SIPPING M. Dolly ToC

Internet-Draft AT&T

Intended status: Standards

D. Petrie
Track

Expires: September 10, 2009 SIPez LLC

D. Worley
(Editor)

Nortel Networks

March 09, 2009

A Schema and Guidelines for Defining Session Initiation Protocol User
Agent Profile Datasets
draft-ietf-sipping-profile-datasets-03.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 10, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This document defines the requirements and a format for SIP user agent
profile data. An overall schema is specified for the definition of

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

profile datasets. The schema also provides for expressing constraints
for how multiple sources of profile data are to be combined. This
document provides a guide to considerations, policies and syntax for
defining datasets to be included in profile data.

Table of Contents

1. Introduction
2. Terminology
3. Overview
4. Design Considerations
4.1. Requirement Descriptions
4.1.1. Implementer Extensibility
4.1.2. Flexible Capabilities
4.1.3. Access Control
4.1.4. Data Constraints and Range Definition
4.1.5. Support of User, Device, Local Network Sources
4.1.6. The Ability to Specify Policy
4.1.7. XML
5. Overall Dataset Schema
5.1. Data Primitives
5.2. Use of Namespaces
5.3. The 'propertySet' Element
5.4. The Abstract 'setting_container' Element
5.5. The Abstract 'setting' Element
5.5.1. The 'visibility' Attribute
5.5.2. The 'policy' Attributes
5.5.3. The 'excludedPolicy' Attributes
5.5.4. The 'direction' Attribute
5.5.5. The 'q' Attribute
5.6. The 'profileUri' Element
5.7. The 'profileCredential' Element
5.7.1. realm Element
5.7.2. authUser Element
5.7.3. albigest Element
5.7.4. password Element
5.8. The 'profileContactUri' Element
5.9. The 'profileInfo' Element
5.10. Example Profile Dataset
5.11. Merging Property Sets
5.11.1. Single Numeric Value Merging Algorithm
5.11.2. Multiple Enumerated Value Merging Algorithm
5.11.3. Closest Value First Merging Algorithm
5.12. Common Types
6. Defining Data Sets

6.1. Namespace
6.2. Property Definitions

6.3. Merging Data Sets
Candidate Data Sets
Security Considerations
IANA Considerations
9.1. Content-type registration for 'application/uaprofile+xml'
Contributors
Acknowledgments
References
12.1. Normative References
12.2. Informative References
Appendix A. Relax NG SIP UA Profile Schema
Appendix B. Use Cases
B.1. Outbound Proxy Setting
B.2. Codec Settings

el

[T
N R e

B.2.1. Codec Setting Not Set
B.2.2. Codec Set in Device Profile
B.2.3. Set in Device and User Profiles
B.2.4. Set in Device and Local Profiles
B.2.5. Set in Device, User and Local Profiles
B.2.6. Example Derived Requirements
8§ Authors' Addresses
1. Introduction TOC

The SIP User Agent Profile Delivery Framework
[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.) and the Framework for SIP Session Policies
[I-D.ietf-sip-session-policy-framework] (Hilt, V., Camarillo, G., and
J. Rosenberg, “A Framework for Session Initiation Protocol (SIP)
Session Policies,” February 2010.) specify how SIP user agents locate
and retrieve profile data specific to the user, the device, and the
local network. It is important for SIP User Agents to be able to obtain
and use these multiple sources of profile data in order to support a
wide range of applications without undue complexity.

While these frameworks define the mechanisms for transmitting profile
data, they do not define a format for the actual profile data. This
document defines the requirements, the default/mandatory to support
content type for [I-D.ietf-sipping-config-framework] (Channabasappa,
S., “A Framework for Session Initiation Protocol User Agent Profile
Delivery,” February 2010.) , a high level schema for, and guide to how
these datasets can be defined. The goal is to enable any SIP user agent
to obtain profile data and be functional in a new environment
independent of the implementation or model of user agent. The nature of
having profile data from three potential sources requires the

definition of policies on how to apply the data in an interoperable way
across implementations which may have widely varying capabilities.

The ultimate objective of the framework described here, together with
the SIP User Agent Profile delivery framework, is to a start up
experience requiring minimal user intervention. One should be able to
take a new SIP user agent out of the box, plug it in or install the
software and have it get its profiles without human intervention other
than security measures. This is necessary for cost effective deployment
of large numbers of user agents.

2. Terminology TOC

"The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119." [RFC2119
(Bradner, S., “Key words for use in RFCs to Indicate Requirement
Levels,” March 1997.).

This document uses the terms "profile" and "device" as defined in
[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”
February 2010.):

profile - a set of configuration data intended to configure a
specific device or devices and obtained from a specific source
(e.g., user, device, local network or other). Has a concrete
representation as an XML document.

profile type - a particular category of Profile data in regard to
its source (e.g., user, device, local network or other).

In addition, this document defines the following terms:

profile schema - a definition of a set of possible profiles that
are seen as alternative configuration data for a set of UAs. Has
a specific XML namespace and a concrete representation in XML
Schema Language and/or in Relax NG schema language.

profile meta - schema: the schema of the XML namespace
"urn:ietf:params:xml:ns:uaprof", from which are derived the
various profile schemas

user profile - the profile that applies to a specific user. The
user profile is that set of profile data the user wants to
associate with a given device (e.g. ringtones used when someone
calls them, the user's shortcuts) and relate to the user's
identity

device profile -
data profile that applies to a specific device.
This is the data that is bound to the device itself independent
of the user that is bound to the device. It relates to specific
capabilities of the device and/or preferences of the owner of the
device.

local network profile - data that applies to the user agent in the
context of the local network. This is best illustrated by roaming
applications; a new device appears in the local network (or a
device appears in a new network, depending on the point of view).
The local network profile includes settings and perhaps policies
that allow the user agent to function in the local network (e.g.
how to traverse NAT or firewall, bandwidth constraints).

merging - the operation of resolving overlapping settings from
multiple profiles. Overlap occurs when the same property occurs
in multiple profiles (e.g. device, user, local network).

working profile - the set of property values utilized in a SIP User
Agent; logically constructed by merging the profiles from the
relevant sources

property - a named configurable characteristic of a user agent; a
named datum within a profile schema. A given property has a well-
defined range of possible values. A given property may be defined
to have a range of values, allow for simultaneous use of many
values (as in a list of allowed possibilities), or a set of
related values that collectively form a single profile
information item.

dataset - a collection of properties.

setting - the binding of a specific value or set of values to a
given property.

Thus, a profile schema defines a dataset, and a profile is a set of
settings that conforms to a particular profile schema.

3. Overview TOC

In this document requirements are specified for containing and
expressing profile data for use on SIP user agents. Though much of this
can be considered independent of SIP there is one primary requirement
that is not well satisfied through more generic profile data
mechanisms. SIP User Agent set up requires the agent to merge settings,
which may overlap, from potentially three different sources (see

[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.)); each source must not only be able to provide profile
information, but also express policies regarding how the profile
settings may be combined with that from other sources.

A schema and syntax is defined in this document to specify properties
that may be aggregated to construct profiles. The general design
philosophy is that many small datasets provide flexibility to the
implementer to support the aggregated set that best matches the
capability of the user agent. The actual properties are not defined in
this document and will be the subject of derived drafts. However, some
examples are provided in Appendix B (Use Cases) to illustrate the
proposed mechanisms and to validate the requirements.

This document defines a set of considerations, syntax and policies that
must be specified when defining datasets. These are to help authors of
dataset specifications to define datasets that will work in the overall
schema defined in this document. The actual specification of these
datasets is outside the scope of this document.

4. Design Considerations TOC

The following section defines some of the design considerations that
were taken into account when defining the schema, syntax and policies
for generating and applying profile data.

4.1. Requirement Descriptions TOC

4.1.1. Implementer Extensibility TOC

It does not serve user agent administrators to have to require a
coordinated and orchestrated upgrade of every user agent and
corresponding profile delivery servers for a new capability to be
supported. Datasets MUST be extensible without breaking the user agents
that support that dataset. This may require the user agents to ignore
parts of the extended dataset that it does not support. It may also be
possible to tag the extensions with minimum version numbers to
facilitate the user agents decision making.

4.1.2. Flexible Capabilities TOC

Since user agents vary greatly in their capabilities, it MUST be
possible for the implementer to tailor the datasets to the capabilities
of the user agent device. This implies that the profile is built up of
a series of small datasets based upon the capabilities of the user
agent. The user agents MAY ignore datasets for capabilities they do not
support. This allows the profile delivery server to be agnostic of
device capabilities. It is however the implementer's choice to
customize the delivered profile to the device capabilities.

4.1.3. Access Control TOC

There are likely to be properties in various profile datasets that the
Operators and Administrators do not want the users to sometimes not be
able to modify or even see. It MUST be possible to disallow the user
from modifying a property. It MUST be possible to obfuscate the user
from seeing a property or its setting. This access control information
SHOULD be optional for a given property.This is supported by the admin
value of the visibility attribute.

4.1.4. Data Constraints and Range Definition TOC

Property values are likely to have an allowed set of values under most
circumstances rather than completely unconstrained in their values. It
MUST be possible for the schema to specify constraints on a property
value, viz, as a range or as a set of discrete values. These
constraints SHOULD be optional to the dataset and SHOULD be expressible
independent of the property itself.

4.1.5. Support of User, Device, Local Network Sources TOC

[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.) specifies a mechanism where the user agent retrieves
profile data from as many as three different sources. The separation of
the user profile facilitates a hotelling capability and the ability to
easily re-assign a user to a different device. The separation of the
local network profile facilitates properties specific to operating in
the local network in a roaming scenario (e.g. outbound proxy or NAT

traversal properties). The device profile facilitates device capability
based properties as well as a means for the device owner or manager to
impose policy.

While increasing the complexity of the user agent in that it must
aggregate and consolidate separate profiles into one working profile,
constraining the properties of the various profiles to be mutually
exclusive, or constraining even the merging rules would severely
restrict functionality.

Profile merging rules are associated with individual datasets or even
associated with individual properties inside a dataset. A profile MUST
have a merging algorithm defined. An individual property inside MAY
contain a merging rule, in which case this merging rule is specific to
the property. If however, there is no merging rule associated with a
property, but the profile dataset in its entirety has a merging rule,
this merging rule MUST be applied to each of the properties that form
part of the profile.

A few of the more commonly used merging algorithms are defined in this
document. Most settings are likely to use the common set defined in
this document. However authors of profile datasets may define new
algorithms for merging dataset properties (see Section 5.11 (Merging
Property Sets) and Section 6.3 (Merging Data Sets)).

4.1.6. The Ability to Specify Policy TOC

Local Network Operators may wish to impose policy on users and devices
on their network such as constraining codecs, media streams, outbound
proxy or emergency services. It MUST be possible to impose policy in
any of the profile sources that constrains, overwrites or modifies
properties provided in datasets from other sources.

4.1.7. XML TOC

XML is perhaps not really a requirement, but a solution base upon
requirements. However it is hard to ignore the desire to utilize
readily available tools to manage and manipulate profile data such as
XSLT, XPATH and XCAP. The requirement that should be considered when
defining the schema and syntax is that many user agents have limited
resources for supporting advanced XML operation. The simplest XML
construct possible should be used, that support the required
functionality. It is not a requirement that user agents validate the
profile XML document. This relieves the requirement that the Relax NG
schema defined in this and other datasets documents be enforced on the
user agent. The Relax NG schema should not be used to strictly validate
profile XML documents. Unknown elements and attributes should be

ignored to allow extensions to be supported. Strict enforcement of the
Relax NG schema would make it very difficult to deploy new user agents
without lock step upgrades of the profile delivery server. Guidelines
for the Use of Extensible Markup Language (XML) within IETF Protocols
[RFC3470] (Hollenbeck, S., Rose, M., and L. Masinter, “Guidelines for
the Use of Extensible Markup Language (XML) within TIETF Protocols,”
January 2003.) provides useful information in this regard.

5. Overall Dataset Schema TOC

Notifiers and Subscribers of the event package defined in
[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.) SHOULD support the content-type: application/
uaprofile+xml. The Notifier SHOULD indicate all of the dataset schemas
that is supports by listing all of the MIME types for the supported
datasets in the SUBSCRIBE request header: Accept. This document defines
an Relax NG Schema for that content-type with the namespace:
urn:ietf:params:xml:ns:uaprof, for SIP Profile Datasets that provides:

*a base element type "setting" from which all settings in other
schema definitions inherit (this allows other definitions to
specify the content models for ways of combining settings; it 1is
analogous to a C++ virtual base class).

*Attributes to the "setting" element that define constraints and
other properties used to impose policy that apply to the element
value. These attributes are inherited by elements that are
derived from the abstract settings element.

*A root element for all property sets (the outermost container).

The full text of the schema is in Appendix A (Relax NG SIP UA Profile
Schema) ; the following describes the usage of the schema in defining
properties and combining them to construct the working profile of a
User Agent.

5.1. Data Primitives TOC

Each property in a profile data set is defined using XML Schema
Datatypes [W3C.REC-xmlschema-2] (Biron, P. and A. Malhotra, “XML Schema
Part 2: Datatypes,” May 2001.) and Relax NG Schema. A property is
modeled by an XML element derived from the "setting" element in the SIP
Profile Data Set Schema. The element content is the setting value.

Properties consisting of one single value can be expressed using a
single XML element. Properties that may consist of multiple values
require the use of container elements. A container element is defined
for such a property. This container can contain multiple XML elements,
which each defines a possible value for that property (see examples in
Section 5.5.2 (The 'policy' Attributes)).

When constructing a property set, the creator of a profile may not be
able to know all of the capabilities of the User Agent that will
receive that property set. The creator of profile constraints or
policies should be aware that a user agent may ignore properties that
are unsupported or do not apply to its capabilities.

5.2. Use of Namespaces TOC

XML namespaces [W3C.REC-xml-names-19990114] (Hollander, D., Bray, T.,
and A. Layman, “Namespaces in XML,” January 1999.) provide a means to
uniquely identify the elements and datatypes defined in a data set. It
is therefore RECOMMENDED that each data set specifies its own
namespace. The namespace URIs SHOULD be URNs (Moats, R., “URN Syntax,”
May 1997.) [RFC2141] , using the namespace identifier 'ietf' defined by
[REC2648] (Moats, R., “A URN Namespace for IETF Documents,”

August 1999.) and extended by [RFC3688] (Mealling, M., “The IETF XML
Registry,” January 2004.) . The core schema defined in this document
defines the namespace: "urn:ietf:params:xml:ns:uaprof". Profile
datasets that extend this schema SHOULD define a new namespace by
appending a ":" and a unique name to the
"urn:ietf:params:xml:ns:uaprof" namespace. These namespaces MUST be
registered with IANA.

5.3. The 'propertySet' Element TOC

The root element of a property set is "propertySet"; it is the
container that is provided to the user agent. The elements contained
within a propertySet contain the specific properties which are to be
applied to the user agent. The properties may be simple types with a
single value, complex types or container elements with a list of
properties.

T0C

5.4. The Abstract 'setting_container' Element

The "setting_container" element is the abstract element in which a list
of properties which allow multiple values may be contained. Elements
derived from the "setting_container" element may contain zero or more
elements derived from the "setting" element. The "setting_container"
element has an "excludedPolicy" attribute.

5.5. The Abstract 'setting' Element TOC

The setting element is the abstract element from which all profile
properties or settings shall inherit.

The setting element has a number of attributes that provide
functionalities, which are generally useful for many properties. These
attributes are inherited by properties that are derived from the
settings element. This enables the re-use of common functionalities and
ensures a common syntax for these elements across different data sets.
The following functionalities are provided by attributes of the
settings element:

*Property Access Control: 'visibility' attribute
*Policies: 'policy' attribute

Additional attributes are defined in the schema that may used in
elements derived from "setting". By default these attributes cannot be
set. These attribute must be explicitly added to elements derived from
the "setting" element:

*Unidirectional Properties: 'direction' attribute

*Preferences: 'q' attribute

5.5.1. The 'visibility' Attribute TOC

The attribute "visibility" is defined on the "setting" element to
specify whether or not the user agent is permitted to display the
property value to the user. This is used to hide setting values that
the profile administrator may not want the user to see or know. The
"visibility" attribute has two possible values:

*user: Specifies that display of the property value is not
restricted to the user. This is the default value of the
attribute if it is not specified.

*admin: Specifies that the user agent SHOULD NOT display the
property value. Display of the property value may be allowed
using special administrative interfaces, but is not appropriate
to the ordinary user.

5.5.2. The 'policy' Attributes TOC

The setting element has an optional 'policy' attribute. The policy
attribute is used to define the constraining properties of an element.
It defines how the element value is used by an endpoint (e.g. whether
it can or can not be used in a session). The following values are
defined for the 'policy' attribute:

*allow: the value contained in the element is allowed and SHOULD
be used in sessions. This is the default value that is used if
the 'policy' attribute is omitted.

*disallow: the value contained in the element is forbidden and
SHOULD NOT be used in sessions.

The policy attribute can be omitted if the default policy 'allow'
applies.
The policy attribute is used only inside containers.

5.5.3. The 'excludedPolicy' Attributes TOC

The "setting_container" element has an optional 'excludedPolicy'
attribute. This attribute specifies the default policy for all values
that are not in the container. Elements that are present in the
container have their own 'policy' attribute, which defines the policy
for that element. The following values are defined for the
'excludedPolicy' attribute:

*allow: values not listed in the container are allowed and MAY be
used in sessions. This is the default value that is used if the
'excludedPolicy' attribute is omitted.

*disallow: values not listed in the container are forbidden and
MUST NOT be used in sessions.

The excludedPolicy attribute can be omitted if the default policy
'allow' applies. The following example shows a policy that allows the
media type audio and disallows all other media types in sessions
(effectively, this construct requires the use of audio):

<media-types excludedPolicy="disallow">
<media-type policy="allow">audio</media-type>
</media-types>

5.5.4. The 'direction' Attribute TOC

Some properties are unidirectional and only apply to messages or data
streams transmitted into one direction. For example, a property for
media streams can be restricted to outgoing media streams only.
Unidirectional properties can be expressed by adding a 'direction'
attribute to the respective element.

The 'direction' attribute can have the following values:

*recvonly: the property only applies to incoming messages/streams.
*sendonly: the property only applies to outgoing messages/streams.

*sendrecv: the property applies to messages/streams in both
directions. This is the default value that is used if the
'direction' attribute is omitted.

5.5.5. The 'q' Attribute TOC

It should be possible to express a preference for a certain value, if
multiple values are allowed within a property. For example, it should
be possible to express that the codecs G.711 and G.729 are allowed, but
G.711 is preferred. Preferences can be expressed by adding a 'q'
attribute to a property element. Elements derived from the "setting"
element for which multiple occurrences and values are allowed SHOULD
have a "q" attribute if the order is significant. Typically these
elements are contained in an element derived from the
"setting_container" element. The 'q' attribute is only meaningful if

the 'policy' attribute set to 'allowed'. It must be ignored in all
other cases.

An element with a higher 'q' value is preferred over one with a lower
'q"' value. 'q' attribute values range from @ to 1. The default value is
0.5.

5.6. The 'profileUri' Element TOC

The <profileUri> element contains the URI of this profile on the
profile server. The value contained in the profileUri element may be
different than the URI subscribe to when retrieving this profile. When
the user agent retrieves a profile where the profileUri is different
than the subscribe to URI, the user agent SHOULD unsubscribe to the
current URI and then subscribe to the new URI.

The <profileUri> element is optional and MAY occur only once inside a
<propertySet> element. The profileUri element is specific to the local-
network, device or user profile in which it occurs. It has no meaning
outside of the profile in which it occurs and SHOULD NOT be merged.

5.7. The 'profileCredential' Element TOC

The <profileCredential> element contains the digest authentication
information that SHOULD be used for authentication for the profile
subscription via SIP or profile retrieval via HTTP, HTTPS, etc. The
profileCredential element is optional and MAY occur only once inside a
propertySet element. The profileCredential element is specific to the
local-network, device or user profile in which it occurs. It has no
meaning outside of the profile in which it occurs and SHOULD NOT be
merged. The profileCredential element MUST contain exactly one of each
of the elements: realm, authUser and one of either alDigest or
password.

5.7.1. realm Element TOC

The realm element contains the string that defines the realm to which
this credential pertains. The value of the realm element is the same as
the realm parameter in the [RFC2617] (Franks, J., Hallam-Baker, P.,
Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L. Stewart,
“HTTP Authentication: Basic and Digest Access Authentication,”

June 1999.) headers: WwWwW-Authenticate, Authorization and the SIP
(Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson,

J., Sparks, R., Handley, M., and E. Schooler, “SIP: Session Initiation
Protocol,” June 2002.) [RFC3261] headers: Proxy-Authenticate and Proxy-
Authorization. If a match of the realm value is found, the user agent
uses the values in the authUser and alDigest elements contained in the
profileCredential element. Exactly one realm element MUST be contained
in a profileCredential element. A wildcard of "*" MAY be used as the
realm value in which case the user agent MUST calculate the Al DIGEST
for the realm given in the authentication challenge. If the wildcard is
given for the realm, the clear text form of the password contained in
the password element MUST also be used.

5.7.2. authUser Element TOC

The authUser element contains the string value of the "username"
parameter which SHOULD be used in Authorization and Proxy-Authorization
request headers when retrying a request that was challenged for
authentication. Exactly one authUser element SHOULD be contained in a
profileCredential element.

5.7.3. alDigest Element TOC

The alDigest element contains a string with the value of the Al digest
of the username, realm and password as defined in [RFC2617] (Franks,
J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen,
A., and L. Stewart, “HTTP Authentication: Basic and Digest Access
Authentication,” June 1999.) . At most one alDigest element MUST be
contained in a profileCredential element. The alDigest element MUST NOT
exist in a profileCredential element containing a password element. The
username and realm used to construct the value of the alDigest element
MUST match the values of the realm and authUser elements contained in
the profileCredential element with the alDigest element.

5.7.4. password Element TOC

The password element contains the clear text password for use with
DIGEST Authentication (Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,” June 1999.)
[RFC2617] . At most one password MUST be contained in a
profileCredential element. The password element MUST NOT exist in a
profileCredential element containing a alDigest element. The user agent

uses this password along with the realm and authUser elements to
calculate the Al digest used for DIGEST Authentication.

5.8. The 'profileContactUri' Element TOC

The <profileContactUri> element contains a contact URI (e.g. a SIP,
HTTP URI or email address) under which the issuer of this profile can
be reached. The contact element may, for example, contain the address
of a support hotline.

The <profileContactUri> element is optional and MAY occur multiple
times inside a <propertySet> element. Multiple instances of the
profileContactUri element allow multiple URI schemes to be provided for
contact information. The user agent MAY use the URI contained profile-
contact-info element which has a URI scheme that the user agent
supports and can make work to provide support help for the profile. The
user agent MAY provide the URIs to the user to contact the creator of
the profile through other communication channels. The profileContactUri
element is specific to the local-network, device or user profile in
which it occurs. It has no meaning outside of the profile in which it
occurs and SHOULD NOT be merged.

5.9. The 'profileInfo' Element TOC

The <profileInfo> element provides a short textual description of the
property that should be intelligible to the human user. This element
may, for example, contain information about the nature of this profile,
such as "Access Network Profile". The text in the <profileInfo> element
is in particular be helpful when a user needs to decide whether or not
to use a newly downloaded profile or when problems with a profile (e.g.
a policy conflict) occur. A user agent MAY display this information in
these cases.

The <profileInfo> element is optional and MAY occur only once inside a
<propertySet> element. The profileInfo element is specific to the
local-network, device or user profile in which it occurs. It has not
meaning outside of the profile in which it occurs and SHOULD NOT be
merged.

5.10. Example Profile Dataset TOC

The following XML example shows a SIP Profile Dataset with example
extension setting elements: ddd, foo, bar, boo, containerElement and

setting container elements: myContainer, myContainerl, myContainer2 and
container3.

<?xml version="1.0" encoding="UTF-8"?>
<propertySet xmlns="urn:ietf:params:xml:ns:uaprof">
<profileUri>sip:alb2c3d4e5f6@example.com</profileUri>
<profileCredential>
<realm>example.com</realm>
<authUser>fred</authUser>
<alDigest>b6b577fdl12aa7eldf8d60735ef56fc2e</alDigest>
<!-- <password>123</password> -->
</profileCredential>
<profileContactUri>tel:+16175551212</profileContactUri>
<profileContactUri>sip:411@example.com</profileContactUri>
<profileContactUri>
http:example.com/sipProfile.html
</profileContactUri>
<profileInfo>
This is an example profile from example.com
</profileInfo>
<ddd xmlns="blatz" policy="allow">fff</ddd>
<foo xmlns="blatz" visibility="user" policy="allow"
direction="sendrecv" q="0">
</foo>
<bar xmlns="blatz" visibility="admin" policy=""
direction="sendonly" q="0.1000">
</bar>
<myContainer xmlns="blatz" excludedPolicy="disallow">
<containerElement g="0.1">aaa</containerElement>
<containerElement>bbb</containerElement>
<containerElement ¢="0.8">ccc</containerElement>
</myContainer>
<boo xmlns="newns" qg="1">ggg</boo>
<myContainerl xmlns="blatz" excludedPolicy="allow">
<myContainer2 xmlns="newns" excludedPolicy="allow">
</myContainer2>
</myContaineri>
<container3 xmlns="ns3">
<containerElement ¢g="0.1">111</containerElement>
<containerElement>222</containerElement>
<containerElement q="0.8">333</containerElement>
</container3>
</propertySet>

5.11. Merging Property Sets TOC

A UA may receive property sets from multiple sources, which need to be
merged into a single combined document the UA can work with.
Properties that have a single value (e.g. the maximum bandwidth
allowed) require that a common value is determined for this property
during the merging process. The merging rules for determining this
value need to be defined individually for each element in the schema
definition. Properties that allow multiple values (i.e. property
containers) need to be merged by combining the values from the
different data sets. The following sections describe recommended common
merging algorithms. A data set definition may refer to these
algorithms.

5.11.1. Single Numeric Value Merging Algorithm TOC

A general merging rule for elements with numeric values is to select
the largest or the smallest value. For example, a merging rule for a
<max-bandwidth> element would be to select the smallest value from the
values that are in the competing data sets.

5.11.2. Multiple Enumerated Value Merging Algorithm TOC

Multiple values in property containers are merged by combining the
values from each of the competing data sets. This is accomplished by
copying the elements from each property container into the merged
container. Elements with identical values are only copied once. The
'policy' attribute of two elements with the same value is adjusted
during the merging process according to Table 1. If an element exists
only in one property container, then the default policy of the other
container (i.e. the excludedPolicy) is used when accessing Table 1. For
example, if an element is disallowed in one data set and the element is
not contained in the other data set but the default policy is allowed
for that data set, then the values disallowed and allowed are used to
access Table 1. Consequently, the element will be disallowed in the
merged data set. Finally, the excludedPolicy attributes of the
containers are also merged using Table 1. In addition to these merging
rules, each schema may define specific merging rules for each property
container.

set 1 \ set 2 | allow | disallow

allow | allow | disallow
disallow | disallow | disallow

Table 1: merging policies.

The following example illustrates the merging process for two data
sets. All elements are merged into one container and the policy
attributes are adjusted according to Table 1. The merged container has
the default policy disallow, which is determined using Table 1. The
entry for PCMA in the merged data set is redundant since it has the
default policy.

Data set 1:
<codecs excludedPolicy='allow'>

<codec policy='disallow'>PCMA</codec>
</codecs>

Data set 2:

<codecs excludedPolicy='disallow'>
<codec policy='allow'>PCMA</codec>
<codec policy='allow'>G729</codec>

</codecs>

Merged data set:

<codecs excludedPolicy='disallow'>
<codec policy='disallow'>PCMA</codec>
<codec policy='allow'>G729</codec>

</codecs>

Some constellations of policy attributes result in an illegal merged
data set. They constitute a conflict that can not be resolved
automatically. For example, two data sets may define two non-
overlapping sets of allowed audio codecs and both disallow all other
codes. The resulting merged set of codecs would be empty, which is
illegal according to the schema definition of the codecs element. If
the use of these properties is enforced by both networks, the UA may
experience difficulties or may not be able to set up a session at all.
The combined property set MUST again be valid and well-formed according
to the schema definitions. A conflict occurs if the combined property
set is not a well-formed document after the merging process is
completed.

5.11.3. Closest Value First Merging Algorithm TOC

Some properties require that the values from different data sets are
ordered based on the origin of the data set during the merging process.
Property values that come from a domain close to the user agent take
precedence over values that were in a data set delivered by a remote
domain. This order can be used, for example, to select the property
value from the closest domain. In many cases, this is the local domain
of the user agent. For example, the URI of an outbound proxy could be
merged this way. This order can also be used to generate an ordered
list of property values during the merging process. For example,
multiple values for media intermediaries can be ordered so that the
closest media intermediary is traversed before the second closest
intermediary and so on.

This merging algorithm requires that the source of a data set is
considered.

If property sets are delivered through the configuration framework
[I-D.ietf-sipping-config-framework] (Channabasappa, S., “A Framework
for Session Initiation Protocol User Agent Profile Delivery,”

February 2010.) , the value received through a subscription using the
"local-network" profile-type takes precedence over values received
through other profile-type subscriptions, followed by device and then
user profile-types.

The session-specific policy mechanism
[I-D.ietf-sip-session-policy-framework] (Hilt, V., Camarillo, G., and
J. Rosenberg, “A Framework for Session Initiation Protocol (SIP)
Session Policies,” February 2010.) provides an order among policy
servers. This order is based on the order, in which a SIP message
traverses the network, starting with the closest domain. This order can
directly be used to order property values as described above.

5.12. Common Types TOC

The schema also defines a set of common types that are used in defining
data sets (e.g. DataIpPort). [Need to document common types.]

6. Defining Data Sets TOC

This section covers several issues that should be take into
consideration when specifying new data set schemas. This is intended to
be a guide to authors writing specifications defining a new data set
schema or extensions to existing ones.

6.1. Namespace TOC

It is RECOMMENDED that a data set defines a new XML namespace
(Hollander, D., Bray, T., and A. Layman, “Namespaces in XML,”
January 1999.) [W3C.REC-xml-names-19990114] to scope all of the
properties that are defined in the name space.

6.2. Property Definitions TOC

The properties defined in a data set schema may be simple (i.e. having
a single value) or they may be complex (i.e. a container with multiple
values). Each property in the data set SHOULD inherit from the
"setting" element. Complex properties and all of their child elements
each should inherit from "setting" as well.

A data set specification should contain a section which defines the
meaning of all of the properties contained in the data set. The
objective is to define the property such that implementers have a clear
definition and semantics to interpret properties in a consistent way.
User agents not only need to use the same profile content, they need to
apply the properties in a consistent way to achieve true
interoperability.

The following information should be defined for each property in a data
set:

*description: describe the meaning and application of the
property.

*cardinality: define how many instances of this property element
may occur in a data set (e.g. zero, one or many) as well as its
relationship to any other properties in this or other data sets.

*default value: define the default value of this property if it is
not set. Describe if the default is different if the property is
present and not set vs. completely absent from the data set.
Define if the default varies in relation to another property.

6.3. Merging Data Sets TOC

User agents may receive data sets from multiple sources. They need to
merge these data sets in order to create an overall data set they can
work with. Collisions on data sets may occur if multiple sources

provide different values for the same properties. These collisions need
to be resolved during the merging process.

A data set schema MUST define rules for merging data sets from
different sources for each property that is defined. Recommendations
for merging data sets are discussed in Section 5.11 (Merging Property
Sets) . A data set schema must define if and how these recommendations
apply and MAY define alternative merging rules for specific settings. A
data set schema must also identify combinations of properties that
constitute a conflict that can't resolved. It may provide additional
guidelines for the behavior of a user agent in these cases.

7. Candidate Data Sets TOC

The following sections name some of the candidate data sets that are or
may be defined. These data sets can be aggregated to form profiles
appropriate to the capabilities of a user agent implementation.

*SIP Protocol Data Set: the lowest common denominator set of
properties common to all SIP user agents of any capability. A
schema covering the elements of this data set can be found in
[I-D.petrie-sipping-sip-dataset] (Channabasappa, S. and S.
Ganesan, “The Core Session Initiation Protocol User Agent
Protocol Data Set,” November 2007.)

*Media Data Set: this data set contains media related policies. A
schema covering the elements of this data set can be found in
[I-D.ietf-sipping-media-policy-dataset] (Hilt, V., Worley, D.,
Camarillo, G., and J. Rosenberg, “A User Agent Profile Data Set
for Media Policy,” March 2010.)

*Identity Data Set: AORs and lines (see
[I-D.petrie-sipping-identity-dataset] (Petrie, D., Channabasappa,
S., and S. Ganesan, “The Session Initiation Protocol User Agent
Identity Profile Data Set,” November 2007.))

*HTTP Protocol Data Set: server settings. Proxy for clients.
*NAT Traversal Data Set: settings for STUN, TURN etc.

*SIP Digit Maps Data Set:
[I-D.petrie-sipping-voip-features-dataset] (Petrie, D.,
Channabasappa, S., and S. Ganesan, “The Session Initiation
Protocol User Agent VOIP Features Data Set,” November 2007.)

*VOoIP Features: [I-D.petrie-sipping-voip-features-dataset]
(Petrie, D., Channabasappa, S., and S. Ganesan, “The Session

Initiation Protocol User Agent VoIP Features Data Set,”
November 2007.)

8. Security Considerations TOC

Security is mostly a delivery problem. The delivery framework SHOULD
provide a secure means of delivering the profile data as it may contain
sensitive data that would be undesirable if it were stolen or sniffed.
Storage of the profile on the profile delivery server and user agent 1is
an implementation problem. The profile delivery server and the user
agent SHOULD provide protection that prevents unauthorized access of
the profile data. The profile delivery server and the user agent SHOULD
enforce the access control policies defined in the profile data sets if
present.

The point of the access control construct on the data set is to
provide some security policy on the visibility and ability to change
sensitive properties.

Some transport mechanisms for delivery of the profile data do not
provide a secure means of delivery. In addition some user agents may
not have the resources to support the secure mechanism used for
delivery (e.g. TLS).

9. IANA Considerations TOC

XML name space registration: urn:ietf:params:xml:ns:uaprof

9.1. Content-type registration for 'application/uaprofile+xml’' TOC

To: ietf-types@iana.org Indicates the character encoding of
Subject: Registration of MIME media type application/uaprofile+xml
MIME media type name: application enclosed XML. Default is UTF-8.
MIME subtype name: uaprofile+xml

Required parameters: (none) Uses XML, which can employ 8-bit
Optional parameters: charset characters, depending on the character
Encoding considerations: encoding used. See RFC 3023 [RFC3023]

(Murata, M., St. Laurent, S., and D. Kohn, “XML Media Types,”
January 2001.), section 3.2.

Security considerations: This content type is designed to carry SIP
user agent profile data, which may be considered private
information. Appropriate precautions should be adopted to limit
disclosure of this information.

Interoperability considerations: This content type provides a
common format for exchange of SIP user agent profile information.

Published specification: RFC XXXX (Note to RFC Editor: Please fill
in XXXX with the RFC number of this specification)

Applications which use this media type: SIP user agents and profile
delivery servers.

Additional information: Magic number(s): File extension(s):
Macintosh File Type Code(s):

Person & email address to contact for further information: Sam
Ganesan EMail: sam.ganesan@motorola.com com

Intended usage: LIMITED USE

Author/Change controller: This specification is a proposed work
item of the IETF SIPPING working group, with mailing list
address: sipping@ietf.org

Other information: This media type is a specialization of
application/xml [RFC3023] (Murata, M., St. Laurent, S., and D.
Kohn, “XML Media Types,” January 2001.), and many of the
considerations described there also apply to application/
uaprof+xml.

10. Contributors TOC

Sumanth Channabasappa
CablelLabs

858 Coal Creek Circle
Louisville, CO 80027
us

Email: sumanth@cablelabs.com
Sam Ganesan
Motorola

80 Central Street
Boxborough, MA 01719
us

Email: sam.ganesan@motorola.com
Volker Hilt

Bell Labs/Alcatel-Lucent

791 Holmdel-Keyport Rd

Holmdel, NJ 07733

us

Email: volkerh@bell-labs.com

11. Acknowledgments TOC

The WG version of the document is based on an individual draft authored
by Dan Petrie, Scott Lawrence, Martin Dolly and Volker Hilt. It has
been reviewed by many members of the SIPPING WG. In particular, we
thank Henning Schulzrinne, Henry Sinnreich, Christian Stredicke for
feedback on early versions of the document. We also thank Mary Barnes
for her reviews and assistance with the current version of the
document.

12. References TOC

12.1. Normative References

TOC
[I-D.ietf-sip- Hilt, V., Camarillo, G., and J. Rosenberg, “A
session-policy- Framework for Session Initiation Protocol (SIP)
framework] Session Policies,” draft-ietf-sip-session-
policy-framework-07 (work in progress),
February 2010 (TXT).
[I-D.ietf-sipping- Channabasappa, S., “A Framework for Session

config-framework] Initiation Protocol User Agent Profile
Delivery,” draft-ietf-sipping-config-
framework-17 (work in progress), February 2010
(TXT).

[RFC2119] Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2617]

http://www.ietf.org/internet-drafts/draft-ietf-sip-session-policy-framework-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-sip-session-policy-framework-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-sip-session-policy-framework-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-sip-session-policy-framework-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-config-framework-17.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

[RFC3023]

[RFC3261]

[RFC3688]

[W3C.REC-xml-
names-19990114]

[W3C.REC-
xmlschema-1]

[W3C.REC-
xmlschema-2]

Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999
(IXT, HTML, XML).

Murata, M., St. Laurent, S., and D. Kohn, “XML
Media Types,” RFC 3023, January 2001 (TXT).
Rosenberg, J., Schulzrinne, H., Camarillo, G.,
Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and E. Schooler, “SIP: Session
Initiation Protocol,” RFC 3261, June 2002
(TXT).

Mealling, M., “The IETF XML Registry,” BCP 81,
RFC 3688, January 2004 (TXT).

Hollander, D., Bray, T., and A. Layman,
“Namespaces in XML,” W3C REC REC-xml-
names-19990114, January 1999.

Thompson, H., Beech, D., Maloney, M., and N.
Mendelsohn, “XML Schema Part 1: Structures,”
W3C REC-xmlschema-1, May 2001.

Biron, P. and A. Malhotra, “XML Schema Part 2:
Datatypes,” W3C REC-xmlschema-2, May 2001.

12.2. Informative References

[I-D.ietf-
sipping-media-
policy-
dataset]
[I-D.petrie-
sipping-
identity-
dataset]
[I-D.petrie-
sipping-sip-
dataset]

[I-D.petrie-
sipping-voip-
features-
dataset]
[RFC2141]

[RFC2648]

[RFC3470]

TOC
Hilt, V., Worley, D., Camarillo, G., and J.
Rosenberg, “A User Agent Profile Data Set for Media
Policy,” draft-ietf-sipping-media-policy-dataset-09
(work in progress), March 2010 (TXT).
Petrie, D., Channabasappa, S., and S. Ganesan, “The
Session Initiation Protocol User Agent Identity
Profile Data Set,” draft-petrie-sipping-identity-
dataset-02 (work in progress), November 2007 (TXT).
Channabasappa, S. and S. Ganesan, “The Core Session
Initiation Protocol User Agent Protocol Data Set,”
draft-petrie-sipping-sip-dataset-03 (work in
progress), November 2007 (TXT).
Petrie, D., Channabasappa, S., and S. Ganesan, “The
Session Initjiation Protocol User Agent VOIP Features
Data Set,” draft-petrie-sipping-voip-features-
dataset-02 (work in progress), November 2007 (TXT).
Moats, R., “URN Syntax,” RFC 2141, May 1997 (TXT,
HTML, XML).
Moats, R., “A URN Namespace for IETF Documents,”
RFC 2648, August 1999 (TXT).

mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://tools.ietf.org/html/rfc3023
http://tools.ietf.org/html/rfc3023
http://www.rfc-editor.org/rfc/rfc3023.txt
http://tools.ietf.org/html/rfc3261
http://tools.ietf.org/html/rfc3261
http://www.rfc-editor.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc3688
http://www.rfc-editor.org/rfc/rfc3688.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/internet-drafts/draft-ietf-sipping-media-policy-dataset-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-media-policy-dataset-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-sipping-media-policy-dataset-09.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-identity-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-identity-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-identity-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-identity-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-sip-dataset-03.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-sip-dataset-03.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-sip-dataset-03.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-voip-features-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-voip-features-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-voip-features-dataset-02.txt
http://www.ietf.org/internet-drafts/draft-petrie-sipping-voip-features-dataset-02.txt
mailto:jayhawk@ds.internic.net
http://tools.ietf.org/html/rfc2141
ftp://ftp.isi.edu/in-notes/rfc2141.txt
http://xml.resource.org/public/rfc/html/rfc2141.html
http://xml.resource.org/public/rfc/xml/rfc2141.xml
mailto:jayhawk@att.com
http://tools.ietf.org/html/rfc2648
http://www.rfc-editor.org/rfc/rfc2648.txt

Hollenbeck, S., Rose, M., and L. Masinter,
“Guidelines for the Use of Extensible Markup
Language (XML) within IETF Protocols,” BCP 70,
RFC 3470, January 2003 (TXT, HTML, XML).

T0C

mailto:shollenbeck@verisign.com
mailto:mrose@dbc.mtview.ca.us
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3470
http://tools.ietf.org/html/rfc3470
http://www.rfc-editor.org/rfc/rfc3470.txt
http://xml.resource.org/public/rfc/html/rfc3470.html
http://xml.resource.org/public/rfc/xml/rfc3470.xml

Appendix A. Relax NG SIP UA Profile Schema

<?xml version="1.0"7?>

<grammar xmlns="http://relaxng.org/ns/structure/1.0"
ns="urn:ietf:params:xml:ns:uaprof"
datatypelLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">

<start>
<element name="propertySet">
<optional>
<ref name="ElementProfileUri"/>
</optional>
<optional>
<ref name="ElementProfileCredential"/>
</optional>
<zeroOrMore>
<element name="profileContactUri">
<!-- who to contact for help with this profile
<data type="anyURI"/>
</element>
</zeroOrMore>
<optional>
<element name="profileInfo">
<text/>
</element>
</optional>
<zeroOrMore>
<choice>
<ref name="PropertySetExtension"/>
<ref name="ElementGenericSetting"/>
<ref name="ElementGenericSettingContainer"/>
</choice>
</zeroOrMore>
</element>
</start>
<!-- example setting with all setting attributes -->
<!-- <define name="ElementFoo">
<element name="foo">
<ref name="SettingAttributes"/>
<text/>
</element>
</define>
-->
<define name="ElementProfileUri">
<!-- URI to subscribe to for this profile -->

<element name="profileUri">
<ref name="DataSipuUri"/>
</element>
</define>
<define name="ElementProfileCredential">

<!-- credentials for subscribing or getting profile -->
<element name="profileCredential'>
<ref name="DataCredential"/>
</element>
</define>
<define name="PropertySetExtension">
<!-- place to add new settings in other namespaces -->
<empty/>
</define>
<define name="ElementGenericSettingContainer">
<element>
<anyName>
<except>
<nsName ns="urn:ietf:params:xml:ns:uaprof"/>
<nsName ns=""/>
</except>
</anyName>
<ref name="SettingContainerAttributes"/>
<zeroOrMore>
<ref name="AttributeGeneric"/>
</zeroOrMore>
<!-- container can have containers or settings not both -->
<choice>
<zeroOrMore>
<ref name="ElementGenericSetting"/>
</zeroOrMore>
<zeroOrMore>
<ref name="ElementGenericSettingContainer"/>
</zeroOrMore>
</choice>
</element>
</define>
<define name="ElementGenericSetting">
<element>
<anyName>
<except>
<nsName ns="urn:ietf:params:xml:ns:uaprof'"/>
<nsName ns=""/>
</except>
</anyName>
<ref name="SettingAttributes"/>
<zeroOrMore>
<ref name="AttributeGeneric"/>
</zeroOrMore>
<zeroOrMore>
<choice>
<text/>
<ref name="ElementGenericSetting"/>
</choice>

</zeroOrMore>
</element>
</define>
<define name="AttributeGeneric">
<attribute>
<anyName>
<except>
<nsName ns="urn:ietf:params:xml:ns:uaprof'"/>
<nsName ns=""/>
</except>
</anyName>
</attribute>
</define>
<define name="DataCredential">
<element name="realm">
<text/>
</element>
<element name="authUser">
<text/>
</element>
<choice>
<element name="alDigest'">
<data type="string">
<param name="pattern">[0-9,a-f]{32,32}</param>
</data>
</element>
<element name="password">
<text/>
</element>
</choice>
</define>
<define name="DataSipUri">
<choice>
<data type="anyURI">
<param name="pattern">sip:.*</param>
</data>
<data type="anyURI">
<param name="pattern">sips:.*</param>
</data>
</choice>
</define>
<define name="DataSipNameAddr">
<choice>
<data type="anyURI"><!-- need to tighten this up -->
<param name="pattern">"?.*"?<?sip:.*</param>
</data>
<data type="anyURI">
<param name="pattern">"?.*"?<?sips:.*</param>
</data>

</choice>
</define>
<define name="SettingContainerAttributes">
<optional>
<attribute name="excludedPolicy">
<ref name="DataPolicies"/>
</attribute>
</optional>
</define>
<define name="SettingAttributes">
<interleave>
<optional>
<ref name="AttributePolicy"/>
</optional>
<optional>
<ref name="Attributevisibility"/>
</optional>
<optional>
<ref name="AttributeDirection"/>
</optional>
<optional>
<ref name="AttributeQ"/>
</optional>
</interleave>
</define>
<define name="AttributePolicy">
<attribute name="policy">
<ref name="DataPolicies"/>
</attribute>
</define>
<define name="DataPolicies'">
<choice>
<value></value><!-- default of allow -->
<value>allow</value>
<value>disallow</value>
</choice>
</define>
<define name="AttributeVisibility">
<attribute name="visibility">
<choice>
<value></value><!-- default of user -->
<value>user</value>
<value>admin</value>
</choice>
</attribute>
</define>
<define name="AttributeDirection">
<attribute name="direction">
<choice>

<value></value><!-- default of sendrecv -->
<value>sendrecv</value>
<value>sendonly</value>
<value>recvonly</value>
</choice>
</attribute>
</define>
<define name="AttributeQ">
<attribute name="q">
<data type="float">
<!-- default of 0.5 -->
<param name="minInclusive">0</param>
<param name="maxInclusive'">1</param>
</data>
</attribute>
</define>
<define name="DataIpPort">
<data type="integer">
<param name="minInclusive">1</param>
<param name="maxInclusive">65535</param>
</data>
</define>
<define name="DatalIpTransport">
<choice>
<value></value><!-- default of UDP -->
<value>UDP</value>
<value>TCP</value>
<value>TLS</value>
<value>DTLS</value>
<value>SCTP</value>
</choice>
</define>
</grammar>

Appendix B. Use Cases TOC

In the following use case scenarios the device profile is provided by
the device owner/manager. The owner/manager may be a service provider,
an enterprise or a user administering the device setup. The user is
assumed to be the end user operating the user agent. In the scenarios
that the user profile is provided, the user profile contains user
specific properties that the end user has set directly or indirectly
through an administration process. The local network profiles represent
the suggested policy behavior that the local network operator would

like user agents to adhere to [I-D.ietf-sip-session-policy-framework]
(Hilt, V., Camarillo, G., and J. Rosenberg, “A Framework for Session
Initiation Protocol (SIP) Session Policies,” February 2010.) . From a
security perspective, the local network operator cannot trust the user
agent to follow the local network profile policy. The local network
operator must use a means external to the user agent to enforce these
policies. The local network profile is intended to express to the user
agent, the policies that the user agent should follow if the user agent
wants to function properly in the local network.

Two different use cases are developed and discussed below. Similar use
cases can be developed for individual datasets. For example, analysis
of Transport protocol settings for SIP can be carried out in exactly
the same fashion as the codec use case described below and a set of
derived requirements to drive the schema for the associated datset can
be arrived at.

B.1. Outbound Proxy Setting TOC

In the case of the outbound proxy, it is unlikely that the user would
want to influence the outbound proxy for SIP signaling. The device
owner/manager or the local network operator are likely to want to set
the outbound proxy property. The device profile may define an outbound
proxy so that the device owner/manager can monitor all signaling. The
local network operator also defines an outbound proxy because the proxy
allows the SIP signaling to get through a NAT or firewall.

Two possible solutions to this problem are listed.

*Define a policy where the local network profile overrides the
device profile. In this approach the local network profile wins.

*Aggregate the outbound proxies. In this scenario SIP messages
would be sent with a pre-populated route set that had two hops.
First the outbound proxy set in the local network profile, then
the outbound proxy set in the device profile.

The aggregation approach is closest to solving the requirements to the
use case above. By aggregating the two outbound proxies, the local
network provided outbound proxy allows the signaling to get out of the
local network and the device profile provided outbound proxy is able to
monitor all SIP signaling from the user agent.

T0C

B.2. Codec Settings

Use cases for the codec properties are likely one of the more
complicated sets of properties with respect to merging and constraining
across more than one profile. There are reasonable scenarios where
requirements can be rationalized that the device, user and local
network profiles may each wish to express preferences and constraints
on permitted codecs. Without getting into details or syntax of the
codec properties, it is assumed that codec properties will need to
express a codec definition and a preference order. This is the order
that these codecs will be put in SDP for codec negotiation purposes.
The following scenarios illustrate some possible combinations of
sources of codec properties from the device, user and local network
profiles.

B.2.1. Codec Setting Not Set TOC

In the scenario where a device has no profiles or the profiles contain
no codec properties, the device will enable a default set and
preference order of codecs, which could be a subset of the codecs the
device is capable of supporting. The default set and preference order
of codecs is a implemention specific.

B.2.2. Codec Set in Device Profile TOC

This scenario assumes that the device profile is the only source of
codec properties.

The codecs in the device profile may differ from the set of codecs
supported by the device, due to administrative constraints on codec
usage.

In this scenario the device profile data will dictate the ordered list
of codecs to be applied. The use agent will ignore codec types included
in the profile that the user agent does not support.

B.2.3. Set in Device and User Profiles TOC

This scenario covers the case where both the device profile and the
user profile provide an ordered list of codecs. The user may prefer a
higher quality codec to be used, if available. Thereby the user profile
data may provide an ordered list of codecs to be applied. The device
profile also specifies a list of codecs and a default preference order.

The merging of the data sources is as follows:

*The ordering of the codecs will be determined from the user
profile data, which overrides the codec preference ordering from
the device profile data.

*The set of codecs that may be applied, are the codecs listed in
the user data constrained by the list of codecs from the device
profile data.

The case in which none of the codecs in the resulting merged profile
datasets are supported by the device, the profile data constitutes a
misconfiguration between device and user profiles. It may not be
possible to successfully establish a session in this case. It is
suggested that the user agent provide feedback to the user indicating
the misconfiguration. The user agent may also attempt to function in
the network by ignoring one or more of the profile constraints.

B.2.4. Set in Device and Local Profiles TOC

In this scenario both the local network profile and the device profile
each provide an ordered set of codecs. Both the local network operator
and the device provider may feel the need to constrain and order the
set of codecs used. This scenario is very much alike to the previous
scenario and may be resolved using a similar method. However, it likely
that the local network codec preferences will override and constrain
the device profile, given the caveat that in the circumstances where
the resulting ordered set of codecs is an empty set. In this case there
is a misconfiguration/incompatibility between the device profile and
the local network profile with regard to the codecs, which may render
the device non functional. The user agent may attempt to function in
the network by ignoring one or more of the profile constraints.

B.2.5. Set in Device, User and Local Profiles TOC

In this scenario all profiles namely, device, user and local network
profiles, provide an ordered set of codecs as preferences. For example,
these may be the result of device capabilities, user's preference for
higher quality media and the network providers desire to constrain

bandwidth usage and or enforce uniformity of codec usage. The data
sources could be merged as follows:

*The ordering of the codecs will be determined from the user
profile data, which overrides the ordering from the device
profile data.

*The set of codecs that may be used are the codecs listed in the
device profile data, constrained by the list of codecs from the
user profile data and further constrained by the list of codecs
from the local network profile data.

A resulting null set of codecs would imply a misconfiguration and may
prevent the device from functioning under these circumstances. The user
agent may also attempt to function in the network by ignoring one or
more of the profile constraints.

B.2.6. Example Derived Requirements TOC

An example set of derived requirements for the codec definition is
presented here. These requirements in turn would drive the profile
definition for codec usage.

1. The list of codecs in the device profile data that get applied
is the subset of the codecs supported by the device. Codecs
listed in profiles that are not supported by the device are
ignored.

2. The device profile data will have a default ordered list of
codecs, which implies a preference order to be used in the sdp
offer.

3. The user profile data may provide an ordered list of user
preferred codecs. The ordering of the codecs in the user
profile data will override the ordering of the codecs in the
device profile data. The user list of codecs may further
constrain the list of codecs to be used.

4. The local network profile data may provide a list of codecs
supported. This list will further constrain the list of codecs
that may be offered.

5. The application profile data containing codec data will be
ignored.

6. The profiles need the ability to express codecs that may be
used and codecs that should not be used.

Authors' Addresses
TOC

Martin Dolly
AT&T

200 Laurel Ave.
Middletown, NJ

us
Phone:
Email: mdolly@att.com
URI:

Daniel Petrie
SIPez LLC
34 Robbins Rd.
Arlington, MA 02476
us
Phone: +1 617 273 4000
Email: dan.ietf AT SIPez DOT com
URI: http://www.SIPez.com/

Dale R. Worley
Nortel Networks Corp.
600 Technology Park Dr.
Billerica, MA 01821
us

Phone: +1 978 288 5505

Email: dworley@nortel.com

URI: http://www.nortel.com

mailto:mdolly@att.com
mailto:dan.ietf%20AT%20SIPez%20DOT%20com
http://www.SIPez.com/
mailto:dworley@nortel.com
http://www.nortel.com

	A Schema and Guidelines for Defining Session Initiation Protocol User Agent Profile Datasetsdraft-ietf-sipping-profile-datasets-03.txt
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	2. Terminology
	3. Overview
	4. Design Considerations
	4.1. Requirement Descriptions
	4.1.1. Implementer Extensibility
	4.1.2. Flexible Capabilities
	4.1.3. Access Control
	4.1.4. Data Constraints and Range Definition
	4.1.5. Support of User, Device, Local Network Sources
	4.1.6. The Ability to Specify Policy
	4.1.7. XML
	5. Overall Dataset Schema
	5.1. Data Primitives
	5.2. Use of Namespaces
	5.3. The 'propertySet' Element
	5.4. The Abstract 'setting_container' Element
	5.5. The Abstract 'setting' Element
	5.5.1. The 'visibility' Attribute
	5.5.2. The 'policy' Attributes
	5.5.3. The 'excludedPolicy' Attributes
	5.5.4. The 'direction' Attribute
	5.5.5. The 'q' Attribute
	5.6. The 'profileUri' Element
	5.7. The 'profileCredential' Element
	5.7.1. realm Element
	5.7.2. authUser Element
	5.7.3. a1Digest Element
	5.7.4. password Element
	5.8. The 'profileContactUri' Element
	5.9. The 'profileInfo' Element
	5.10. Example Profile Dataset
	5.11. Merging Property Sets
	5.11.1. Single Numeric Value Merging Algorithm
	5.11.2. Multiple Enumerated Value Merging Algorithm
	5.11.3. Closest Value First Merging Algorithm
	5.12. Common Types
	6. Defining Data Sets
	6.1. Namespace
	6.2. Property Definitions
	6.3. Merging Data Sets
	7. Candidate Data Sets
	8. Security Considerations
	9. IANA Considerations
	9.1. Content-type registration for 'application/uaprofile+xml'
	10. Contributors
	11. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References
	Appendix A. Relax NG SIP UA Profile Schema
	Appendix B. Use Cases
	B.1. Outbound Proxy Setting
	B.2. Codec Settings
	B.2.1. Codec Setting Not Set
	B.2.2. Codec Set in Device Profile
	B.2.3. Set in Device and User Profiles
	B.2.4. Set in Device and Local Profiles
	B.2.5. Set in Device, User and Local Profiles
	B.2.6. Example Derived Requirements
	Authors' Addresses

