
S/MIME Working Group R. Housley
Internet Draft SPYRUS
expires in six months May 1998

Cryptographic Message Syntax

 <draft-ietf-smime-cms-05.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Northern
 Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au (Pacific
 Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 This document describes the Cryptographic Message Syntax. This
 syntax is used to digitally sign, digest, authenticate, or encrypt
 arbitrary messages.

 The Cryptographic Message Syntax is derived from PKCS #7 version 1.5
 [RFC 2315]. Wherever possible, backward compatibility is preserved;
 however, changes were necessary to accommodate attribute certificate
 transfer and key agreement techniques for key management.

 This draft is being discussed on the "ietf-smime" mailing list. To
 join the list, send a message to <ietf-smime-request@imc.org> with
 the single word "subscribe" in the body of the message. Also, there
 is a Web site for the mailing list at <http://www.imc.org/ietf-

smime/>.

Housley [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-05.txt
https://datatracker.ietf.org/doc/html/rfc2315
http://www.imc.org/ietf-smime/
http://www.imc.org/ietf-smime/

INTERNET DRAFT May 1998

Acknowledgements

 This document is the result of contributions from many professionals.
 I appreciate the hard work of all members of the IETF S/MIME Working
 Group. I extend a special thanks to Rich Ankney, Tim Dean, Steve
 Dusse, Paul Hoffman, Scott Hollenbeck, Burt Kaliski, John Pawling,
 Blake Ramsdell, Jim Schaad, and Dave Solo for their efforts and
 support.

1 Introduction

 This document describes the Cryptographic Message Syntax. This
 syntax is used to digitally sign or encrypt arbitrary messages.

 The Cryptographic Message Syntax describes an encapsulation syntax
 for data protection. It supports digital signatures and encryption.
 The syntax allows multiple encapsulation, so one encapsulation
 envelope can be nested inside another. Likewise, one party can
 digitally sign some previously encapsulated data. It also allows
 arbitrary attributes, such as signing time, to be signed along with
 the message content, and provides for other attributes such as
 countersignatures to be associated with a signature.

 The Cryptographic Message Syntax can support a variety of
 architectures for certificate-based key management, such as the one
 defined by the PKIX working group.

 The Cryptographic Message Syntax values are generated using ASN.1,
 using BER-encoding. Values are typically represented as octet
 strings. While many systems are capable of transmitting arbitrary
 octet strings reliably, it is well known that many electronic-mail
 systems are not. This document does not address mechanisms for
 encoding octet strings for reliable transmission in such
 environments.

2 General Overview

 The Cryptographic Message Syntax is general enough to support many
 different content types. This document defines six content types:
 data, signed-data, enveloped-data, digested-data, encrypted-data, and
 authenticated-data. Also, additional content types can be defined
 outside this document.

 An implementation that conforms to this specification must implement
 the data, signed-data, and enveloped-data content types. The other
 content types may be implemented if desired.

Housley [Page 2]

INTERNET DRAFT May 1998

 As a general design philosophy, content types permit single pass
 processing using indefinite-length Basic Encoding Rules (BER)
 encoding. Single-pass operation is especially helpful if content is
 large, stored on tapes, or is "piped" from another process. Single-
 pass operation has one significant drawback: it is difficult to
 perform encode operations using the Distinguished Encoding Rules
 (DER) encoding in a single pass since the lengths of the various
 components may not be known in advance. However, signed attributes
 within the signed-data content type and authenticated attributes
 within the authenticated-data content type require DER encoding.
 Signed attributes and authenticated attributes must be transmitted in
 DER form to ensure that recipients can validate a content that
 contains an unrecognized attribute.

3 General Syntax

 The Cryptographic Message Syntax associates a protection content type
 with a protection content. The syntax shall have ASN.1 type
 ContentInfo:

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType }

 ContentType ::= OBJECT IDENTIFIER

 The fields of ContentInfo have the following meanings:

 contentType indicates the type of protection content. It is an
 object identifier; it is a unique string of integers assigned by
 an authority that defines the content type.

 content is the protection content. The type of protection content
 can be determined uniquely by contentType. Protection content
 types for signed-data, enveloped-data, digested-data, encrypted-
 data, and authenticated-data are defined in this document. If
 additional protection content types are defined in other
 documents, the ASN.1 type defined along with the object identifier
 should not be a CHOICE type.

4 Data Content Type

 The following object identifier identifies the data content type:

 id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

 The data content type is intended to refer to arbitrary octet

Housley [Page 3]

INTERNET DRAFT May 1998

 strings, such as ASCII text files; the interpretation is left to the
 application. Such strings need not have any internal structure
 (although they could have their own ASN.1 definition or other
 structure).

 The data content type is generally used in conjunction with the
 signed-data, enveloped-data, digested-data, encrypted-data, and
 authenticated-data protection content types. The data content type
 is encapsulated in one of these protection content types.

5 Signed-data Content Type

 The signed-data content type consists of a content of any type and
 zero or more signature values. Any number of signers in parallel can
 sign any type of content.

 The typical application of the signed-data content type represents
 one signer's digital signature on content of the data content type.
 Another typical application disseminates certificates and certificate
 revocation lists (CRLs).

 The process by which signed-data is constructed involves the
 following steps:

 1. For each signer, a message digest, or hash value, is computed
 on the content with a signer-specific message-digest algorithm.
 If two signers employ the same message digest algorithm, then the
 message digest need be computed for only one of them. If the
 signer is signing any information other than the content, the
 message digest of the content and the other information are
 digested with the signer's message digest algorithm (see Section

5.4), and the result becomes the "message digest."

 2. For each signer, the message digest is digitally signed using
 the signer's private key.

 3. For each signer, the signature value and other signer-specific
 information are collected into a SignerInfo value, as defined in

Section 5.3. Certificates and CRLs for each signer, and those not
 corresponding to any signer, are collected in this step.

 4. The message digest algorithms for all the signers and the
 SignerInfo values for all the signers are collected together with
 the content into a SignedData value, as defined in Section 5.1.

 A recipient independently computes the message digest. This message
 digest and the signer's public key are used to validate the signature
 value. The signer's public key is referenced by an issuer

Housley [Page 4]

INTERNET DRAFT May 1998

 distinguished name and an issuer-specific serial number that uniquely
 identify the certificate containing the public key. The signer's
 certificate may be included in the SignedData certificates field.

 This section is divided into five parts. The first part describes
 the top-level type SignedData, the second part describes the per-
 signer information type SignerInfo, and the third, fourth, and fifth
 parts describe the message digest calculation, signature generation,
 and signature validation processes, respectively.

5.1 SignedData Type

 The following object identifier identifies the signed-data content
 type:

 id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

 The signed-data content type shall have ASN.1 type SignedData:

 SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

 SignerInfos ::= SET OF SignerInfo

 The fields of type SignedData have the following meanings:

 version is the syntax version number. If no attribute
 certificates are present in the certificates field and the
 encapsulated content type is id-data, then the value of version
 shall be 1; however, if attribute certificates are present or the
 encapsulated content type is other than id-data, then the value of
 version shall be 3.

 digestAlgorithms is a collection of message digest algorithm
 identifiers. There may be any number of elements in the
 collection, including zero. Each element identifies the message
 digest algorithm, along with any associated parameters, used by
 one or more signer. The collection is intended to list the
 message digest algorithms employed by all of the signers, in any
 order, to facilitate one-pass signature verification. The message

Housley [Page 5]

INTERNET DRAFT May 1998

 digesting process is described in Section 5.4.

 encapContentInfo is the signed content, consisting of a content
 type identifier and the content itself. Details of the
 EncapsulatedContentInfo type are discussed in section 5.2.

 certificates is a collection of certificates. It is intended that
 the set of certificates be sufficient to contain chains from a
 recognized "root" or "top-level certification authority" to all of
 the signers in the signerInfos field. There may be more
 certificates than necessary, and there may be certificates
 sufficient to contain chains from two or more independent top-
 level certification authorities. There may also be fewer
 certificates than necessary, if it is expected that recipients
 have an alternate means of obtaining necessary certificates (e.g.,
 from a previous set of certificates). If no attribute
 certificates are present in the collection, then the value of
 version shall be 1; however, if attribute certificates are
 present, then the value of version shall be 3.

 crls is a collection of certificate revocation lists (CRLs). It
 is intended that the set contain information sufficient to
 determine whether or not the certificates in the certificates
 field are valid, but such correspondence is not necessary. There
 may be more CRLs than necessary, and there may also be fewer CRLs
 than necessary.

 signerInfos is a collection of per-signer information. There may
 be any number of elements in the collection, including zero. The
 details of the SignerInfo type are discussed in section 5.3.

 The optional omission of the eContent within the
 EncapsulatedContentInfo field makes it possible to construct
 "external signatures." In the case of external signatures, the
 content being signed is absent from the EncapsulatedContentInfo value
 included in the signed-data content type. If the eContent value
 within EncapsulatedContentInfo is absent, then the signatureValue is
 calculated and the eContentType is assigned as though the eContent
 value was present.

 In the degenerate case where there are no signers, the
 EncapsulatedContentInfo value being "signed" is irrelevant. In this
 case, the content type within the EncapsulatedContentInfo value being
 "signed" should be id-data (as defined in section 4), and the content
 field of the EncapsulatedContentInfo value should be omitted.

Housley [Page 6]

INTERNET DRAFT May 1998

5.2 EncapsulatedContentInfo Type

 Per-signer information is represented in the type SignerInfo:

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

 The fields of type EncapsulatedContentInfo have the following
 meanings:

 eContentType is an object identifier uniquely specifies the
 content type.

 eContent in the content itself, carried as an octet string. The
 eContent need not be DER encoded.

5.3 SignerInfo Type

 Per-signer information is represented in the type SignerInfo:

 SignerInfo ::= SEQUENCE {
 version Version,
 issuerAndSerialNumber IssuerAndSerialNumber,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

 SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

 AttributeValue ::= ANY

 SignatureValue ::= OCTET STRING

 The fields of type SignerInfo have the following meanings:

 version is the syntax version number; it shall be 1.

Housley [Page 7]

INTERNET DRAFT May 1998

 issuerAndSerialNumber specifies the signer's certificate (and
 thereby the signer's public key) by issuer distinguished name and
 issuer-specific serial number.

 digestAlgorithm identifies the message digest algorithm, and any
 associated parameters, used by the signer. The message digest is
 computed over the encapsulated content and signed attributes, if
 present. The message digest algorithm should be among those
 listed in the digestAlgorithms field of the associated SignerData.
 The message digesting process is described in Section 5.4.

 signedAttributes is a collection of attributes that are signed.
 The field is optional, but it must be present if the content type
 of the EncapsulatedContentInfo value being signed is not id-data.
 Each SignedAttribute in the SET must be DER encoded. Useful
 attribute types, such as signing time, are defined in Section 11.
 If the field is present, it must contain, at a minimum, the
 following two attributes:

 A content-type attribute having as its value the content type
 of the EncapsulatedContentInfo value being signed. Section

11.1 defines the content-type attribute.

 A message-digest attribute, having as its value the message
 digest of the content. Section 11.2 defines the message-digest
 attribute.

 signatureAlgorithm identifies the signature algorithm, and any
 associated parameters, used by the signer to generate the digital
 signature.

 signature is the result of digital signature generation, using the
 message digest and the signer's private key.

 unsignedAttributes is a collection of attributes that are not
 signed. The field is optional. Useful attribute types, such as
 countersignatures, are defined in Section 11.

 The fields of type SignedAttribute and UnsignedAttribute have the
 following meanings:

 attrType indicates the type of attribute. It is an object
 identifier.

 attrValues is a set of values that comprise the attribute. The
 type of each value in the set can be determined uniquely by
 attrType.

Housley [Page 8]

INTERNET DRAFT May 1998

5.4 Message Digest Calculation Process

 The message digest calculation process computes a message digest on
 either the content being signed or the content together with the
 signed attributes. In either case, the initial input to the message
 digest calculation process is the "value" of the encapsulated content
 being signed. Specifically, the initial input is the
 encapContentInfo eContent OCTET STRING to which the signing process
 is applied. Only the octets comprising the value of the eContent
 OCTET STRING are input to the message digest algorithm, not the tag
 or the length octets.

 The result of the message digest calculation process depends on
 whether the signedAttributes field is present. When the field is
 absent, the result is just the message digest of the content as
 described above. When the field is present, however, the result is
 the message digest of the complete DER encoding of the
 SignedAttributes value contained in the signedAttributes field.
 Since the SignedAttributes value, when present, must contain the
 content type and the content message digest attributes, those values
 are indirectly included in the result. A separate encoding of the
 signedAttributes field is performed for message digest calculation.
 The IMPLICIT [0] tag in the signedAttributes field is not used for
 the DER encoding, rather an EXPLICIT SET OF tag is used. That is,
 the DER encoding of the SET OF tag, rather than of the IMPLICIT [0]
 tag, is to be included in the message digest calculation along with
 the length and content octets of the SignedAttributes value.

 When the signedAttributes field is absent, then only the octets
 comprising the value of the signedData encapContentInfo eContent
 OCTET STRING (e.g., the contents of a file) are input to the message
 digest calculation. This has the advantage that the length of the
 content being signed need not be known in advance of the signature
 generation process.

 Although the encapContentInfo eContent OCTET STRING tag and length
 octets are not included in the message digest calculation, they are
 still protected by other means. The length octets are protected by
 the nature of the message digest algorithm since it is
 computationally infeasible to find any two distinct messages of any
 length that have the same message digest.

5.5 Message Signature Generation Process

 The input to the signature generation process includes the result of
 the message digest calculation process and the signer's private key.
 The details of the signature generation depend on the signature
 algorithm employed. The object identifier, along with any

Housley [Page 9]

INTERNET DRAFT May 1998

 parameters, that specifies the signature algorithm employed by the
 signer is carried in the signatureAlgorithm field. The signature
 value generated by the signer is encoded as an OCTET STRING and
 carried in the signature field.

5.6 Message Signature Validation Process

 The input to the signature validation process includes the result of
 the message digest calculation process and the signer's public key.
 The details of the signature validation depend on the signature
 algorithm employed.

 The recipient may not rely on any message digest values computed by
 the originator. If the signedData signerInfo includes
 signedAttributes, then the content message digest must be calculated
 as described in section 5.4. For the signature to be valid, the
 message digest value calculated by the recipient must be the same as
 the value of the messageDigest attribute included in the
 signedAttributes of the signedData signerInfo.

6 Enveloped-data Content Type

 The enveloped-data content type consists of an encrypted content of
 any type and encrypted content-encryption keys for one or more
 recipients. The combination of the encrypted content and one
 encrypted content-encryption key for a recipient is a "digital
 envelope" for that recipient. Any type of content can be enveloped
 for an arbitrary number of recipients.

 The typical application of the enveloped-data content type will
 represent one or more recipients' digital envelopes on content of the
 data or signed-data content types.

 Enveloped-data is constructed by the following steps:

 1. A content-encryption key for a particular content-encryption
 algorithm is generated at random.

 2. The content-encryption key is encrypted for each recipient.
 The details of this encryption depend on the key management
 algorithm used, but three general techniques are supported:

 key transport: the content-encryption key is encrypted in the
 recipient's public key;

 key agreement: the recipient's public key and the sender's
 private key are used to generate a pairwise symmetric key, then
 the content-encryption key is encrypted in the pairwise

Housley [Page 10]

INTERNET DRAFT May 1998

 symmetric key; and

 mail list keys: the content-encryption key is encrypted in a
 previously distributed symmetric key.

 3. For each recipient, the encrypted content-encryption key and
 other recipient-specific information are collected into a
 RecipientInfo value, defined in Section 6.2.

 4. The content is encrypted with the content-encryption key.
 Content encryption may require that the content be padded to a
 multiple of some block size; see Section 6.3.

 5. The RecipientInfo values for all the recipients are collected
 together with the encrypted content to form an EnvelopedData value
 as defined in Section 6.1.

 A recipient opens the digital envelope by decrypting one of the
 encrypted content-encryption keys and then decrypting the encrypted
 content with the recovered content-encryption key.

 This section is divided into four parts. The first part describes
 the top-level type EnvelopedData, the second part describes the per-
 recipient information type RecipientInfo, and the third and fourth
 parts describe the content-encryption and key-encryption processes.

6.1 EnvelopedData Type

 The following object identifier identifies the enveloped-data content
 type:

 id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

 The enveloped-data content type shall have ASN.1 type EnvelopedData:

 EnvelopedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo }

 OriginatorInfo ::= SEQUENCE {
 certs [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL }

 RecipientInfos ::= SET OF RecipientInfo

Housley [Page 11]

INTERNET DRAFT May 1998

 EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

 EncryptedContent ::= OCTET STRING

 The fields of type EnvelopedData have the following meanings:

 version is the syntax version number. If originatorInfo is
 present, then version shall be 2. If any of the RecipientInfo
 structures included have a version other than 0, then the version
 shall be 2. If originatorInfo is absent and all of the
 RecipientInfo structures are version 0, then version shall be 0.

 originatorInfo optionally provides information about the
 originator. It is present only if required by the key management
 algorithm. It may contain certificates and CRLs:

 certs is a collection of certificates. certs may contain
 originator certificates associated with several different key
 management algorithms. The certificates contained in certs are
 intended to be sufficient to make chains from a recognized
 "root" or "top-level certification authority" to all
 recipients. However, certs may contain more certificates than
 necessary, and there may be certificates sufficient to make
 chains from two or more independent top-level certification
 authorities. Alternatively, certs may contain fewer
 certificates than necessary, if it is expected that recipients
 have an alternate means of obtaining necessary certificates
 (e.g., from a previous set of certificates).

 crls is a collection of CRLs. It is intended that the set
 contain information sufficient to determine whether or not the
 certificates in the certs field are valid, but such
 correspondence is not necessary. There may be more CRLs than
 necessary, and there may also be fewer CRLs than necessary.

 recipientInfos is a collection of per-recipient information.
 There must be at least one element in the collection.

 encryptedContentInfo is the encrypted content information.

 The fields of type EncryptedContentInfo have the following meanings:

 contentType indicates the type of content.

 contentEncryptionAlgorithm identifies the content-encryption

Housley [Page 12]

INTERNET DRAFT May 1998

 algorithm, and any associated parameters, used to encrypt the
 content. The content-encryption process is described in Section

6.3. The same algorithm is used for all recipients.

 encryptedContent is the result of encrypting the content. The
 field is optional, and if the field is not present, its intended
 value must be supplied by other means.

 The recipientInfos field comes before the encryptedContentInfo field
 so that an EnvelopedData value may be processed in a single pass.

6.2 RecipientInfo Type

 Per-recipient information is represented in the type RecipientInfo.
 RecipientInfo has a different format for the three key management
 techniques that are supported: key transport, key agreement, and
 previously distributed mail list keys. In all cases, the content-
 encryption key is transferred to one or more recipient in encrypted
 form.

 RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari KeyAgreeRecipientInfo,
 mlri MailListRecipientInfo }

 EncryptedKey ::= OCTET STRING

6.2.1 KeyTransRecipientInfo Type

 Per-recipient information using key transport is represented in the
 type KeyTransRecipientInfo. Each instance of KeyTransRecipientInfo
 transfers the content-encryption key to one recipient.

 KeyTransRecipientInfo ::= SEQUENCE {
 version Version, -- always set to 0 or 2
 rid EntityIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

 The fields of type KeyTransRecipientInfo have the following meanings:

 version is the syntax version number. If the RecipientIdentifier
 is the CHOICE issuerAndSerialNumber, then the version shall be 0.
 If the RecipientIdentifier is rKeyId, then the version shall be 2.

Housley [Page 13]

INTERNET DRAFT May 1998

 rid specifies the recipient's certificate or key that was used by
 the sender to protect the content-encryption key.

 keyEncryptionAlgorithm identifies the key-encryption algorithm,
 and any associated parameters, used to encrypt the content-
 encryption key for the recipient. The key-encryption process is
 described in Section 6.4.

 encryptedKey is the result of encrypting the content-encryption
 key for the recipient.

 The EntityIdentifier is a CHOICE with two alternatives specifying the
 recipient's certificate, and thereby the recipient's public key. The
 recipient's certificate must contain a key transport public key. The
 content-encryption key is encrypted with the recipient's public key.
 The issuerAndSerialNumber alternative identifies the recipient's
 certificate by the issuer's distinguished name and the certificate
 serial number; the subjectKeyIdentifier identifies the recipient's
 certificate by the X.509 subjectKeyIdentifier extension value.

6.2.2 KeyAgreeRecipientInfo Type

 Recipient information using key agreement is represented in the type
 KeyAgreeRecipientInfo. Each instance of KeyAgreeRecipientInfo will
 transfer the content-encryption key to one or more recipient.

 KeyAgreeRecipientInfo := SEQUENCE {
 version Version, -- always set to 3
 originatorCert [0] EXPLICIT EntityIdentifier,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys }

 RecipientEncryptedKeys ::= SEQUEENCE OF RecipientEncryptedKey

 RecipientEncryptedKey := SEQUENCE {
 rid RecipientIdentifier,
 encryptedKey EncryptedKey }

 RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] IMPLICIT RecipientKeyIdentifier }

 RecipientKeyIdentifier ::= SEQUENCE {
 subjectKeyIdentifier SubjectKeyIdentifier,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

Housley [Page 14]

INTERNET DRAFT May 1998

 SubjectKeyIdentifier ::= OCTET STRING

 The fields of type KeyAgreeRecipientInfo have the following meanings:

 version is the syntax version number. It shall always be 3.

 originatorCert is a CHOICE with two alternatives specifying the
 sender's certificate, and thereby the sender's public key. The
 sender's certificate must contain a key agreement public key, and
 the sender uses the corresponding private key and the recipient's
 public key to generate a pairwise key. The content-encryption key
 is encrypted in the pairwise key. The issuerAndSerialNumber
 alternative identifies the sender's certificate by the issuer's
 distinguished name and the certificate serial number; the
 subjectKeyIdentifier alternative identifies the sender's
 certificate by the X.509 subjectKeyIdentifier extension value.

 ukm is optional. With some key agreement algorithms, the sender
 provides a User Keying Material (UKM) to ensure that a different
 key is generated each time the same two parties generate a
 pairwise key.

 keyEncryptionAlgorithm identifies the key-encryption algorithm,
 and any associated parameters, used to encrypt the content-
 encryption key in the key-encryption key. The key-encryption
 process is described in Section 6.4.

 recipientEncryptedKeys includes a recipient identifier and the
 encrypted key for one or more recipients. The RecipientIdentifier
 is a CHOICE with two alternatives specifying the recipient's
 certificate, and thereby the recipient's public key, that was used
 by the sender to generate a pairwise key. The recipient's
 certificate must contain a key agreement public key. The
 content-encryption key is encrypted in the pairwise key. The
 issuerAndSerialNumber alternative identifies the recipient's
 certificate by the issuer's distinguished name and the certificate
 serial number; the RecipientKeyIdentifier is described below. The
 encryptedKey is the result of encrypting the content-encryption
 key in the pairwise key generated using the key agreement
 algorithm.

 The fields of type RecipientKeyIdentifier have the following
 meanings:

 subjectKeyIdentifier identifies the recipient's certificate by the
 X.509 subjectKeyIdentifier extension value.

 date is optional. When present, the date specifies which of the

Housley [Page 15]

INTERNET DRAFT May 1998

 recipient's previously distributed UKMs was used by the sender.

 other is optional. When present, this field contains additional
 information used by the recipient to locate the public keying
 material used by the sender.

6.2.3 MailListRecipientInfo Type

 Recipient information using previously distributed symmetric keys is
 represented in the type MailListRecipientInfo. Each instance of
 MailListRecipientInfo will transfer the content-encryption key to one
 or more recipients who have the previously distributed key-encryption
 key.

 MailListRecipientInfo := SEQUENCE {
 version Version, -- always set to 4
 mlid MailListKeyIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 MailListKeyIdentifier ::= SEQUENCE {
 kekIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 The fields of type MailListRecipientInfo have the following meanings:

 version is the syntax version number. It shall always be 4.

 mlKeyId specifies a symmetric key encryption key that was
 previously distributed to the sender and one or more recipients.

 keyEncryptionAlgorithm identifies the key-encryption algorithm,
 and any associated parameters, used to encrypt the content-
 encryption key in the key-encryption key. The key-encryption
 process is described in Section 6.4.

 encryptedKey is the result of encrypting the content-encryption
 key in the key-encryption key.

 The fields of type MailListKeyIdentifier have the following meanings:

 kekIdentifier identifies the key-encryption key that was
 previously distributed to the sender and one or more recipients.

 date is optional. When present, the date specifies a single key-
 encryption key from a set that was previously distributed.

Housley [Page 16]

INTERNET DRAFT May 1998

 other is optional. When present, this field contains additional
 information used by the recipient to determine the key-encryption
 key used by the sender.

6.3 Content-encryption Process

 The content-encryption key for the desired content-encryption
 algorithm is randomly generated. The data to be protected is padded
 as described below, then the padded data is encrypted using the
 content-encryption key. The encryption operation maps an arbitrary
 string of octets (the data) to another string of octets (the
 ciphertext) under control of a content-encryption key. The encrypted
 data is included in the envelopedData encryptedContentInfo
 encryptedContent OCTET STRING.

 The input to the content-encryption process is the "value" of the
 content being enveloped. Only the value octets of the envelopedData
 encryptedContentInfo encryptedContent OCTET STRING are encrypted; the
 OCTET STRING tag and length octets are not encrypted.

 Some content-encryption algorithms assume the input length is a
 multiple of k octets, where k is greater than one. For such
 algorithms, the input shall be padded at the trailing end with
 k-(l mod k) octets all having value k-(l mod k), where l is the
 length of the input. In other words, the input is padded at the
 trailing end with one of the following strings:

 01 -- if l mod k = k-1
 02 02 -- if l mod k = k-2
 .
 .
 .
 k k ... k k -- if l mod k = 0

 The padding can be removed unambiguously since all input is padded,
 including input values that are already a multiple of the block size,
 and no padding string is a suffix of another. This padding method is
 well defined if and only if k is less than 256.

6.4 Key-encryption Process

 The input to the key-encryption process -- the value supplied to the
 recipient's key-encryption algorithm --is just the "value" of the
 content-encryption key.

Housley [Page 17]

INTERNET DRAFT May 1998

7 Digested-data Content Type

 The digested-data content type consists of content of any type and a
 message digest of the content.

 Typically, the digested-data content type is used to provide content
 integrity, and the result generally becomes an input to the
 enveloped-data content type.

 The following steps construct digested-data:

 1. A message digest is computed on the content with a message-
 digest algorithm.

 2. The message-digest algorithm and the message digest are
 collected together with the content into a DigestedData value.

 A recipient verifies the message digest by comparing the message
 digest to an independently computed message digest.

 The following object identifier identifies the digested-data content
 type:

 id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

 The digested-data content type shall have ASN.1 type DigestedData:

 DigestedData ::= SEQUENCE {
 version Version,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest }

 Digest ::= OCTET STRING

 The fields of type DigestedData have the following meanings:

 version is the syntax version number. It shall be 0.

 digestAlgorithm identifies the message digest algorithm, and any
 associated parameters, under which the content is digested. The
 message-digesting process is the same as in Section 5.4 in the
 case when there are no signed attributes.

 encapContentInfo is the content that is digested, as defined in
section 5.2.

Housley [Page 18]

INTERNET DRAFT May 1998

 digest is the result of the message-digesting process.

 The ordering of the digestAlgorithm field, the encapContentInfo
 field, and the digest field makes it possible to process a
 DigestedData value in a single pass.

8 Encrypted-data Content Type

 The encrypted-data content type consists of encrypted content of any
 type. Unlike the enveloped-data content type, the encrypted-data
 content type has neither recipients nor encrypted content-encryption
 keys. Keys must be managed by other means.

 The typical application of the encrypted-data content type will be to
 encrypt the content of the data content type for local storage,
 perhaps where the encryption key is a password.

 The following object identifier identifies the encrypted-data content
 type:

 id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

 The encrypted-data content type shall have ASN.1 type EncryptedData:

 EncryptedData ::= SEQUENCE {
 version Version,
 encryptedContentInfo EncryptedContentInfo }

 The fields of type EncryptedData have the following meanings:

 version is the syntax version number. It shall be 0.

 encryptedContentInfo is the encrypted content information, as
 defined in Section 6.1.

9 Authenticated-data Content Type

 The authenticated-data content type consists of content of any type,
 a message authentication code (MAC), and encrypted authentication
 keys for one or more recipients. The combination of the MAC and one
 encrypted authentication key for a recipient is necessary for that
 recipient to validate the integrity of the content. Any type of
 content can be integrity protected for an arbitrary number of
 recipients.

 The process by which authenticated-data is constructed involves the
 following steps:

Housley [Page 19]

INTERNET DRAFT May 1998

 1. A message-authentication key for a particular message-
 authentication algorithm is generated at random.

 2. The message-authentication key is encrypted for each
 recipient. The details of this encryption depend on the key
 management algorithm used.

 3. For each recipient, the encrypted message-authentication key
 and other recipient-specific information are collected into a
 RecipientInfo value, defined in Section 6.2.

 4. Using the message-authentication key, the originator computes
 a MAC value on the content. If the originator is authenticating
 any information in addition to the content (see Section 9.2), the
 MAC value of the content and the other information are generated
 using the same message authentication code algorithm and key, and
 the result becomes the "MAC value."

9.1 AuthenticatedData Type

 The following object identifier identifies the authenticated-data
 content type:

 id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 2 }

 The authenticated-data content type shall have ASN.1 type
 AuthenticatedData:

 AuthenticatedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm MessageAuthenticationCodeAlgorithm,
 encapContentInfo EncapsulatedContentInfo,
 authenticatedAttributes [1] IMPLICIT AuthAttributes OPTIONAL,
 mac MessageAuthenticationCode,
 unauthenticatedAttributes [2] IMPLICIT UnauthAttributes OPTIONAL }

 AuthAttributes ::= SET SIZE (1..MAX) OF Attribute

 UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute

 MessageAuthenticationCode ::= OCTET STRING

 The fields of type AuthenticatedData have the following meanings:

Housley [Page 20]

INTERNET DRAFT May 1998

 version is the syntax version number. It shall be 0.

 originatorInfo optionally provides information about the
 originator. It is present only if required by the key management
 algorithm. It may contain certificates, CRLs, and user keying
 material (UKMs), as defined in Section 6.1.

 recipientInfos is a collection of per-recipient information, as
 defined in Section 6.1. There must be at least one element in the
 collection.

 macAlgorithm is a message authentication code algorithm
 identifier. It identifies the message authentication code
 algorithm, along with any associated parameters, used by the
 originator. Placement of the macAlgorithm field facilitates one-
 pass processing by the recipient.

 encapContentInfo is the content that is authenticated, as defined
 in section 5.2.

 authenticatedAttributes is a collection of attributes that are
 authenticated. The field is optional, but it must be present if
 the content type of the EncapsulatedContentInfo value being
 authenticated is not id-data. Each AuthenticatedAttribute in the
 SET must be DER encoded. Useful attribute types are defined in

Section 11. If the field is present, it must contain, at a
 minimum, the following two attributes:

 A content-type attribute having as its value the content type
 of the EncapsulatedContentInfo value being signed. Section

11.1 defines the content-type attribute.

 A mac-value attribute, having as its value the message
 authentication code of the content. Section 11.5 defines the
 mac-value attribute.

 mac is the message authentication code.

 unauthenticatedAttributes is a collection of attributes that are
 not authenticated. The field is optional. Useful attribute types
 are defined in Section 11.

9.2 MAC Generation

 The MAC calculation process computes a message authentication code on
 either the message content or the content together with the
 originator's authenticated attributes.

Housley [Page 21]

INTERNET DRAFT May 1998

 If there are no authenticated attributes, the MAC input data is the
 content octets of the DER encoding of the content field of the
 ContentInfo value to which the MAC process is applied. Only the
 contents octets of the DER encoding of that field are input to the
 MAC algorithm, not the identifier octets or the length octets.

 If authenticated attributes are present, they must include the
 content-type attribute (as described in Section 11.1) and mac-value
 attribute (as described in section 11.5). The MAC input data is the
 complete DER encoding of the Attributes value contained in the
 authenticatedAttributes field. Since the Attributes value, when the
 field is present, must contain as attributes the content type and the
 mac value of the content, those values are indirectly included in the
 result. A separate encoding of the authenticatedAttributes field is
 performed for MAC calculation. The IMPLICIT [0] tag in the
 authenticatedAttributes field is not used for the DER encoding,
 rather an EXPLICIT SET OF tag is used. That is, the DER encoding of
 the SET OF tag, rather than of the IMPLICIT [0] tag, is to be
 included in the MAC calculation along with the length and contents
 octets of the AuthAttributes value.

 If the content has content type id-data and the
 authenticatedAttributes field is absent, then just the value of the
 data (e.g., the contents of a file) is input to the MAC calculation.
 This has the advantage that the length of the content need not be
 known in advance of the MAC calculation process. Although the tag
 and length octets are not included in the MAC calculation, they are
 still protected by other means. The length octets are protected by
 the nature of the MAC algorithm since it is computationally
 infeasible to find any two distinct messages of any length that have
 the same MAC.

 The fact that the MAC is computed on part of a DER encoding does not
 mean that DER is the required method of representing that part for
 data transfer. Indeed, it is expected that some implementations will
 store objects in forms other than their DER encodings, but such
 practices do not affect MAC computation.

 The input to the MAC calculation process includes the MAC input data,
 defined above, and an authentication key conveyed in a recipientInfo
 structure. The details of MAC calculation depend on the MAC
 algorithm employed (e.g., DES-MAC and HMAC). The object identifier,
 along with any parameters, that specifies the MAC algorithm employed
 by the originator is carried in the macAlgorithm field. The MAC
 value generated by the originator is encoded as an OCTET STRING and
 carried in the mac field.

Housley [Page 22]

INTERNET DRAFT May 1998

9.3 MAC Validation

 The input to the MAC validation process includes the input data
 (determined based on the presence or absence of authenticated
 attributes, as defined in 9.2), and the authentication key conveyed
 in recipientInfo. The details of the MAC validation process depend
 on the MAC algorithm employed.

 The recipient may not rely on any MAC values computed by the
 originator. If the originator includes authenticated attributes,
 then the content of the authenticatedAttributes must be autenticated
 as described in section 9.2. For the MAC to be valid, the message
 MAC value calculated by the recipient must be the same as the value
 of the macValue attribute included in the authenticatedAttributes.
 Likewise, the attribute MAC value calculated by the recipient must be
 the same as the value of the mac field included in the
 authenticatedData.

10 Useful Types

 This section is divided into two parts. The first part defines
 algorithm identifiers, and the second part defines other useful
 types.

10.1 Algorithm Identifier Types

 All of the algorithm identifiers have the same type:
 AlgorithmIdentifier. The definition of AlgorithmIdentifier is
 imported from X.509.

 There are many alternatives for each type of algorithm listed. For
 each of these five types, Section 12 lists the algorithms that must
 be included in a CMS implementation.

10.1.1 DigestAlgorithmIdentifier

 The DigestAlgorithmIdentifier type identifies a message-digest
 algorithm. Examples include SHA-1, MD2, and MD5. A message-digest
 algorithm maps an octet string (the message) to another octet string
 (the message digest).

 DigestAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.2 SignatureAlgorithmIdentifier

 The SignatureAlgorithmIdentifier type identifies a signature
 algorithm. Examples include DSS and RSA. A signature algorithm
 supports signature generation and verification operations. The

Housley [Page 23]

INTERNET DRAFT May 1998

 signature generation operation uses the message digest and the
 signer's private key to generate a signature value. The signature
 verification operation uses the message digest and the signer's
 public key to determine whether or not a signature value is valid.
 Context determines which operation is intended.

 SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.3 KeyEncryptionAlgorithmIdentifier

 The KeyEncryptionAlgorithmIdentifier type identifies a key-encryption
 algorithm used to encrypt a content-encryption key. The encryption
 operation maps an octet string (the key) to another octet string (the
 encrypted key) under control of a key-encryption key. The decryption
 operation is the inverse of the encryption operation. Context
 determines which operation is intended.

 The details of encryption and decryption depend on the key management
 algorithm used. Key transport, key agreement, and previously
 distributed symmetric key-encrypting keys are supported.

 KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.4 ContentEncryptionAlgorithmIdentifier

 The ContentEncryptionAlgorithmIdentifier type identifies a content-
 encryption algorithm. Examples include DES, Triple-DES, and RC2. A
 content-encryption algorithm supports encryption and decryption
 operations. The encryption operation maps an octet string (the
 message) to another octet string (the ciphertext) under control of a
 content-encryption key. The decryption operation is the inverse of
 the encryption operation. Context determines which operation is
 intended.

 ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

10.1.5 MessageAuthenticationCodeAlgorithm

 The MessageAuthenticationCodeAlgorithm type identifies a message
 authentication code (MAC) algorithm. Examples include DES MAC and
 HMAC. A MAC algorithm supports generation and verification
 operations. The MAC generation and verification operations use the
 same symmetric key. Context determines which operation is intended.

 MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

Housley [Page 24]

INTERNET DRAFT May 1998

10.2 Other Useful Types

 This section defines types that are used other places in the
 document. The types are not listed in any particular order.

10.2.1 CertificateRevocationLists

 The CertificateRevocationLists type gives a set of certificate
 revocation lists (CRLs). It is intended that the set contain
 information sufficient to determine whether the certificates with
 which the set is associated are revoked or not. However, there may
 be more CRLs than necessary or there may be fewer CRLs than
 necessary.

 The definition of CertificateList is imported from X.509.

 CertificateRevocationLists ::= SET OF CertificateList

10.2.2 CertificateChoices

 The CertificateChoices type gives either a PKCS #6 extended
 certificate [PKCS #6], an X.509 certificate, or an X.509 attribute
 certificate. The PKCS #6 extended certificate is obsolete. It is
 included for backward compatibility, and its use should be avoided.

 The definitions of Certificate and AttributeCertificate are imported
 from X.509.

 CertificateChoices ::= CHOICE {
 certificate Certificate, -- See X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
 attrCert [1] IMPLICIT AttributeCertificate } -- See X.509 and X9.57

10.2.3 CertificateSet

 The CertificateSet type provides a set of certificates. It is
 intended that the set be sufficient to contain chains from a
 recognized "root" or "top-level certification authority" to all of
 the sender certificates with which the set is associated. However,
 there may be more certificates than necessary, or there may be fewer
 than necessary.

 The precise meaning of a "chain" is outside the scope of this
 document. Some applications may impose upper limits on the length of
 a chain; others may enforce certain relationships between the
 subjects and issuers of certificates within a chain.

 CertificateSet ::= SET OF CertificateChoices

Housley [Page 25]

INTERNET DRAFT May 1998

10.2.4 IssuerAndSerialNumber

 The IssuerAndSerialNumber type identifies a certificate, and thereby
 an entity and a public key, by the distinguished name of the
 certificate issuer and an issuer-specific certificate serial number.

 The definition of Name is imported from X.501, and the definition of
 CertificateSerialNumber is imported from X.509.

 IssuerAndSerialNumber ::= SEQUENCE {
 issuer Name,
 serialNumber CertificateSerialNumber }

 CertificateSerialNumber ::= INTEGER

10.2.5 Version

 The Version type gives a syntax version number, for compatibility
 with future revisions of this document.

 Version ::= INTEGER { v0(0), v1(1), v2(2), v3(3), v4(4) }

10.2.6 UserKeyingMaterial

 The UserKeyingMaterial type gives a syntax user keying material
 (UKM). Some key agreement algorithms require UKMs to ensure that a
 different key is generated each time the same two parties generate a
 pairwise key. The sender provides a UKM for use with a specific key
 agreement algorithm.

 UserKeyingMaterial ::= OCTET STRING

10.2.7 OtherKeyAttribute

 The OtherKeyAttribute type gives a syntax for the inclusion of other
 key attributes that permit the recipient to select the key used by
 the sender. The attribute object identifier must be registered along
 with the syntax of the attribute itself. Use of this structure
 should be avoided since it may impede interoperability.

 OtherKeyAttribute ::= SEQUENCE {
 keyAttrId OBJECT IDENTIFIER,
 keyAttr ANY DEFINED BY keyAttrId OPTIONAL }

11 Useful Attributes

 This section defines attributes that may used with signed-data or
 authenticated-data. Some of these attributes were originally defined

Housley [Page 26]

INTERNET DRAFT May 1998

 in PKCS #9 [PKCS #9], others are defined and specified here. The
 attributes are not listed in any particular order.

11.1 Content Type

 The content-type attribute type specifies the content type of the
 ContentInfo value being signed in signed-data. The content-type
 attribute type is required if there are any authenticated attributes
 present.

 The content-type attribute must be a signed attribute or an
 authenticated attribute; it cannot be an unsigned attribute or
 unauthenticated attribute.

 The following object identifier identifies the content-type
 attribute:

 id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

 Content-type attribute values have ASN.1 type ContentType:

 ContentType ::= OBJECT IDENTIFIER

 A content-type attribute must have a single attribute value.

11.2 Message Digest

 The message-digest attribute type specifies the message digest of the
 encapContentInfo eContent OCTET STRING being signed in signed-data
 (see section 5.4), where the message digest is computed using the
 signer's message digest algorithm.

 Within signed-data, the message-digest signed attribute type is
 required if there are any attributes present.

 The message-digest attribute must be a signed attribute; it cannot be
 an unsigned attribute, an authenticated attribute, or unauthenticated
 attribute.

 The following object identifier identifies the message-digest
 attribute:

 id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

 Message-digest attribute values have ASN.1 type MessageDigest:

Housley [Page 27]

INTERNET DRAFT May 1998

 MessageDigest ::= OCTET STRING

 A message-digest attribute must have a single attribute value.

11.3 Signing Time

 The signing-time attribute type specifies the time at which the
 signer (purportedly) performed the signing process. The signing-time
 attribute type is intended for use in signed-data.

 The signing-time attribute may be a signed attribute; it cannot be an
 unsigned attribute, an authenticated attribute, or an unauthenticated
 attribute.

 The following object identifier identifies the signing-time
 attribute:

 id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

 Signing-time attribute values have ASN.1 type SigningTime:

 SigningTime ::= Time

 Time ::= CHOICE {
 utcTime UTCTime,
 generalizedTime GeneralizedTime }

 Note: The definition of Time matches the one specified in the 1997
 version of X.509.

 Dates through the year 2049 must be encoded as UTCTime, and dates in
 the year 2050 or later must be encoded as GeneralizedTime.

 A signing-time attribute must have a single attribute value.

 No requirement is imposed concerning the correctness of the signing
 time, and acceptance of a purported signing time is a matter of a
 recipient's discretion. It is expected, however, that some signers,
 such as time-stamp servers, will be trusted implicitly.

11.4 Countersignature

 The countersignature attribute type specifies one or more signatures
 on the contents octets of the DER encoding of the signatureValue
 field of a SignerInfo value in signed-data. Thus, the
 countersignature attribute type countersigns (signs in serial)
 another signature.

Housley [Page 28]

INTERNET DRAFT May 1998

 The countersignature attribute must be an unsigned attribute; it
 cannot be a signed attribute, an authenticated attribute, or an
 unauthenticated attribute.

 The following object identifier identifies the countersignature
 attribute:

 id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

 Countersignature attribute values have ASN.1 type Countersignature:

 Countersignature ::= SignerInfo

 Countersignature values have the same meaning as SignerInfo values
 for ordinary signatures, except that:

 1. The signedAttributes field must contain a message-digest
 attribute if it contains any other attributes, but need not
 contain a content-type attribute, as there is no content type for
 countersignatures.

 2. The input to the message-digesting process is the contents
 octets of the DER encoding of the signatureValue field of the
 SignerInfo value with which the attribute is associated.

 A countersignature attribute can have multiple attribute values.

 The fact that a countersignature is computed on a signature value
 means that the countersigning process need not know the original
 content input to the signing process. This has advantages both in
 efficiency and in confidentiality. A countersignature, since it has
 type SignerInfo, can itself contain a countersignature attribute.
 Thus it is possible to construct arbitrarily long series of
 countersignatures.

11.5 Message Authentication Code (MAC) Value

 The MAC-value attribute type specifies the MAC of the
 encapContentInfo eContent OCTET STRING being authenticated in
 authenticated-data (see section 9), where the MAC value is computed
 using the originator's MAC algorithm and the data-authentication key.

 Within authenticated-data, the MAC-value attribute type is required
 if there are any authenticated attributes present.

 The MAC-value attribute must be a authenticated attribute; it cannot
 be an signed attribute, an unsigned attribute, or unauthenticated

Housley [Page 29]

INTERNET DRAFT May 1998

 attribute.

 The following object identifier identifies the MAC-value attribute:

 id-macValue OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) aa(2) 8 }

 MAC-value attribute values have ASN.1 type MACValue:

 MACValue ::= OCTET STRING

 A MAC-value attribute must have a single attribute value.

12 Supported Algorithms

 This section lists the algorithms that must be implemented.
 Additional algorithms that may be implemented are also included.

12.1 Digest Algorithms

 CMS implementations must include SHA-1. CMS implementations may
 include MD5.

12.1.1 SHA-1

 [*** Add pointer to algorithm specification. Provide OID. ***]

12.1.2 MD5

 [*** Add pointer to algorithm specification. Provide OID. ***]

12.2 Signature Algorithms

 CMS implementations must include DSA. CMS implementations may
 include RSA.

12.2.1 DSA

 [*** Add pointer to algorithm specification. Provide OID. Provide
 ASN.1 for parameters and signature value. ***]

12.2.2 RSA

 [*** Add pointer to algorithm specification. Provide OID. Provide
 ASN.1 for parameters and signature value. ***]

Housley [Page 30]

INTERNET DRAFT May 1998

12.3 Key Encryption Algorithms

 CMS implementations must include X9.42 Static Diffie-Hellman. CMS
 implementations may include RSA and Triple-DES.

12.3.1 X9.42 Static Diffie-Hellman

 [*** Add pointer to algorithm specification. Provide OID. Provide
 ASN.1 for parameters. ***]

12.3.2 RSA

 [*** Add pointer to algorithm specification. Provide OID. Provide
 ASN.1 for parameters. ***]

12.3.3 Triple-DES Key Wrap

 [*** Add pointer to algorithm specification. Provide OID. ***]

12.4 Content Encryption Algorithms

 CMS implementations must include Triple-DES in CBC mode. CMS
 implementations may include DES in CBC mode and RC2 in CBC mode.

12.4.1 Triple-DES CBC

 [*** Add pointer to algorithm specification. Provide OID. ***]

12.4.2 DES CBC

 [*** Add pointer to algorithm specification. Provide OID. ***]

12.4.3 RC2 CBC

 [*** Add pointer to algorithm specification. Provide OID. ***]

12.5 Message Authentication Code Algorithms

 No MAC algorithms are mandatory. CMS implementations may include DES
 MAC and HMAC.

12.5.1 DES MAC

 [*** Add pointer to algorithm specification. Provide OID. ***]

Housley [Page 31]

INTERNET DRAFT May 1998

12.5.2 HMAC

 [*** Add pointer to algorithm specification. Provide OID. ***]

Housley [Page 32]

INTERNET DRAFT May 1998

Appendix A: ASN.1 Module

 CryptographicMessageSyntax
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) cms(1) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORTS All --
 -- The types and values defined in this module are exported for use in
 -- the other ASN.1 modules. Other applications may use them for their
 -- own purposes.

 IMPORTS

 -- Directory Information Framework (X.501)
 Name
 FROM InformationFramework { joint-iso-itu-t ds(5) modules(1)
 informationFramework(1) 3 }

 -- Directory Authentication Framework (X.509)
 AlgorithmIdentifier, AttributeCertificate, Certificate,
 CertificateList, CertificateSerialNumber
 FROM AuthenticationFramework { joint-iso-itu-t ds(5)
 module(1) authenticationFramework(7) 3 } ;

 -- Cryptographic Message Syntax

 ContentInfo ::= SEQUENCE {
 contentType ContentType,
 content [0] EXPLICIT ANY DEFINED BY contentType OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

 SignedData ::= SEQUENCE {
 version Version,
 digestAlgorithms DigestAlgorithmIdentifiers,
 encapContentInfo EncapsulatedContentInfo,
 certificates [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
 signerInfos SignerInfos }

 DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

 SignerInfos ::= SET OF SignerInfo

Housley [Page 33]

INTERNET DRAFT May 1998

 EncapsulatedContentInfo ::= SEQUENCE {
 eContentType ContentType,
 eContent [0] EXPLICIT OCTET STRING OPTIONAL }

 ContentType ::= OBJECT IDENTIFIER

 SignerInfo ::= SEQUENCE {
 version Version,
 issuerAndSerialNumber IssuerAndSerialNumber,
 digestAlgorithm DigestAlgorithmIdentifier,
 signedAttrs [0] IMPLICIT SignedAttributes OPTIONAL,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature SignatureValue,
 unsignedAttrs [1] IMPLICIT UnsignedAttributes OPTIONAL }

 SignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 UnsignedAttributes ::= SET SIZE (1..MAX) OF Attribute

 Attribute ::= SEQUENCE {
 attrType OBJECT IDENTIFIER,
 attrValues SET OF AttributeValue }

 AttributeValue ::= ANY

 SignatureValue ::= OCTET STRING

 EnvelopedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 encryptedContentInfo EncryptedContentInfo }

 OriginatorInfo ::= SEQUENCE {
 certs [0] IMPLICIT CertificateSet OPTIONAL,
 crls [1] IMPLICIT CertificateRevocationLists OPTIONAL }

 RecipientInfos ::= SET OF RecipientInfo

 EncryptedContentInfo ::= SEQUENCE {
 contentType ContentType,
 contentEncryptionAlgorithm ContentEncryptionAlgorithmIdentifier,
 encryptedContent [0] IMPLICIT EncryptedContent OPTIONAL }

 EncryptedContent ::= OCTET STRING

Housley [Page 34]

INTERNET DRAFT May 1998

 RecipientInfo ::= CHOICE {
 ktri KeyTransRecipientInfo,
 kari KeyAgreeRecipientInfo,
 mlri MailListRecipientInfo }

 EncryptedKey ::= OCTET STRING

 KeyTransRecipientInfo ::= SEQUENCE {
 version Version, -- always set to 0 or 2
 rid EntityIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

 EntityIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 subjectKeyIdentifier [0] SubjectKeyIdentifier }

 KeyAgreeRecipientInfo := SEQUENCE {
 version Version, -- always set to 3
 originatorCert [0] EXPLICIT EntityIdentifier,
 ukm [1] EXPLICIT UserKeyingMaterial OPTIONAL,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 recipientEncryptedKeys RecipientEncryptedKeys }

 RecipientEncryptedKeys ::= SEQUEENCE OF RecipientEncryptedKey

 RecipientEncryptedKey := SEQUENCE {
 rid RecipientIdentifier,
 encryptedKey EncryptedKey }

 RecipientIdentifier ::= CHOICE {
 issuerAndSerialNumber IssuerAndSerialNumber,
 rKeyId [0] IMPLICIT RecipientKeyIdentifier }

 RecipientKeyIdentifier ::= SEQUENCE {
 subjectKeyIdentifier SubjectKeyIdentifier,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 SubjectKeyIdentifier ::= OCTET STRING

 MailListRecipientInfo := SEQUENCE {
 version Version, -- always set to 4
 mlid MailListKeyIdentifier,
 keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
 encryptedKey EncryptedKey }

Housley [Page 35]

INTERNET DRAFT May 1998

 MailListKeyIdentifier ::= SEQUENCE {
 kekIdentifier OCTET STRING,
 date GeneralizedTime OPTIONAL,
 other OtherKeyAttribute OPTIONAL }

 DigestedData ::= SEQUENCE {
 version Version,
 digestAlgorithm DigestAlgorithmIdentifier,
 encapContentInfo EncapsulatedContentInfo,
 digest Digest }

 Digest ::= OCTET STRING

 EncryptedData ::= SEQUENCE {
 version Version,
 encryptedContentInfo EncryptedContentInfo }

 AuthenticatedData ::= SEQUENCE {
 version Version,
 originatorInfo [0] IMPLICIT OriginatorInfo OPTIONAL,
 recipientInfos RecipientInfos,
 macAlgorithm MessageAuthenticationCodeAlgorithm,
 encapContentInfo EncapsulatedContentInfo,
 authenticatedAttributes [1] IMPLICIT AuthAttributes OPTIONAL,
 mac MessageAuthenticationCode,
 unauthenticatedAttributes [2] IMPLICIT UnauthAttributes OPTIONAL }

 AuthAttributes ::= SET SIZE (1..MAX) OF Attribute

 UnauthAttributes ::= SET SIZE (1..MAX) OF Attribute

 MessageAuthenticationCode ::= OCTET STRING

 DigestAlgorithmIdentifier ::= AlgorithmIdentifier

 SignatureAlgorithmIdentifier ::= AlgorithmIdentifier

 KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

 ContentEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

 MessageAuthenticationCodeAlgorithm ::= AlgorithmIdentifier

 CertificateRevocationLists ::= SET OF CertificateList

Housley [Page 36]

INTERNET DRAFT May 1998

 CertificateChoices ::= CHOICE {
 certificate Certificate, -- See X.509
 extendedCertificate [0] IMPLICIT ExtendedCertificate, -- Obsolete
 attrCert [1] IMPLICIT AttributeCertificate } -- See X.509 & X9.57

 CertificateSet ::= SET OF CertificateChoices

 IssuerAndSerialNumber ::= SEQUENCE {
 issuer Name,
 serialNumber CertificateSerialNumber }

 KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

 Version ::= INTEGER { v0(0), v1(1), v2(2), v3(3), v4(4) }

 UserKeyingMaterial ::= OCTET STRING

 UserKeyingMaterials ::= SET SIZE (1..MAX) OF UserKeyingMaterial

 OtherKeyAttribute ::= SEQUENCE {
 keyAttrId OBJECT IDENTIFIER,
 keyAttr ANY DEFINED BY keyAttrId OPTIONAL }

 -- CMS Attributes

 MessageDigest ::= OCTET STRING

 SigningTime ::= Time

 Time ::= CHOICE {
 utcTime UTCTime,
 generalTime GeneralizedTime }

 Countersignature ::= SignerInfo

 MACValue ::= OCTET STRING

Housley [Page 37]

INTERNET DRAFT May 1998

 -- Object Identifiers

 id-data OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 1 }

 id-signedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 2 }

 id-envelopedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 3 }

 id-digestedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 5 }

 id-encryptedData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs7(7) 6 }

 id-ct-authData OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)
 ct(1) 2 }

 id-contentType OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 3 }

 id-messageDigest OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 4 }

 id-signingTime OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 5 }

 id-countersignature OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) 6 }

 id-macValue OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) aa(2) 8 }

 -- Obsolete Extended Certificate syntax from PKCS#6

 ExtendedCertificateOrCertificate ::= CHOICE {
 certificate Certificate,
 extendedCertificate [0] IMPLICIT ExtendedCertificate }

 ExtendedCertificate ::= SEQUENCE {
 extendedCertificateInfo ExtendedCertificateInfo,
 signatureAlgorithm SignatureAlgorithmIdentifier,
 signature Signature }

Housley [Page 38]

INTERNET DRAFT May 1998

 ExtendedCertificateInfo ::= SEQUENCE {
 version Version,
 certificate Certificate,
 attributes UnauthAttributes }

 Signature ::= BIT STRING

 END -- of CryptographicMessageSyntax

Housley [Page 39]

INTERNET DRAFT May 1998

References

RFC 2313 Kaliski, B. PKCS #1: RSA Encryption, Version 1.5.
 March 1998.

RFC 2315 Kaliski, B. PKCS #7: Cryptographic Message Syntax,
 Version 1.5. March 1998.

 PKCS #6 RSA Laboratories. PKCS #6: Extended-Certificate Syntax
 Standard, Version 1.5. November 1993.

 PKCS #9 RSA Laboratories. PKCS #9: Selected Attribute Types,
 Version 1.1. November 1993.

 X.208 CCITT. Recommendation X.208: Specification of Abstract
 Syntax Notation One (ASN.1). 1988.

 X.209 CCITT. Recommendation X.209: Specification of Basic Encoding
 Rules for Abstract Syntax Notation One (ASN.1). 1988.

 X.501 CCITT. Recommendation X.501: The Directory - Models. 1988.

 X.509 CCITT. Recommendation X.509: The Directory - Authentication
 Framework. 1988.

Security Considerations

 The Cryptographic Message Syntax provides a method for digitally
 signing data, digesting data, encrypting data, and authenticating
 data.

 Implementations must protect the signer's private key. Compromise of
 the signer's private key permits masquerade.

 Implementations must protect the key management private key and the
 content-encryption key. Compromise of the key management private key
 may result in the disclosure of all messages protected with that key.
 Similarly, compromise of the content-encryption key may result in
 disclosure of the encrypted content.

https://datatracker.ietf.org/doc/html/rfc2313
https://datatracker.ietf.org/doc/html/rfc2315

Housley [Page 40]

INTERNET DRAFT May 1998

Author Address

 Russell Housley
 SPYRUS
 381 Elden Street
 Suite 1120
 Herndon, VA 20170
 USA

 housley@spyrus.com

Housley [Page 41]

