegativeInteger"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="local-uri" type="tns:nameaddr"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="remote-uri" type="tns:nameaddr"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="local-session-description" type="tns:sessd"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="remote-session-description" type="tns:sessd"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="remote-target" type="tns:nameaddr"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="local-cseq" type="tns:cseq" minOccurs="0"
 maxOccurs="1"/>
 <xs:element name="remote-cseq" type="tns:cseq" minOccurs="0"
 maxOccurs="1"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="call-id" type="xs:string" use="optional"/>
 <xs:attribute name="local-tag" type="xs:string" use="optional"/>
 <xs:attribute name="remote-tag" type="xs:string" use="optional"/>
 <xs:attribute name="direction" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="initiator"/>
 <xs:enumeration value="recipient"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="state">
 <xs:complexType>
 <xs:simpleContent>
 <xs:restriction base="xs:string">
 <xs:enumeration value="trying"/>
 <xs:enumeration value="proceeding"/>
 <xs:enumeration value="early"/>
 <xs:enumeration value="confirmed"/>

J. Rosenberg et. al. [Page 16]

Internet Draft Dialog Package June 24, 2002

 <xs:enumeration value="terminated"/>
 <xs:attribute name="event" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="1xx-notag"/>
 <xs:enumeration value="1xx-tag"/>
 <xs:enumeration value="2xx"/>
 <xs:enumeration value="cancelled"/>
 <xs:enumeration value="rejected"/>
 <xs:enumeration value="hungup"/>
 <xs:enumeration value="error"/>
 <xs:enumeration value="timeout"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="code" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger">
 <xs:maxInclusive value="699"/>
 <xs:minInclusive value="100"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="nameaddr">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="display-name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="sessd">
 <xs:simpleContent>
 <xs:restriction base="xs:string">
 <xs:attribute name="type" type="xs:string"/>
 </xs:restriction>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="cseq">
 <xs:simpleContent>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="-1"/>
 </xs:restriction>

 </xs:simpleContent>
 </xs:complexType>

J. Rosenberg et. al. [Page 17]

Internet Draft Dialog Package June 24, 2002

 </xs:schema>

3.4 Example

 For example, if a UAC sends an INVITE that looks like, in part:

 INVITE sip:callee@foo.com SIP/2.0
 From: sip:caller@bar.com;tag=123
 To: sip:callee@foo.com
 Call-ID: 987@1.2.3.4

 The XML document in a notification might look like:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="0"
 state="full"
 entity="sip:caller@bar.com">
 <dialog id="as7d900as8" call-id="987@1.2.3.4"
 local-tag="123" direction="initiator">
 <state>trying</state>
 </dialog>
 </dialog-info>

 If a 1xx with a tag is received, the XML document in a notification
 might look like:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="1"
 state="full"
 entity="sip:caller@bar.com">
 <dialog id="as7d900as8" call-id="987@1.2.3.4"
 local-tag="123" remote-tag="456" direction="initiator">
 <state>early</state>

J. Rosenberg et. al. [Page 18]

Internet Draft Dialog Package June 24, 2002

 </dialog>
 </dialog-info>

 If it receives a second 1xx, with a different tag, this results in
 the creation of a second dialog:

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="2"
 state="full"
 entity="sip:caller@bar.com">
 <dialog id="as7d900as8" call-id="987@1.2.3.4"
 local-tag="123" remote-tag="456" direction="initiator">
 <state>early</state>
 </dialog>
 <dialog id="as7d900as8" call-id="987@1.2.3.4"
 local-tag="123" remote-tag="789" direction="initiator">
 <state>early</state>
 </dialog>
 </dialog-info>

 If a 200 OK is received on the second dialog, it moves to confirmed:

 <?xml version="1.0"?>

 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="3"
 state="partial"
 entity="sip:caller@bar.com">
 <dialog id="as7d900as8" call-id="987@1.2.3.4"
 local-tag="123" remote-tag="789" direction="initiator">
 <state event="2xx">confirmed</state>
 </dialog>
 </dialog-info>

 32 seconds later, the other early dialog terminates because no 2xx is
 received for it. This implies that it was successfully cancelled, and
 therefore the following notification is sent:

J. Rosenberg et. al. [Page 19]

Internet Draft Dialog Package June 24, 2002

 <?xml version="1.0"?>
 <dialog-info xmlns="urn:ietf:params:xml:ns:dialog-info"
 version="4"
 state="partial"
 entity="sip:caller@bar.com">
 <dialog id="as7d900as8" call-id="987@1.2.3.4"
 local-tag="123" remote-tag="456" direction="initiator">
 <state event="cancelled">terminated</state>
 </dialog>
 </dialog-info>

4 Security Considerations

 Subscriptions to dialog state can reveal very sensitive information.
 For this reason, this specification recommends authentication and
 authorization of subscriptions, and provides guidelines on sensible
 authorization policies.

 Since the data in notifications is sensitive as well, end-to-end SIP
 encryption mechanisms using S/MIME MAY be used to protect it.

5 IANA Considerations

 This document registers a new MIME type, application/dialog-info+xml
 and registers a new XML namespace.

5.1 application/dialog-info+xml MIME Registration

 MIME media type name: application

 MIME subtype name: dialog-info+xml

 Mandatory parameters: none

 Optional parameters: Same as charset parameter application/xml
 as specified in RFC 3023 [7].

 Encoding considerations: Same as encoding considerations of
 application/xml as specified in RFC 3023 [7].

 Security considerations: See Section 10 of RFC 3023 [7] and
 Section 4 of this specification.

 Interoperability considerations: none.

 Published specification: This document.

J. Rosenberg et. al. [Page 20]

Internet Draft Dialog Package June 24, 2002

 Applications which use this media type: This document type has
 been used to support SIP applications such as call return
 and auto-conference.

 Additional Information:

 Magic Number: None

 File Extension: .dif or .xml

 Macintosh file type code: "TEXT"

 Personal and email address for further information: Jonathan
 Rosenberg, <jdrosen@jdrosen.net>

 Intended usage: COMMON

 Author/Change controller: The IETF.

https://datatracker.ietf.org/doc/pdf/rfc3023
https://datatracker.ietf.org/doc/pdf/rfc3023
https://datatracker.ietf.org/doc/pdf/rfc3023#section-10

5.2 URN Sub-Namespace Registration for urn:ietf:params:xml:ns:dialog-
 info

 This section registers a new XML namespace, as per the guidelines in
 [6].

 URI: The URI for this namespace is
 urn:ietf:params:xml:ns:dialog-info.

 Registrant Contact: IETF, SIMPLE working group,
 <simple@mailman.dynamicsoft.com>, Jonathan Rosenberg
 <jdrosen@jdrosen.net>.

 XML:

 BEGIN
 <?xml version="1.0"?>
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
 "http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type"
 content="text/html;charset=iso-8859-1"/>
 <title>Dialog Information Namespace</title>
 </head
 <body>
 <h1>Namespace for Dialog Information</h1>
 <h2>application/dialog-info+xml</h2>

J. Rosenberg et. al. [Page 21]

Internet Draft Dialog Package June 24, 2002

 <p>See RFCXXXX.</p>
 </body>
 </html>
 END

6 Acknowledgements

 The author would like to thank Sean Olson for his comments.

7 Authors Addresses

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 First Floor
 East Hanover, NJ 07936
 email: jdrosen@dynamicsoft.com

 Henning Schulzrinne
 Columbia University
 M/S 0401
 1214 Amsterdam Ave.
 New York, NY 10027-7003
 email: schulzrinne@cs.columbia.edu

8 Normative References

 [1] A. Roach, "SIP-specific event notification," Internet Draft,
 Internet Engineering Task Force, Mar. 2002. Work in progress.

 [2] J. Rosenberg, H. Schulzrinne, et al. , "SIP: Session initiation
 protocol," Internet Draft, Internet Engineering Task Force, Feb.
 2002. Work in progress.

 [3] W. W. W. C. (W3C), "Extensible markup language (xml) 1.0." The
 XML 1.0 spec can be found at http://www.w3.org/TR/1998/REC-xml-
 19980210.

 [4] R. Moats, "URN syntax," RFC 2141, Internet Engineering Task
 Force, May 1997.

J. Rosenberg et. al. [Page 22]

Internet Draft Dialog Package June 24, 2002

 [5] R. Moats, "A URN namespace for IETF documents," RFC 2648,
 Internet Engineering Task Force, Aug. 1999.

 [6] M. Mealling, "The IANA XML registry," Internet Draft, Internet

http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
https://datatracker.ietf.org/doc/pdf/rfc2141
https://datatracker.ietf.org/doc/pdf/rfc2648

 Engineering Task Force, Nov. 2001. Work in progress.

 [7] M. Murata, S. S. Laurent, and D. Kohn, "XML media types," RFC
 3023, Internet Engineering Task Force, Jan. 2001.

9 Informative References

 [8] J. Rosenberg, "Session initiation protocol (SIP) extensions for
 presence," Internet Draft, Internet Engineering Task Force, May 2002.
 Work in progress.

 [9] J. Rosenberg, "A session initiation protocol (SIP)event
 template-package for watcher information," Internet Draft, Internet
 Engineering Task Force, May 2002. Work in progress.

 [10] R. Mahy, "A message summary and message waiting indication event
 package for the session initiation protocol (SIP)," Internet Draft,
 Internet Engineering Task Force, June 2002. Work in progress.

 [11] J. Rosenberg, "The session initiation protocol UPDATE method,"
 Internet Draft, Internet Engineering Task Force, May 2002. Work in
 progress.

 Full Copyright Statement

 Copyright (c) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

J. Rosenberg et. al. [Page 23]

https://datatracker.ietf.org/doc/pdf/rfc3023
https://datatracker.ietf.org/doc/pdf/rfc3023

Internet Draft Dialog Package June 24, 2002

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

J. Rosenberg et. al. [Page 24]

