
S/MIME Working Group R. Housley
Internet Draft SPYRUS
expires in six months January 1998

Cryptographic Message Syntax

 <draft-ietf-smime-cms-03.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet- Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This document describes the Cryptographic Message Syntax. This
 syntax is used to digitally sign, digest, authenticate, or encrypt
 arbitrary messages.

 The Cryptographic Message Syntax is derived from PKCS #7 version 1.5.
 Wherever possible, backward compatibility is preserved; however,
 changes were necessary to accommodate attribute certificate transfer
 and key agreement techniques for key management.

 This draft is being discussed on the "ietf-smime" mailing list. To
 join the list, send a message to <ietf-smime-request@imc.org> with
 the single word "subscribe" in the body of the message. Also, there
 is a Web site for the mailing list at <http://www.imc.org/ietf-

smime/>.

Housley [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-03.txt
http://www.imc.org/ietf-smime/
http://www.imc.org/ietf-smime/

INTERNET DRAFT January 1998

1 Introduction

 This document describes the Cryptographic Message Syntax. This
 syntax is used to digitally sign or encrypt arbitrary messages.

 The Cryptographic Message Syntax describes an encapsulation syntax
 for data protection. It supports digital signatures and encryption.
 The syntax allows multiple encapsulation, so one encapsulation
 envelope can be nested inside another. Likewise, one party can
 digitally sign some previously encapsulated data. It also allows
 arbitrary attributes, such as signing time, to be authenticated along
 with the message content, and provides for other attributes such as
 countersignatures to be associated with a signature.

 The Cryptographic Message Syntax can support a variety of
 architectures for certificate-based key management, such as the one
 defined by the PKIX working group.

 The Cryptographic Message Syntax values are generated using ASN.1,
 using BER-encoding. Values are typically represented as octet
 strings. While many systems are capable of transmitting arbitrary
 octet strings reliably, it is well known that many electronic-mail
 systems are not. This document does not address mechanisms for
 encoding octet strings for reliable transmission in such
 environments.

2 General Overview

 The Cryptographic Message Syntax is general enough to support many
 different content types. This document defines six content types:
 data, signed-data, enveloped-data, digested-data, encrypted-data, and
 authenticated-data. Also, additional content types can be defined
 outside this document.

 An implementation that conforms to this specification must implement
 the data, signed-data, and enveloped-data content types. The other
 content types may be implemented if desired.

 The Cryptographic Message Syntax exports one content type,
 ContentInfo, as well as the various object identifiers.

 As a general design philosophy, content types permit single pass
 processing using indefinite-length Basic Encoding Rules (BER)
 encoding. Single-pass operation is especially helpful if content is
 large, stored on tapes, or is "piped" from another process. Single-
 pass operation has one significant drawback: it is difficult to
 perform encode operations using the Distinguished Encoding Rules
 (DER) encoding in a single pass since the lengths of the various

Housley [Page 2]

INTERNET DRAFT January 1998

 components may not be known in advance. Since the signed-data
 content type requires DER encoding, an extra pass may be necessary
 when a content type other than data is encapsulated.

3 General Syntax

 The Cryptographic Message Syntax associates a protection content type
 with a protection content. The syntax shall have ASN.1 type
 ContentInfo:

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

 ContentType ::= OBJECT IDENTIFIER

 The fields of ContentInfo have the following meanings:

 contentType indicates the type of protection content. It is an
 object identifier; it is a unique string of integers assigned by
 an authority that defines the content type.

 content is the protection content. The type of protection content
 can be determined uniquely by contentType. Protection content
 types for signed-data, enveloped-data, digested-data, encrypted-
 data, and authenticated-data are defined in this document. If
 additional protection content types are defined in other
 documents, the ASN.1 type defined along with the object identifier
 should not be a CHOICE type.

4 Data Content Type

 The following object identifier identifies the data content type:

 id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

 The data content type is intended to refer to arbitrary octet
 strings, such as ASCII text files; the interpretation is left to the
 application. Such strings need not have any internal structure
 (although they could have their own ASN.1 definition or other
 structure).

 The data content type is generally used in conjunction with the
 signed-data, enveloped-data, digested-data, encrypted-data, and
 authenticated-data protection content types. The data content type
 is encapsulated in one of these protection content types.

Housley [Page 3]

INTERNET DRAFT January 1998

5 Signed-data Content Type

 The signed-data content type consists of a content of any type and
 zero or more signature values. Any number of signers in parallel can
 sign any type of content.

 The typical application of the signed-data content type represents
 one signer's digital signature on content of the data content type.
 Another typical application disseminates certificates and certificate
 revocation lists (CRLs).

 The process by which signed-data is constructed involves the
 following steps:

 1. For each signer, a message digest, or hash value, is computed
 on the content with a signer-specific message-digest algorithm.
 If two signers employ the same message digest algorithm, then the
 message digest need be computed for only one of them. If the
 signer is authenticating any information other than the content
 (see Section 5.2), the message digest of the content and the other
 information are digested with the signer's message digest
 algorithm, and the result becomes the "message digest."

 2. For each signer, the message digest is digitally signed using
 the signer's private key.

 3. For each signer, the signature value and other signer-specific
 information are collected into a SignerInfo value, as defined in

Section 5.2. Certificates and CRLs for each signer, and those not
 corresponding to any signer, are collected in this step.

 4. The message digest algorithms for all the signers and the
 SignerInfo values for all the signers are collected together with
 the content into a SignedData value, as defined in Section 5.1.

 A recipient independently computes the message digest. This message
 digest and the signer's public key are used to validate the signature
 value. The signer's public key is referenced by an issuer
 distinguished name and an issuer-specific serial number that uniquely
 identify the certificate containing the public key. The signer's
 certificate may be included in the SignedData certificates field.

 This section is divided into five parts. The first part describes
 the top-level type SignedData, the second part describes the per-
 signer information type SignerInfo, and the third, fourth, and fifth
 parts describe the message digest calculation, signature generation,
 and signature validation processes, respectively.

Housley [Page 4]

INTERNET DRAFT January 1998

5.1 SignedData Type

 The following object identifier identifies the signed-data content
 type:

 id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

 The signed-data content type shall have ASN.1 type SignedData:

 SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

 SignerInfos ::= SET OF SignerInfo

 The fields of type SignedData have the following meanings:

 version is the syntax version number. If no attribute
 certificates are present in the certificates field, then the value
 of version shall be 1; however, if attribute certificates are
 present, then the value of version shall be 3.

 digestAlgorithms is a collection of message digest algorithm
 identifiers. There may be any number of elements in the
 collection, including zero. Each element identifies the message
 digest algorithm, along with any associated parameters, used by
 one or more signer. The collection is intended to list the
 message digest algorithms employed by all of the signers, in any
 order, to facilitate one-pass signature verification. The message
 digesting process is described in Section 5.3.

 encapContentInfo is the content that is signed. It is a sequence
 of a content type identifier and the content itself. An object
 identifier uniquely specifies the content type. The content
 itself is carried in an octet string.

Housley [Page 5]

INTERNET DRAFT January 1998

 certificates is a collection of certificates. It is intended that
 the set of certificates be sufficient to contain chains from a
 recognized "root" or "top-level certification authority" to all of
 the signers in the signerInfos field. There may be more
 certificates than necessary, and there may be certificates
 sufficient to contain chains from two or more independent top-
 level certification authorities. There may also be fewer
 certificates than necessary, if it is expected that recipients
 have an alternate means of obtaining necessary certificates (e.g.,
 from a previous set of certificates). If no attribute
 certificates are present in the collection, then the value of
 version shall be 1; however, if attribute certificates are
 present, then the value of version shall be 3.

 crls is a collection of certificate revocation lists (CRLs). It
 is intended that the set contain information sufficient to
 determine whether or not the certificates in the certificates
 field are valid, but such correspondence is not necessary. There
 may be more CRLs than necessary, and there may also be fewer CRLs
 than necessary.

 signerInfos is a collection of per-signer information. There may
 be any number of elements in the collection, including zero.

 The optional omission of the encapContentInfo field makes it possible
 to construct "external signatures." In the case of external
 signatures, the content being signed would be absent from the
 EncapsulatedContentInfo value included in the signed-data content
 type. If the EncapsulatedContentInfo value is absent, the
 signatureValue is calculated as though the EncapsulatedContentInfo
 value was present. The presumed EncapsulatedContentInfo must have
 the content type set to id-data (as defined in section 4) and the
 content omitted.

 In the degenerate case where there are no signers, the
 EncapsulatedContentInfo value being "signed" is irrelevant. In this
 case, the content type within the EncapsulatedContentInfo value being
 "signed" should be data (as defined in section 4), and the content
 field of the EncapsulatedContentInfo value should be omitted.

Housley [Page 6]

INTERNET DRAFT January 1998

5.2 SignerInfo Type

 Per-signer information is represented in the type SignerInfo:

 SignerInfo ::= SEQUENCE {
 version Version,
 issuerAndSerialNumber IssuerAndSerialNumber,
 digestAlgorithm DigestAlgorithmIdentifier,
 authenticatedAttributes [0] IMPLICIT CMSAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unauthenticatedAttributes [1] IMPLICIT CMSAttributes OPTIONAL }

 CMSAttributes ::= SET OF CMSAttribute

 CMSAttribute ::= SEQUENCE {
 cmsAttrType OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 cmsAttrValues SET OF CMSAttributeValue }

 CMSAttributeValue ::= ANY

 SignatureValue ::= OCTET STRING

 The fields of type SignerInfo have the following meanings:

 version is the syntax version number. If any of the authenticated
 attributes, are critical, then the version shall be 3. If all of
 the authenticated attributes are non-critical, then the version
 shall be 1. If the authenticatedAttributes and field is absent,
 then version shall be 1.

 issuerAndSerialNumber specifies the signer's certificate (and
 thereby the signer's public key) by issuer distinguished name and
 issuer-specific serial number.

 digestAlgorithm identifies the message digest algorithm, and any
 associated parameters, used by the signer. The message digest is
 computed over the encapsulated content and authenticated
 attributes, if present. The message digest algorithm should be
 among those listed in the digestAlgorithms field of the associated
 SignerInfo value. The message digesting process is described in

Section 5.3.

 authenticatedAttributes is a collection of attributes that are
 signed. The field is optional, but it must be present if the
 content type of the EncapsulatedContentInfo value being signed is
 not data. The field may include critical and non-critical

Housley [Page 7]

INTERNET DRAFT January 1998

 attributes. Useful attribute types, such as signing time, are
 defined in Section 11. If the field is present, it must contain,
 at a minimum, the following two attributes:

 A content-type attribute having as its value the content type
 of the EncapsulatedContentInfo value being signed. Section

11.1 defines the content-type attribute.

 A message-digest attribute, having as its value the message
 digest of the content. Section 11.2 defines the message-digest
 attribute.

 signatureAlgorithm identifies the signature algorithm, and any
 associated parameters, used by the signer to generate the digital
 signature.

 signature is the result of digital signature generation, using the
 message digest and the signer's private key.

 unauthenticatedAttributes is a collection of attributes that are
 not signed. The field is optional, and it may not include
 critical attributes. Useful attribute types, such as
 countersignatures, are defined in Section 11.

 The fields of type CMSAttribute have the following meanings:

 cmsAttrType indicates the type of attribute. It is an object
 identifier.

 critical is a boolean value. TRUE indicates that the attribute is
 critical, and FALSE indicates that the attribute is non-critical.
 A recipient must reject the signed-data if it encounters a
 critical attribute that it does not recognize; however, an
 unrecognized non-critical attribute may be ignored.

 cmsAttrValues is a set of values that comprise the attribute. The
 type each value in the set can be determined uniquely by
 attributeType.

5.3 Message Digest Calculation Process

 The message digest calculation process computes a message digest on
 either the content being signed or the content together with the
 signer's authenticated attributes. In either case, the initial input
 to the message digest calculation process is the "value" of the
 encapsulated content being signed. Specifically, the initial input
 is the content OCTET STRING of the content field of the
 EncapsulatedContentInfo value to which the signing process is

Housley [Page 8]

INTERNET DRAFT January 1998

 applied. Only the contents of the OCTET STRING are input to the
 message digest algorithm, not the identifier octets or the length
 octets.

 The result of the message digest calculation process depends on
 whether the authenticatedAttributes field is present. When the field
 is absent, the result is just the message digest of the content as
 described above. When the field is present, however, the result is
 the message digest of the complete DER encoding of the Attributes
 value contained in the authenticatedAttributes field. Since the
 Attributes value, when present, must contain as attributes the
 content type and the content message digest, those values are
 indirectly included in the result. A separate encoding of the
 authenticatedAttributes field is performed for message digest
 calculation. The IMPLICIT [0] tag in the authenticatedAttributes
 field is not used for the DER encoding, rather an EXPLICIT SET OF tag
 is used. That is, the DER encoding of the SET OF tag, rather than of
 the IMPLICIT [0] tag, is to be included in the message digest
 calculation along with the length and content octets of the
 CMSAttributes value.

 When the content being signed has a content type of data (as defined
 in section 4) and the authenticatedAttributes field is absent, then
 just the value of the data (e.g., the contents of a file) is input to
 the message digest calculation. This has the advantage that the
 length of the content being signed need not be known in advance of
 the signature generation process.

 Although the identifier octets and the length octets are not included
 in the message digest calculation, they are still protected by other
 means. The length octets are protected by the nature of the message
 digest algorithm since it is computationally infeasible to find any
 two distinct messages of any length that have the same message
 digest.

 The fact that the message digest is computed on part of a DER
 encoding does not mean that DER is the required method of
 representing that part for data transfer. Indeed, it is expected
 that some implementations will store objects in forms other than
 their DER encodings, but such practices do not affect message digest
 computation.

5.4 Message Signature Generation Process

 The input to the signature generation process includes the result of
 the message digest calculation process and the signer's private key.
 The details of the signature generation depend on the signature
 algorithm employed. The object identifier, along with any

Housley [Page 9]

INTERNET DRAFT January 1998

 parameters, that specifies the signature algorithm employed by the
 signer is carried in the signatureAlgorithm field. The signature
 value generated by the signer is encoded as an OCTET STRING and
 carried in the signature field.

5.5 Message Signature Validation Process

 The input to the signature validation process includes the result of
 the message digest calculation process and the signer's public key.
 The details of the signature validation depend on the signature
 algorithm employed.

 The recipient may not rely on any message digest values computed by
 the originator. If the signedData signerInfo includes
 authenticatedAttributes, then content message digest must be
 calculated as described in section 5.3. For the signature to be
 valid, the message digest value calculated by the recipient must be
 the same as the value of the messageDigest attribute included in the
 authenticatedAttributes of the signedData signerInfo.

6 Enveloped-data Content Type

 The enveloped-data content type consists of an encrypted content of
 any type and encrypted content-encryption keys for one or more
 recipients. The combination of the encrypted content and one
 encrypted content-encryption key for a recipient is a "digital
 envelope" for that recipient. Any type of content can be enveloped
 for an arbitrary number of recipients.

 The typical application of the enveloped-data content type will
 represent one or more recipients' digital envelopes on content of the
 data or signed-data content types.

 Enveloped-data is constructed by the following steps:

 1. A content-encryption key for a particular content-encryption
 algorithm is generated at random.

 2. The content-encryption key is encrypted for each recipient.
 The details of this encryption depend on the key management
 algorithm used, but three general techniques are supported:

 key transport: the content-encryption key is encrypted in the
 recipient's public key;

 key agreement: the recipient's public key and the sender's
 private key are used to generate a pairwise symmetric key, then
 the content-encryption key is encrypted in the pairwise

Housley [Page 10]

INTERNET DRAFT January 1998

 symmetric key; and

 mail list keys: the content-encryption key is encrypted in a
 previously distributed symmetric key.

 3. For each recipient, the encrypted content-encryption key and
 other recipient-specific information are collected into a
 RecipientInfo value, defined in Section 6.2.

 4. The content is encrypted with the content-encryption key.
 Content encryption may require that the content be padded to a
 multiple of some block size; see Section 6.3.

 5. The RecipientInfo values for all the recipients are collected
 together with the encrypted content to form an EnvelopedData value
 as defined in Section 6.1.

 A recipient opens the digital envelope by decrypting one of the
 encrypted content-encryption keys and then decrypting the encrypted
 content with the recovered content-encryption key.

 This section is divided into four parts. The first part describes
 the top-level type EnvelopedData, the second part describes the per-
 recipient information type RecipientInfo, and the third and fourth
 parts describe the content-encryption and key-encryption processes.

6.1 EnvelopedData Type

 The following object identifier identifies the enveloped-data content
 type:

 id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

 The enveloped-data content type shall have ASN.1 type EnvelopedData:

 EnvelopedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo }

 OriginatorInfo ::= SEQUENCE {
 certs [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 ukms [2] IMPLICIT UserKeyingMaterials OPTIONAL }

 RecipientInfos ::= SET OF RecipientInfo

Housley [Page 11]

INTERNET DRAFT January 1998

 EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

 EncryptedContent ::= OCTET STRING

 The fields of type EnvelopedData have the following meanings:

 version is the syntax version number. If originatorInfo is
 present, then version shall be 2. If any of the RecipientInfo
 structures included have a version of 2, then the version shall be
 2. If originatorInfo is absent and all of the RecipientInfo
 structures are version 0, then version shall be 0.

 originatorInfo optionally provides information about the
 originator. It is present only if required by the key management
 algorithm. It may contain certificates, CRLs, and user keying
 material (UKMs):

 certs is a collection of certificates. certs may contain
 originator certificates associated with several different key
 management algorithms. The certificates contained in certs are
 intended to be sufficient to make chains from a recognized
 "root" or "top-level certification authority" to all
 recipients. However, certs may contain more certificates than
 necessary, and there may be certificates sufficient to make
 chains from two or more independent top-level certification
 authorities. Alternatively, certs may contain fewer
 certificates than necessary, if it is expected that recipients
 have an alternate means of obtaining necessary certificates
 (e.g., from a previous set of certificates).

 crls is a collection of CRLs. It is intended that the set
 contain information sufficient to determine whether or not the
 certificates in the certs field are valid, but such
 correspondence is not necessary. There may be more CRLs than
 necessary, and there may also be fewer CRLs than necessary.

 ukms is a collection of UKMs. The set includes a UKM for each
 key management algorithm employed by the originator that
 requires one. In general, several recipients will use each UKM
 in the set.

 recipientInfos is a collection of per-recipient information.
 There must be at least one element in the collection.

 encryptedContentInfo is the encrypted content information.

Housley [Page 12]

INTERNET DRAFT January 1998

 The fields of type EncryptedContentInfo have the following meanings:

 contentType indicates the type of content.

 contentEncryptionAlgorithm identifies the content-encryption
 algorithm, and any associated parameters, used to encrypt the
 content. The content-encryption process is described in Section

6.3. The same algorithm is used for all recipients.

 encryptedContent is the result of encrypting the content. The
 field is optional, and if the field is not present, its intended
 value must be supplied by other means.

 The recipientInfos field comes before the encryptedContentInfo field
 so that an EnvelopedData value may be processed in a single pass.

6.2 RecipientInfo Type

 Per-recipient information is represented in the type RecipientInfo:

 RecipientInfo ::= SEQUENCE {
 version Version,
 rid RecipientIdentifier,
 originatorCert [0] EXPLICIT EntityIdentifier OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] IMPLICIT RecipientKeyIdentifier,
 mlKeyId [1] IMPLICIT MailListKeyIdentifier }

 RecipientKeyIdentifier ::= SEQUENCE {
 subjectKeyIdentifier SubjectKeyIdentifier,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 MailListKeyIdentifier ::= SEQUENCE {
 kekIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier SubjectKeyIdentifier }

 SubjectKeyIdentifier ::= OCTET STRING

Housley [Page 13]

INTERNET DRAFT January 1998

 EncryptedKey ::= OCTET STRING

 The fields of type RecipientInfo have the following meanings:

 version is the syntax version number. If the OriginatorCert is
 absent and the RecipientIdentifier is the CHOICE
 issuerAndSerialNumber, then the version shall be 0. If the
 OriginatorCert is present or the RecipientIdentifier is either the
 CHOICE rKeyId or mlKeyId, then the version shall be 2.

 rid specifies the recipient's certificate or key that was used by
 the sender to protect the content-encryption key.

 originatorCert optionally specifies the originator's certificate
 to be used by this recipient. This field should be included when
 the originator has more than one certificate containing a public
 key associated with the key management algorithm used for this
 recipient.

 keyEncryptionAlgorithm identifies the key-encryption algorithm,
 and any associated parameters, used to encrypt the content-
 encryption key for the recipient. The key-encryption process is
 described in Section 6.4.

 encryptedKey is the result of encrypting the content-encryption
 key for the recipient.

 The RecipientIdentifier is a CHOICE with three alternatives. The
 first two alternatives, issuerAndSerialNumber and rKeyId, specifies
 the recipient's certificate, and thereby the recipient's public key.
 The rKeyId alternative may optionally specify other parameters
 needed, such as the date. If the recipient's certificate contains a
 key transport public key, then the content-encryption key is
 encrypted with the recipient's public key. If the recipient's
 certificate contains a key agreement public key, then a pairwise
 symmetric key is established and used to encrypt the content-
 encryption key. The third alternative, mlKeyId, specifies a
 symmetric key encryption key that was previously distributed to the
 sender and recipient.

 The fields of type RecipientKeyIdentifier have the following
 meanings:

 subjectKeyIdentifier identifies the recipient's certificate by the
 X.509 subjectKeyIdentifier extension value.

 date is optional. When present, the date specifies which of the
 recipient's UKMs was used by the sender.

Housley [Page 14]

INTERNET DRAFT January 1998

 other is optional. When present, this field contains additional
 information used by the recipient to locate the keying material
 used by the sender.

 The fields of type MailListKeyIdentifier have the following meanings:

 kekIdentifier identifies the key-encryption key that was
 previously distributed to the sender and the recipient.

 date is optional. When present, the date specifies a single key-
 encryption key from a set that was previously distributed to the
 sender and the recipient.

 other is optional. When present, this field contains additional
 information used by the recipient to locate the keying material
 used by the sender.

6.3 Content-encryption Process

 The input to the content-encryption process is the "value" of the
 content being enveloped. Only the content octets; identifier or
 length octets are not included.

 When the content being enveloped has content type of data (as defined
 in section 4), then just the value of the data (e.g., the contents of
 a file) is encrypted. This has the advantage that the length of the
 content being encrypted need not be known in advance of the
 encryption process.

 The identifier octets and the length octets are not encrypted. The
 length octets may be protected implicitly by the encryption process,
 depending on the encryption algorithm. The identifier octets are not
 protected at all, although they can be recovered from the content
 type, assuming that the content type uniquely determines the
 identifier octets. Explicit protection of the identifier and length
 octets requires that the signed-data content type be employed prior
 to digital enveloping.

 Some content-encryption algorithms assume the input length is a
 multiple of k octets, where k is greater than one. For such
 algorithms, the input shall be padded at the trailing end with
 k-(l mod k) octets all having value k-(l mod k), where l is the
 length of the input. In other words, the input is padded at the

Housley [Page 15]

INTERNET DRAFT January 1998

 trailing end with one of the following strings:

 01 -- if l mod k = k-1
 02 02 -- if l mod k = k-2
 .
 .
 .
 k k ... k k -- if l mod k = 0

 The padding can be removed unambiguously since all input is padded,
 including input values that are already a multiple of the block size,
 and no padding string is a suffix of another. This padding method is
 well defined if and only if k is less than 256.

6.4 Key-encryption Process

 The input to the key-encryption process -- the value supplied to the
 recipient's key-encryption algorithm --is just the "value" of the
 content-encryption key.

7 Digested-data Content Type

 The digested-data content type consists of content of any type and a
 message digest of the content.

 Typically, the digested-data content type is used to provide content
 integrity, and the result generally becomes an input to the
 enveloped-data content type.

 The following steps construct digested-data:

 1. A message digest is computed on the content with a message-
 digest algorithm.

 2. The message-digest algorithm and the message digest are
 collected together with the content into a DigestedData value.

 A recipient verifies the message digest by comparing the message
 digest to an independently computed message digest.

 The following object identifier identifies the digested-data content
 type:

 id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

Housley [Page 16]

INTERNET DRAFT January 1998

 The digested-data content type shall have ASN.1 type DigestedData:

 DigestedData ::= SEQUENCE {
 version Version,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest }

 Digest ::= OCTET STRING

 The fields of type DigestedData have the following meanings:

 version is the syntax version number. It shall be 0.

 digestAlgorithm identifies the message digest algorithm, and any
 associated parameters, under which the content is digested. The
 message-digesting process is the same as in Section 5.3 in the
 case when there are no authenticated attributes.

 encapContentInfo is the content that is digested, as defined in
section 5.1.

 digest is the result of the message-digesting process.

 The ordering of the digestAlgorithm field, the encapContentInfo
 field, and the digest field makes it possible to process a
 DigestedData value in a single pass.

8 Encrypted-data Content Type

 The encrypted-data content type consists of encrypted content of any
 type. Unlike the enveloped-data content type, the encrypted-data
 content type has neither recipients nor encrypted content-encryption
 keys. Keys must be managed by other means.

 The typical application of the encrypted-data content type will be to
 encrypt the content of the data content type for local storage,
 perhaps where the encryption key is a password.

 The following object identifier identifies the encrypted-data content
 type:

 id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

Housley [Page 17]

INTERNET DRAFT January 1998

 The encrypted-data content type shall have ASN.1 type EncryptedData:

 EncryptedData ::= SEQUENCE {
 version Version,
 encryptedContentInfo EncryptedContentInfo }

 The fields of type EncryptedData have the following meanings:

 version is the syntax version number. It shall be 0.

 encryptedContentInfo is the encrypted content information, as
 defined in Section 6.1.

9 Authenticated-data Content Type

 The authenticated-data content type consists of content of any type,
 a message authentication code (MAC), and encrypted authentication
 keys for one or more recipients. The combination of the MAC and one
 encrypted authentication key for a recipient is necessary for that
 recipient to validate the integrity of the content. Any type of
 content can be integrity protected for an arbitrary number of
 recipients.

 The following object identifier identifies the authenticated-data
 content type:

 id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 2 }

 The authenticated-data content type shall have ASN.1 type
 AuthenticatedData:

 AuthenticatedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm MessageAuthenticationCodeAlgorithm,
 encapContentInfo EncapsulatedContentInfo,
 mac MessageAuthenticationCode }

 MessageAuthenticationCode ::= OCTET STRING

 The fields of type AuthenticatedData have the following meanings:

 version is the syntax version number. It shall be 0.

 originatorInfo optionally provides information about the

Housley [Page 18]

INTERNET DRAFT January 1998

 originator. It is present only if required by the key management
 algorithm. It may contain certificates, CRLs, and user keying
 material (UKMs), as defined in Section 6.1.

 recipientInfos is a collection of per-recipient information, as
 defined in Section 6.1. There must be at least one element in the
 collection.

 macAlgorithm is a message authentication code algorithm
 identifier. It identifies the message authentication code
 algorithm, along with any associated parameters, used by the
 originator. Placement of the macAlgorithm field facilitates one-
 pass processing by the recipient.

 encapContentInfo is the content that is authenticated, as defined
 in section 5.1.

 mac is the message authentication code.

10 Useful Types

 This section defines types that are used other places in the
 document. The types are not listed in any particular order.

10.1 CertificateRevocationLists

 The CertificateRevocationLists type gives a set of certificate
 revocation lists (CRLs). It is intended that the set contain
 information sufficient to determine whether the certificates with
 which the set is associated are revoked or not. However, there may
 be more CRLs than necessary or there may be fewer CRLs than
 necessary.

 The definition of CertificateList is imported from X.509.

 CertificateRevocationLists ::= SET OF CertificateList

10.2 ContentEncryptionAlgorithmIdentifier

 The ContentEncryptionAlgorithmIdentifier type identifies a content-
 encryption algorithm such as DES. A content-encryption algorithm
 supports encryption and decryption operations. The encryption
 operation maps an octet string (the message) to another octet string
 (the ciphertext) under control of a content-encryption key. The
 decryption operation is the inverse of the encryption operation.
 Context determines which operation is intended.

Housley [Page 19]

INTERNET DRAFT January 1998

 The definition of AlgorithmIdentifier is imported from X.509.

 ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

10.3 DigestAlgorithmIdentifier

 The DigestAlgorithmIdentifier type identifies a message-digest
 algorithm. Examples include SHA-1, MD2, and MD5. A message-digest
 algorithm maps an octet string (the message) to another octet string
 (the message digest).

 The definition of AlgorithmIdentifier is imported from X.509.

 DigestAlgorithmIdentifier ::= AlgorithmIdentifier

10.4 SignatureAlgorithmIdentifier

 The SignatureAlgorithmIdentifier type identifies a signature
 algorithm. Examples include DSS and RSA. A signature algorithm
 supports signature generation and verification operations. The
 signature generation operation uses the message digest and the
 signer's private key to generate a signature value. The signature
 verification operation uses the message digest and the signer's
 public key to determine whether or not a signature value is valid.
 Context determines which operation is intended.

 The definition of AlgorithmIdentifier is imported from X.509.

 SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

10.5 CertificateChoices

 The CertificateChoices type gives either a PKCS #6 extended
 certificate, an X.509 certificate, or an X.509 attribute certificate.
 The PKCS #6 extended certificate is obsolete. It is included for
 backward compatibility, and its use should be avoided.

 The definitions of Certificate and AttributeCertificate are imported
 from X.509.

 CertificateChoices ::= CHOICE {
 certificate Certificate, -- See X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
 attrCert [1] IMPLICIT AttributeCertificate } -- See X.509 and X9.57

Housley [Page 20]

INTERNET DRAFT January 1998

10.6 CertificateSet

 The CertificateSet type provides a set of certificates. It is
 intended that the set be sufficient to contain chains from a
 recognized "root" or "top-level certification authority" to all of
 the sender certificates with which the set is associated. However,
 there may be more certificates than necessary, or there may be fewer
 than necessary.

 The precise meaning of a "chain" is outside the scope of this
 document. Some applications may impose upper limits on the length of
 a chain; others may enforce certain relationships between the
 subjects and issuers of certificates within a chain.

 CertificateSet ::= SET OF CertificateChoices

10.7 IssuerAndSerialNumber

 The IssuerAndSerialNumber type identifies a certificate, and thereby
 an entity and a public key, by the distinguished name of the
 certificate issuer and an issuer-specific certificate serial number.

 The definition of Name is imported from X.501, and the definition of
 SerialNumber is imported from X.509.

 IssuerAndSerialNumber ::= SEQUENCE {
 issuer Name,
 serialNumber SerialNumber }

 SerialNumber ::= INTEGER

10.8 KeyEncryptionAlgorithmIdentifier

 The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
 algorithm used to encrypt a content-encryption key. The encryption
 operation maps an octet string (the key) to another octet string (the
 encrypted key) under control of a key-encryption key. The decryption
 operation is the inverse of the encryption operation. Context
 determines which operation is intended.

 The details of encryption and decryption depend on the key management
 algorithm used. Key transport, key agreement, and previously
 distributed symmetric key-encrypting keys are supported.

 The definition of AlgorithmIdentifier is imported from X.509.

 KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

Housley [Page 21]

INTERNET DRAFT January 1998

10.9 Version

 The Version type gives a syntax version number, for compatibility
 with future revisions of this document.

 Version ::= INTEGER

10.10 UserKeyingMaterial

 The UserKeyingMaterial type gives a syntax user keying material
 (UKM). Some key management algorithms require UKMs. The sender
 provides a UKM for the specific key management algorithm. The UKM is
 employed by all of the recipients that use the same key encryption
 algorithm.

 UserKeyingMaterial ::= SEQUENCE {
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 ukm OCTET STRING }

10.11 UserKeyingMaterials

 The UserKeyingMaterial type provides a set of user keying materials
 (UKMs). This allows the sender to provide a UKM for each key
 management algorithm that requires one.

 UserKeyingMaterials ::= SET OF UserKeyingMaterial

10.12 OtherKeyAttribute

 The OtherKeyAttribute type gives a syntax for the inclusion of other
 key attributes that permit the recipient to select the key used by
 the sender. The attribute object identifier must be registered along
 with the syntax of the attribute itself. Use of this structure
 should be avoided since it may impede interoperability.

 OtherKeyAttribute ::= SEQUENCE {
 keyAttrId OBJECT IDENTIFIER,
 keyAttr ANY DEFINED BY keyAttrId OPTIONAL }

10.13 MessageAuthenticationCodeAlgorithm

 The MessageAuthenticationCodeAlgorithm type identifies a message
 authentication code (MAC) algorithm. Examples include DES MAC and
 HMAC. A MAC algorithm supports generation and verification
 operations. The MAC generation and verification operations use the
 same symmetric key. Context determines which operation is intended.

Housley [Page 22]

INTERNET DRAFT January 1998

 The definition of AlgorithmIdentifier is imported from X.509.

 MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

11 Useful Attributes

 This section defines attributes that may used with signed-data. All
 of these attributes were originally defined in PKCS #9, and they are
 included here for easy reference. The attributes are not listed in
 any particular order.

11.1 Content Type

 The content-type attribute type specifies the content type of the
 ContentInfo value being signed in signed-data. The content-type
 attribute type is required if there are any authenticated attributes
 present.

 The following object identifier identifies the content-type
 attribute:

 id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

 Content-type attribute values have ASN.1 type ContentType:

 ContentType ::= OBJECT IDENTIFIER

 A content-type attribute must have a single attribute value.

11.2 Message Digest

 The message-digest attribute type specifies the message digest of the
 contents octets of the DER encoding of the content field of the
 ContentInfo value being signed in signed-data, where the message
 digest is computed using the signer's message digest algorithm. The
 message-digest attribute type is required if there are any
 authenticated attributes present.

 The following object identifier identifies the message-digest
 attribute:

 id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

 Message-digest attribute values have ASN.1 type MessageDigest:

 MessageDigest ::= OCTET STRING

Housley [Page 23]

INTERNET DRAFT January 1998

 A message-digest attribute must have a single attribute value.

11.3 Signing Time

 The signing-time attribute type specifies the time at which the
 signer (purportedly) performed the signing process. The signing-time
 attribute type is intended for use in signed-data.

 The following object identifier identifies the signing-time
 attribute:

 id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

 Signing-time attribute values have ASN.1 type SigningTime:

 SigningTime ::= Time

 Time ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime }

 Note: The definition of Time matches the one specified in the 1997
 version of X.509.

 Dates through the year 2049 must be encoded as UTCTime, and dates in
 the year 2050 or later must be encoded as GeneralizedTime.

 A signing-time attribute must have a single attribute value.

 No requirement is imposed concerning the correctness of the signing
 time, and acceptance of a purported signing time is a matter of a
 recipient's discretion. It is expected, however, that some signers,
 such as time-stamp servers, will be trusted implicitly.

11.4 Countersignature

 The countersignature attribute type specifies one or more signatures
 on the contents octets of the DER encoding of the signatureValue
 field of a SignerInfo value in signed-data. Thus, the
 countersignature attribute type countersigns (signs in serial)
 another signature. The countersignature attribute must be an
 unauthenticated attribute; it cannot be an authenticated attribute.

Housley [Page 24]

INTERNET DRAFT January 1998

 The following object identifier identifies the countersignature
 attribute:

 id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

 Countersignature attribute values have ASN.1 type Countersignature:

 Countersignature ::= SignerInfo

 Countersignature values have the same meaning as SignerInfo values
 for ordinary signatures, except that:

 1. The authenticatedAttributes field must contain a message-
 digest attribute if it contains any other attributes, but need not
 contain a content-type attribute, as there is no content type for
 countersignatures.

 2. The input to the message-digesting process is the contents
 octets of the DER encoding of the signatureValue field of the
 SignerInfo value with which the attribute is associated.

 A countersignature attribute can have multiple attribute values.

 The fact that a countersignature is computed on a signature value
 means that the countersigning process need not know the original
 content input to the signing process. This has advantages both in
 efficiency and in confidentiality. A countersignature, since it has
 type SignerInfo, can itself contain a countersignature attribute.
 Thus it is possible to construct arbitrarily long series of
 countersignatures.

12 Supported Algorithms

 To be supplied. However, this section will list the must implement
 algorithms and other algorithms that may be implemented. It will
 include:

 MUST implement: DSS, SHA-1, Diffie-Hellman (X9.42), and Triple-DES
 CBC (with three keys).

 MAY implement: RSA (signature and key management), MD5, RC2 (40 bit),
 DES CBC, and DES MAC.

Housley [Page 25]

INTERNET DRAFT January 1998

Appendix A: ASN.1 Module

 CryptographicMessageSyntax
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) cms(1) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 IMPORTS

 -- Directory Information Framework (X.501)
 Name
 FROM InformationFramework { joint-iso-itu-t ds(5) modules(1)
 informationFramework(1) 3 }

 -- Directory Authentication Framework (X.509)
 AlgorithmIdentifier, AttributeCertificate, Certificate,
 CertificateList, CertificateSerialNumber
 FROM AuthenticationFramework { joint-iso-itu-t ds(5)
 module(1) authenticationFramework(7) 3 } ;

 -- Cryptographic Message Syntax

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

 SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

 SignerInfos ::= SET OF SignerInfo

Housley [Page 26]

INTERNET DRAFT January 1998

 SignerInfo ::= SEQUENCE {
 version Version,
 issuerAndSerialNumber IssuerAndSerialNumber,
 digestAlgorithm DigestAlgorithmIdentifier,
 authenticatedAttributes [0] IMPLICIT CMSAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unauthenticatedAttributes [1] IMPLICIT CMSAttributes OPTIONAL }

 CMSAttributes ::= SET OF CMSAttribute

 CMSAttribute ::= SEQUENCE {
 cmsAttrType OBJECT IDENTIFIER,
 critical BOOLEAN DEFAULT FALSE,
 cmsAttrValues SET OF CMSAttributeValue }

 CMSAttributeValue ::= ANY

 SignatureValue ::= OCTET STRING

 EnvelopedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo }

 OriginatorInfo ::= SEQUENCE {
 certs [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 ukms [2] IMPLICIT UserKeyingMaterials OPTIONAL }

 RecipientInfos ::= SET OF RecipientInfo

 EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

 EncryptedContent ::= OCTET STRING

 RecipientInfo ::= SEQUENCE {
 version Version,
 rid RecipientIdentifier,
 originatorCert [0] EXPLICIT EntityIdentifier OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

Housley [Page 27]

INTERNET DRAFT January 1998

 RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] IMPLICIT RecipientKeyIdentifier,
 mlKeyId [1] IMPLICIT MailListKeyIdentifier }

 RecipientKeyIdentifier ::= SEQUENCE {
 subjectKeyIdentifier SubjectKeyIdentifier,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 MailListKeyIdentifier ::= SEQUENCE {
 kekIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier SubjectKeyIdentifier }

 SubjectKeyIdentifier ::= OCTET STRING

 EncryptedKey ::= OCTET STRING

 DigestedData ::= SEQUENCE {
 version Version,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest }

 Digest ::= OCTET STRING

 EncryptedData ::= SEQUENCE {
 version Version,
 encryptedContentInfo EncryptedContentInfo }

 AuthenticatedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm MessageAuthenticationCodeAlgorithm,
 encapContentInfo EncapsulatedContentInfo,
 mac MessageAuthenticationCode }

 MessageAuthenticationCode ::= OCTET STRING

 CertificateRevocationLists ::= SET OF CertificateList

 ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

Housley [Page 28]

INTERNET DRAFT January 1998

 DigestAlgorithmIdentifier ::= AlgorithmIdentifier

 SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

 CertificateChoices ::= CHOICE {
 certificate Certificate, -- See X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
 attrCert [1] IMPLICIT AttributeCertificate } -- See X.509 and X9.57

 CertificateSet ::= SET OF CertificateChoices

 IssuerAndSerialNumber ::= SEQUENCE {
 issuer Name,
 serialNumber SerialNumber }

 SerialNumber ::= INTEGER

 KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

 Version ::= INTEGER

 UserKeyingMaterial ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 ukm OCTET STRING }

 UserKeyingMaterials ::= SET OF UserKeyingMaterial

 OtherKeyAttribute ::= SEQUENCE {
 keyAttrId OBJECT IDENTIFIER,
 keyAttr ANY DEFINED BY keyAttrId OPTIONAL }

 MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

 -- CMS Attributes

 MessageDigest ::= OCTET STRING

 SigningTime ::= Time

 Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 Countersignature ::= SignerInfo

Housley [Page 29]

INTERNET DRAFT January 1998

 -- Object Identifiers

 id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

 id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

 id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

 id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

 id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

 id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 2 }

 id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

 id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

 id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

 id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

Housley [Page 30]

INTERNET DRAFT January 1998

 -- Obsolete Extended Certificate syntax from PKCS#6

 ExtendedCertificateOrCertificate ::= CHOICE {
 certificate Certificate,
 extendedCertificate [0] IMPLICIT ExtendedCertificate }

 ExtendedCertificate ::= SEQUENCE {
 extendedCertificateInfo ExtendedCertificateInfo,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature Signature }

 ExtendedCertificateInfo ::= SEQUENCE {
 version Version,
 certificate Certificate,
 attributes Attributes }

 Signature ::= BIT STRING

 END -- of CryptographicMessageSyntax

Housley [Page 31]

INTERNET DRAFT January 1998

References

 PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax
 Standard. Version 1.5, November 1993.

 PKCS #7 RSA Laboratories. PKCS #7: Cryptographic Message Syntax
 Standard. Version 1.5, November 1993.

 PKCS #7: Cryptographic Message Syntax, Internet Draft
draft-hoffman-pkcs-crypt-msg-xx.

 PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types.
 Version 1.1, November 1993.

 X.208 CCITT. Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1). 1988.

 X.209 CCITT. Recommendation X.209: Specification of Basic Encoding
 Rules for Abstract Syntax Notation One (ASN.1). 1988.

 X.501 CCITT. Recommendation X.501: The Directory - Models. 1988.

 X.509 CCITT. Recommendation X.509: The Directory - Authentication
 Framework. 1988.

Security Considerations

 The Cryptographic Message Syntax provides a method for digitally
 signing data, digesting data, encrypting data, and authenticating
 data.

 Implementations must protect the signer's private key. Compromise of
 the signer's private key permits masquerade.

 Implementations must protect the key management private key and the
 content-encryption key. Compromise of the key management private key
 may result in the disclosure of all messages protected with that key.
 Similarly, compromise of the content-encryption key may result in
 disclosure of the encrypted content.

Author Address

 Russell Housley
 SPYRUS
 PO Box 1198
 Herndon, VA 20172
 USA
 housley@spyrus.com

https://datatracker.ietf.org/doc/html/draft-hoffman-pkcs-crypt-msg-xx

Housley [Page 32]

