
S/MIME Working Group B. Kaliski
Internet Draft RSA Laboratories
Document: draft-ietf-smime-cms-rsa-kem-01.txt October 2003
Category: Standards

 Use of the RSA-KEM Key Transport Algorithm in CMS
 <draft-ietf-smime-cms-rsa-kem-01.txt>

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Comments or suggestions for improvement may be made on the "ietf-
 smime" mailing list, or directly to the author.

Abstract

 The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
 mechanism for transporting keying data to a recipient using the
 recipient's RSA public key. This document specifies the conventions
 for using the RSA-KEM Key Transport Algorithm with the Cryptographic
 Message Syntax (CMS). This version (-01) updates the ASN.1 syntax to
 align with the latest drafts of ANS X9.44 and ISO/IEC 18033-2, and
 adds material on certificate conventions and S/MIME capabilities.

Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC 2119
 [STDWORDS].

https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-rsa-kem-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-cms-rsa-kem-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2119

Kaliski Standards - Exp: April 2004 [Page 1]

INTERNET DRAFT October 2003

1. Introduction

 The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
 mechanism for transporting keying data to a recipient using the
 recipient's RSA public key.

 Most previous key transport algorithms based on the RSA public-key
 cryptosystem (e.g., the popular PKCS #1 v1.5 algorithm [PKCS1]) have
 the following general form:

 1. Format or "pad" the keying data to obtain an integer m.

 2. Encrypt the integer m with the recipient's RSA public key:

 c = m^e mod n

 3. Output c as the encrypted keying data.

 The RSA-KEM Key Transport Algorithm takes a different approach that
 provides higher security assurance, by encrypting a _random_ integer
 with the recipient's public key, and using a symmetric key-wrapping
 scheme to encrypt the keying data. It has the following form:

 1. Generate a random integer z between 0 and n-1.

 2. Encrypt the integer z with the recipient's RSA public key:

 c = z^e mod n.

 3. Derive a key-encrypting key KEK from the integer z.

 4. Wrap the keying data using KEK to obtain wrapped keying data
 WK.

 5. Output c and WK as the encrypted keying data.

 This different approach provides higher security assurance because
 the input to the underlying RSA operation is random and independent
 of the message, and the key-encrypting key KEK is derived from it in
 a strong way. As a result, the algorithm enjoys a "tight" security
 proof in the random oracle model. It is also architecturally
 convenient because the public-key operations are separate from the
 symmetric operations on the keying data. One benefit is that the
 length of the keying data is bounded only by the symmetric key-
 wrapping scheme, not the size of the RSA modulus.

 The RSA-KEM Key Transport Algorithm in various forms is being adopted
 in several draft standards including the draft ANS X9.44 [ANS-X9.44]
 and the draft ISO/IEC 18033-2 [ISO-IEC-18033-2]. It has also been

 recommended by the NESSIE project [NESSIE]. Although the other
 standards are still in development, the algorithm is stable across
 the drafts. For completeness, a specification of the algorithm is
 given in Appendix A of this document; ASN.1 syntax is given in

Kaliski Standards - Exp: April 2004 [Page 2]

INTERNET DRAFT October 2003

Appendix B.

 NOTE: The term KEM stands for "key encapsulation mechanism" and
 refers to the first three steps of the process above. The
 formalization of key transport algorithms (or more generally,
 asymmetric encryption schemes) in terms of key encapsulation
 mechanisms is described further in research by Victor Shoup leading
 to the development of the ISO/IEC 18033-2 standard [SHOUP].

2. Use in CMS

 The RSA-KEM Key Transport Algorithm MAY be employed for one or more
 recipients in the CMS enveloped-data content type (Section 6 of
 [CMS]), where the keying data processed by the algorithm is the CMS
 content-encryption key.

 The RSA-KEM Key Transport Algorithm SHOULD be considered for new
 CMS-based applications as a replacement for the widely implemented
 RSA encryption algorithm specified originally in PKCS #1 v1.5 (see
 [PKCS1] and Section 4.2.1 of [CMSALGS]), which is vulnerable to
 chosen-ciphertext attacks. The RSAES-OAEP Key Transport Algorithm
 has also been proposed as a replacement (see [PKCS1] and [CMS-
 OAEP]). RSA-KEM has the advantage over RSAES-OAEP of a tighter
 security proof, but the disadvantage of slightly longer encrypted
 keying data.

2.1 Underlying Components

 A CMS implementation that supports the RSA-KEM Key Transport
 Algorithm MUST support at least the following underlying components:

 * For the key derivation function, KDF2 (see [ANS-X9.44][IEEE-
 P1363a]) based on SHA-1 (see [FIPS-180-2]) (this function is
 also specified as the key derivation function in [ANS-X9.63])

 * For the key-wrapping scheme, AES-Wrap-128, i.e., the AES Key
 Wrap with a 128-bit key encrypting key (see [AES-WRAP])

 An implementation SHOULD also support KDF2 based on SHA-256 (see
 [FIPS-180-2]), and the Triple-DES Key Wrap (see [3DES-WRAP]). It MAY
 support other underlying components.

2.2 RecipientInfo Conventions

 When the RSA-KEM Key Transport Algorithm is employed for a recipient,
 recipient, the RecipientInfo alternative for that recipient MUST be
 KeyTransRecipientInfo. The algorithm-specific fields of the
 KeyTransRecipientInfo value MUST have the following values:

 * keyEncryptionAlgorithm.algorithm MUST be id-ac-generic-hybrid
 (see Appendix B)

Kaliski Standards - Exp: April 2004 [Page 3]

INTERNET DRAFT October 2003

 * keyEncryptionAlgorithm.parameters MUST be a value of type
 GenericHybridParameters, identifying the RSA-KEM key
 encapsulation mechanism (see Appendix B)

 * encryptedKey MUST be the encrypted keying data output by the
 algorithm (see Appendix A)

2.3 Certificate Conventions

 The conventions specified in this section augment RFC 3280 [PROFILE].

 A recipient who employs the RSA-KEM Key Transport Algorithm MAY
 identify the public key in a certificate by the same
 AlgorithmIdentifier as for the PKCS #1 v1.5 algorithm, i.e., using
 the rsaEncryption object identifier [PKCS1].

 If the recipient wishes only to employ the RSA-KEM Key Transport
 Algorithm with a given public key, the recipient MUST identify the
 public key in the certificate using the id-ac-generic-hybrid object
 identifier (see Appendix B) where the associated
 GenericHybridParameters value indicates the underlying components
 with which the algorithm is to be employed. The certificate user MUST
 perform the RSA-KEM Key Transport algorithm using only those
 components.

 Regardless of the AlgorithmIdentifier used, the RSA public key is
 encoded in the same manner in the subject public key information.
 The RSA public key MUST be encoded using the type RSAPublicKey type:

 RSAPublicKey ::= SEQUENCE {
 modulus INTEGER, -- n
 publicExponent INTEGER -- e
 }

 Here, the modulus is the modulus n, and publicExponent is the public
 exponent e. The DER encoded RSAPublicKey is carried in the
 subjectPublicKey BIT STRING within the subject public key
 information.

 The intended application for the key MAY be indicated in the key
 usage certificate extension (see [PROFILE], Section 4.2.1.3). If the
 keyUsage extension is present in a certificate that conveys an RSA
 public key with the id-ac-generic-hybrid object identifier as
 discussed above, then the key usage extension MUST contain the
 following value:

 keyEncipherment.

 dataEncipherment SHOULD NOT be present. That is, a key intended to be

https://datatracker.ietf.org/doc/html/rfc3280

 employed only with the RSA-KEM Key Transport Algorithm SHOULD NOT
 also be employed for data encryption.

Kaliski Standards - Exp: April 2004 [Page 4]

INTERNET DRAFT October 2003

2.4 SMIMECapabilities Attribute Conventions

RFC 2633 [MSG], Section 2.5.2 defines the SMIMECapabilities signed
 attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to be
 used to specify a partial list of algorithms that the software
 announcing the SMIMECapabilities can support. When constructing a
 signedData object, compliant software MAY include the
 SMIMECapabilities signed attribute announcing that it supports the
 RSA-KEM Key Transport algorithm.

 The SMIMECapability SEQUENCE representing the RSA-KEM Key Transport
 Algorithm MUST include the id-ac-generic-hybrid object identifier
 (see Appendix B) in the capabilityID field and MUST include a
 GenericHybridParameters value in the parameters field identifying the
 components with which the algorithm is to be employed.

 The DER encoding of a SMIMECapability SEQUENCE is the same as the DER
 encoding of an AlgorithmIdentifier. Example DER encodings for typical
 sets of components are given in Appendix B.4.

3. Security Considerations

 The security of the RSA-KEM Key Transport Algorithm described in
 this document can be shown to be tightly related to the difficulty
 of either solving the RSA problem or breaking the underlying
 symmetric key-wrapping scheme, if the underlying key derivation
 function is modeled as a random oracle, and assuming that the
 symmetric key-wrapping scheme satisfies the properties of a data
 encapsulation mechanism [SHOUP]. While in practice a random-oracle
 result does not provide an actual security proof for any particular
 key derivation function, the result does provide assurance that the
 general construction is reasonable; a key derivation function would
 need to be particularly weak to lead to an attack that is not
 possible in the random oracle model.

 The RSA key size and the underlying components should be selected
 consistent with the desired symmetric security level for an
 application. Several security levels have been identified in [NIST-
 GUIDELINE]. For brevity, the first three levels are mentioned here:

 * 80-bit security. The RSA key size SHOULD be at least 1024 bits,
 the hash function underlying KDF2 SHOULD be SHA-1 or above, and
 the symmetric key-wrapping scheme SHOULD be AES Key Wrap or
 Triple-DES Key Wrap.

 * 112-bit security. The RSA key size SHOULD be at least 2048
 bits, the hash function underlying KDF2 SHOULD be SHA-224 or
 above, and the symmetric key-wrapping scheme SHOULD be AES Key

https://datatracker.ietf.org/doc/html/rfc2633

 Wrap or Triple-DES Key Wrap.

 * 128-bit security. The RSA key size SHOULD be at least 3072
 bits, the hash function underlying KDF2 SHOULD be SHA-256 or

Kaliski Standards - Exp: April 2004 [Page 5]

INTERNET DRAFT October 2003

 above, and the symmetric key-wrapping scheme SHOULD be AES Key
 Wrap.

 Note that the AES Key Wrap MAY be used at all three of these levels;
 the use of AES does not require a 128-bit security level for other
 components.

 Implementations MUST protect the RSA private key and the content-
 encryption key. Compromise of the RSA private key may result in the
 disclosure of all messages protected with that key. Compromise of the
 content-encryption key may result in disclosure of the associated
 encrypted content.

 Additional considerations related to key management may be found in
 [NIST-GUIDELINE].

 The security of the algorithm also depends on the strength of the
 random number generator, which SHOULD have a comparable security
 level. For further discussion on random number generation, please
 see [RANDOM].

 Implementations SHOULD NOT reveal information about intermediate
 values or calculations, whether by timing or other "side channels",
 or otherwise an opponent may be able to determine information about
 the keying data and/or the recipient's private key. Although not all
 intermediate information may be useful to an opponent, it is
 preferable to conceal as much information as is practical, unless
 analysis specifically indicates that the information would not be
 useful.

 Generally, good cryptographic practice employs a given RSA key pair
 in only one scheme. This practice avoids the risk that vulnerability
 in one scheme may compromise the security of the other, and may be
 essential to maintain provable security. While RSA public keys have
 often been employed for multiple purposes such as key transport and
 digital signature without any known bad interactions, for increased
 security assurance, such combined use of an RSA key pair is NOT
 RECOMMENDED in the future (unless the different schemes are
 specifically designed to be used together).

 Accordingly, an RSA key pair used for the RSA-KEM Key Transport
 Algorithm SHOULD NOT also be used for digital signatures. (Indeed,
 ASC X9 requires such a separation between key establishment key pairs
 and digital signature key pairs.) Continuing this principle of key
 separation, a key pair used for the RSA-KEM Key Transport Algorithm
 SHOULD NOT be used with other key establishment schemes, or for data
 encryption, or with more than one set of underlying algorithm
 components.

 Parties MAY wish to formalize the assurance that one another's
 implementations are correct through implementation validation, e.g.
 NIST's Cryptographic Module Validation Program (CMVP).

Kaliski Standards - Exp: April 2004 [Page 6]

INTERNET DRAFT October 2003

4. References

4.1 Normative References

 3DES-WRAP Housley, R. Triple-DES and RC2 Key Wrapping. RFC
3217. December 2001.

 AES-WRAP Schaad, J. and R. Housley. Advanced Encryption
 Standard (AES) Key Wrap Algorithm. RFC 3394.
 September 2002.

 ANS-X9.63 American National Standard X9.63-2002: Public Key
 Cryptography for the Financial Services Industry:
 Key Agreement and Key Transport Using Elliptic
 Curve Cryptography.

 CMS Housley, R. Cryptographic Message Syntax. RFC
3369. August 2002.

 CMSALGS Housley, R. Cryptographic Message Syntax (CMS)
 Algorithms. RFC 3370. August 2002.

 FIPS-180-2 National Institute of Standards and Technology
 (NIST). FIPS 180-2: Secure Hash Standard. August
 2002.

 MSG Ramsdell, B. S/MIME Version 3 Message
 Specification. RFC 2633. June 1999.

 PROFILE Housley, R., Polk, W., Ford, W. and D. Solo.
 Internet X.509 Public Key Infrastructure:
 Certificate and Certificate Revocation List (CRL)
 Profile. RFC 3280. April 2002.

 STDWORDS Bradner, S. Key Words for Use in RFCs to Indicate
 Requirement Levels. RFC 2119. March 1997.

4.2 Informative References

 ANS-X9.44 ASC X9F1 Working Group. Draft American National
 Standard X9.44: Public Key Cryptography for the
 Financial Services Industry -- Key Establishment
 Using Integer Factorization Cryptography. Draft D6,
 October 15, 2003.

 CMS-OAEP Housley, R. Use of the RSAES-OAEP Key Transport
 Algorithm in the Cryptographic Message Syntax
 (CMS). RFC 3560. July 2003.

https://datatracker.ietf.org/doc/html/rfc3217
https://datatracker.ietf.org/doc/html/rfc3217
https://datatracker.ietf.org/doc/html/rfc3394
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/rfc3370
https://datatracker.ietf.org/doc/html/rfc2633
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3560

 IEEE-P1363a IEEE P1363 Working Group. IEEE P1363a: Standard
 Specifications for Public Key Cryptography:
 Additional Techniques. Draft D12, May 12, 2003.
 Available via http://grouper.ieee.org/groups/1363.

Kaliski Standards - Exp: April 2004 [Page 7]

http://grouper.ieee.org/groups/1363

INTERNET DRAFT October 2003

 ISO-IEC-18033-2 ISO/IEC 18033-2: Information technology -- Security
 techniques -- Encryption algorithms Part 2:
 Asymmetric Ciphers. 2nd Committee Draft, July 10,
 2003.

 NESSIE NESSIE Consortium. Portfolio of Recommended
 Cryptographic Primitives. February 27, 2003.
 Available via http://www.cryptonessie.org/.

 NIST-GUIDELINE National Institute of Standards and Technology.
 Special Publication 800-57: Recommendation for Key
 Management. Part 1: General Guideline. Draft,
 January 2003. Available via

http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html.

 PKCS1 Jonsson, J. and B. Kaliski. PKCS #1: RSA
 Cryptography Specifications Version 2.1. RFC 3447.
 February 2003.

 RANDOM Eastlake, D., S. Crocker, and J. Schiller.
 Randomness Recommendations for Security. RFC 1750.
 December 1994.

 SHOUP Shoup, V. A Proposal for an ISO Standard for
 Public Key Encryption. Version 2.1, December 20,
 2001. Available via http://www.shoup.net/papers/.

5. IANA Considerations

 Within the CMS, algorithms are identified by object identifiers
 (OIDs). With one exception, all of the OIDs used in this document
 were assigned in other IETF documents, in ISO/IEC standards
 documents, by the National Institute of Standards and Technology
 (NIST), and in Public-Key Cryptography Standards (PKCS) documents.
 The one exception is that the ASN.1 module's identifier (see Appendix

B.3) is assigned in this document. No further action by the IANA is
 necessary for this document or any anticipated updates.

6. Acknowledgments

 This document is one part of a strategy to align algorithm standards
 produced by ASC X9, ISO/IEC JTC1 SC27, NIST, and the IETF. I would
 like to thank the members of the ASC X9F1 working group for their
 contributions to drafts of ANS X9.44 which led to this specification.
 My thanks as well to Russ Housley as well for his guidance and
 encouragement. I also appreciate the helpful direction I've received
 from Blake Ramsdell and Jim Schaad in bringing this document to

http://www.cryptonessie.org/
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc1750
http://www.shoup.net/papers/

 fruition.

Kaliski Standards - Exp: April 2004 [Page 8]

INTERNET DRAFT October 2003

7. Author's Address

 Burt Kaliski
 RSA Laboratories
 174 Middlesex Turnpike
 Bedford, MA 01730
 USA
 bkaliski@rsasecurity.com

Appendix A. RSA-KEM Key Transport Algorithm

 The RSA-KEM Key Transport Algorithm is a one-pass (store-and-forward)
 mechanism for transporting keying data to a recipient using the
 recipient's RSA public key.

 With this type of algorithm, a sender encrypts the keying data using
 the recipient's public key to obtain encrypted keying data. The
 recipient decrypts the encrypted keying data using the recipient's
 private key to recover the keying data.

A.1 Underlying Components

 The algorithm has the following underlying components:

 * KDF, a key derivation function, which derives keying data of a
 specified length from a shared secret value

 * Wrap, a symmetric key-wrapping scheme, which encrypts keying
 data using a key-encrypting key

 In the following, kekLen denotes the length in bytes of the key-
 encrypting key for the underlying symmetric key-wrapping scheme.

 In this scheme, the length of the keying data to be transported MUST
 be among the lengths supported by the underlying symmetric key-
 wrapping scheme. (The AES Key Wrap, for instance, requires the length
 of the keying data to be a multiple of 8 bytes, and at least 16
 bytes.) Usage and formatting of the keying data (e.g., parity
 adjustment for Triple-DES keys) is outside the scope of this
 algorithm.

 With some key derivation functions, it is possible to include other
 information besides the shared secret value in the input to the
 function. Also, with some symmetric key-wrapping schemes, it is
 possible to associate a label with the keying data. Such uses are
 outside the scope of this document, as they are not directly
 supported by CMS.

A.2 Sender's Operations

 Let (n,e) be the recipient's RSA public key (see [PKCS1] for details)
 and let K be the keying data to be transported.

Kaliski Standards - Exp: April 2004 [Page 9]

INTERNET DRAFT October 2003

 Let nLen denote the length in bytes of the modulus n, i.e., the least
 integer such that 2^{8*nLen} > n.

 The sender performs the following operations:

 1. Generate a random integer z between 0 and n-1 (see Note), and
 convert z to a byte string Z of length nLen, most significant
 byte first:

 z = RandomInteger (0, n-1)
 Z = IntegerToString (z, nLen)

 2. Encrypt the random integer z using the recipient's public key
 (n,e) and convert the resulting integer c to a ciphertext C, a
 byte string of length nLen:

 c = z^e mod n
 C = IntegerToString (c, nLen)

 3. Derive a key-encrypting key KEK of length kekLen bytes from the
 byte string Z using the underlying key derivation function:

 KEK = KDF (Z, kekLen)

 4. Wrap the keying data K with the key-encrypting key KEK using
 the underlying key-wrapping scheme to obtain wrapped keying
 data WK:

 WK = Wrap (KEK, K)

 5. Concatenate the ciphertext C and the wrapped keying data WK to
 obtain the encrypted keying data EK:

 EK = C || WK

 6. Output the encrypted keying data EK.

 NOTE: The random integer z MUST be generated independently at random
 for different encryption operations, whether for the same or
 different recipients.

A.3 Recipient's Operations

 Let (n,d) be the recipient's RSA private key (see [PKCS1]; other
 private key formats are allowed) and let EK be the encrypted keying
 data.

 Let nLen denote the length in bytes of the modulus n.

 The recipient performs the following operations:

 1. Separate the encrypted keying data EK into a ciphertext C of
 length nLen bytes and wrapped keying data WK:

Kaliski Standards - Exp: April 2004 [Page 10]

INTERNET DRAFT October 2003

 C || WK = EK

 If the length of the encrypted keying data is less than nLen
 bytes, output "decryption error" and stop.

 2. Convert the ciphertext C to an integer c, most significant
 byte first. Decrypt the integer c using the recipient's
 private key (n,d) to recover an integer z (see Note):

 c = StringToInteger (C)
 z = c^d mod n

 If the integer c is not between 0 and n-1, output "decryption
 error" and stop.

 3. Convert the integer z to a byte string Z of length nLen, most
 significant byte first (see Note):

 Z = IntegerToString (z, nLen)

 4. Derive a key-encrypting key KEK of length kekLen bytes from
 the byte string Z using the underlying key derivation function
 (see Note):

 KEK = KDF (Z, kekLen)

 5. Unwrap the wrapped keying data WK with the key-encrypting key
 KEK using the underlying key-wrapping scheme to recover the
 keying data K:

 K = Unwrap (KEK, WK)

 If the unwrapping operation outputs an error, output
 "decryption error" and stop.

 6. Output the keying data K.

 NOTE: Implementations SHOULD NOT reveal information about the integer
 z and the string Z, nor about the calculation of the exponentiation
 in Step 2, the conversion in Step 3, or the key derivation in Step 4,
 whether by timing or other "side channels". The observable behavior
 of the implementation SHOULD be the same at these steps for all
 ciphertexts C that are in range. (For example, IntegerToString
 conversion should take the same amount of time regardless of the
 actual value of the integer z.) The integer z, the string Z and other
 intermediate results MUST be securely deleted when they are no longer
 needed.

Appendix B. ASN.1 Syntax

 The ASN.1 syntax for identifying the RSA-KEM Key Transport Algorithm
 is an extension of the syntax for the "generic hybrid cipher" in the

Kaliski Standards - Exp: April 2004 [Page 11]

INTERNET DRAFT October 2003

 draft ISO/IEC 18033-2 [ISO-IEC-18033-2], and is the same as employed
 in the draft ANS X9.44 [ANS-X9.44]. The syntax for the scheme is
 given in Section B.1. The syntax for selected underlying components
 including those mentioned above is given in B.2.

 The following object identifier prefixes are used in the definitions
 below:

 is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

 nistAlgorithm OID ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) csor(3) nistAlgorithm(4)
 }

 pkcs-1 OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
 }

 NullParms is a more descriptive synonym for NULL when an algorithm
 identifier has null parameters:

 NullParms ::= NULL

 The material in this Appendix is based on a draft standard and is
 SUBJECT TO CHANGE as that standard is developed.

B.1 RSA-KEM Key Transport Algorithm

 The object identifier for the RSA-KEM Key Transport Algorithm is the
 same as for the "generic hybrid cipher" in the draft ANS ISO/IEC
 18033-2, id-ac-generic-hybrid, which is defined in the draft as

 id-ac-generic-hybrid OID ::= {
 is18033-2 asymmetric-cipher(1) generic-hybrid(2)
 }

 The associated parameters for id-ac-generic-hybrid have type
 GenericHybridParameters:

 GenericHybridParameters ::= {
 kem KeyEncapsulationMechanism,
 dem DataEncapsulationMechanism
 }

 The fields of type GenericHybridParameters have the following
 meanings:

 * kem identifies the underlying key encapsulation mechanism. For

 the RSA-KEM Key Transport Algorithm, the scheme is RSA-KEM from
 the draft ISO/IEC 18033-2.

 The object identifier for RSA-KEM (as a key encapsulation

Kaliski Standards - Exp: April 2004 [Page 12]

INTERNET DRAFT October 2003

 mechanism) is id-kem-rsa, which is defined in the draft ISO/IEC
 18033-2 as

 id-kem-rsa OID ::= {
 is18033-2 key-encapsulation-mechanism(2) rsa(4)
 }

 The associated parameters for id-kem-rsa have type
 RsaKemParameters:

 RsaKemParameters ::= {
 keyDerivationFunction KeyDerivationFunction,
 keyLength KeyLength
 }

 The fields of type RsaKemParameters have the following
 meanings:

 * keyDerivationFunction identifies the underlying key
 derivation function. For alignment with the draft ANS
 X9.44, it MUST be KDF2. However, other key derivation
 functions MAY be used with CMS. Please see B.2.1 for the
 syntax for KDF2.

 KeyDerivationFunction ::=
 AlgorithmIdentifier {{KDFAlgorithms}}

 KDFAlgorithms ALGORITHMS ::= {
 kdf2,
 ... -- implementations may define other methods
 }

 * keyLength is the length in bytes of the key-encrypting
 key, which depends on the underlying symmetric key-
 wrapping scheme.

 KeyLength ::= INTEGER (1..MAX)

 * dem identifies the underlying data encapsulation mechanism.
 For alignment with the draft ANS X9.44, it MUST be an X9-
 approved symmetric key-wrapping scheme. (See Note.) However,
 other symmetric key-wrapping schemes MAY be used with CMS.
 Please see B.2.2 for the syntax for the AES and Triple-DES Key
 Wraps.

 DataEncapsulationMechanism ::=
 AlgorithmIdentifier {{DEMAlgorithms}}

 DEMAlgorithms ALGORITHM ::= {

 X9-SymmetricKeyWrappingSchemes,
 ... -- implementations may define other methods
 }

Kaliski Standards - Exp: April 2004 [Page 13]

INTERNET DRAFT October 2003

 X9-SymmetricKeyWrappingSchemes ALGORITHM ::= {
 aes128-Wrap | aes192-Wrap | aes256-Wrap | tdes-Wrap,
 ... -- allows for future expansion
 }

 NOTE: The generic hybrid cipher in the draft ISO/IEC 18033-2 can
 encrypt arbitrary data, hence the term "data encapsulation
 mechanism". The symmetric key-wrapping schemes take the role of data
 encapsulation mechanisms in the RSA-KEM Key Transport Algorithm. The
 draft ISO/IEC 18033-2 currently allows only three particular data
 encapsulation mechanisms, not including any of these symmetric key-
 wrapping schemes. However, the ASN.1 syntax in that document expects
 that additional algorithms will be allowed.

B.2 Selected Underlying Components

B.2.1 Key Derivation Functions

 The object identifier for KDF2 (see [ISO-IEC-18033-2]) is

 id-kdf-kdf2 OID ::= {
 is18033-2 key-derivation-functions(5) kdf2(2)
 }

 The associated parameters identify the underlying hash function. For
 alignment with the draft ANS X9.44, the hash function MUST be an ASC
 X9-approved hash function. (See Note.) However, other hash functions
 MAY be used with CMS.

 kdf2 ALGORITHM ::= {{ OID id-kdf-kdf2 PARMS KDF2-HashFunction }}

 KDF2-HashFunction ::= AlgorithmIdentifier {{KDF2-HashFunctions}}

 KDF2-HashFunctions ALGORITHM ::= {
 X9-HashFunctions,
 ... -- implementations may define other methods
 }

 X9-HashFunctions ALGORITHM ::= {
 sha1 | sha224 | sha256 | sha384 | sha512,
 ... -- allows for future expansion
 }

 The object identifier for SHA-1 is

 id-sha1 OID ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) sha1(26)
 }

 The object identifiers for SHA-256, SHA-384 and SHA-512 are

 id-sha256 OID ::= { nistAlgorithm hashAlgs(2) sha256(1) }

Kaliski Standards - Exp: April 2004 [Page 14]

INTERNET DRAFT October 2003

 id-sha384 OID ::= { nistAlgorithm hashAlgs(2) sha384(2) }
 id-sha512 OID ::= { nistAlgorithm hashAlgs(2) sha512(3) }

 There has been some confusion over whether the various SHA object
 identifiers have a NULL parameter, or no associated parameters. As
 also discussed in [PKCS1], implementations SHOULD generate algorithm
 identifiers without parameters, and MUST accept algorithm identifiers
 either without parameters, or with NULL parameters.

 sha1 ALGORITHM ::= {{ OID id-sha1 }} -- NULLParms MUST be
 sha224 ALGORITHM ::= {{ OID id-sha224 }} -- accepted for these
 sha256 ALGORITHM ::= {{ OID id-sha256 }} -- OIDs
 sha384 ALGORITHM ::= {{ OID id-sha384 }} - ""
 sha512 ALGORITHM ::= {{ OID id-sha512 }} - ""

 NOTE: As of this writing, only SHA-1 is an ASC X9-approved hash
 function; SHA-224 and above are in the process of being approved. The
 object identifier for SHA-224 has not yet been assigned.

B.2.2 Symmetric Key-Wrapping Schemes

 The object identifiers for the AES Key Wrap depends on the size of
 the key encrypting key. There are three object identifiers (see
 [AES-WRAP]):

 id-aes128-Wrap OID ::= { nistAlgorithm aes(1) aes128-Wrap(5) }
 id-aes192-Wrap OID ::= { nistAlgorithm aes(1) aes192-Wrap(25) }
 id-aes256-Wrap OID ::= { nistAlgorithm aes(1) aes256-Wrap(45) }

 These object identifiers have no associated parameters.

 aes128-Wrap ALGORITHM ::= {{ OID id-aes128-wrap }}
 aes192-Wrap ALGORITHM ::= {{ OID id-aes192-wrap }}
 aes256-Wrap ALGORITHM ::= {{ OID id-aes256-wrap }}

 The object identifier for the Triple-DES Key Wrap (see [3DES-WRAP])
 is

 id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) alg(3) 6
 }

 This object identifier has a NULL parameter.

 tdes-Wrap ALGORITHM ::=
 {{ OID id-alg-CMS3DESwrap PARMS NullParms }}

 NOTE: As of this writing, the AES Key Wrap and the Triple-DES Key

 Wrap are in the process of being approved by ASC X9.

Kaliski Standards - Exp: April 2004 [Page 15]

INTERNET DRAFT October 2003

B.3 ASN.1 module

 CMS-RSA-KEM
 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
 pkcs-9(9) smime(16) modules(0) cms-rsa-kem(21) } [[check]]

 BEGIN

 -- EXPORTS ALL

 -- IMPORTS None

 -- Useful types and definitions

 OID ::= OBJECT IDENTIFIER -- alias

 -- Unless otherwise stated, if an object identifier has associated
 -- parameters (i.e., the PARMS element is specified), the parameters
 -- field shall be included in algorithm identifier values. The
 -- parameters field shall be omitted if and only if the object
 -- identifier does not have associated parameters (i.e., the PARMS
 -- element is omitted), unless otherwise stated.

 ALGORITHM ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Type OPTIONAL
 }
 WITH SYNTAX { OID &id [PARMS &Type] }

 AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
 algorithm ALGORITHM.&id({IOSet}),
 parameters ALGORITHM.&Type({IOSet}{@algorithm}) OPTIONAL
 }

 NullParms ::= NULL

 -- ISO/IEC 18033-2 arc

 is18033-2 OID ::= { iso(1) standard(0) is18033(18033) part2(2) }

 -- NIST algorithm arc

 nistAlgorithm OID ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 gov(101) csor(3) nistAlgorithm(4)
 }

 -- PKCS #1 arc

 pkcs-1 OID ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1)
 }

Kaliski Standards - Exp: April 2004 [Page 16]

INTERNET DRAFT October 2003

 -- RSA-KEM Key Transport Algorithm, based on Generic Hybrid Cipher

 id-ac-generic-hybrid OID ::= {
 is18033-2 asymmetric-cipher(1) generic-hybrid(2)
 }

 GenericHybridParameters ::= {
 kem KeyEncapsulationMechanism,
 dem DataEncapsulationMechanism
 }

 id-kem-rsa OID ::= {
 is18033-2 key-encapsulation-mechanism(2) rsa(4)
 }

 RsaKemParameters ::= {
 keyDerivationFunction KeyDerivationFunction,
 keyLength KeyLength
 }

 KeyDerivationFunction ::= AlgorithmIdentifier {{KDFAlgorithms}}

 KDFAlgorithms ALGORITHMS ::= {
 kdf2,
 ... -- implementations may define other methods
 }

 KeyLength ::= INTEGER (1..MAX)

 DataEncapsulationMechanism ::= AlgorithmIdentifier {{DEMAlgorithms}}

 DEMAlgorithms ALGORITHM ::= {
 X9-SymmetricKeyWrappingSchemes,
 ... -- implementations may define other methods
 }

 X9-SymmetricKeyWrappingSchemes ALGORITHM ::= {
 aes128-Wrap | aes192-Wrap | aes256-Wrap | tdes-Wrap,
 ... -- allows for future expansion
 }

 -- Key Derivation Functions

 id-kdf-kdf2 OID ::= { is18033-2 key-derivation-functions(5) kdf2(2) }

 kdf2 ALGORITHM ::= {{ OID id-kdf-kdf2 PARMS KDF2-HashFunction }}

 KDF2-HashFunction ::= AlgorithmIdentifier {{KDF2-HashFunctions}}

 KDF2-HashFunctions ALGORITHM ::= {
 X9-HashFunctions,
 ... -- implementations may define other methods
 }

Kaliski Standards - Exp: April 2004 [Page 17]

INTERNET DRAFT October 2003

 -- Hash Functions

 X9-HashFunctions ALGORITHM ::= {
 sha1 | sha224 | sha256 | sha384 | sha512,
 ... -- allows for future expansion
 }

 id-sha1 OID ::= {
 iso(1) identified-organization(3) oiw(14) secsig(3)
 algorithms(2) sha1(26)
 }

 id-sha256 OID ::= { nistAlgorithm hashAlgs(2) sha256(1) }
 id-sha384 OID ::= { nistAlgorithm hashAlgs(2) sha384(2) }
 id-sha512 OID ::= { nistAlgorithm hashAlgs(2) sha512(3) }

 sha1 ALGORITHM ::= {{ OID id-sha1 }} -- NullParms MUST be
 sha224 ALGORITHM ::= {{ OID id-sha224 }} -- accepted for these
 sha256 ALGORITHM ::= {{ OID id-sha256 }} -- OIDs
 sha384 ALGORITHM ::= {{ OID id-sha384 }} - ""
 sha512 ALGORITHM ::= {{ OID id-sha512 }} - ""

 -- Symmetric Key-Wrapping Schemes

 id-aes128-Wrap OID ::= { nistAlgorithm aes(1) aes128-Wrap(5) }
 id-aes192-Wrap OID ::= { nistAlgorithm aes(1) aes192-Wrap(25) }
 id-aes256-Wrap OID ::= { nistAlgorithm aes(1) aes256-Wrap(45) }

 aes128-Wrap ALGORITHM ::= {{ OID id-aes128-wrap }}
 aes192-Wrap ALGORITHM ::= {{ OID id-aes192-wrap }}
 aes256-Wrap ALGORITHM ::= {{ OID id-aes256-wrap }}

 id-alg-CMS3DESwrap OBJECT IDENTIFIER ::= {
 iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
 smime(16) alg(3) 6
 }

 tdes-Wrap ALGORITHM ::= {{ OID id-alg-CMS3DESwrap PARMS NullParms }}

B.4 Examples

 As an example, if the key derivation function is KDF2 based on
 SHA-256 and the symmetric key-wrapping scheme is the AES Key Wrap
 with a 128-bit KEK, the AlgorithmIdentifier for the RSA-KEM Key
 Transport Algorithm will have the following value:

 SEQUENCE {
 id-ac-generic-hybrid, -- generic cipher
 SEQUENCE { -- GenericHybridParameters

 SEQUENCE { -- key encapsulation mechanism
 id-kem-rsa, -- RSA-KEM
 SEQUENCE { -- RsaKemParameters
 SEQUENCE { -- key derivation function

Kaliski Standards - Exp: April 2004 [Page 18]

INTERNET DRAFT October 2003

 id-kdf-kdf2, -- KDF2
 SEQUENCE { -- KDF2-HashFunction
 id-sha256 -- SHA-256; no parameters (preferred)
 },
 16 -- KEK length in bytes
 },
 SEQUENCE { -- data encapsulation mechanism
 id-aes128-Wrap -- AES-128 Wrap; no parameters
 }
 }
 }

 This AlgorithmIdentifier value has the following DER encoding:

 30 4f
 06 07 28 81 8c 71 02 01 02 -- id-ac-generic-hybrid
 30 44
 30 25
 06 07 28 81 8c 71 02 02 04 -- id-kem-rsa
 30 1a
 30 16
 06 07 28 81 8c 71 02 05 02 -- id-kdf-kdf2
 30 0b
 06 09 60 86 48 01 65 03 04 02 01 -- id-sha256
 02 10 -- 16 bytes
 30 0b
 06 09 60 86 48 01 65 03 04 01 05 -- id-aes128-Wrap

 The DER encodings for other typical sets of underlying components are
 as follows:

 * KDF2 based on SHA-384, AES Key Wrap with a 192-bit KEK

 30 4f 06 07 28 81 8c 71 02 01 02 30 44 30 25 06
 07 28 81 8c 71 02 02 04 30 1a 30 16 06 07 28 81
 8c 71 02 05 02 30 0b 06 09 60 86 48 01 65 03 04
 02 02 02 18 30 0b 06 09 60 86 48 01 65 03 04 01
 19

 * KDF2 based on SHA-512, AES Key Wrap with a 256-bit KEK

 30 4f 06 07 28 81 8c 71 02 01 02 30 44 30 25 06
 07 28 81 8c 71 02 02 04 30 1a 30 16 06 07 28 81
 8c 71 02 05 02 30 0b 06 09 60 86 48 01 65 03 04
 02 03 02 20 30 0b 06 09 60 86 48 01 65 03 04 01
 2d

 * KDF2 based on SHA-1, Triple-DES Key Wrap with a 128-bit KEK

 (two-key triple-DES)

 30 4f 06 07 28 81 8c 71 02 01 02 30 44 30 21 06
 07 28 81 8c 71 02 02 04 30 16 30 12 06 07 28 81

Kaliski Standards - Exp: April 2004 [Page 19]

INTERNET DRAFT October 2003

 8c 71 02 05 02 30 07 06 05 2b 0e 03 02 1a 02 10
 30 0f 06 0b 2a 86 48 86 f7 0d 01 09 10 03 06 05
 00

 * KDF2 based on SHA-224, Triple-DES Key Wrap with a 192-bit
 KEK (three-key triple-DES)

 [[to be defined, awaiting OID for SHA-224]]

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

Kaliski Standards - Exp: April 2004 [Page 20]

