
SIPPING Working Group V. Hilt (Ed.)
Internet-Draft Bell Labs/Alcatel-Lucent
Intended status: Informational October 22, 2008
Expires: April 25, 2009

Design Considerations for Session Initiation Protocol (SIP) Overload
Control

draft-ietf-sipping-overload-design-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 25, 2009.

Abstract

 Overload occurs in Session Initiation Protocol (SIP) networks when
 SIP servers have insufficient resources to handle all SIP messages
 they receive. Even though the SIP protocol provides a limited
 overload control mechanism through its 503 (Service Unavailable)
 response code, SIP servers are still vulnerable to overload. This
 document discusses models and design considerations for a SIP
 overload control mechanism.

Hilt (Ed.) Expires April 25, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Overload Control October 2008

Table of Contents

1. Introduction . 3
2. SIP Overload Problem . 4
3. Explicit vs. Implicit Overload Control 4
4. System Model . 5
5. Degree of Cooperation . 7
5.1. Hop-by-Hop . 8
5.2. End-to-End . 9
5.3. Local Overload Control 10

6. Topologies . 10
7. Explicit Overload Control Feedback 13
7.1. Rate-based Overload Control 13
7.2. Loss-based Overload Control 14
7.3. Window-based Overload Control 15
7.4. Overload Signal-based Overload Control 16
7.5. On-/Off Overload Control 16

8. Implicit Overload Control 17
9. Overload Control Algorithms 17
10. Security Considerations 17
11. IANA Considerations . 18
Appendix A. Contributors . 18
12. Informative References . 18

 Author's Address . 18
 Intellectual Property and Copyright Statements 19

Hilt (Ed.) Expires April 25, 2009 [Page 2]

Internet-Draft Overload Control October 2008

1. Introduction

 As with any network element, a Session Initiation Protocol (SIP)
 [RFC3261] server can suffer from overload when the number of SIP
 messages it receives exceeds the number of messages it can process.
 Overload occurs if a SIP server does not have sufficient resources to
 process all incoming SIP messages. These resources may include CPU,
 memory, network bandwidth, input/output, or disk resources.

 Overload can pose a serious problem for a network of SIP servers.
 During periods of overload, the throughput of a network of SIP
 servers can be significantly degraded. In fact, overload may lead to
 a situation in which the throughput drops down to a small fraction of
 the original processing capacity. This is often called congestion
 collapse.

 An overload control mechanism enables a SIP server to perform close
 to its capacity limit during times of overload. Overload control is
 used by a SIP server if it is unable to process all SIP requests due
 to resource constraints. There are other failure cases in which a
 SIP server can successfully process incoming requests but has to
 reject them for other reasons. For example, a PSTN gateway that runs
 out of trunk lines but still has plenty of capacity to process SIP
 messages should reject incoming INVITEs using a 488 (Not Acceptable
 Here) response [RFC4412]. Similarly, a SIP registrar that has lost
 connectivity to its registration database but is still capable of
 processing SIP messages should reject REGISTER requests with a 500
 (Server Error) response [RFC3261]. Overload control mechanisms do
 not apply in these cases and SIP provides appropriate response codes
 for them.

 The SIP protocol provides a limited mechanism for overload control
 through its 503 (Service Unavailable) response code and the Retry-
 After header. However, this mechanism cannot prevent overload of a
 SIP server and it cannot prevent congestion collapse. In fact, it
 may cause traffic to oscillate and to shift between SIP servers and
 thereby worsen an overload condition. A detailed discussion of the
 SIP overload problem, the problems with the 503 (Service Unavailable)
 response code and the Retry-After header and the requirements for a
 SIP overload control mechanism can be found in
 [I-D.ietf-sipping-overload-reqs].

 This document discusses the models, assumptions and design
 considerations for a SIP overload control mechanism. The document is
 a product of the SIP overload control design team.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4412
https://datatracker.ietf.org/doc/html/rfc3261

Hilt (Ed.) Expires April 25, 2009 [Page 3]

Internet-Draft Overload Control October 2008

2. SIP Overload Problem

 A key contributor to the SIP congestion collapse
 [I-D.ietf-sipping-overload-reqs] is the regenerative behavior of
 overload in the SIP protocol. When SIP is running over the UDP
 protocol, it will retransmit messages that were dropped by a SIP
 server due to overload and thereby increase the offered load for the
 already overloaded server. This increase in load worsens the
 severity of the overload condition and, in turn, causes more messages
 to be dropped. A congestion collapse can occur.

 While regenerative behavior under overload should ideally be avoided
 by any protocol and would lead to stable operation under overload,
 this is often difficult to achieve in practice. For example,
 changing the SIP retransmission timer mechanisms can reduce the
 degree of regeneration during overload, however, these changes will
 impact the ability of SIP to recover from message losses. Without
 any retransmission each message that is dropped due to SIP server
 overload will eventually lead to a failed call.

 For a SIP INVITE transaction to be successful a minimum of three
 messages need to be forwarded by a SIP server, often five or more.
 If a SIP server under overload randomly discards messages without
 evaluating them, the chances that all messages belonging to a
 transaction are passed on will decrease as the load increases. Thus,
 the number of successful transactions will decrease even if the
 message throughput of a server remains up and the overload behavior
 would be fully non-regenerative. A SIP server might (partially)
 parse incoming messages to determine if it is a new request or a
 message belonging to an existing transaction. However, after having
 spend resources on parsing a SIP message, discarding this message
 becomes expensive as the resources already spend are lost. The
 number of successful transactions will therefore decline with an
 increase in load as less and less resources can be spent on
 forwarding messages. The slope of the decline depends on the amount
 of resources spent to evaluate each message.

 Another key challenge for SIP overload control is that the rate of
 the true traffic source usually cannot be controlled. Overload is
 often caused by a large number of UAs each of which creates only a
 single message. These UAs cannot be rate controlled as they only
 send one message. However, the sum of their traffic can overload a
 SIP server.

3. Explicit vs. Implicit Overload Control

 The main differences between explicit and implicit overload control

Hilt (Ed.) Expires April 25, 2009 [Page 4]

Internet-Draft Overload Control October 2008

 is the way overload is signaled from a SIP server that is reaching
 overload condition to its upstream neighbors.

 In an explicit overload control mechanism, a SIP server uses an
 explicit overload signal to indicate that it is reaching its capacity
 limit. Upstream neighbors receiving this signal can adjust their
 transmission rate as indicated in the overload signal to a level that
 is acceptable to the downstream server. The overload signal enables
 a SIP server to steer the load it is receiving to a rate at which it
 can perform at maximum capacity.

 Implicit overload control uses the absence of responses and packet
 loss as an indication of overload. A SIP server that is sensing such
 a condition reduces the load it is forwarding a downstream neighbor.
 Since there is no explicit overload signal, this mechanism is robust
 as it does not depend on actions taken by the SIP server running into
 overload.

 The ideas of explicit and implicit overload control are in fact
 complementary. By considering implicit overload indications a server
 can avoid overloading an unresponsive downstream neighbor. An
 explicit overload signal enables a SIP server to actively steer the
 incoming load to a desired level.

4. System Model

 The model shown in Figure 1 identifies fundamental components of an
 explicit SIP overload control mechanism:

 SIP Processor: The SIP Processor processes SIP messages and is the
 component that is protected by overload control.
 Monitor: The Monitor measures the current load of the SIP processor
 on the receiving entity. It implements the mechanisms needed to
 determine the current usage of resources relevant for the SIP
 processor and reports load samples (S) to the Control Function.
 Control Function: The Control Function implements the overload
 control algorithm. The control function uses the load samples (S)
 and determines if overload has occurred and a throttle (T) needs
 to be set to adjust the load sent to the SIP processor on the
 receiving entity. The control function on the receiving entity
 sends load feedback (F) to the sending entity.
 Actuator: The Actuator implements the algorithms needed to act on
 the throttles (T) and ensures that the amount of traffic forwarded
 to the receiving entity meets the criteria of the throttle. For
 example, a throttle may instruct the Actuator to not forward more
 than 100 INVITE messages per second. The Actuator implements the
 algorithms to achieve this objective, e.g., using message gapping.

Hilt (Ed.) Expires April 25, 2009 [Page 5]

Internet-Draft Overload Control October 2008

 It also implements algorithms to select the messages that will be
 affected and determine whether they are rejected or redirected.

 The type of feedback (F) conveyed from the receiving to the sending
 entity depends on the overload control method used (i.e., loss-based,
 rate-based or window-based overload control; see Section 7), the
 overload control algorithm (see Section 9) as well as other design
 parameters. In any case, the feedback (F) enables the sending entity
 to adjust the amount of traffic forwarded to the receiving entity to
 a level that is acceptable to the receiving entity without causing
 overload.

 Figure 1 depicts a general system model for overload control. In
 this diagram, one instance of the control function is on the sending
 entity (i.e., associated with the actuator) and one is on the
 receiving entity (i.e., associated with the monitor). However, a
 specific mechanism may not require both elements. In this case, one
 of two control function elements can be empty and simply passes along
 feedback. E.g., if (F) is defined as a loss-rate (e.g., reduce
 traffic by 10%) there is no need for a control function on the
 sending entity as the content of (F) can be copied directly into (T).

 The model in Figure 1 shows a scenario with one sending and one
 receiving entity. In a more realistic scenario a receiving entity
 will receive traffic from multiple sending entities and vice versa
 (see Section 6). The feedback generated by a Monitor will therefore
 often be distributed across multiple Actuators. An Actuator needs to
 be prepared to receive different levels of feedback from different
 receiving entities and throttle traffic to these entities
 accordingly.

Hilt (Ed.) Expires April 25, 2009 [Page 6]

Internet-Draft Overload Control October 2008

 Sending Receiving
 Entity Entity
 +----------------+ +----------------+
 | Server A | | Server B |
 | +----------+ | | +----------+ | -+
 | | Control | | F | | Control | | |
 | | Function |<-+------+--| Function | | |
 | +----------+ | | +----------+ | |
 | T | | | ^ | | Overload
 | v | | | S | | Control
 | +----------+ | | +----------+ | | | | | |
 | | Actuator | | | | Monitor | | |
 | +----------+ | | +----------+ | |
 | | | | ^ | -+
 | v | | | | -+
 | +----------+ | | +----------+ | |
 <-+--| SIP | | | | SIP | | | SIP
 --+->|Processor |--+------+->|Processor |--+-> | System
 | +----------+ | | +----------+ | |
 +----------------+ +----------------+ -+

 Figure 1: System Model for Explicit Overload Control

5. Degree of Cooperation

 A SIP request is often processed by more than one SIP server on its
 path to the destination. Thus, a design choice for an explicit
 overload control mechanism is where to place the components of
 overload control along the path of a request and, in particular,
 where to place the Monitor and Actuator. This design choice
 determines the degree of cooperation between the SIP servers on the
 path. Overload control can be implemented hop-by-hop with the
 Monitor on one server and the Actuator on its direct upstream
 neighbor. Overload control can be implemented end-to-end with
 Monitors on all SIP servers along the path of a request and an
 Actuator on the sender. In this case, the Control Functions
 associated with each Monitor have to cooperate to jointly determine
 the overall feedback for this path. Finally, overload control can be
 implemented locally on a SIP server if Monitor and Actuator reside on
 the same server. In this case, the sending entity and receiving
 entity are the same SIP server and Actuator and Monitor operate on
 the same SIP processor (although, the Actuator typically operates on
 a pre-processing stage in local overload control). Local overload
 control is an internal overload control mechanism as the control loop
 is implemented internally on one server. Hop-by-hop and end-to-end
 are external overload control mechanisms. All three configurations

Hilt (Ed.) Expires April 25, 2009 [Page 7]

Internet-Draft Overload Control October 2008

 are shown in Figure 2.

 +---------+ +------(+)---------+
 +------+ | | | ^ |
 | | | +---+ | | +---+
 v | v //=>| C | v | //=>| C |
 +---+ +---+ // +---+ +---+ +---+ // +---+
 | A |===>| B | | A |===>| B |
 +---+ +---+ \\ +---+ +---+ +---+ \\ +---+
 ^ \\=>| D | ^ | \\=>| D |
 | +---+ | | +---+
 | | | v |
 +---------+ +------(+)---------+

 (a) hop-by-hop (b) end-to-end

 +-+
 v |
 +-+ +-+ +---+
 v | v | //=>| C |
 +---+ +---+ // +---+
 | A |===>| B |
 +---+ +---+ \\ +---+
 \\=>| D |
 +---+
 ^ |
 +-+

 (c) local

 ==> SIP request flow
 <-- Overload feedback loop

 Figure 2: Degree of Cooperation between Servers

5.1. Hop-by-Hop

 The idea of hop-by-hop overload control is to instantiate a separate
 control loop between all neighboring SIP servers that directly
 exchange traffic. I.e., the Actuator is located on the SIP server
 that is the direct upstream neighbor of the SIP server that has the
 corresponding Monitor. Each control loop between two servers is
 completely independent of the control loop between other servers
 further up- or downstream. In the example in Figure 2(b), three
 independent overload control loops are instantiated: A - B, B - C and
 B - D. Each loop only controls a single hop. Overload feedback

Hilt (Ed.) Expires April 25, 2009 [Page 8]

Internet-Draft Overload Control October 2008

 received from a downstream neighbor is not forwarded further
 upstream. Instead, a SIP server acts on this feedback, for example,
 by re-routing or rejecting traffic if needed. If the upstream
 neighbor of a server also becomes overloaded, it will report this
 problem to its upstream neighbors, which again take action based on
 the reported feedback. Thus, in hop-by-hop overload control,
 overload is always resolved by the direct upstream neighbors of the
 overloaded server without the need to involve entities that are
 located multiple SIP hops away.

 Hop-by-hop overload control reduces the impact of overload on a SIP
 network and can avoid congestion collapse. It is simple and scales
 well to networks with many SIP entities. A key advantage is that it
 does not require feedback to be transmitted across multiple-hops,
 possibly crossing multiple trust domains. Feedback is sent to the
 next hop only. Furthermore, it does not require a SIP entity to
 aggregate a large number of overload status values or keep track of
 the overload status of SIP servers it is not communicating with.

5.2. End-to-End

 End-to-end overload control implements an overload control loop along
 the entire path of a SIP request, from UAC to UAS. An end-to-end
 overload control mechanism consolidates overload information from all
 SIP servers on the way (including all proxies and the UAS) and uses
 this information to throttle traffic as far upstream as possible. An
 end-to-end overload control mechanism has to be able to frequently
 collect the overload status of all servers on the potential path(s)
 to a destination and combine this data into meaningful overload
 feedback.

 A UA or SIP server only needs to throttle requests if it knows that
 these requests will eventually be forwarded to an overloaded server.
 For example, if D is overloaded in Figure 2(c), A should only
 throttle requests it forwards to B when it knows that they will be
 forwarded to D. It should not throttle requests that will eventually
 be forwarded to C, since server C is not overloaded. In many cases,
 it is difficult for A to determine which requests will be routed to C
 and D since this depends on the local routing decision made by B.
 These routing decisions can be highly variable and, for example,
 depend on call routing policies configured by the user, services
 invoked on a call, load balancing policies, etc. The fact that a
 previous call to a target has been routed through an overload server
 does not necessarily mean the next call to this target will also be
 routed through the same server.

 Overall, the main problem of end-to-end path overload control is its
 inherent complexity since UAC or SIP servers need to monitor all

Hilt (Ed.) Expires April 25, 2009 [Page 9]

Internet-Draft Overload Control October 2008

 potential paths to a destination in order to determine which requests
 should be throttled and which requests may be sent. Even if this
 information is available, it is not clear which path a specific
 request will take. Therefore, end-to-end overload control is likely
 to only work well in simple, well-known topologies (e.g., a server
 that is known to only have one downstream neighbor).

 A key difference to transport protocols using end-to-end congestion
 control such as TCP is that the traffic exchanged by SIP servers
 consists of many individual SIP messages. Each of these SIP messages
 has its own source and destination. This is different from TCP which
 controls a stream of packets between a single source and a single
 destination.

5.3. Local Overload Control

 The idea of local overload control is to run the Monitor and Actuator
 on the same server. This enables the server to monitor the current
 resource usage and to reject messages that can't be processed without
 overusing the local resources. The fundamental assumption behind
 local overload control is that it is less resource consuming for a
 server to reject messages than to process them. A server can
 therefore reject the excess messages it cannot process, stopping all
 retransmissions of these messages.

 Local overload control can be used in conjunction with an implicit or
 explicit overload control mechanism and provides an additional layer
 of protection against overload. It is fully implemented on the local
 server and does not require any cooperation from upstream neighbors.
 In general, servers should use implicit or explicit overload control
 techniques before using local overload control as a mechanism of last
 resort.

6. Topologies

 The following topologies describe four generic SIP server
 configurations. These topologies illustrate specific challenges for
 an overload control mechanism. An actual SIP server topology is
 likely to consist of combinations of these generic scenarios.

 In the "load balancer" configuration shown in Figure 3(a) a set of
 SIP servers (D, E and F) receives traffic from a single source A. A
 load balancer is a typical example for such a configuration. In this
 configuration, overload control needs to prevent server A (i.e., the
 load balancer) from sending too much traffic to any of its downstream
 neighbors D, E and F. If one of the downstream neighbors becomes
 overloaded, A can direct traffic to the servers that still have

Hilt (Ed.) Expires April 25, 2009 [Page 10]

Internet-Draft Overload Control October 2008

 capacity. If one of the servers serves as a backup, it can be
 activated once one of the primary servers reaches overload.

 If A can reliably determine that D, E and F are its only downstream
 neighbors and all of them are in overload, it may choose to report
 overload upstream on behalf of D, E and F. However, if the set of
 downstream neighbors is not fixed or only some of them are in
 overload then A should not use overload control since A can still
 forward the requests destined to non-overloaded downstream neighbors.
 These requests would be throttled as well if A would use overload
 control towards its upstream neighbors.

 In the "multiple sources" configuration shown in Figure 3(b), a SIP
 server D receives traffic from multiple upstream sources A, B and C.
 Each of these sources can contribute a different amount of traffic,
 which can vary over time. The set of active upstream neighbors of D
 can change as servers may become inactive and previously inactive
 servers may start contributing traffic to D.

 If D becomes overloaded, it needs to generate feedback to reduce the
 amount of traffic it receives from its upstream neighbors. D needs
 to decide by how much each upstream neighbor should reduce traffic.
 This decision can require the consideration of the amount of traffic
 sent by each upstream neighbor and it may need to be re-adjusted as
 the traffic contributed by each upstream neighbor varies over time.

 In many configurations, SIP servers form a "mesh" as shown in
 Figure 3(c). Here, multiple upstream servers A, B and C forward
 traffic to multiple alternative servers D and E. This configuration
 is a combination of the "load balancer" and "multiple sources"
 scenario.

Hilt (Ed.) Expires April 25, 2009 [Page 11]

Internet-Draft Overload Control October 2008

 +---+ +---+
 /->| D | | A |-\
 / +---+ +---+ \
 / \ +---+
 +---+-/ +---+ +---+ \->| |
 | A |------>| E | | B |------>| D |
 +---+-\ +---+ +---+ /->| |
 \ / +---+
 \ +---+ +---+ /
 \->| F | | C |-/
 +---+ +---+

 (a) load balancer (b) multiple sources

 +---+
 | A |---\ a--\
 +---+-\ \---->+---+ \
 \/----->| D | b--\ \--->+---+
 +---+--/\ /-->+---+ \---->| |
 | B | \/ c-------->| D |
 +---+---\/\--->+---+ | |
 /\---->| E | ... /--->+---+
 +---+--/ /-->+---+ /
 | C |-----/ z--/
 +---+

 (c) mesh (d) edge proxy

 Figure 3: Topologies

 Overload control that is based on reducing the number of messages a
 sender is allowed to send is not suited for servers that receive
 requests from a very large population of senders, each of which only
 infrequently sends a request. This scenario is shown in Figure 3(d).
 An edge proxy that is connected to many UAs is a typical example for
 such a configuration.

 Since each UA typically only contributes a few requests, which are
 often related to the same call, it can't decrease its message rate to
 resolve the overload. In such a configuration, a SIP server can
 resort to local overload control by rejecting a percentage of the
 requests it receives with 503 (Service Unavailable) responses. Since
 there are many upstream neighbors that contribute to the overall
 load, sending 503 (Service Unavailable) to a fraction of them can
 gradually reduce load without entirely stopping all incoming traffic.
 The Retry-After header can be used in 503 (Service Unavailable)
 responses to ask UAs to wait a given number of seconds before trying

Hilt (Ed.) Expires April 25, 2009 [Page 12]

Internet-Draft Overload Control October 2008

 the call again. Using 503 (Service Unavailable) towards individual
 sources can, however, not prevent overload if a large number of users
 places calls at the same time.

 Note: The requirements of the "edge proxy" topology are different
 than the ones of the other topologies, which may require a
 different method for overload control.

7. Explicit Overload Control Feedback

 Explicit overload control feedback enables a receiver to indicate how
 much traffic it wants to receive. Explicit overload control
 mechanisms can be differentiated based on the type of information
 conveyed in the overload control feedback.

7.1. Rate-based Overload Control

 The key idea of rate-based overload control is to limit the request
 rate at which an upstream element is allowed to forward to the
 downstream neighbor. If overload occurs, a SIP server instructs each
 upstream neighbor to send at most X requests per second. Each
 upstream neighbor can be assigned a different rate cap.

 An example algorithm for the Actuator in a sending entity to
 implement a rate cap request gapping. After transmitting a request
 to a downstream neighbor, a server waits for 1/X seconds before it
 transmits the next request to the same neighbor. Requests that
 arrive during the waiting period are not forwarded and are either
 redirected, rejected or buffered.

 The rate cap ensures that the number of requests received by a SIP
 server never increases beyond the sum of all rate caps granted to
 upstream neighbors. Rate-based overload control protects a SIP
 server against overload even during load spikes assuming there are no
 new upstream neighbors that start sending traffic. New upstream
 neighbors need to be considered in all rate caps currently assigned
 to upstream neighbors. The current overall rate cap of a SIP server
 is determined by an overload control algorithm, e.g., based on system
 load.

 Rate-based overload control requires a SIP server to assign a rate
 cap to each of its upstream neighbors while it is activated.
 Effectively, a server needs to assign a share of its overall capacity
 to each upstream neighbor. A server needs to ensure that the sum of
 all rate caps assigned to upstream neighbors is not (significantly)
 higher than its actual processing capacity. This requires a SIP
 server to keep track of the set of upstream neighbors and to adjust

Hilt (Ed.) Expires April 25, 2009 [Page 13]

Internet-Draft Overload Control October 2008

 the rate cap if a new upstream neighbor appears or an existing
 neighbor stops transmitting. For example, if the capacity of the
 server is X and this server is receiving traffic from two upstream
 neighbors, it can assign a rate of X/2 to each of them. If a third
 sender appears, the rate for each sender is lowered to X/3. If the
 rate cap assigned to upstream neighbors is too high, a server may
 still experience overload. If the cap is too low, the upstream
 neighbors will reject requests even though they could be processed by
 the server.

 An approach for estimating a rate cap for each upstream neighbor is
 using a fixed proportion of a control variable, X, where X is
 initially equal to the capacity of the SIP server. The server then
 increases or decreases X until the workload arrival rate matches the
 actual server capacity. Usually, this will mean that the sum of the
 rate caps sent out by the server (=X) exceeds its actual capacity,
 but enables upstream neighbors who are not generating more than their
 fair share of the work to be effectively unrestricted. In this
 approach, the server only has to measure the aggregate arrival rate,
 however, since the overall rate cap is usually higher than the actual
 capacity, brief periods of overload may occur.

7.2. Loss-based Overload Control

 A loss percentage enables a SIP server to ask an upstream neighbor to
 reduce the number of requests it would normally forward to this
 server by a percentage X. For example, a SIP server can ask an
 upstream neighbor to reduce the number of requests this neighbor
 would normally send by 10%. The upstream neighbor then redirects or
 rejects X percent of the traffic that is destined for this server.

 An algorithm for the sending entity to implement a loss percentage is
 to draw a random number between 1 and 100 for each request to be
 forwarded. The request is not forwarded to the server if the random
 number is less than or equal to X.

 An advantage of loss-based overload control is that, the receiving
 entity does not need to track the set of upstream neighbors or the
 request rate it receives from each upstream neighbor. It is
 sufficient to monitor the overall system utilization. To reduce
 load, a server can ask its upstream neighbors to lower the traffic
 forwarded by a certain percentage. The server calculates this
 percentage by combining the loss percentage that is currently in use
 (i.e., the loss percentage the upstream neighbors are currently using
 when forwarding traffic), the current system utilization and the
 desired system utilization. For example, if the server load
 approaches 90% and the current loss percentage is set to a 50%
 traffic reduction, then the server can decide to increase the loss

Hilt (Ed.) Expires April 25, 2009 [Page 14]

Internet-Draft Overload Control October 2008

 percentage to 55% in order to get to a system utilization of 80%.
 Similarly, the server can lower the loss percentage if permitted by
 the system utilization.

 Loss-based overload control requires that the throttle percentage is
 adjusted to the current overall number of requests received by the
 server. This is in particular important if the number of requests
 received fluctuates quickly. For example, if a SIP server sets a
 throttle value of 10% at time t1 and the number of requests increases
 by 20% between time t1 and t2 (t1<t2), then the server will see an
 increase in traffic by 10% between time t1 and t2. This is even
 though all upstream neighbors have reduced traffic by 10% as told.
 Thus, percentage throttling requires an adjustment of the throttling
 percentage in response to the traffic received and may not always be
 able to prevent a server from encountering brief periods of overload
 in extreme cases.

7.3. Window-based Overload Control

 The key idea of window-based overload control is to allow an entity
 to transmit a certain number of messages before it needs to receive a
 confirmation for the messages in transit. Each sender maintains an
 overload window that limits the number of messages that can be in
 transit without being confirmed.

 Each sender maintains an unconfirmed message counter for each
 downstream neighbor it is communicating with. For each message sent
 to the downstream neighbor, the counter is increased by one. For
 each confirmation received, the counter is decreased by one. The
 sender stops transmitting messages to the downstream neighbor when
 the unconfirmed message counter has reached the current window size.

 A crucial parameter for the performance of window-based overload
 control is the window size. Each sender has an initial window size
 it uses when first sending a request. This window size can be
 changed based on the feedback it receives from the receiver.

 The sender adjusts its window size as soon as it receives the
 corresponding feedback from the receiver. If the new window size is
 smaller than the current unconfirmed message counter, the sender
 stops transmitting messages until more messages are confirmed and the
 current unconfirmed message counter is less than the window size.

 A sender should not treat the reception of a 100 Trying response as
 an implicit confirmation for a message. 100 Trying responses are
 often created by a SIP server very early in processing and do not
 indicate that a message has been successfully processed and cleared
 from the input buffer. If the downstream neighbor is a stateless

Hilt (Ed.) Expires April 25, 2009 [Page 15]

Internet-Draft Overload Control October 2008

 proxy, it will not create 100 Trying responses at all and instead
 pass through 100 Trying responses created by the next stateful
 server. Also, 100 Trying responses are typically only created for
 INVITE requests. Explicit message confirmations do not have these
 problems.

 The behavior and issues of window-based overload control are similar
 to rate-based overload control, in that the total available receiver
 buffer space needs to be divided among all upstream neighbors.
 However, unlike rate-based overload control, window-based overload
 control can ensure that the receiver buffer does not overflow under
 normal conditions. The transmission of messages by senders is
 effectively clocked by message confirmations received from the
 receiver. A buffer overflow can occur if a large number of new
 upstream neighbors arrives at the same time.

7.4. Overload Signal-based Overload Control

 The key idea of overload signal-based overload control is to use the
 transmission of a 503 (Service Unavailable) response as a signal for
 overload in the downstream neighbor. After receiving a 503 (Service
 Unavailable) response, the sender reduces the load forwarded to the
 downstream neighbor to avoid triggering more 503 (Service
 Unavailable) responses. The sender reduces the load further if more
 503 (Service Unavailable) responses are returned. This scheme is
 based on the use of 503 (Service Unavailable) responses without
 Retry-After header as the Retry-After header would require a sender
 to stop forwarding requests.

 A sender which has not received 503 (Service Unavailable) responses
 for a while but is still throttling traffic can start to increase the
 offered load. By slowly increasing load a sender can detect that
 overload in the downstream neighbor has been resolved and more load
 can be forwarded. The load is increased until the sender again
 receives another 503 (Service Unavailable) response or is forwarding
 all requests it has.

 A possible algorithm for adjusting traffic is additive increase/
 multiplicative decrease (AIMD).

7.5. On-/Off Overload Control

 On-/off overload control feedback enables a SIP server to turn the
 traffic it is receiving either on or off. The 503 (Service
 Unavailable) response with Retry-After header implements on-/off
 overload control. On-/off overload control is less effective in
 controlling load than the fine grained control methods above. In
 fact, the above methods can realize on/-off overload control, e.g.,

Hilt (Ed.) Expires April 25, 2009 [Page 16]

Internet-Draft Overload Control October 2008

 by setting the allowed rate to either zero or unlimited.

8. Implicit Overload Control

 Implicit overload control ensures that the transmission of a SIP
 server is self-limiting. It slows down the transmission rate of a
 sender when there is an indication that the receiving entity is
 experiencing overload. Such an indication can be that the receiving
 entity is not responding within the expected timeframe or is not
 responding at all. The idea of implicit overload control is that
 senders should try to sense overload of a downstream neighbor even if
 there is no explicit overload control feedback. It avoids that an
 overloaded server, which has become unable to generate overload
 control feedback, will be overwhelmed with requests.

 Window-based overload control is inherently self-limiting since a
 sender cannot continue without receiving confirmations. All other
 explicit overload control schemes described above do not have this
 property and require additional implicit controls to limit
 transmissions in case an overloaded downstream neighbor does not
 generate explicit feedback.

9. Overload Control Algorithms

 An important aspect of the design of an overload control mechanism is
 the overload control algorithm. The control algorithm determines
 when the amount of traffic to a SIP server needs to be decreased and
 when it can be increased. In terms of the model described in

Section 4 the control algorithm takes (S) as an input value and
 generates (T) as a result.

 Overload control algorithms have been studied to a large extent and
 many different overload control algorithms exist. With many
 different overload control algorithms available, it seems reasonable
 to define a baseline algorithm and allow the use of other algorithms
 if they don't violate the protocol semantics. This will also allow
 the development of future algorithms, which may lead to a better
 performance.

10. Security Considerations

 [TBD.]

Hilt (Ed.) Expires April 25, 2009 [Page 17]

Internet-Draft Overload Control October 2008

11. IANA Considerations

 This document does not require any IANA considerations.

Appendix A. Contributors

 Contributors to this document are: Ahmed Abdelal (Sonus Networks),
 Mary Barnes (Nortel), Carolyn Johnson (AT&T Labs), Daryl Malas
 (CableLabs), Eric Noel (AT&T Labs), Tom Phelan (Sonus Networks),
 Jonathan Rosenberg (Cisco), Henning Schulzrinne (Columbia
 University), Charles Shen (Columbia University), Nick Stewart
 (British Telecommunications plc), Rich Terpstra (Level 3), Fangzhe
 Chang (Bell Labs/Alcatel-Lucent). Many thanks!

12. Informative References

 [I-D.ietf-sipping-overload-reqs]
 Rosenberg, J., "Requirements for Management of Overload in
 the Session Initiation Protocol",

draft-ietf-sipping-overload-reqs-05 (work in progress),
 July 2008.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC4412] Schulzrinne, H. and J. Polk, "Communications Resource
 Priority for the Session Initiation Protocol (SIP)",

RFC 4412, February 2006.

Author's Address

 Volker Hilt (Ed.)
 Bell Labs/Alcatel-Lucent
 791 Holmdel-Keyport Rd
 Holmdel, NJ 07733
 USA

 Email: volkerh@bell-labs.com

https://datatracker.ietf.org/doc/html/draft-ietf-sipping-overload-reqs-05
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc4412

Hilt (Ed.) Expires April 25, 2009 [Page 18]

Internet-Draft Overload Control October 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Hilt (Ed.) Expires April 25, 2009 [Page 19]

